V4L/DVB (6769): pvrusb2: Implement experimental support for OnAir Creator and USB2...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_inode.c
blob344948082819d94b82c72c5967d14e83e140cc36
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_imap.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_dir2.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
44 #include "xfs_bmap.h"
45 #include "xfs_rw.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
50 #include "xfs_acl.h"
51 #include "xfs_filestream.h"
52 #include "xfs_vnodeops.h"
54 kmem_zone_t *xfs_ifork_zone;
55 kmem_zone_t *xfs_inode_zone;
56 kmem_zone_t *xfs_icluster_zone;
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
62 #define XFS_ITRUNC_MAX_EXTENTS 2
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69 #ifdef DEBUG
71 * Make sure that the extents in the given memory buffer
72 * are valid.
74 STATIC void
75 xfs_validate_extents(
76 xfs_ifork_t *ifp,
77 int nrecs,
78 xfs_exntfmt_t fmt)
80 xfs_bmbt_irec_t irec;
81 xfs_bmbt_rec_host_t rec;
82 int i;
84 for (i = 0; i < nrecs; i++) {
85 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 rec.l0 = get_unaligned(&ep->l0);
87 rec.l1 = get_unaligned(&ep->l1);
88 xfs_bmbt_get_all(&rec, &irec);
89 if (fmt == XFS_EXTFMT_NOSTATE)
90 ASSERT(irec.br_state == XFS_EXT_NORM);
93 #else /* DEBUG */
94 #define xfs_validate_extents(ifp, nrecs, fmt)
95 #endif /* DEBUG */
98 * Check that none of the inode's in the buffer have a next
99 * unlinked field of 0.
101 #if defined(DEBUG)
102 void
103 xfs_inobp_check(
104 xfs_mount_t *mp,
105 xfs_buf_t *bp)
107 int i;
108 int j;
109 xfs_dinode_t *dip;
111 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
113 for (i = 0; i < j; i++) {
114 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 i * mp->m_sb.sb_inodesize);
116 if (!dip->di_next_unlinked) {
117 xfs_fs_cmn_err(CE_ALERT, mp,
118 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
119 bp);
120 ASSERT(dip->di_next_unlinked);
124 #endif
127 * This routine is called to map an inode number within a file
128 * system to the buffer containing the on-disk version of the
129 * inode. It returns a pointer to the buffer containing the
130 * on-disk inode in the bpp parameter, and in the dip parameter
131 * it returns a pointer to the on-disk inode within that buffer.
133 * If a non-zero error is returned, then the contents of bpp and
134 * dipp are undefined.
136 * Use xfs_imap() to determine the size and location of the
137 * buffer to read from disk.
139 STATIC int
140 xfs_inotobp(
141 xfs_mount_t *mp,
142 xfs_trans_t *tp,
143 xfs_ino_t ino,
144 xfs_dinode_t **dipp,
145 xfs_buf_t **bpp,
146 int *offset)
148 int di_ok;
149 xfs_imap_t imap;
150 xfs_buf_t *bp;
151 int error;
152 xfs_dinode_t *dip;
155 * Call the space management code to find the location of the
156 * inode on disk.
158 imap.im_blkno = 0;
159 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
160 if (error != 0) {
161 cmn_err(CE_WARN,
162 "xfs_inotobp: xfs_imap() returned an "
163 "error %d on %s. Returning error.", error, mp->m_fsname);
164 return error;
168 * If the inode number maps to a block outside the bounds of the
169 * file system then return NULL rather than calling read_buf
170 * and panicing when we get an error from the driver.
172 if ((imap.im_blkno + imap.im_len) >
173 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
174 cmn_err(CE_WARN,
175 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
176 "of the file system %s. Returning EINVAL.",
177 (unsigned long long)imap.im_blkno,
178 imap.im_len, mp->m_fsname);
179 return XFS_ERROR(EINVAL);
183 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
184 * default to just a read_buf() call.
186 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
187 (int)imap.im_len, XFS_BUF_LOCK, &bp);
189 if (error) {
190 cmn_err(CE_WARN,
191 "xfs_inotobp: xfs_trans_read_buf() returned an "
192 "error %d on %s. Returning error.", error, mp->m_fsname);
193 return error;
195 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
196 di_ok =
197 be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
198 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
199 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
200 XFS_RANDOM_ITOBP_INOTOBP))) {
201 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
202 xfs_trans_brelse(tp, bp);
203 cmn_err(CE_WARN,
204 "xfs_inotobp: XFS_TEST_ERROR() returned an "
205 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
206 return XFS_ERROR(EFSCORRUPTED);
209 xfs_inobp_check(mp, bp);
212 * Set *dipp to point to the on-disk inode in the buffer.
214 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
215 *bpp = bp;
216 *offset = imap.im_boffset;
217 return 0;
222 * This routine is called to map an inode to the buffer containing
223 * the on-disk version of the inode. It returns a pointer to the
224 * buffer containing the on-disk inode in the bpp parameter, and in
225 * the dip parameter it returns a pointer to the on-disk inode within
226 * that buffer.
228 * If a non-zero error is returned, then the contents of bpp and
229 * dipp are undefined.
231 * If the inode is new and has not yet been initialized, use xfs_imap()
232 * to determine the size and location of the buffer to read from disk.
233 * If the inode has already been mapped to its buffer and read in once,
234 * then use the mapping information stored in the inode rather than
235 * calling xfs_imap(). This allows us to avoid the overhead of looking
236 * at the inode btree for small block file systems (see xfs_dilocate()).
237 * We can tell whether the inode has been mapped in before by comparing
238 * its disk block address to 0. Only uninitialized inodes will have
239 * 0 for the disk block address.
242 xfs_itobp(
243 xfs_mount_t *mp,
244 xfs_trans_t *tp,
245 xfs_inode_t *ip,
246 xfs_dinode_t **dipp,
247 xfs_buf_t **bpp,
248 xfs_daddr_t bno,
249 uint imap_flags)
251 xfs_imap_t imap;
252 xfs_buf_t *bp;
253 int error;
254 int i;
255 int ni;
257 if (ip->i_blkno == (xfs_daddr_t)0) {
259 * Call the space management code to find the location of the
260 * inode on disk.
262 imap.im_blkno = bno;
263 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
264 XFS_IMAP_LOOKUP | imap_flags)))
265 return error;
268 * If the inode number maps to a block outside the bounds
269 * of the file system then return NULL rather than calling
270 * read_buf and panicing when we get an error from the
271 * driver.
273 if ((imap.im_blkno + imap.im_len) >
274 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
275 #ifdef DEBUG
276 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
277 "(imap.im_blkno (0x%llx) "
278 "+ imap.im_len (0x%llx)) > "
279 " XFS_FSB_TO_BB(mp, "
280 "mp->m_sb.sb_dblocks) (0x%llx)",
281 (unsigned long long) imap.im_blkno,
282 (unsigned long long) imap.im_len,
283 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
284 #endif /* DEBUG */
285 return XFS_ERROR(EINVAL);
289 * Fill in the fields in the inode that will be used to
290 * map the inode to its buffer from now on.
292 ip->i_blkno = imap.im_blkno;
293 ip->i_len = imap.im_len;
294 ip->i_boffset = imap.im_boffset;
295 } else {
297 * We've already mapped the inode once, so just use the
298 * mapping that we saved the first time.
300 imap.im_blkno = ip->i_blkno;
301 imap.im_len = ip->i_len;
302 imap.im_boffset = ip->i_boffset;
304 ASSERT(bno == 0 || bno == imap.im_blkno);
307 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
308 * default to just a read_buf() call.
310 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
311 (int)imap.im_len, XFS_BUF_LOCK, &bp);
312 if (error) {
313 #ifdef DEBUG
314 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
315 "xfs_trans_read_buf() returned error %d, "
316 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
317 error, (unsigned long long) imap.im_blkno,
318 (unsigned long long) imap.im_len);
319 #endif /* DEBUG */
320 return error;
324 * Validate the magic number and version of every inode in the buffer
325 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
326 * No validation is done here in userspace (xfs_repair).
328 #if !defined(__KERNEL__)
329 ni = 0;
330 #elif defined(DEBUG)
331 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
332 #else /* usual case */
333 ni = 1;
334 #endif
336 for (i = 0; i < ni; i++) {
337 int di_ok;
338 xfs_dinode_t *dip;
340 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
341 (i << mp->m_sb.sb_inodelog));
342 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
343 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
344 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
345 XFS_ERRTAG_ITOBP_INOTOBP,
346 XFS_RANDOM_ITOBP_INOTOBP))) {
347 if (imap_flags & XFS_IMAP_BULKSTAT) {
348 xfs_trans_brelse(tp, bp);
349 return XFS_ERROR(EINVAL);
351 #ifdef DEBUG
352 cmn_err(CE_ALERT,
353 "Device %s - bad inode magic/vsn "
354 "daddr %lld #%d (magic=%x)",
355 XFS_BUFTARG_NAME(mp->m_ddev_targp),
356 (unsigned long long)imap.im_blkno, i,
357 be16_to_cpu(dip->di_core.di_magic));
358 #endif
359 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
360 mp, dip);
361 xfs_trans_brelse(tp, bp);
362 return XFS_ERROR(EFSCORRUPTED);
366 xfs_inobp_check(mp, bp);
369 * Mark the buffer as an inode buffer now that it looks good
371 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
374 * Set *dipp to point to the on-disk inode in the buffer.
376 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
377 *bpp = bp;
378 return 0;
382 * Move inode type and inode format specific information from the
383 * on-disk inode to the in-core inode. For fifos, devs, and sockets
384 * this means set if_rdev to the proper value. For files, directories,
385 * and symlinks this means to bring in the in-line data or extent
386 * pointers. For a file in B-tree format, only the root is immediately
387 * brought in-core. The rest will be in-lined in if_extents when it
388 * is first referenced (see xfs_iread_extents()).
390 STATIC int
391 xfs_iformat(
392 xfs_inode_t *ip,
393 xfs_dinode_t *dip)
395 xfs_attr_shortform_t *atp;
396 int size;
397 int error;
398 xfs_fsize_t di_size;
399 ip->i_df.if_ext_max =
400 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
401 error = 0;
403 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
404 be16_to_cpu(dip->di_core.di_anextents) >
405 be64_to_cpu(dip->di_core.di_nblocks))) {
406 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
407 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
408 (unsigned long long)ip->i_ino,
409 (int)(be32_to_cpu(dip->di_core.di_nextents) +
410 be16_to_cpu(dip->di_core.di_anextents)),
411 (unsigned long long)
412 be64_to_cpu(dip->di_core.di_nblocks));
413 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
414 ip->i_mount, dip);
415 return XFS_ERROR(EFSCORRUPTED);
418 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
419 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
420 "corrupt dinode %Lu, forkoff = 0x%x.",
421 (unsigned long long)ip->i_ino,
422 dip->di_core.di_forkoff);
423 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
424 ip->i_mount, dip);
425 return XFS_ERROR(EFSCORRUPTED);
428 switch (ip->i_d.di_mode & S_IFMT) {
429 case S_IFIFO:
430 case S_IFCHR:
431 case S_IFBLK:
432 case S_IFSOCK:
433 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
434 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
435 ip->i_mount, dip);
436 return XFS_ERROR(EFSCORRUPTED);
438 ip->i_d.di_size = 0;
439 ip->i_size = 0;
440 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
441 break;
443 case S_IFREG:
444 case S_IFLNK:
445 case S_IFDIR:
446 switch (dip->di_core.di_format) {
447 case XFS_DINODE_FMT_LOCAL:
449 * no local regular files yet
451 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
452 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
453 "corrupt inode %Lu "
454 "(local format for regular file).",
455 (unsigned long long) ip->i_ino);
456 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
457 XFS_ERRLEVEL_LOW,
458 ip->i_mount, dip);
459 return XFS_ERROR(EFSCORRUPTED);
462 di_size = be64_to_cpu(dip->di_core.di_size);
463 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
464 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
465 "corrupt inode %Lu "
466 "(bad size %Ld for local inode).",
467 (unsigned long long) ip->i_ino,
468 (long long) di_size);
469 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
470 XFS_ERRLEVEL_LOW,
471 ip->i_mount, dip);
472 return XFS_ERROR(EFSCORRUPTED);
475 size = (int)di_size;
476 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
477 break;
478 case XFS_DINODE_FMT_EXTENTS:
479 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
480 break;
481 case XFS_DINODE_FMT_BTREE:
482 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
483 break;
484 default:
485 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
486 ip->i_mount);
487 return XFS_ERROR(EFSCORRUPTED);
489 break;
491 default:
492 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
493 return XFS_ERROR(EFSCORRUPTED);
495 if (error) {
496 return error;
498 if (!XFS_DFORK_Q(dip))
499 return 0;
500 ASSERT(ip->i_afp == NULL);
501 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
502 ip->i_afp->if_ext_max =
503 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
504 switch (dip->di_core.di_aformat) {
505 case XFS_DINODE_FMT_LOCAL:
506 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
507 size = be16_to_cpu(atp->hdr.totsize);
508 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
509 break;
510 case XFS_DINODE_FMT_EXTENTS:
511 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
512 break;
513 case XFS_DINODE_FMT_BTREE:
514 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
515 break;
516 default:
517 error = XFS_ERROR(EFSCORRUPTED);
518 break;
520 if (error) {
521 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
522 ip->i_afp = NULL;
523 xfs_idestroy_fork(ip, XFS_DATA_FORK);
525 return error;
529 * The file is in-lined in the on-disk inode.
530 * If it fits into if_inline_data, then copy
531 * it there, otherwise allocate a buffer for it
532 * and copy the data there. Either way, set
533 * if_data to point at the data.
534 * If we allocate a buffer for the data, make
535 * sure that its size is a multiple of 4 and
536 * record the real size in i_real_bytes.
538 STATIC int
539 xfs_iformat_local(
540 xfs_inode_t *ip,
541 xfs_dinode_t *dip,
542 int whichfork,
543 int size)
545 xfs_ifork_t *ifp;
546 int real_size;
549 * If the size is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
553 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
554 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
555 "corrupt inode %Lu "
556 "(bad size %d for local fork, size = %d).",
557 (unsigned long long) ip->i_ino, size,
558 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
559 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
560 ip->i_mount, dip);
561 return XFS_ERROR(EFSCORRUPTED);
563 ifp = XFS_IFORK_PTR(ip, whichfork);
564 real_size = 0;
565 if (size == 0)
566 ifp->if_u1.if_data = NULL;
567 else if (size <= sizeof(ifp->if_u2.if_inline_data))
568 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
569 else {
570 real_size = roundup(size, 4);
571 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
573 ifp->if_bytes = size;
574 ifp->if_real_bytes = real_size;
575 if (size)
576 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
577 ifp->if_flags &= ~XFS_IFEXTENTS;
578 ifp->if_flags |= XFS_IFINLINE;
579 return 0;
583 * The file consists of a set of extents all
584 * of which fit into the on-disk inode.
585 * If there are few enough extents to fit into
586 * the if_inline_ext, then copy them there.
587 * Otherwise allocate a buffer for them and copy
588 * them into it. Either way, set if_extents
589 * to point at the extents.
591 STATIC int
592 xfs_iformat_extents(
593 xfs_inode_t *ip,
594 xfs_dinode_t *dip,
595 int whichfork)
597 xfs_bmbt_rec_t *dp;
598 xfs_ifork_t *ifp;
599 int nex;
600 int size;
601 int i;
603 ifp = XFS_IFORK_PTR(ip, whichfork);
604 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
605 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
608 * If the number of extents is unreasonable, then something
609 * is wrong and we just bail out rather than crash in
610 * kmem_alloc() or memcpy() below.
612 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
613 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
614 "corrupt inode %Lu ((a)extents = %d).",
615 (unsigned long long) ip->i_ino, nex);
616 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
617 ip->i_mount, dip);
618 return XFS_ERROR(EFSCORRUPTED);
621 ifp->if_real_bytes = 0;
622 if (nex == 0)
623 ifp->if_u1.if_extents = NULL;
624 else if (nex <= XFS_INLINE_EXTS)
625 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
626 else
627 xfs_iext_add(ifp, 0, nex);
629 ifp->if_bytes = size;
630 if (size) {
631 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
632 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
633 for (i = 0; i < nex; i++, dp++) {
634 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
635 ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
636 ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
638 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
639 if (whichfork != XFS_DATA_FORK ||
640 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
641 if (unlikely(xfs_check_nostate_extents(
642 ifp, 0, nex))) {
643 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
644 XFS_ERRLEVEL_LOW,
645 ip->i_mount);
646 return XFS_ERROR(EFSCORRUPTED);
649 ifp->if_flags |= XFS_IFEXTENTS;
650 return 0;
654 * The file has too many extents to fit into
655 * the inode, so they are in B-tree format.
656 * Allocate a buffer for the root of the B-tree
657 * and copy the root into it. The i_extents
658 * field will remain NULL until all of the
659 * extents are read in (when they are needed).
661 STATIC int
662 xfs_iformat_btree(
663 xfs_inode_t *ip,
664 xfs_dinode_t *dip,
665 int whichfork)
667 xfs_bmdr_block_t *dfp;
668 xfs_ifork_t *ifp;
669 /* REFERENCED */
670 int nrecs;
671 int size;
673 ifp = XFS_IFORK_PTR(ip, whichfork);
674 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
675 size = XFS_BMAP_BROOT_SPACE(dfp);
676 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
679 * blow out if -- fork has less extents than can fit in
680 * fork (fork shouldn't be a btree format), root btree
681 * block has more records than can fit into the fork,
682 * or the number of extents is greater than the number of
683 * blocks.
685 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
686 || XFS_BMDR_SPACE_CALC(nrecs) >
687 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
688 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
689 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
690 "corrupt inode %Lu (btree).",
691 (unsigned long long) ip->i_ino);
692 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
693 ip->i_mount);
694 return XFS_ERROR(EFSCORRUPTED);
697 ifp->if_broot_bytes = size;
698 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
699 ASSERT(ifp->if_broot != NULL);
701 * Copy and convert from the on-disk structure
702 * to the in-memory structure.
704 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
705 ifp->if_broot, size);
706 ifp->if_flags &= ~XFS_IFEXTENTS;
707 ifp->if_flags |= XFS_IFBROOT;
709 return 0;
712 void
713 xfs_dinode_from_disk(
714 xfs_icdinode_t *to,
715 xfs_dinode_core_t *from)
717 to->di_magic = be16_to_cpu(from->di_magic);
718 to->di_mode = be16_to_cpu(from->di_mode);
719 to->di_version = from ->di_version;
720 to->di_format = from->di_format;
721 to->di_onlink = be16_to_cpu(from->di_onlink);
722 to->di_uid = be32_to_cpu(from->di_uid);
723 to->di_gid = be32_to_cpu(from->di_gid);
724 to->di_nlink = be32_to_cpu(from->di_nlink);
725 to->di_projid = be16_to_cpu(from->di_projid);
726 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
727 to->di_flushiter = be16_to_cpu(from->di_flushiter);
728 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
729 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
730 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
731 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
732 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
733 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
734 to->di_size = be64_to_cpu(from->di_size);
735 to->di_nblocks = be64_to_cpu(from->di_nblocks);
736 to->di_extsize = be32_to_cpu(from->di_extsize);
737 to->di_nextents = be32_to_cpu(from->di_nextents);
738 to->di_anextents = be16_to_cpu(from->di_anextents);
739 to->di_forkoff = from->di_forkoff;
740 to->di_aformat = from->di_aformat;
741 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
742 to->di_dmstate = be16_to_cpu(from->di_dmstate);
743 to->di_flags = be16_to_cpu(from->di_flags);
744 to->di_gen = be32_to_cpu(from->di_gen);
747 void
748 xfs_dinode_to_disk(
749 xfs_dinode_core_t *to,
750 xfs_icdinode_t *from)
752 to->di_magic = cpu_to_be16(from->di_magic);
753 to->di_mode = cpu_to_be16(from->di_mode);
754 to->di_version = from ->di_version;
755 to->di_format = from->di_format;
756 to->di_onlink = cpu_to_be16(from->di_onlink);
757 to->di_uid = cpu_to_be32(from->di_uid);
758 to->di_gid = cpu_to_be32(from->di_gid);
759 to->di_nlink = cpu_to_be32(from->di_nlink);
760 to->di_projid = cpu_to_be16(from->di_projid);
761 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
762 to->di_flushiter = cpu_to_be16(from->di_flushiter);
763 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
764 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
765 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
766 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
767 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
768 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
769 to->di_size = cpu_to_be64(from->di_size);
770 to->di_nblocks = cpu_to_be64(from->di_nblocks);
771 to->di_extsize = cpu_to_be32(from->di_extsize);
772 to->di_nextents = cpu_to_be32(from->di_nextents);
773 to->di_anextents = cpu_to_be16(from->di_anextents);
774 to->di_forkoff = from->di_forkoff;
775 to->di_aformat = from->di_aformat;
776 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
777 to->di_dmstate = cpu_to_be16(from->di_dmstate);
778 to->di_flags = cpu_to_be16(from->di_flags);
779 to->di_gen = cpu_to_be32(from->di_gen);
782 STATIC uint
783 _xfs_dic2xflags(
784 __uint16_t di_flags)
786 uint flags = 0;
788 if (di_flags & XFS_DIFLAG_ANY) {
789 if (di_flags & XFS_DIFLAG_REALTIME)
790 flags |= XFS_XFLAG_REALTIME;
791 if (di_flags & XFS_DIFLAG_PREALLOC)
792 flags |= XFS_XFLAG_PREALLOC;
793 if (di_flags & XFS_DIFLAG_IMMUTABLE)
794 flags |= XFS_XFLAG_IMMUTABLE;
795 if (di_flags & XFS_DIFLAG_APPEND)
796 flags |= XFS_XFLAG_APPEND;
797 if (di_flags & XFS_DIFLAG_SYNC)
798 flags |= XFS_XFLAG_SYNC;
799 if (di_flags & XFS_DIFLAG_NOATIME)
800 flags |= XFS_XFLAG_NOATIME;
801 if (di_flags & XFS_DIFLAG_NODUMP)
802 flags |= XFS_XFLAG_NODUMP;
803 if (di_flags & XFS_DIFLAG_RTINHERIT)
804 flags |= XFS_XFLAG_RTINHERIT;
805 if (di_flags & XFS_DIFLAG_PROJINHERIT)
806 flags |= XFS_XFLAG_PROJINHERIT;
807 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
808 flags |= XFS_XFLAG_NOSYMLINKS;
809 if (di_flags & XFS_DIFLAG_EXTSIZE)
810 flags |= XFS_XFLAG_EXTSIZE;
811 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
812 flags |= XFS_XFLAG_EXTSZINHERIT;
813 if (di_flags & XFS_DIFLAG_NODEFRAG)
814 flags |= XFS_XFLAG_NODEFRAG;
815 if (di_flags & XFS_DIFLAG_FILESTREAM)
816 flags |= XFS_XFLAG_FILESTREAM;
819 return flags;
822 uint
823 xfs_ip2xflags(
824 xfs_inode_t *ip)
826 xfs_icdinode_t *dic = &ip->i_d;
828 return _xfs_dic2xflags(dic->di_flags) |
829 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
832 uint
833 xfs_dic2xflags(
834 xfs_dinode_core_t *dic)
836 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
837 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
841 * Given a mount structure and an inode number, return a pointer
842 * to a newly allocated in-core inode corresponding to the given
843 * inode number.
845 * Initialize the inode's attributes and extent pointers if it
846 * already has them (it will not if the inode has no links).
849 xfs_iread(
850 xfs_mount_t *mp,
851 xfs_trans_t *tp,
852 xfs_ino_t ino,
853 xfs_inode_t **ipp,
854 xfs_daddr_t bno,
855 uint imap_flags)
857 xfs_buf_t *bp;
858 xfs_dinode_t *dip;
859 xfs_inode_t *ip;
860 int error;
862 ASSERT(xfs_inode_zone != NULL);
864 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
865 ip->i_ino = ino;
866 ip->i_mount = mp;
867 atomic_set(&ip->i_iocount, 0);
868 spin_lock_init(&ip->i_flags_lock);
871 * Get pointer's to the on-disk inode and the buffer containing it.
872 * If the inode number refers to a block outside the file system
873 * then xfs_itobp() will return NULL. In this case we should
874 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
875 * know that this is a new incore inode.
877 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
878 if (error) {
879 kmem_zone_free(xfs_inode_zone, ip);
880 return error;
884 * Initialize inode's trace buffers.
885 * Do this before xfs_iformat in case it adds entries.
887 #ifdef XFS_VNODE_TRACE
888 ip->i_trace = ktrace_alloc(VNODE_TRACE_SIZE, KM_SLEEP);
889 #endif
890 #ifdef XFS_BMAP_TRACE
891 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
892 #endif
893 #ifdef XFS_BMBT_TRACE
894 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
895 #endif
896 #ifdef XFS_RW_TRACE
897 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
898 #endif
899 #ifdef XFS_ILOCK_TRACE
900 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
901 #endif
902 #ifdef XFS_DIR2_TRACE
903 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
904 #endif
907 * If we got something that isn't an inode it means someone
908 * (nfs or dmi) has a stale handle.
910 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
911 kmem_zone_free(xfs_inode_zone, ip);
912 xfs_trans_brelse(tp, bp);
913 #ifdef DEBUG
914 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
915 "dip->di_core.di_magic (0x%x) != "
916 "XFS_DINODE_MAGIC (0x%x)",
917 be16_to_cpu(dip->di_core.di_magic),
918 XFS_DINODE_MAGIC);
919 #endif /* DEBUG */
920 return XFS_ERROR(EINVAL);
924 * If the on-disk inode is already linked to a directory
925 * entry, copy all of the inode into the in-core inode.
926 * xfs_iformat() handles copying in the inode format
927 * specific information.
928 * Otherwise, just get the truly permanent information.
930 if (dip->di_core.di_mode) {
931 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
932 error = xfs_iformat(ip, dip);
933 if (error) {
934 kmem_zone_free(xfs_inode_zone, ip);
935 xfs_trans_brelse(tp, bp);
936 #ifdef DEBUG
937 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
938 "xfs_iformat() returned error %d",
939 error);
940 #endif /* DEBUG */
941 return error;
943 } else {
944 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
945 ip->i_d.di_version = dip->di_core.di_version;
946 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
947 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
949 * Make sure to pull in the mode here as well in
950 * case the inode is released without being used.
951 * This ensures that xfs_inactive() will see that
952 * the inode is already free and not try to mess
953 * with the uninitialized part of it.
955 ip->i_d.di_mode = 0;
957 * Initialize the per-fork minima and maxima for a new
958 * inode here. xfs_iformat will do it for old inodes.
960 ip->i_df.if_ext_max =
961 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
964 INIT_LIST_HEAD(&ip->i_reclaim);
967 * The inode format changed when we moved the link count and
968 * made it 32 bits long. If this is an old format inode,
969 * convert it in memory to look like a new one. If it gets
970 * flushed to disk we will convert back before flushing or
971 * logging it. We zero out the new projid field and the old link
972 * count field. We'll handle clearing the pad field (the remains
973 * of the old uuid field) when we actually convert the inode to
974 * the new format. We don't change the version number so that we
975 * can distinguish this from a real new format inode.
977 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
978 ip->i_d.di_nlink = ip->i_d.di_onlink;
979 ip->i_d.di_onlink = 0;
980 ip->i_d.di_projid = 0;
983 ip->i_delayed_blks = 0;
984 ip->i_size = ip->i_d.di_size;
987 * Mark the buffer containing the inode as something to keep
988 * around for a while. This helps to keep recently accessed
989 * meta-data in-core longer.
991 XFS_BUF_SET_REF(bp, XFS_INO_REF);
994 * Use xfs_trans_brelse() to release the buffer containing the
995 * on-disk inode, because it was acquired with xfs_trans_read_buf()
996 * in xfs_itobp() above. If tp is NULL, this is just a normal
997 * brelse(). If we're within a transaction, then xfs_trans_brelse()
998 * will only release the buffer if it is not dirty within the
999 * transaction. It will be OK to release the buffer in this case,
1000 * because inodes on disk are never destroyed and we will be
1001 * locking the new in-core inode before putting it in the hash
1002 * table where other processes can find it. Thus we don't have
1003 * to worry about the inode being changed just because we released
1004 * the buffer.
1006 xfs_trans_brelse(tp, bp);
1007 *ipp = ip;
1008 return 0;
1012 * Read in extents from a btree-format inode.
1013 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1016 xfs_iread_extents(
1017 xfs_trans_t *tp,
1018 xfs_inode_t *ip,
1019 int whichfork)
1021 int error;
1022 xfs_ifork_t *ifp;
1023 xfs_extnum_t nextents;
1024 size_t size;
1026 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1027 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1028 ip->i_mount);
1029 return XFS_ERROR(EFSCORRUPTED);
1031 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1032 size = nextents * sizeof(xfs_bmbt_rec_t);
1033 ifp = XFS_IFORK_PTR(ip, whichfork);
1036 * We know that the size is valid (it's checked in iformat_btree)
1038 ifp->if_lastex = NULLEXTNUM;
1039 ifp->if_bytes = ifp->if_real_bytes = 0;
1040 ifp->if_flags |= XFS_IFEXTENTS;
1041 xfs_iext_add(ifp, 0, nextents);
1042 error = xfs_bmap_read_extents(tp, ip, whichfork);
1043 if (error) {
1044 xfs_iext_destroy(ifp);
1045 ifp->if_flags &= ~XFS_IFEXTENTS;
1046 return error;
1048 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1049 return 0;
1053 * Allocate an inode on disk and return a copy of its in-core version.
1054 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1055 * appropriately within the inode. The uid and gid for the inode are
1056 * set according to the contents of the given cred structure.
1058 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1059 * has a free inode available, call xfs_iget()
1060 * to obtain the in-core version of the allocated inode. Finally,
1061 * fill in the inode and log its initial contents. In this case,
1062 * ialloc_context would be set to NULL and call_again set to false.
1064 * If xfs_dialloc() does not have an available inode,
1065 * it will replenish its supply by doing an allocation. Since we can
1066 * only do one allocation within a transaction without deadlocks, we
1067 * must commit the current transaction before returning the inode itself.
1068 * In this case, therefore, we will set call_again to true and return.
1069 * The caller should then commit the current transaction, start a new
1070 * transaction, and call xfs_ialloc() again to actually get the inode.
1072 * To ensure that some other process does not grab the inode that
1073 * was allocated during the first call to xfs_ialloc(), this routine
1074 * also returns the [locked] bp pointing to the head of the freelist
1075 * as ialloc_context. The caller should hold this buffer across
1076 * the commit and pass it back into this routine on the second call.
1078 * If we are allocating quota inodes, we do not have a parent inode
1079 * to attach to or associate with (i.e. pip == NULL) because they
1080 * are not linked into the directory structure - they are attached
1081 * directly to the superblock - and so have no parent.
1084 xfs_ialloc(
1085 xfs_trans_t *tp,
1086 xfs_inode_t *pip,
1087 mode_t mode,
1088 xfs_nlink_t nlink,
1089 xfs_dev_t rdev,
1090 cred_t *cr,
1091 xfs_prid_t prid,
1092 int okalloc,
1093 xfs_buf_t **ialloc_context,
1094 boolean_t *call_again,
1095 xfs_inode_t **ipp)
1097 xfs_ino_t ino;
1098 xfs_inode_t *ip;
1099 bhv_vnode_t *vp;
1100 uint flags;
1101 int error;
1104 * Call the space management code to pick
1105 * the on-disk inode to be allocated.
1107 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1108 ialloc_context, call_again, &ino);
1109 if (error != 0) {
1110 return error;
1112 if (*call_again || ino == NULLFSINO) {
1113 *ipp = NULL;
1114 return 0;
1116 ASSERT(*ialloc_context == NULL);
1119 * Get the in-core inode with the lock held exclusively.
1120 * This is because we're setting fields here we need
1121 * to prevent others from looking at until we're done.
1123 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1124 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1125 if (error != 0) {
1126 return error;
1128 ASSERT(ip != NULL);
1130 vp = XFS_ITOV(ip);
1131 ip->i_d.di_mode = (__uint16_t)mode;
1132 ip->i_d.di_onlink = 0;
1133 ip->i_d.di_nlink = nlink;
1134 ASSERT(ip->i_d.di_nlink == nlink);
1135 ip->i_d.di_uid = current_fsuid(cr);
1136 ip->i_d.di_gid = current_fsgid(cr);
1137 ip->i_d.di_projid = prid;
1138 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1141 * If the superblock version is up to where we support new format
1142 * inodes and this is currently an old format inode, then change
1143 * the inode version number now. This way we only do the conversion
1144 * here rather than here and in the flush/logging code.
1146 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1147 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1148 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1150 * We've already zeroed the old link count, the projid field,
1151 * and the pad field.
1156 * Project ids won't be stored on disk if we are using a version 1 inode.
1158 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1159 xfs_bump_ino_vers2(tp, ip);
1161 if (pip && XFS_INHERIT_GID(pip)) {
1162 ip->i_d.di_gid = pip->i_d.di_gid;
1163 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1164 ip->i_d.di_mode |= S_ISGID;
1169 * If the group ID of the new file does not match the effective group
1170 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1171 * (and only if the irix_sgid_inherit compatibility variable is set).
1173 if ((irix_sgid_inherit) &&
1174 (ip->i_d.di_mode & S_ISGID) &&
1175 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1176 ip->i_d.di_mode &= ~S_ISGID;
1179 ip->i_d.di_size = 0;
1180 ip->i_size = 0;
1181 ip->i_d.di_nextents = 0;
1182 ASSERT(ip->i_d.di_nblocks == 0);
1183 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1185 * di_gen will have been taken care of in xfs_iread.
1187 ip->i_d.di_extsize = 0;
1188 ip->i_d.di_dmevmask = 0;
1189 ip->i_d.di_dmstate = 0;
1190 ip->i_d.di_flags = 0;
1191 flags = XFS_ILOG_CORE;
1192 switch (mode & S_IFMT) {
1193 case S_IFIFO:
1194 case S_IFCHR:
1195 case S_IFBLK:
1196 case S_IFSOCK:
1197 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1198 ip->i_df.if_u2.if_rdev = rdev;
1199 ip->i_df.if_flags = 0;
1200 flags |= XFS_ILOG_DEV;
1201 break;
1202 case S_IFREG:
1203 if (pip && xfs_inode_is_filestream(pip)) {
1204 error = xfs_filestream_associate(pip, ip);
1205 if (error < 0)
1206 return -error;
1207 if (!error)
1208 xfs_iflags_set(ip, XFS_IFILESTREAM);
1210 /* fall through */
1211 case S_IFDIR:
1212 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1213 uint di_flags = 0;
1215 if ((mode & S_IFMT) == S_IFDIR) {
1216 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1217 di_flags |= XFS_DIFLAG_RTINHERIT;
1218 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1219 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1220 ip->i_d.di_extsize = pip->i_d.di_extsize;
1222 } else if ((mode & S_IFMT) == S_IFREG) {
1223 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1224 di_flags |= XFS_DIFLAG_REALTIME;
1225 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1227 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1228 di_flags |= XFS_DIFLAG_EXTSIZE;
1229 ip->i_d.di_extsize = pip->i_d.di_extsize;
1232 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1233 xfs_inherit_noatime)
1234 di_flags |= XFS_DIFLAG_NOATIME;
1235 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1236 xfs_inherit_nodump)
1237 di_flags |= XFS_DIFLAG_NODUMP;
1238 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1239 xfs_inherit_sync)
1240 di_flags |= XFS_DIFLAG_SYNC;
1241 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1242 xfs_inherit_nosymlinks)
1243 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1244 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1245 di_flags |= XFS_DIFLAG_PROJINHERIT;
1246 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1247 xfs_inherit_nodefrag)
1248 di_flags |= XFS_DIFLAG_NODEFRAG;
1249 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1250 di_flags |= XFS_DIFLAG_FILESTREAM;
1251 ip->i_d.di_flags |= di_flags;
1253 /* FALLTHROUGH */
1254 case S_IFLNK:
1255 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1256 ip->i_df.if_flags = XFS_IFEXTENTS;
1257 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1258 ip->i_df.if_u1.if_extents = NULL;
1259 break;
1260 default:
1261 ASSERT(0);
1264 * Attribute fork settings for new inode.
1266 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1267 ip->i_d.di_anextents = 0;
1270 * Log the new values stuffed into the inode.
1272 xfs_trans_log_inode(tp, ip, flags);
1274 /* now that we have an i_mode we can setup inode ops and unlock */
1275 xfs_initialize_vnode(tp->t_mountp, vp, ip);
1277 *ipp = ip;
1278 return 0;
1282 * Check to make sure that there are no blocks allocated to the
1283 * file beyond the size of the file. We don't check this for
1284 * files with fixed size extents or real time extents, but we
1285 * at least do it for regular files.
1287 #ifdef DEBUG
1288 void
1289 xfs_isize_check(
1290 xfs_mount_t *mp,
1291 xfs_inode_t *ip,
1292 xfs_fsize_t isize)
1294 xfs_fileoff_t map_first;
1295 int nimaps;
1296 xfs_bmbt_irec_t imaps[2];
1298 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1299 return;
1301 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1302 return;
1304 nimaps = 2;
1305 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1307 * The filesystem could be shutting down, so bmapi may return
1308 * an error.
1310 if (xfs_bmapi(NULL, ip, map_first,
1311 (XFS_B_TO_FSB(mp,
1312 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1313 map_first),
1314 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1315 NULL, NULL))
1316 return;
1317 ASSERT(nimaps == 1);
1318 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1320 #endif /* DEBUG */
1323 * Calculate the last possible buffered byte in a file. This must
1324 * include data that was buffered beyond the EOF by the write code.
1325 * This also needs to deal with overflowing the xfs_fsize_t type
1326 * which can happen for sizes near the limit.
1328 * We also need to take into account any blocks beyond the EOF. It
1329 * may be the case that they were buffered by a write which failed.
1330 * In that case the pages will still be in memory, but the inode size
1331 * will never have been updated.
1333 xfs_fsize_t
1334 xfs_file_last_byte(
1335 xfs_inode_t *ip)
1337 xfs_mount_t *mp;
1338 xfs_fsize_t last_byte;
1339 xfs_fileoff_t last_block;
1340 xfs_fileoff_t size_last_block;
1341 int error;
1343 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1345 mp = ip->i_mount;
1347 * Only check for blocks beyond the EOF if the extents have
1348 * been read in. This eliminates the need for the inode lock,
1349 * and it also saves us from looking when it really isn't
1350 * necessary.
1352 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1353 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1354 XFS_DATA_FORK);
1355 if (error) {
1356 last_block = 0;
1358 } else {
1359 last_block = 0;
1361 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1362 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1364 last_byte = XFS_FSB_TO_B(mp, last_block);
1365 if (last_byte < 0) {
1366 return XFS_MAXIOFFSET(mp);
1368 last_byte += (1 << mp->m_writeio_log);
1369 if (last_byte < 0) {
1370 return XFS_MAXIOFFSET(mp);
1372 return last_byte;
1375 #if defined(XFS_RW_TRACE)
1376 STATIC void
1377 xfs_itrunc_trace(
1378 int tag,
1379 xfs_inode_t *ip,
1380 int flag,
1381 xfs_fsize_t new_size,
1382 xfs_off_t toss_start,
1383 xfs_off_t toss_finish)
1385 if (ip->i_rwtrace == NULL) {
1386 return;
1389 ktrace_enter(ip->i_rwtrace,
1390 (void*)((long)tag),
1391 (void*)ip,
1392 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1393 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1394 (void*)((long)flag),
1395 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1396 (void*)(unsigned long)(new_size & 0xffffffff),
1397 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1398 (void*)(unsigned long)(toss_start & 0xffffffff),
1399 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1400 (void*)(unsigned long)(toss_finish & 0xffffffff),
1401 (void*)(unsigned long)current_cpu(),
1402 (void*)(unsigned long)current_pid(),
1403 (void*)NULL,
1404 (void*)NULL,
1405 (void*)NULL);
1407 #else
1408 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1409 #endif
1412 * Start the truncation of the file to new_size. The new size
1413 * must be smaller than the current size. This routine will
1414 * clear the buffer and page caches of file data in the removed
1415 * range, and xfs_itruncate_finish() will remove the underlying
1416 * disk blocks.
1418 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1419 * must NOT have the inode lock held at all. This is because we're
1420 * calling into the buffer/page cache code and we can't hold the
1421 * inode lock when we do so.
1423 * We need to wait for any direct I/Os in flight to complete before we
1424 * proceed with the truncate. This is needed to prevent the extents
1425 * being read or written by the direct I/Os from being removed while the
1426 * I/O is in flight as there is no other method of synchronising
1427 * direct I/O with the truncate operation. Also, because we hold
1428 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1429 * started until the truncate completes and drops the lock. Essentially,
1430 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1431 * between direct I/Os and the truncate operation.
1433 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1434 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1435 * in the case that the caller is locking things out of order and
1436 * may not be able to call xfs_itruncate_finish() with the inode lock
1437 * held without dropping the I/O lock. If the caller must drop the
1438 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1439 * must be called again with all the same restrictions as the initial
1440 * call.
1443 xfs_itruncate_start(
1444 xfs_inode_t *ip,
1445 uint flags,
1446 xfs_fsize_t new_size)
1448 xfs_fsize_t last_byte;
1449 xfs_off_t toss_start;
1450 xfs_mount_t *mp;
1451 bhv_vnode_t *vp;
1452 int error = 0;
1454 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1455 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1456 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1457 (flags == XFS_ITRUNC_MAYBE));
1459 mp = ip->i_mount;
1460 vp = XFS_ITOV(ip);
1462 /* wait for the completion of any pending DIOs */
1463 if (new_size < ip->i_size)
1464 vn_iowait(ip);
1467 * Call toss_pages or flushinval_pages to get rid of pages
1468 * overlapping the region being removed. We have to use
1469 * the less efficient flushinval_pages in the case that the
1470 * caller may not be able to finish the truncate without
1471 * dropping the inode's I/O lock. Make sure
1472 * to catch any pages brought in by buffers overlapping
1473 * the EOF by searching out beyond the isize by our
1474 * block size. We round new_size up to a block boundary
1475 * so that we don't toss things on the same block as
1476 * new_size but before it.
1478 * Before calling toss_page or flushinval_pages, make sure to
1479 * call remapf() over the same region if the file is mapped.
1480 * This frees up mapped file references to the pages in the
1481 * given range and for the flushinval_pages case it ensures
1482 * that we get the latest mapped changes flushed out.
1484 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1485 toss_start = XFS_FSB_TO_B(mp, toss_start);
1486 if (toss_start < 0) {
1488 * The place to start tossing is beyond our maximum
1489 * file size, so there is no way that the data extended
1490 * out there.
1492 return 0;
1494 last_byte = xfs_file_last_byte(ip);
1495 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1496 last_byte);
1497 if (last_byte > toss_start) {
1498 if (flags & XFS_ITRUNC_DEFINITE) {
1499 xfs_tosspages(ip, toss_start,
1500 -1, FI_REMAPF_LOCKED);
1501 } else {
1502 error = xfs_flushinval_pages(ip, toss_start,
1503 -1, FI_REMAPF_LOCKED);
1507 #ifdef DEBUG
1508 if (new_size == 0) {
1509 ASSERT(VN_CACHED(vp) == 0);
1511 #endif
1512 return error;
1516 * Shrink the file to the given new_size. The new
1517 * size must be smaller than the current size.
1518 * This will free up the underlying blocks
1519 * in the removed range after a call to xfs_itruncate_start()
1520 * or xfs_atruncate_start().
1522 * The transaction passed to this routine must have made
1523 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1524 * This routine may commit the given transaction and
1525 * start new ones, so make sure everything involved in
1526 * the transaction is tidy before calling here.
1527 * Some transaction will be returned to the caller to be
1528 * committed. The incoming transaction must already include
1529 * the inode, and both inode locks must be held exclusively.
1530 * The inode must also be "held" within the transaction. On
1531 * return the inode will be "held" within the returned transaction.
1532 * This routine does NOT require any disk space to be reserved
1533 * for it within the transaction.
1535 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1536 * and it indicates the fork which is to be truncated. For the
1537 * attribute fork we only support truncation to size 0.
1539 * We use the sync parameter to indicate whether or not the first
1540 * transaction we perform might have to be synchronous. For the attr fork,
1541 * it needs to be so if the unlink of the inode is not yet known to be
1542 * permanent in the log. This keeps us from freeing and reusing the
1543 * blocks of the attribute fork before the unlink of the inode becomes
1544 * permanent.
1546 * For the data fork, we normally have to run synchronously if we're
1547 * being called out of the inactive path or we're being called
1548 * out of the create path where we're truncating an existing file.
1549 * Either way, the truncate needs to be sync so blocks don't reappear
1550 * in the file with altered data in case of a crash. wsync filesystems
1551 * can run the first case async because anything that shrinks the inode
1552 * has to run sync so by the time we're called here from inactive, the
1553 * inode size is permanently set to 0.
1555 * Calls from the truncate path always need to be sync unless we're
1556 * in a wsync filesystem and the file has already been unlinked.
1558 * The caller is responsible for correctly setting the sync parameter.
1559 * It gets too hard for us to guess here which path we're being called
1560 * out of just based on inode state.
1563 xfs_itruncate_finish(
1564 xfs_trans_t **tp,
1565 xfs_inode_t *ip,
1566 xfs_fsize_t new_size,
1567 int fork,
1568 int sync)
1570 xfs_fsblock_t first_block;
1571 xfs_fileoff_t first_unmap_block;
1572 xfs_fileoff_t last_block;
1573 xfs_filblks_t unmap_len=0;
1574 xfs_mount_t *mp;
1575 xfs_trans_t *ntp;
1576 int done;
1577 int committed;
1578 xfs_bmap_free_t free_list;
1579 int error;
1581 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1582 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1583 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1584 ASSERT(*tp != NULL);
1585 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1586 ASSERT(ip->i_transp == *tp);
1587 ASSERT(ip->i_itemp != NULL);
1588 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1591 ntp = *tp;
1592 mp = (ntp)->t_mountp;
1593 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1596 * We only support truncating the entire attribute fork.
1598 if (fork == XFS_ATTR_FORK) {
1599 new_size = 0LL;
1601 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1602 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1604 * The first thing we do is set the size to new_size permanently
1605 * on disk. This way we don't have to worry about anyone ever
1606 * being able to look at the data being freed even in the face
1607 * of a crash. What we're getting around here is the case where
1608 * we free a block, it is allocated to another file, it is written
1609 * to, and then we crash. If the new data gets written to the
1610 * file but the log buffers containing the free and reallocation
1611 * don't, then we'd end up with garbage in the blocks being freed.
1612 * As long as we make the new_size permanent before actually
1613 * freeing any blocks it doesn't matter if they get writtten to.
1615 * The callers must signal into us whether or not the size
1616 * setting here must be synchronous. There are a few cases
1617 * where it doesn't have to be synchronous. Those cases
1618 * occur if the file is unlinked and we know the unlink is
1619 * permanent or if the blocks being truncated are guaranteed
1620 * to be beyond the inode eof (regardless of the link count)
1621 * and the eof value is permanent. Both of these cases occur
1622 * only on wsync-mounted filesystems. In those cases, we're
1623 * guaranteed that no user will ever see the data in the blocks
1624 * that are being truncated so the truncate can run async.
1625 * In the free beyond eof case, the file may wind up with
1626 * more blocks allocated to it than it needs if we crash
1627 * and that won't get fixed until the next time the file
1628 * is re-opened and closed but that's ok as that shouldn't
1629 * be too many blocks.
1631 * However, we can't just make all wsync xactions run async
1632 * because there's one call out of the create path that needs
1633 * to run sync where it's truncating an existing file to size
1634 * 0 whose size is > 0.
1636 * It's probably possible to come up with a test in this
1637 * routine that would correctly distinguish all the above
1638 * cases from the values of the function parameters and the
1639 * inode state but for sanity's sake, I've decided to let the
1640 * layers above just tell us. It's simpler to correctly figure
1641 * out in the layer above exactly under what conditions we
1642 * can run async and I think it's easier for others read and
1643 * follow the logic in case something has to be changed.
1644 * cscope is your friend -- rcc.
1646 * The attribute fork is much simpler.
1648 * For the attribute fork we allow the caller to tell us whether
1649 * the unlink of the inode that led to this call is yet permanent
1650 * in the on disk log. If it is not and we will be freeing extents
1651 * in this inode then we make the first transaction synchronous
1652 * to make sure that the unlink is permanent by the time we free
1653 * the blocks.
1655 if (fork == XFS_DATA_FORK) {
1656 if (ip->i_d.di_nextents > 0) {
1658 * If we are not changing the file size then do
1659 * not update the on-disk file size - we may be
1660 * called from xfs_inactive_free_eofblocks(). If we
1661 * update the on-disk file size and then the system
1662 * crashes before the contents of the file are
1663 * flushed to disk then the files may be full of
1664 * holes (ie NULL files bug).
1666 if (ip->i_size != new_size) {
1667 ip->i_d.di_size = new_size;
1668 ip->i_size = new_size;
1669 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1672 } else if (sync) {
1673 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1674 if (ip->i_d.di_anextents > 0)
1675 xfs_trans_set_sync(ntp);
1677 ASSERT(fork == XFS_DATA_FORK ||
1678 (fork == XFS_ATTR_FORK &&
1679 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1680 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1683 * Since it is possible for space to become allocated beyond
1684 * the end of the file (in a crash where the space is allocated
1685 * but the inode size is not yet updated), simply remove any
1686 * blocks which show up between the new EOF and the maximum
1687 * possible file size. If the first block to be removed is
1688 * beyond the maximum file size (ie it is the same as last_block),
1689 * then there is nothing to do.
1691 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1692 ASSERT(first_unmap_block <= last_block);
1693 done = 0;
1694 if (last_block == first_unmap_block) {
1695 done = 1;
1696 } else {
1697 unmap_len = last_block - first_unmap_block + 1;
1699 while (!done) {
1701 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1702 * will tell us whether it freed the entire range or
1703 * not. If this is a synchronous mount (wsync),
1704 * then we can tell bunmapi to keep all the
1705 * transactions asynchronous since the unlink
1706 * transaction that made this inode inactive has
1707 * already hit the disk. There's no danger of
1708 * the freed blocks being reused, there being a
1709 * crash, and the reused blocks suddenly reappearing
1710 * in this file with garbage in them once recovery
1711 * runs.
1713 XFS_BMAP_INIT(&free_list, &first_block);
1714 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1715 first_unmap_block, unmap_len,
1716 XFS_BMAPI_AFLAG(fork) |
1717 (sync ? 0 : XFS_BMAPI_ASYNC),
1718 XFS_ITRUNC_MAX_EXTENTS,
1719 &first_block, &free_list,
1720 NULL, &done);
1721 if (error) {
1723 * If the bunmapi call encounters an error,
1724 * return to the caller where the transaction
1725 * can be properly aborted. We just need to
1726 * make sure we're not holding any resources
1727 * that we were not when we came in.
1729 xfs_bmap_cancel(&free_list);
1730 return error;
1734 * Duplicate the transaction that has the permanent
1735 * reservation and commit the old transaction.
1737 error = xfs_bmap_finish(tp, &free_list, &committed);
1738 ntp = *tp;
1739 if (error) {
1741 * If the bmap finish call encounters an error,
1742 * return to the caller where the transaction
1743 * can be properly aborted. We just need to
1744 * make sure we're not holding any resources
1745 * that we were not when we came in.
1747 * Aborting from this point might lose some
1748 * blocks in the file system, but oh well.
1750 xfs_bmap_cancel(&free_list);
1751 if (committed) {
1753 * If the passed in transaction committed
1754 * in xfs_bmap_finish(), then we want to
1755 * add the inode to this one before returning.
1756 * This keeps things simple for the higher
1757 * level code, because it always knows that
1758 * the inode is locked and held in the
1759 * transaction that returns to it whether
1760 * errors occur or not. We don't mark the
1761 * inode dirty so that this transaction can
1762 * be easily aborted if possible.
1764 xfs_trans_ijoin(ntp, ip,
1765 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1766 xfs_trans_ihold(ntp, ip);
1768 return error;
1771 if (committed) {
1773 * The first xact was committed,
1774 * so add the inode to the new one.
1775 * Mark it dirty so it will be logged
1776 * and moved forward in the log as
1777 * part of every commit.
1779 xfs_trans_ijoin(ntp, ip,
1780 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1781 xfs_trans_ihold(ntp, ip);
1782 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1784 ntp = xfs_trans_dup(ntp);
1785 (void) xfs_trans_commit(*tp, 0);
1786 *tp = ntp;
1787 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1788 XFS_TRANS_PERM_LOG_RES,
1789 XFS_ITRUNCATE_LOG_COUNT);
1791 * Add the inode being truncated to the next chained
1792 * transaction.
1794 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1795 xfs_trans_ihold(ntp, ip);
1796 if (error)
1797 return (error);
1800 * Only update the size in the case of the data fork, but
1801 * always re-log the inode so that our permanent transaction
1802 * can keep on rolling it forward in the log.
1804 if (fork == XFS_DATA_FORK) {
1805 xfs_isize_check(mp, ip, new_size);
1807 * If we are not changing the file size then do
1808 * not update the on-disk file size - we may be
1809 * called from xfs_inactive_free_eofblocks(). If we
1810 * update the on-disk file size and then the system
1811 * crashes before the contents of the file are
1812 * flushed to disk then the files may be full of
1813 * holes (ie NULL files bug).
1815 if (ip->i_size != new_size) {
1816 ip->i_d.di_size = new_size;
1817 ip->i_size = new_size;
1820 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1821 ASSERT((new_size != 0) ||
1822 (fork == XFS_ATTR_FORK) ||
1823 (ip->i_delayed_blks == 0));
1824 ASSERT((new_size != 0) ||
1825 (fork == XFS_ATTR_FORK) ||
1826 (ip->i_d.di_nextents == 0));
1827 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1828 return 0;
1833 * xfs_igrow_start
1835 * Do the first part of growing a file: zero any data in the last
1836 * block that is beyond the old EOF. We need to do this before
1837 * the inode is joined to the transaction to modify the i_size.
1838 * That way we can drop the inode lock and call into the buffer
1839 * cache to get the buffer mapping the EOF.
1842 xfs_igrow_start(
1843 xfs_inode_t *ip,
1844 xfs_fsize_t new_size,
1845 cred_t *credp)
1847 int error;
1849 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1850 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1851 ASSERT(new_size > ip->i_size);
1854 * Zero any pages that may have been created by
1855 * xfs_write_file() beyond the end of the file
1856 * and any blocks between the old and new file sizes.
1858 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1859 ip->i_size);
1860 return error;
1864 * xfs_igrow_finish
1866 * This routine is called to extend the size of a file.
1867 * The inode must have both the iolock and the ilock locked
1868 * for update and it must be a part of the current transaction.
1869 * The xfs_igrow_start() function must have been called previously.
1870 * If the change_flag is not zero, the inode change timestamp will
1871 * be updated.
1873 void
1874 xfs_igrow_finish(
1875 xfs_trans_t *tp,
1876 xfs_inode_t *ip,
1877 xfs_fsize_t new_size,
1878 int change_flag)
1880 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1881 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1882 ASSERT(ip->i_transp == tp);
1883 ASSERT(new_size > ip->i_size);
1886 * Update the file size. Update the inode change timestamp
1887 * if change_flag set.
1889 ip->i_d.di_size = new_size;
1890 ip->i_size = new_size;
1891 if (change_flag)
1892 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1893 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1899 * This is called when the inode's link count goes to 0.
1900 * We place the on-disk inode on a list in the AGI. It
1901 * will be pulled from this list when the inode is freed.
1904 xfs_iunlink(
1905 xfs_trans_t *tp,
1906 xfs_inode_t *ip)
1908 xfs_mount_t *mp;
1909 xfs_agi_t *agi;
1910 xfs_dinode_t *dip;
1911 xfs_buf_t *agibp;
1912 xfs_buf_t *ibp;
1913 xfs_agnumber_t agno;
1914 xfs_daddr_t agdaddr;
1915 xfs_agino_t agino;
1916 short bucket_index;
1917 int offset;
1918 int error;
1919 int agi_ok;
1921 ASSERT(ip->i_d.di_nlink == 0);
1922 ASSERT(ip->i_d.di_mode != 0);
1923 ASSERT(ip->i_transp == tp);
1925 mp = tp->t_mountp;
1927 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1928 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1931 * Get the agi buffer first. It ensures lock ordering
1932 * on the list.
1934 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1935 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1936 if (error)
1937 return error;
1940 * Validate the magic number of the agi block.
1942 agi = XFS_BUF_TO_AGI(agibp);
1943 agi_ok =
1944 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1945 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1946 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1947 XFS_RANDOM_IUNLINK))) {
1948 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1949 xfs_trans_brelse(tp, agibp);
1950 return XFS_ERROR(EFSCORRUPTED);
1953 * Get the index into the agi hash table for the
1954 * list this inode will go on.
1956 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1957 ASSERT(agino != 0);
1958 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1959 ASSERT(agi->agi_unlinked[bucket_index]);
1960 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1962 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1963 if (error)
1964 return error;
1967 * Clear the on-disk di_nlink. This is to prevent xfs_bulkstat
1968 * from picking up this inode when it is reclaimed (its incore state
1969 * initialzed but not flushed to disk yet). The in-core di_nlink is
1970 * already cleared in xfs_droplink() and a corresponding transaction
1971 * logged. The hack here just synchronizes the in-core to on-disk
1972 * di_nlink value in advance before the actual inode sync to disk.
1973 * This is OK because the inode is already unlinked and would never
1974 * change its di_nlink again for this inode generation.
1975 * This is a temporary hack that would require a proper fix
1976 * in the future.
1978 dip->di_core.di_nlink = 0;
1980 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1982 * There is already another inode in the bucket we need
1983 * to add ourselves to. Add us at the front of the list.
1984 * Here we put the head pointer into our next pointer,
1985 * and then we fall through to point the head at us.
1987 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1988 /* both on-disk, don't endian flip twice */
1989 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1990 offset = ip->i_boffset +
1991 offsetof(xfs_dinode_t, di_next_unlinked);
1992 xfs_trans_inode_buf(tp, ibp);
1993 xfs_trans_log_buf(tp, ibp, offset,
1994 (offset + sizeof(xfs_agino_t) - 1));
1995 xfs_inobp_check(mp, ibp);
1999 * Point the bucket head pointer at the inode being inserted.
2001 ASSERT(agino != 0);
2002 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2003 offset = offsetof(xfs_agi_t, agi_unlinked) +
2004 (sizeof(xfs_agino_t) * bucket_index);
2005 xfs_trans_log_buf(tp, agibp, offset,
2006 (offset + sizeof(xfs_agino_t) - 1));
2007 return 0;
2011 * Pull the on-disk inode from the AGI unlinked list.
2013 STATIC int
2014 xfs_iunlink_remove(
2015 xfs_trans_t *tp,
2016 xfs_inode_t *ip)
2018 xfs_ino_t next_ino;
2019 xfs_mount_t *mp;
2020 xfs_agi_t *agi;
2021 xfs_dinode_t *dip;
2022 xfs_buf_t *agibp;
2023 xfs_buf_t *ibp;
2024 xfs_agnumber_t agno;
2025 xfs_daddr_t agdaddr;
2026 xfs_agino_t agino;
2027 xfs_agino_t next_agino;
2028 xfs_buf_t *last_ibp;
2029 xfs_dinode_t *last_dip = NULL;
2030 short bucket_index;
2031 int offset, last_offset = 0;
2032 int error;
2033 int agi_ok;
2036 * First pull the on-disk inode from the AGI unlinked list.
2038 mp = tp->t_mountp;
2040 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2041 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2044 * Get the agi buffer first. It ensures lock ordering
2045 * on the list.
2047 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2048 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2049 if (error) {
2050 cmn_err(CE_WARN,
2051 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2052 error, mp->m_fsname);
2053 return error;
2056 * Validate the magic number of the agi block.
2058 agi = XFS_BUF_TO_AGI(agibp);
2059 agi_ok =
2060 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2061 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
2062 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2063 XFS_RANDOM_IUNLINK_REMOVE))) {
2064 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2065 mp, agi);
2066 xfs_trans_brelse(tp, agibp);
2067 cmn_err(CE_WARN,
2068 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2069 mp->m_fsname);
2070 return XFS_ERROR(EFSCORRUPTED);
2073 * Get the index into the agi hash table for the
2074 * list this inode will go on.
2076 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2077 ASSERT(agino != 0);
2078 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2079 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2080 ASSERT(agi->agi_unlinked[bucket_index]);
2082 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2084 * We're at the head of the list. Get the inode's
2085 * on-disk buffer to see if there is anyone after us
2086 * on the list. Only modify our next pointer if it
2087 * is not already NULLAGINO. This saves us the overhead
2088 * of dealing with the buffer when there is no need to
2089 * change it.
2091 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2092 if (error) {
2093 cmn_err(CE_WARN,
2094 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2095 error, mp->m_fsname);
2096 return error;
2098 next_agino = be32_to_cpu(dip->di_next_unlinked);
2099 ASSERT(next_agino != 0);
2100 if (next_agino != NULLAGINO) {
2101 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2102 offset = ip->i_boffset +
2103 offsetof(xfs_dinode_t, di_next_unlinked);
2104 xfs_trans_inode_buf(tp, ibp);
2105 xfs_trans_log_buf(tp, ibp, offset,
2106 (offset + sizeof(xfs_agino_t) - 1));
2107 xfs_inobp_check(mp, ibp);
2108 } else {
2109 xfs_trans_brelse(tp, ibp);
2112 * Point the bucket head pointer at the next inode.
2114 ASSERT(next_agino != 0);
2115 ASSERT(next_agino != agino);
2116 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2117 offset = offsetof(xfs_agi_t, agi_unlinked) +
2118 (sizeof(xfs_agino_t) * bucket_index);
2119 xfs_trans_log_buf(tp, agibp, offset,
2120 (offset + sizeof(xfs_agino_t) - 1));
2121 } else {
2123 * We need to search the list for the inode being freed.
2125 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2126 last_ibp = NULL;
2127 while (next_agino != agino) {
2129 * If the last inode wasn't the one pointing to
2130 * us, then release its buffer since we're not
2131 * going to do anything with it.
2133 if (last_ibp != NULL) {
2134 xfs_trans_brelse(tp, last_ibp);
2136 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2137 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2138 &last_ibp, &last_offset);
2139 if (error) {
2140 cmn_err(CE_WARN,
2141 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2142 error, mp->m_fsname);
2143 return error;
2145 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2146 ASSERT(next_agino != NULLAGINO);
2147 ASSERT(next_agino != 0);
2150 * Now last_ibp points to the buffer previous to us on
2151 * the unlinked list. Pull us from the list.
2153 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2154 if (error) {
2155 cmn_err(CE_WARN,
2156 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2157 error, mp->m_fsname);
2158 return error;
2160 next_agino = be32_to_cpu(dip->di_next_unlinked);
2161 ASSERT(next_agino != 0);
2162 ASSERT(next_agino != agino);
2163 if (next_agino != NULLAGINO) {
2164 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2165 offset = ip->i_boffset +
2166 offsetof(xfs_dinode_t, di_next_unlinked);
2167 xfs_trans_inode_buf(tp, ibp);
2168 xfs_trans_log_buf(tp, ibp, offset,
2169 (offset + sizeof(xfs_agino_t) - 1));
2170 xfs_inobp_check(mp, ibp);
2171 } else {
2172 xfs_trans_brelse(tp, ibp);
2175 * Point the previous inode on the list to the next inode.
2177 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2178 ASSERT(next_agino != 0);
2179 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2180 xfs_trans_inode_buf(tp, last_ibp);
2181 xfs_trans_log_buf(tp, last_ibp, offset,
2182 (offset + sizeof(xfs_agino_t) - 1));
2183 xfs_inobp_check(mp, last_ibp);
2185 return 0;
2188 STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
2190 return (((ip->i_itemp == NULL) ||
2191 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2192 (ip->i_update_core == 0));
2195 STATIC void
2196 xfs_ifree_cluster(
2197 xfs_inode_t *free_ip,
2198 xfs_trans_t *tp,
2199 xfs_ino_t inum)
2201 xfs_mount_t *mp = free_ip->i_mount;
2202 int blks_per_cluster;
2203 int nbufs;
2204 int ninodes;
2205 int i, j, found, pre_flushed;
2206 xfs_daddr_t blkno;
2207 xfs_buf_t *bp;
2208 xfs_inode_t *ip, **ip_found;
2209 xfs_inode_log_item_t *iip;
2210 xfs_log_item_t *lip;
2211 xfs_perag_t *pag = xfs_get_perag(mp, inum);
2212 SPLDECL(s);
2214 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2215 blks_per_cluster = 1;
2216 ninodes = mp->m_sb.sb_inopblock;
2217 nbufs = XFS_IALLOC_BLOCKS(mp);
2218 } else {
2219 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2220 mp->m_sb.sb_blocksize;
2221 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2222 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2225 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2227 for (j = 0; j < nbufs; j++, inum += ninodes) {
2228 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2229 XFS_INO_TO_AGBNO(mp, inum));
2233 * Look for each inode in memory and attempt to lock it,
2234 * we can be racing with flush and tail pushing here.
2235 * any inode we get the locks on, add to an array of
2236 * inode items to process later.
2238 * The get the buffer lock, we could beat a flush
2239 * or tail pushing thread to the lock here, in which
2240 * case they will go looking for the inode buffer
2241 * and fail, we need some other form of interlock
2242 * here.
2244 found = 0;
2245 for (i = 0; i < ninodes; i++) {
2246 read_lock(&pag->pag_ici_lock);
2247 ip = radix_tree_lookup(&pag->pag_ici_root,
2248 XFS_INO_TO_AGINO(mp, (inum + i)));
2250 /* Inode not in memory or we found it already,
2251 * nothing to do
2253 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2254 read_unlock(&pag->pag_ici_lock);
2255 continue;
2258 if (xfs_inode_clean(ip)) {
2259 read_unlock(&pag->pag_ici_lock);
2260 continue;
2263 /* If we can get the locks then add it to the
2264 * list, otherwise by the time we get the bp lock
2265 * below it will already be attached to the
2266 * inode buffer.
2269 /* This inode will already be locked - by us, lets
2270 * keep it that way.
2273 if (ip == free_ip) {
2274 if (xfs_iflock_nowait(ip)) {
2275 xfs_iflags_set(ip, XFS_ISTALE);
2276 if (xfs_inode_clean(ip)) {
2277 xfs_ifunlock(ip);
2278 } else {
2279 ip_found[found++] = ip;
2282 read_unlock(&pag->pag_ici_lock);
2283 continue;
2286 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2287 if (xfs_iflock_nowait(ip)) {
2288 xfs_iflags_set(ip, XFS_ISTALE);
2290 if (xfs_inode_clean(ip)) {
2291 xfs_ifunlock(ip);
2292 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2293 } else {
2294 ip_found[found++] = ip;
2296 } else {
2297 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2300 read_unlock(&pag->pag_ici_lock);
2303 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2304 mp->m_bsize * blks_per_cluster,
2305 XFS_BUF_LOCK);
2307 pre_flushed = 0;
2308 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2309 while (lip) {
2310 if (lip->li_type == XFS_LI_INODE) {
2311 iip = (xfs_inode_log_item_t *)lip;
2312 ASSERT(iip->ili_logged == 1);
2313 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2314 AIL_LOCK(mp,s);
2315 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2316 AIL_UNLOCK(mp, s);
2317 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2318 pre_flushed++;
2320 lip = lip->li_bio_list;
2323 for (i = 0; i < found; i++) {
2324 ip = ip_found[i];
2325 iip = ip->i_itemp;
2327 if (!iip) {
2328 ip->i_update_core = 0;
2329 xfs_ifunlock(ip);
2330 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2331 continue;
2334 iip->ili_last_fields = iip->ili_format.ilf_fields;
2335 iip->ili_format.ilf_fields = 0;
2336 iip->ili_logged = 1;
2337 AIL_LOCK(mp,s);
2338 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2339 AIL_UNLOCK(mp, s);
2341 xfs_buf_attach_iodone(bp,
2342 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2343 xfs_istale_done, (xfs_log_item_t *)iip);
2344 if (ip != free_ip) {
2345 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2349 if (found || pre_flushed)
2350 xfs_trans_stale_inode_buf(tp, bp);
2351 xfs_trans_binval(tp, bp);
2354 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2355 xfs_put_perag(mp, pag);
2359 * This is called to return an inode to the inode free list.
2360 * The inode should already be truncated to 0 length and have
2361 * no pages associated with it. This routine also assumes that
2362 * the inode is already a part of the transaction.
2364 * The on-disk copy of the inode will have been added to the list
2365 * of unlinked inodes in the AGI. We need to remove the inode from
2366 * that list atomically with respect to freeing it here.
2369 xfs_ifree(
2370 xfs_trans_t *tp,
2371 xfs_inode_t *ip,
2372 xfs_bmap_free_t *flist)
2374 int error;
2375 int delete;
2376 xfs_ino_t first_ino;
2378 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2379 ASSERT(ip->i_transp == tp);
2380 ASSERT(ip->i_d.di_nlink == 0);
2381 ASSERT(ip->i_d.di_nextents == 0);
2382 ASSERT(ip->i_d.di_anextents == 0);
2383 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2384 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2385 ASSERT(ip->i_d.di_nblocks == 0);
2388 * Pull the on-disk inode from the AGI unlinked list.
2390 error = xfs_iunlink_remove(tp, ip);
2391 if (error != 0) {
2392 return error;
2395 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2396 if (error != 0) {
2397 return error;
2399 ip->i_d.di_mode = 0; /* mark incore inode as free */
2400 ip->i_d.di_flags = 0;
2401 ip->i_d.di_dmevmask = 0;
2402 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2403 ip->i_df.if_ext_max =
2404 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2405 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2406 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2408 * Bump the generation count so no one will be confused
2409 * by reincarnations of this inode.
2411 ip->i_d.di_gen++;
2412 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2414 if (delete) {
2415 xfs_ifree_cluster(ip, tp, first_ino);
2418 return 0;
2422 * Reallocate the space for if_broot based on the number of records
2423 * being added or deleted as indicated in rec_diff. Move the records
2424 * and pointers in if_broot to fit the new size. When shrinking this
2425 * will eliminate holes between the records and pointers created by
2426 * the caller. When growing this will create holes to be filled in
2427 * by the caller.
2429 * The caller must not request to add more records than would fit in
2430 * the on-disk inode root. If the if_broot is currently NULL, then
2431 * if we adding records one will be allocated. The caller must also
2432 * not request that the number of records go below zero, although
2433 * it can go to zero.
2435 * ip -- the inode whose if_broot area is changing
2436 * ext_diff -- the change in the number of records, positive or negative,
2437 * requested for the if_broot array.
2439 void
2440 xfs_iroot_realloc(
2441 xfs_inode_t *ip,
2442 int rec_diff,
2443 int whichfork)
2445 int cur_max;
2446 xfs_ifork_t *ifp;
2447 xfs_bmbt_block_t *new_broot;
2448 int new_max;
2449 size_t new_size;
2450 char *np;
2451 char *op;
2454 * Handle the degenerate case quietly.
2456 if (rec_diff == 0) {
2457 return;
2460 ifp = XFS_IFORK_PTR(ip, whichfork);
2461 if (rec_diff > 0) {
2463 * If there wasn't any memory allocated before, just
2464 * allocate it now and get out.
2466 if (ifp->if_broot_bytes == 0) {
2467 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2468 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2469 KM_SLEEP);
2470 ifp->if_broot_bytes = (int)new_size;
2471 return;
2475 * If there is already an existing if_broot, then we need
2476 * to realloc() it and shift the pointers to their new
2477 * location. The records don't change location because
2478 * they are kept butted up against the btree block header.
2480 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2481 new_max = cur_max + rec_diff;
2482 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2483 ifp->if_broot = (xfs_bmbt_block_t *)
2484 kmem_realloc(ifp->if_broot,
2485 new_size,
2486 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2487 KM_SLEEP);
2488 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2489 ifp->if_broot_bytes);
2490 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2491 (int)new_size);
2492 ifp->if_broot_bytes = (int)new_size;
2493 ASSERT(ifp->if_broot_bytes <=
2494 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2495 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2496 return;
2500 * rec_diff is less than 0. In this case, we are shrinking the
2501 * if_broot buffer. It must already exist. If we go to zero
2502 * records, just get rid of the root and clear the status bit.
2504 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2505 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2506 new_max = cur_max + rec_diff;
2507 ASSERT(new_max >= 0);
2508 if (new_max > 0)
2509 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2510 else
2511 new_size = 0;
2512 if (new_size > 0) {
2513 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2515 * First copy over the btree block header.
2517 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2518 } else {
2519 new_broot = NULL;
2520 ifp->if_flags &= ~XFS_IFBROOT;
2524 * Only copy the records and pointers if there are any.
2526 if (new_max > 0) {
2528 * First copy the records.
2530 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2531 ifp->if_broot_bytes);
2532 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2533 (int)new_size);
2534 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2537 * Then copy the pointers.
2539 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2540 ifp->if_broot_bytes);
2541 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2542 (int)new_size);
2543 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2545 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2546 ifp->if_broot = new_broot;
2547 ifp->if_broot_bytes = (int)new_size;
2548 ASSERT(ifp->if_broot_bytes <=
2549 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2550 return;
2555 * This is called when the amount of space needed for if_data
2556 * is increased or decreased. The change in size is indicated by
2557 * the number of bytes that need to be added or deleted in the
2558 * byte_diff parameter.
2560 * If the amount of space needed has decreased below the size of the
2561 * inline buffer, then switch to using the inline buffer. Otherwise,
2562 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2563 * to what is needed.
2565 * ip -- the inode whose if_data area is changing
2566 * byte_diff -- the change in the number of bytes, positive or negative,
2567 * requested for the if_data array.
2569 void
2570 xfs_idata_realloc(
2571 xfs_inode_t *ip,
2572 int byte_diff,
2573 int whichfork)
2575 xfs_ifork_t *ifp;
2576 int new_size;
2577 int real_size;
2579 if (byte_diff == 0) {
2580 return;
2583 ifp = XFS_IFORK_PTR(ip, whichfork);
2584 new_size = (int)ifp->if_bytes + byte_diff;
2585 ASSERT(new_size >= 0);
2587 if (new_size == 0) {
2588 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2589 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2591 ifp->if_u1.if_data = NULL;
2592 real_size = 0;
2593 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2595 * If the valid extents/data can fit in if_inline_ext/data,
2596 * copy them from the malloc'd vector and free it.
2598 if (ifp->if_u1.if_data == NULL) {
2599 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2600 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2601 ASSERT(ifp->if_real_bytes != 0);
2602 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2603 new_size);
2604 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2605 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2607 real_size = 0;
2608 } else {
2610 * Stuck with malloc/realloc.
2611 * For inline data, the underlying buffer must be
2612 * a multiple of 4 bytes in size so that it can be
2613 * logged and stay on word boundaries. We enforce
2614 * that here.
2616 real_size = roundup(new_size, 4);
2617 if (ifp->if_u1.if_data == NULL) {
2618 ASSERT(ifp->if_real_bytes == 0);
2619 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2620 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2622 * Only do the realloc if the underlying size
2623 * is really changing.
2625 if (ifp->if_real_bytes != real_size) {
2626 ifp->if_u1.if_data =
2627 kmem_realloc(ifp->if_u1.if_data,
2628 real_size,
2629 ifp->if_real_bytes,
2630 KM_SLEEP);
2632 } else {
2633 ASSERT(ifp->if_real_bytes == 0);
2634 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2635 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2636 ifp->if_bytes);
2639 ifp->if_real_bytes = real_size;
2640 ifp->if_bytes = new_size;
2641 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2648 * Map inode to disk block and offset.
2650 * mp -- the mount point structure for the current file system
2651 * tp -- the current transaction
2652 * ino -- the inode number of the inode to be located
2653 * imap -- this structure is filled in with the information necessary
2654 * to retrieve the given inode from disk
2655 * flags -- flags to pass to xfs_dilocate indicating whether or not
2656 * lookups in the inode btree were OK or not
2659 xfs_imap(
2660 xfs_mount_t *mp,
2661 xfs_trans_t *tp,
2662 xfs_ino_t ino,
2663 xfs_imap_t *imap,
2664 uint flags)
2666 xfs_fsblock_t fsbno;
2667 int len;
2668 int off;
2669 int error;
2671 fsbno = imap->im_blkno ?
2672 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2673 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2674 if (error != 0) {
2675 return error;
2677 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2678 imap->im_len = XFS_FSB_TO_BB(mp, len);
2679 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2680 imap->im_ioffset = (ushort)off;
2681 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2682 return 0;
2685 void
2686 xfs_idestroy_fork(
2687 xfs_inode_t *ip,
2688 int whichfork)
2690 xfs_ifork_t *ifp;
2692 ifp = XFS_IFORK_PTR(ip, whichfork);
2693 if (ifp->if_broot != NULL) {
2694 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2695 ifp->if_broot = NULL;
2699 * If the format is local, then we can't have an extents
2700 * array so just look for an inline data array. If we're
2701 * not local then we may or may not have an extents list,
2702 * so check and free it up if we do.
2704 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2705 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2706 (ifp->if_u1.if_data != NULL)) {
2707 ASSERT(ifp->if_real_bytes != 0);
2708 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2709 ifp->if_u1.if_data = NULL;
2710 ifp->if_real_bytes = 0;
2712 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2713 ((ifp->if_flags & XFS_IFEXTIREC) ||
2714 ((ifp->if_u1.if_extents != NULL) &&
2715 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2716 ASSERT(ifp->if_real_bytes != 0);
2717 xfs_iext_destroy(ifp);
2719 ASSERT(ifp->if_u1.if_extents == NULL ||
2720 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2721 ASSERT(ifp->if_real_bytes == 0);
2722 if (whichfork == XFS_ATTR_FORK) {
2723 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2724 ip->i_afp = NULL;
2729 * This is called free all the memory associated with an inode.
2730 * It must free the inode itself and any buffers allocated for
2731 * if_extents/if_data and if_broot. It must also free the lock
2732 * associated with the inode.
2734 void
2735 xfs_idestroy(
2736 xfs_inode_t *ip)
2739 switch (ip->i_d.di_mode & S_IFMT) {
2740 case S_IFREG:
2741 case S_IFDIR:
2742 case S_IFLNK:
2743 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2744 break;
2746 if (ip->i_afp)
2747 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2748 mrfree(&ip->i_lock);
2749 mrfree(&ip->i_iolock);
2750 freesema(&ip->i_flock);
2752 #ifdef XFS_VNODE_TRACE
2753 ktrace_free(ip->i_trace);
2754 #endif
2755 #ifdef XFS_BMAP_TRACE
2756 ktrace_free(ip->i_xtrace);
2757 #endif
2758 #ifdef XFS_BMBT_TRACE
2759 ktrace_free(ip->i_btrace);
2760 #endif
2761 #ifdef XFS_RW_TRACE
2762 ktrace_free(ip->i_rwtrace);
2763 #endif
2764 #ifdef XFS_ILOCK_TRACE
2765 ktrace_free(ip->i_lock_trace);
2766 #endif
2767 #ifdef XFS_DIR2_TRACE
2768 ktrace_free(ip->i_dir_trace);
2769 #endif
2770 if (ip->i_itemp) {
2772 * Only if we are shutting down the fs will we see an
2773 * inode still in the AIL. If it is there, we should remove
2774 * it to prevent a use-after-free from occurring.
2776 xfs_mount_t *mp = ip->i_mount;
2777 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2778 int s;
2780 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2781 XFS_FORCED_SHUTDOWN(ip->i_mount));
2782 if (lip->li_flags & XFS_LI_IN_AIL) {
2783 AIL_LOCK(mp, s);
2784 if (lip->li_flags & XFS_LI_IN_AIL)
2785 xfs_trans_delete_ail(mp, lip, s);
2786 else
2787 AIL_UNLOCK(mp, s);
2789 xfs_inode_item_destroy(ip);
2791 kmem_zone_free(xfs_inode_zone, ip);
2796 * Increment the pin count of the given buffer.
2797 * This value is protected by ipinlock spinlock in the mount structure.
2799 void
2800 xfs_ipin(
2801 xfs_inode_t *ip)
2803 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2805 atomic_inc(&ip->i_pincount);
2809 * Decrement the pin count of the given inode, and wake up
2810 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2811 * inode must have been previously pinned with a call to xfs_ipin().
2813 void
2814 xfs_iunpin(
2815 xfs_inode_t *ip)
2817 ASSERT(atomic_read(&ip->i_pincount) > 0);
2819 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
2822 * If the inode is currently being reclaimed, the link between
2823 * the bhv_vnode and the xfs_inode will be broken after the
2824 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2825 * set, then we can move forward and mark the linux inode dirty
2826 * knowing that it is still valid as it won't freed until after
2827 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2828 * i_flags_lock is used to synchronise the setting of the
2829 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2830 * can execute atomically w.r.t to reclaim by holding this lock
2831 * here.
2833 * However, we still need to issue the unpin wakeup call as the
2834 * inode reclaim may be blocked waiting for the inode to become
2835 * unpinned.
2838 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
2839 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
2840 struct inode *inode = NULL;
2842 BUG_ON(vp == NULL);
2843 inode = vn_to_inode(vp);
2844 BUG_ON(inode->i_state & I_CLEAR);
2846 /* make sync come back and flush this inode */
2847 if (!(inode->i_state & (I_NEW|I_FREEING)))
2848 mark_inode_dirty_sync(inode);
2850 spin_unlock(&ip->i_flags_lock);
2851 wake_up(&ip->i_ipin_wait);
2856 * This is called to wait for the given inode to be unpinned.
2857 * It will sleep until this happens. The caller must have the
2858 * inode locked in at least shared mode so that the buffer cannot
2859 * be subsequently pinned once someone is waiting for it to be
2860 * unpinned.
2862 STATIC void
2863 xfs_iunpin_wait(
2864 xfs_inode_t *ip)
2866 xfs_inode_log_item_t *iip;
2867 xfs_lsn_t lsn;
2869 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2871 if (atomic_read(&ip->i_pincount) == 0) {
2872 return;
2875 iip = ip->i_itemp;
2876 if (iip && iip->ili_last_lsn) {
2877 lsn = iip->ili_last_lsn;
2878 } else {
2879 lsn = (xfs_lsn_t)0;
2883 * Give the log a push so we don't wait here too long.
2885 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2887 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2892 * xfs_iextents_copy()
2894 * This is called to copy the REAL extents (as opposed to the delayed
2895 * allocation extents) from the inode into the given buffer. It
2896 * returns the number of bytes copied into the buffer.
2898 * If there are no delayed allocation extents, then we can just
2899 * memcpy() the extents into the buffer. Otherwise, we need to
2900 * examine each extent in turn and skip those which are delayed.
2903 xfs_iextents_copy(
2904 xfs_inode_t *ip,
2905 xfs_bmbt_rec_t *dp,
2906 int whichfork)
2908 int copied;
2909 int i;
2910 xfs_ifork_t *ifp;
2911 int nrecs;
2912 xfs_fsblock_t start_block;
2914 ifp = XFS_IFORK_PTR(ip, whichfork);
2915 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2916 ASSERT(ifp->if_bytes > 0);
2918 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2919 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2920 ASSERT(nrecs > 0);
2923 * There are some delayed allocation extents in the
2924 * inode, so copy the extents one at a time and skip
2925 * the delayed ones. There must be at least one
2926 * non-delayed extent.
2928 copied = 0;
2929 for (i = 0; i < nrecs; i++) {
2930 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2931 start_block = xfs_bmbt_get_startblock(ep);
2932 if (ISNULLSTARTBLOCK(start_block)) {
2934 * It's a delayed allocation extent, so skip it.
2936 continue;
2939 /* Translate to on disk format */
2940 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2941 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2942 dp++;
2943 copied++;
2945 ASSERT(copied != 0);
2946 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2948 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2952 * Each of the following cases stores data into the same region
2953 * of the on-disk inode, so only one of them can be valid at
2954 * any given time. While it is possible to have conflicting formats
2955 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2956 * in EXTENTS format, this can only happen when the fork has
2957 * changed formats after being modified but before being flushed.
2958 * In these cases, the format always takes precedence, because the
2959 * format indicates the current state of the fork.
2961 /*ARGSUSED*/
2962 STATIC int
2963 xfs_iflush_fork(
2964 xfs_inode_t *ip,
2965 xfs_dinode_t *dip,
2966 xfs_inode_log_item_t *iip,
2967 int whichfork,
2968 xfs_buf_t *bp)
2970 char *cp;
2971 xfs_ifork_t *ifp;
2972 xfs_mount_t *mp;
2973 #ifdef XFS_TRANS_DEBUG
2974 int first;
2975 #endif
2976 static const short brootflag[2] =
2977 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2978 static const short dataflag[2] =
2979 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2980 static const short extflag[2] =
2981 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2983 if (iip == NULL)
2984 return 0;
2985 ifp = XFS_IFORK_PTR(ip, whichfork);
2987 * This can happen if we gave up in iformat in an error path,
2988 * for the attribute fork.
2990 if (ifp == NULL) {
2991 ASSERT(whichfork == XFS_ATTR_FORK);
2992 return 0;
2994 cp = XFS_DFORK_PTR(dip, whichfork);
2995 mp = ip->i_mount;
2996 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2997 case XFS_DINODE_FMT_LOCAL:
2998 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2999 (ifp->if_bytes > 0)) {
3000 ASSERT(ifp->if_u1.if_data != NULL);
3001 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
3002 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
3004 break;
3006 case XFS_DINODE_FMT_EXTENTS:
3007 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
3008 !(iip->ili_format.ilf_fields & extflag[whichfork]));
3009 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
3010 (ifp->if_bytes == 0));
3011 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
3012 (ifp->if_bytes > 0));
3013 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
3014 (ifp->if_bytes > 0)) {
3015 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
3016 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
3017 whichfork);
3019 break;
3021 case XFS_DINODE_FMT_BTREE:
3022 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3023 (ifp->if_broot_bytes > 0)) {
3024 ASSERT(ifp->if_broot != NULL);
3025 ASSERT(ifp->if_broot_bytes <=
3026 (XFS_IFORK_SIZE(ip, whichfork) +
3027 XFS_BROOT_SIZE_ADJ));
3028 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3029 (xfs_bmdr_block_t *)cp,
3030 XFS_DFORK_SIZE(dip, mp, whichfork));
3032 break;
3034 case XFS_DINODE_FMT_DEV:
3035 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3036 ASSERT(whichfork == XFS_DATA_FORK);
3037 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
3039 break;
3041 case XFS_DINODE_FMT_UUID:
3042 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3043 ASSERT(whichfork == XFS_DATA_FORK);
3044 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3045 sizeof(uuid_t));
3047 break;
3049 default:
3050 ASSERT(0);
3051 break;
3054 return 0;
3058 * xfs_iflush() will write a modified inode's changes out to the
3059 * inode's on disk home. The caller must have the inode lock held
3060 * in at least shared mode and the inode flush semaphore must be
3061 * held as well. The inode lock will still be held upon return from
3062 * the call and the caller is free to unlock it.
3063 * The inode flush lock will be unlocked when the inode reaches the disk.
3064 * The flags indicate how the inode's buffer should be written out.
3067 xfs_iflush(
3068 xfs_inode_t *ip,
3069 uint flags)
3071 xfs_inode_log_item_t *iip;
3072 xfs_buf_t *bp;
3073 xfs_dinode_t *dip;
3074 xfs_mount_t *mp;
3075 int error;
3076 /* REFERENCED */
3077 xfs_inode_t *iq;
3078 int clcount; /* count of inodes clustered */
3079 int bufwasdelwri;
3080 struct hlist_node *entry;
3081 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3083 XFS_STATS_INC(xs_iflush_count);
3085 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3086 ASSERT(issemalocked(&(ip->i_flock)));
3087 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3088 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3090 iip = ip->i_itemp;
3091 mp = ip->i_mount;
3094 * If the inode isn't dirty, then just release the inode
3095 * flush lock and do nothing.
3097 if ((ip->i_update_core == 0) &&
3098 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3099 ASSERT((iip != NULL) ?
3100 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3101 xfs_ifunlock(ip);
3102 return 0;
3106 * We can't flush the inode until it is unpinned, so
3107 * wait for it. We know noone new can pin it, because
3108 * we are holding the inode lock shared and you need
3109 * to hold it exclusively to pin the inode.
3111 xfs_iunpin_wait(ip);
3114 * This may have been unpinned because the filesystem is shutting
3115 * down forcibly. If that's the case we must not write this inode
3116 * to disk, because the log record didn't make it to disk!
3118 if (XFS_FORCED_SHUTDOWN(mp)) {
3119 ip->i_update_core = 0;
3120 if (iip)
3121 iip->ili_format.ilf_fields = 0;
3122 xfs_ifunlock(ip);
3123 return XFS_ERROR(EIO);
3127 * Get the buffer containing the on-disk inode.
3129 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3130 if (error) {
3131 xfs_ifunlock(ip);
3132 return error;
3136 * Decide how buffer will be flushed out. This is done before
3137 * the call to xfs_iflush_int because this field is zeroed by it.
3139 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3141 * Flush out the inode buffer according to the directions
3142 * of the caller. In the cases where the caller has given
3143 * us a choice choose the non-delwri case. This is because
3144 * the inode is in the AIL and we need to get it out soon.
3146 switch (flags) {
3147 case XFS_IFLUSH_SYNC:
3148 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3149 flags = 0;
3150 break;
3151 case XFS_IFLUSH_ASYNC:
3152 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3153 flags = INT_ASYNC;
3154 break;
3155 case XFS_IFLUSH_DELWRI:
3156 flags = INT_DELWRI;
3157 break;
3158 default:
3159 ASSERT(0);
3160 flags = 0;
3161 break;
3163 } else {
3164 switch (flags) {
3165 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3166 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3167 case XFS_IFLUSH_DELWRI:
3168 flags = INT_DELWRI;
3169 break;
3170 case XFS_IFLUSH_ASYNC:
3171 flags = INT_ASYNC;
3172 break;
3173 case XFS_IFLUSH_SYNC:
3174 flags = 0;
3175 break;
3176 default:
3177 ASSERT(0);
3178 flags = 0;
3179 break;
3184 * First flush out the inode that xfs_iflush was called with.
3186 error = xfs_iflush_int(ip, bp);
3187 if (error) {
3188 goto corrupt_out;
3192 * inode clustering:
3193 * see if other inodes can be gathered into this write
3195 spin_lock(&ip->i_cluster->icl_lock);
3196 ip->i_cluster->icl_buf = bp;
3198 clcount = 0;
3199 hlist_for_each_entry(iq, entry, &ip->i_cluster->icl_inodes, i_cnode) {
3200 if (iq == ip)
3201 continue;
3204 * Do an un-protected check to see if the inode is dirty and
3205 * is a candidate for flushing. These checks will be repeated
3206 * later after the appropriate locks are acquired.
3208 iip = iq->i_itemp;
3209 if ((iq->i_update_core == 0) &&
3210 ((iip == NULL) ||
3211 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3212 xfs_ipincount(iq) == 0) {
3213 continue;
3217 * Try to get locks. If any are unavailable,
3218 * then this inode cannot be flushed and is skipped.
3221 /* get inode locks (just i_lock) */
3222 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3223 /* get inode flush lock */
3224 if (xfs_iflock_nowait(iq)) {
3225 /* check if pinned */
3226 if (xfs_ipincount(iq) == 0) {
3227 /* arriving here means that
3228 * this inode can be flushed.
3229 * first re-check that it's
3230 * dirty
3232 iip = iq->i_itemp;
3233 if ((iq->i_update_core != 0)||
3234 ((iip != NULL) &&
3235 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3236 clcount++;
3237 error = xfs_iflush_int(iq, bp);
3238 if (error) {
3239 xfs_iunlock(iq,
3240 XFS_ILOCK_SHARED);
3241 goto cluster_corrupt_out;
3243 } else {
3244 xfs_ifunlock(iq);
3246 } else {
3247 xfs_ifunlock(iq);
3250 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3253 spin_unlock(&ip->i_cluster->icl_lock);
3255 if (clcount) {
3256 XFS_STATS_INC(xs_icluster_flushcnt);
3257 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3261 * If the buffer is pinned then push on the log so we won't
3262 * get stuck waiting in the write for too long.
3264 if (XFS_BUF_ISPINNED(bp)){
3265 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3268 if (flags & INT_DELWRI) {
3269 xfs_bdwrite(mp, bp);
3270 } else if (flags & INT_ASYNC) {
3271 xfs_bawrite(mp, bp);
3272 } else {
3273 error = xfs_bwrite(mp, bp);
3275 return error;
3277 corrupt_out:
3278 xfs_buf_relse(bp);
3279 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3280 xfs_iflush_abort(ip);
3282 * Unlocks the flush lock
3284 return XFS_ERROR(EFSCORRUPTED);
3286 cluster_corrupt_out:
3287 /* Corruption detected in the clustering loop. Invalidate the
3288 * inode buffer and shut down the filesystem.
3290 spin_unlock(&ip->i_cluster->icl_lock);
3293 * Clean up the buffer. If it was B_DELWRI, just release it --
3294 * brelse can handle it with no problems. If not, shut down the
3295 * filesystem before releasing the buffer.
3297 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3298 xfs_buf_relse(bp);
3301 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3303 if(!bufwasdelwri) {
3305 * Just like incore_relse: if we have b_iodone functions,
3306 * mark the buffer as an error and call them. Otherwise
3307 * mark it as stale and brelse.
3309 if (XFS_BUF_IODONE_FUNC(bp)) {
3310 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3311 XFS_BUF_UNDONE(bp);
3312 XFS_BUF_STALE(bp);
3313 XFS_BUF_SHUT(bp);
3314 XFS_BUF_ERROR(bp,EIO);
3315 xfs_biodone(bp);
3316 } else {
3317 XFS_BUF_STALE(bp);
3318 xfs_buf_relse(bp);
3322 xfs_iflush_abort(iq);
3324 * Unlocks the flush lock
3326 return XFS_ERROR(EFSCORRUPTED);
3330 STATIC int
3331 xfs_iflush_int(
3332 xfs_inode_t *ip,
3333 xfs_buf_t *bp)
3335 xfs_inode_log_item_t *iip;
3336 xfs_dinode_t *dip;
3337 xfs_mount_t *mp;
3338 #ifdef XFS_TRANS_DEBUG
3339 int first;
3340 #endif
3341 SPLDECL(s);
3343 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3344 ASSERT(issemalocked(&(ip->i_flock)));
3345 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3346 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3348 iip = ip->i_itemp;
3349 mp = ip->i_mount;
3353 * If the inode isn't dirty, then just release the inode
3354 * flush lock and do nothing.
3356 if ((ip->i_update_core == 0) &&
3357 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3358 xfs_ifunlock(ip);
3359 return 0;
3362 /* set *dip = inode's place in the buffer */
3363 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3366 * Clear i_update_core before copying out the data.
3367 * This is for coordination with our timestamp updates
3368 * that don't hold the inode lock. They will always
3369 * update the timestamps BEFORE setting i_update_core,
3370 * so if we clear i_update_core after they set it we
3371 * are guaranteed to see their updates to the timestamps.
3372 * I believe that this depends on strongly ordered memory
3373 * semantics, but we have that. We use the SYNCHRONIZE
3374 * macro to make sure that the compiler does not reorder
3375 * the i_update_core access below the data copy below.
3377 ip->i_update_core = 0;
3378 SYNCHRONIZE();
3381 * Make sure to get the latest atime from the Linux inode.
3383 xfs_synchronize_atime(ip);
3385 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
3386 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3387 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3388 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3389 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
3390 goto corrupt_out;
3392 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3393 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3394 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3395 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3396 ip->i_ino, ip, ip->i_d.di_magic);
3397 goto corrupt_out;
3399 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3400 if (XFS_TEST_ERROR(
3401 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3402 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3403 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3404 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3405 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3406 ip->i_ino, ip);
3407 goto corrupt_out;
3409 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3410 if (XFS_TEST_ERROR(
3411 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3412 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3413 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3414 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3415 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3416 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3417 ip->i_ino, ip);
3418 goto corrupt_out;
3421 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3422 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3423 XFS_RANDOM_IFLUSH_5)) {
3424 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3425 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3426 ip->i_ino,
3427 ip->i_d.di_nextents + ip->i_d.di_anextents,
3428 ip->i_d.di_nblocks,
3429 ip);
3430 goto corrupt_out;
3432 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3433 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3434 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3435 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3436 ip->i_ino, ip->i_d.di_forkoff, ip);
3437 goto corrupt_out;
3440 * bump the flush iteration count, used to detect flushes which
3441 * postdate a log record during recovery.
3444 ip->i_d.di_flushiter++;
3447 * Copy the dirty parts of the inode into the on-disk
3448 * inode. We always copy out the core of the inode,
3449 * because if the inode is dirty at all the core must
3450 * be.
3452 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
3454 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3455 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3456 ip->i_d.di_flushiter = 0;
3459 * If this is really an old format inode and the superblock version
3460 * has not been updated to support only new format inodes, then
3461 * convert back to the old inode format. If the superblock version
3462 * has been updated, then make the conversion permanent.
3464 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3465 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3466 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3467 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3469 * Convert it back.
3471 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3472 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3473 } else {
3475 * The superblock version has already been bumped,
3476 * so just make the conversion to the new inode
3477 * format permanent.
3479 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3480 dip->di_core.di_version = XFS_DINODE_VERSION_2;
3481 ip->i_d.di_onlink = 0;
3482 dip->di_core.di_onlink = 0;
3483 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3484 memset(&(dip->di_core.di_pad[0]), 0,
3485 sizeof(dip->di_core.di_pad));
3486 ASSERT(ip->i_d.di_projid == 0);
3490 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3491 goto corrupt_out;
3494 if (XFS_IFORK_Q(ip)) {
3496 * The only error from xfs_iflush_fork is on the data fork.
3498 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3500 xfs_inobp_check(mp, bp);
3503 * We've recorded everything logged in the inode, so we'd
3504 * like to clear the ilf_fields bits so we don't log and
3505 * flush things unnecessarily. However, we can't stop
3506 * logging all this information until the data we've copied
3507 * into the disk buffer is written to disk. If we did we might
3508 * overwrite the copy of the inode in the log with all the
3509 * data after re-logging only part of it, and in the face of
3510 * a crash we wouldn't have all the data we need to recover.
3512 * What we do is move the bits to the ili_last_fields field.
3513 * When logging the inode, these bits are moved back to the
3514 * ilf_fields field. In the xfs_iflush_done() routine we
3515 * clear ili_last_fields, since we know that the information
3516 * those bits represent is permanently on disk. As long as
3517 * the flush completes before the inode is logged again, then
3518 * both ilf_fields and ili_last_fields will be cleared.
3520 * We can play with the ilf_fields bits here, because the inode
3521 * lock must be held exclusively in order to set bits there
3522 * and the flush lock protects the ili_last_fields bits.
3523 * Set ili_logged so the flush done
3524 * routine can tell whether or not to look in the AIL.
3525 * Also, store the current LSN of the inode so that we can tell
3526 * whether the item has moved in the AIL from xfs_iflush_done().
3527 * In order to read the lsn we need the AIL lock, because
3528 * it is a 64 bit value that cannot be read atomically.
3530 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3531 iip->ili_last_fields = iip->ili_format.ilf_fields;
3532 iip->ili_format.ilf_fields = 0;
3533 iip->ili_logged = 1;
3535 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3536 AIL_LOCK(mp,s);
3537 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3538 AIL_UNLOCK(mp, s);
3541 * Attach the function xfs_iflush_done to the inode's
3542 * buffer. This will remove the inode from the AIL
3543 * and unlock the inode's flush lock when the inode is
3544 * completely written to disk.
3546 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3547 xfs_iflush_done, (xfs_log_item_t *)iip);
3549 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3550 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3551 } else {
3553 * We're flushing an inode which is not in the AIL and has
3554 * not been logged but has i_update_core set. For this
3555 * case we can use a B_DELWRI flush and immediately drop
3556 * the inode flush lock because we can avoid the whole
3557 * AIL state thing. It's OK to drop the flush lock now,
3558 * because we've already locked the buffer and to do anything
3559 * you really need both.
3561 if (iip != NULL) {
3562 ASSERT(iip->ili_logged == 0);
3563 ASSERT(iip->ili_last_fields == 0);
3564 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3566 xfs_ifunlock(ip);
3569 return 0;
3571 corrupt_out:
3572 return XFS_ERROR(EFSCORRUPTED);
3577 * Flush all inactive inodes in mp.
3579 void
3580 xfs_iflush_all(
3581 xfs_mount_t *mp)
3583 xfs_inode_t *ip;
3584 bhv_vnode_t *vp;
3586 again:
3587 XFS_MOUNT_ILOCK(mp);
3588 ip = mp->m_inodes;
3589 if (ip == NULL)
3590 goto out;
3592 do {
3593 /* Make sure we skip markers inserted by sync */
3594 if (ip->i_mount == NULL) {
3595 ip = ip->i_mnext;
3596 continue;
3599 vp = XFS_ITOV_NULL(ip);
3600 if (!vp) {
3601 XFS_MOUNT_IUNLOCK(mp);
3602 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3603 goto again;
3606 ASSERT(vn_count(vp) == 0);
3608 ip = ip->i_mnext;
3609 } while (ip != mp->m_inodes);
3610 out:
3611 XFS_MOUNT_IUNLOCK(mp);
3615 * xfs_iaccess: check accessibility of inode for mode.
3618 xfs_iaccess(
3619 xfs_inode_t *ip,
3620 mode_t mode,
3621 cred_t *cr)
3623 int error;
3624 mode_t orgmode = mode;
3625 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
3627 if (mode & S_IWUSR) {
3628 umode_t imode = inode->i_mode;
3630 if (IS_RDONLY(inode) &&
3631 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3632 return XFS_ERROR(EROFS);
3634 if (IS_IMMUTABLE(inode))
3635 return XFS_ERROR(EACCES);
3639 * If there's an Access Control List it's used instead of
3640 * the mode bits.
3642 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3643 return error ? XFS_ERROR(error) : 0;
3645 if (current_fsuid(cr) != ip->i_d.di_uid) {
3646 mode >>= 3;
3647 if (!in_group_p((gid_t)ip->i_d.di_gid))
3648 mode >>= 3;
3652 * If the DACs are ok we don't need any capability check.
3654 if ((ip->i_d.di_mode & mode) == mode)
3655 return 0;
3657 * Read/write DACs are always overridable.
3658 * Executable DACs are overridable if at least one exec bit is set.
3660 if (!(orgmode & S_IXUSR) ||
3661 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3662 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3663 return 0;
3665 if ((orgmode == S_IRUSR) ||
3666 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3667 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3668 return 0;
3669 #ifdef NOISE
3670 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3671 #endif /* NOISE */
3672 return XFS_ERROR(EACCES);
3674 return XFS_ERROR(EACCES);
3678 * xfs_iroundup: round up argument to next power of two
3680 uint
3681 xfs_iroundup(
3682 uint v)
3684 int i;
3685 uint m;
3687 if ((v & (v - 1)) == 0)
3688 return v;
3689 ASSERT((v & 0x80000000) == 0);
3690 if ((v & (v + 1)) == 0)
3691 return v + 1;
3692 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3693 if (v & m)
3694 continue;
3695 v |= m;
3696 if ((v & (v + 1)) == 0)
3697 return v + 1;
3699 ASSERT(0);
3700 return( 0 );
3703 #ifdef XFS_ILOCK_TRACE
3704 ktrace_t *xfs_ilock_trace_buf;
3706 void
3707 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3709 ktrace_enter(ip->i_lock_trace,
3710 (void *)ip,
3711 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3712 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3713 (void *)ra, /* caller of ilock */
3714 (void *)(unsigned long)current_cpu(),
3715 (void *)(unsigned long)current_pid(),
3716 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3718 #endif
3721 * Return a pointer to the extent record at file index idx.
3723 xfs_bmbt_rec_host_t *
3724 xfs_iext_get_ext(
3725 xfs_ifork_t *ifp, /* inode fork pointer */
3726 xfs_extnum_t idx) /* index of target extent */
3728 ASSERT(idx >= 0);
3729 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3730 return ifp->if_u1.if_ext_irec->er_extbuf;
3731 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3732 xfs_ext_irec_t *erp; /* irec pointer */
3733 int erp_idx = 0; /* irec index */
3734 xfs_extnum_t page_idx = idx; /* ext index in target list */
3736 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3737 return &erp->er_extbuf[page_idx];
3738 } else if (ifp->if_bytes) {
3739 return &ifp->if_u1.if_extents[idx];
3740 } else {
3741 return NULL;
3746 * Insert new item(s) into the extent records for incore inode
3747 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3749 void
3750 xfs_iext_insert(
3751 xfs_ifork_t *ifp, /* inode fork pointer */
3752 xfs_extnum_t idx, /* starting index of new items */
3753 xfs_extnum_t count, /* number of inserted items */
3754 xfs_bmbt_irec_t *new) /* items to insert */
3756 xfs_extnum_t i; /* extent record index */
3758 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3759 xfs_iext_add(ifp, idx, count);
3760 for (i = idx; i < idx + count; i++, new++)
3761 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3765 * This is called when the amount of space required for incore file
3766 * extents needs to be increased. The ext_diff parameter stores the
3767 * number of new extents being added and the idx parameter contains
3768 * the extent index where the new extents will be added. If the new
3769 * extents are being appended, then we just need to (re)allocate and
3770 * initialize the space. Otherwise, if the new extents are being
3771 * inserted into the middle of the existing entries, a bit more work
3772 * is required to make room for the new extents to be inserted. The
3773 * caller is responsible for filling in the new extent entries upon
3774 * return.
3776 void
3777 xfs_iext_add(
3778 xfs_ifork_t *ifp, /* inode fork pointer */
3779 xfs_extnum_t idx, /* index to begin adding exts */
3780 int ext_diff) /* number of extents to add */
3782 int byte_diff; /* new bytes being added */
3783 int new_size; /* size of extents after adding */
3784 xfs_extnum_t nextents; /* number of extents in file */
3786 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3787 ASSERT((idx >= 0) && (idx <= nextents));
3788 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3789 new_size = ifp->if_bytes + byte_diff;
3791 * If the new number of extents (nextents + ext_diff)
3792 * fits inside the inode, then continue to use the inline
3793 * extent buffer.
3795 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3796 if (idx < nextents) {
3797 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3798 &ifp->if_u2.if_inline_ext[idx],
3799 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3800 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3802 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3803 ifp->if_real_bytes = 0;
3804 ifp->if_lastex = nextents + ext_diff;
3807 * Otherwise use a linear (direct) extent list.
3808 * If the extents are currently inside the inode,
3809 * xfs_iext_realloc_direct will switch us from
3810 * inline to direct extent allocation mode.
3812 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3813 xfs_iext_realloc_direct(ifp, new_size);
3814 if (idx < nextents) {
3815 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3816 &ifp->if_u1.if_extents[idx],
3817 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3818 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3821 /* Indirection array */
3822 else {
3823 xfs_ext_irec_t *erp;
3824 int erp_idx = 0;
3825 int page_idx = idx;
3827 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3828 if (ifp->if_flags & XFS_IFEXTIREC) {
3829 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3830 } else {
3831 xfs_iext_irec_init(ifp);
3832 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3833 erp = ifp->if_u1.if_ext_irec;
3835 /* Extents fit in target extent page */
3836 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3837 if (page_idx < erp->er_extcount) {
3838 memmove(&erp->er_extbuf[page_idx + ext_diff],
3839 &erp->er_extbuf[page_idx],
3840 (erp->er_extcount - page_idx) *
3841 sizeof(xfs_bmbt_rec_t));
3842 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3844 erp->er_extcount += ext_diff;
3845 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3847 /* Insert a new extent page */
3848 else if (erp) {
3849 xfs_iext_add_indirect_multi(ifp,
3850 erp_idx, page_idx, ext_diff);
3853 * If extent(s) are being appended to the last page in
3854 * the indirection array and the new extent(s) don't fit
3855 * in the page, then erp is NULL and erp_idx is set to
3856 * the next index needed in the indirection array.
3858 else {
3859 int count = ext_diff;
3861 while (count) {
3862 erp = xfs_iext_irec_new(ifp, erp_idx);
3863 erp->er_extcount = count;
3864 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3865 if (count) {
3866 erp_idx++;
3871 ifp->if_bytes = new_size;
3875 * This is called when incore extents are being added to the indirection
3876 * array and the new extents do not fit in the target extent list. The
3877 * erp_idx parameter contains the irec index for the target extent list
3878 * in the indirection array, and the idx parameter contains the extent
3879 * index within the list. The number of extents being added is stored
3880 * in the count parameter.
3882 * |-------| |-------|
3883 * | | | | idx - number of extents before idx
3884 * | idx | | count |
3885 * | | | | count - number of extents being inserted at idx
3886 * |-------| |-------|
3887 * | count | | nex2 | nex2 - number of extents after idx + count
3888 * |-------| |-------|
3890 void
3891 xfs_iext_add_indirect_multi(
3892 xfs_ifork_t *ifp, /* inode fork pointer */
3893 int erp_idx, /* target extent irec index */
3894 xfs_extnum_t idx, /* index within target list */
3895 int count) /* new extents being added */
3897 int byte_diff; /* new bytes being added */
3898 xfs_ext_irec_t *erp; /* pointer to irec entry */
3899 xfs_extnum_t ext_diff; /* number of extents to add */
3900 xfs_extnum_t ext_cnt; /* new extents still needed */
3901 xfs_extnum_t nex2; /* extents after idx + count */
3902 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3903 int nlists; /* number of irec's (lists) */
3905 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3906 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3907 nex2 = erp->er_extcount - idx;
3908 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3911 * Save second part of target extent list
3912 * (all extents past */
3913 if (nex2) {
3914 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3915 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3916 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3917 erp->er_extcount -= nex2;
3918 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3919 memset(&erp->er_extbuf[idx], 0, byte_diff);
3923 * Add the new extents to the end of the target
3924 * list, then allocate new irec record(s) and
3925 * extent buffer(s) as needed to store the rest
3926 * of the new extents.
3928 ext_cnt = count;
3929 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3930 if (ext_diff) {
3931 erp->er_extcount += ext_diff;
3932 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3933 ext_cnt -= ext_diff;
3935 while (ext_cnt) {
3936 erp_idx++;
3937 erp = xfs_iext_irec_new(ifp, erp_idx);
3938 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3939 erp->er_extcount = ext_diff;
3940 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3941 ext_cnt -= ext_diff;
3944 /* Add nex2 extents back to indirection array */
3945 if (nex2) {
3946 xfs_extnum_t ext_avail;
3947 int i;
3949 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3950 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3951 i = 0;
3953 * If nex2 extents fit in the current page, append
3954 * nex2_ep after the new extents.
3956 if (nex2 <= ext_avail) {
3957 i = erp->er_extcount;
3960 * Otherwise, check if space is available in the
3961 * next page.
3963 else if ((erp_idx < nlists - 1) &&
3964 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3965 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3966 erp_idx++;
3967 erp++;
3968 /* Create a hole for nex2 extents */
3969 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3970 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3973 * Final choice, create a new extent page for
3974 * nex2 extents.
3976 else {
3977 erp_idx++;
3978 erp = xfs_iext_irec_new(ifp, erp_idx);
3980 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3981 kmem_free(nex2_ep, byte_diff);
3982 erp->er_extcount += nex2;
3983 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3988 * This is called when the amount of space required for incore file
3989 * extents needs to be decreased. The ext_diff parameter stores the
3990 * number of extents to be removed and the idx parameter contains
3991 * the extent index where the extents will be removed from.
3993 * If the amount of space needed has decreased below the linear
3994 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3995 * extent array. Otherwise, use kmem_realloc() to adjust the
3996 * size to what is needed.
3998 void
3999 xfs_iext_remove(
4000 xfs_ifork_t *ifp, /* inode fork pointer */
4001 xfs_extnum_t idx, /* index to begin removing exts */
4002 int ext_diff) /* number of extents to remove */
4004 xfs_extnum_t nextents; /* number of extents in file */
4005 int new_size; /* size of extents after removal */
4007 ASSERT(ext_diff > 0);
4008 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4009 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
4011 if (new_size == 0) {
4012 xfs_iext_destroy(ifp);
4013 } else if (ifp->if_flags & XFS_IFEXTIREC) {
4014 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4015 } else if (ifp->if_real_bytes) {
4016 xfs_iext_remove_direct(ifp, idx, ext_diff);
4017 } else {
4018 xfs_iext_remove_inline(ifp, idx, ext_diff);
4020 ifp->if_bytes = new_size;
4024 * This removes ext_diff extents from the inline buffer, beginning
4025 * at extent index idx.
4027 void
4028 xfs_iext_remove_inline(
4029 xfs_ifork_t *ifp, /* inode fork pointer */
4030 xfs_extnum_t idx, /* index to begin removing exts */
4031 int ext_diff) /* number of extents to remove */
4033 int nextents; /* number of extents in file */
4035 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4036 ASSERT(idx < XFS_INLINE_EXTS);
4037 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4038 ASSERT(((nextents - ext_diff) > 0) &&
4039 (nextents - ext_diff) < XFS_INLINE_EXTS);
4041 if (idx + ext_diff < nextents) {
4042 memmove(&ifp->if_u2.if_inline_ext[idx],
4043 &ifp->if_u2.if_inline_ext[idx + ext_diff],
4044 (nextents - (idx + ext_diff)) *
4045 sizeof(xfs_bmbt_rec_t));
4046 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4047 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4048 } else {
4049 memset(&ifp->if_u2.if_inline_ext[idx], 0,
4050 ext_diff * sizeof(xfs_bmbt_rec_t));
4055 * This removes ext_diff extents from a linear (direct) extent list,
4056 * beginning at extent index idx. If the extents are being removed
4057 * from the end of the list (ie. truncate) then we just need to re-
4058 * allocate the list to remove the extra space. Otherwise, if the
4059 * extents are being removed from the middle of the existing extent
4060 * entries, then we first need to move the extent records beginning
4061 * at idx + ext_diff up in the list to overwrite the records being
4062 * removed, then remove the extra space via kmem_realloc.
4064 void
4065 xfs_iext_remove_direct(
4066 xfs_ifork_t *ifp, /* inode fork pointer */
4067 xfs_extnum_t idx, /* index to begin removing exts */
4068 int ext_diff) /* number of extents to remove */
4070 xfs_extnum_t nextents; /* number of extents in file */
4071 int new_size; /* size of extents after removal */
4073 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4074 new_size = ifp->if_bytes -
4075 (ext_diff * sizeof(xfs_bmbt_rec_t));
4076 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4078 if (new_size == 0) {
4079 xfs_iext_destroy(ifp);
4080 return;
4082 /* Move extents up in the list (if needed) */
4083 if (idx + ext_diff < nextents) {
4084 memmove(&ifp->if_u1.if_extents[idx],
4085 &ifp->if_u1.if_extents[idx + ext_diff],
4086 (nextents - (idx + ext_diff)) *
4087 sizeof(xfs_bmbt_rec_t));
4089 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4090 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4092 * Reallocate the direct extent list. If the extents
4093 * will fit inside the inode then xfs_iext_realloc_direct
4094 * will switch from direct to inline extent allocation
4095 * mode for us.
4097 xfs_iext_realloc_direct(ifp, new_size);
4098 ifp->if_bytes = new_size;
4102 * This is called when incore extents are being removed from the
4103 * indirection array and the extents being removed span multiple extent
4104 * buffers. The idx parameter contains the file extent index where we
4105 * want to begin removing extents, and the count parameter contains
4106 * how many extents need to be removed.
4108 * |-------| |-------|
4109 * | nex1 | | | nex1 - number of extents before idx
4110 * |-------| | count |
4111 * | | | | count - number of extents being removed at idx
4112 * | count | |-------|
4113 * | | | nex2 | nex2 - number of extents after idx + count
4114 * |-------| |-------|
4116 void
4117 xfs_iext_remove_indirect(
4118 xfs_ifork_t *ifp, /* inode fork pointer */
4119 xfs_extnum_t idx, /* index to begin removing extents */
4120 int count) /* number of extents to remove */
4122 xfs_ext_irec_t *erp; /* indirection array pointer */
4123 int erp_idx = 0; /* indirection array index */
4124 xfs_extnum_t ext_cnt; /* extents left to remove */
4125 xfs_extnum_t ext_diff; /* extents to remove in current list */
4126 xfs_extnum_t nex1; /* number of extents before idx */
4127 xfs_extnum_t nex2; /* extents after idx + count */
4128 int nlists; /* entries in indirection array */
4129 int page_idx = idx; /* index in target extent list */
4131 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4132 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4133 ASSERT(erp != NULL);
4134 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4135 nex1 = page_idx;
4136 ext_cnt = count;
4137 while (ext_cnt) {
4138 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4139 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4141 * Check for deletion of entire list;
4142 * xfs_iext_irec_remove() updates extent offsets.
4144 if (ext_diff == erp->er_extcount) {
4145 xfs_iext_irec_remove(ifp, erp_idx);
4146 ext_cnt -= ext_diff;
4147 nex1 = 0;
4148 if (ext_cnt) {
4149 ASSERT(erp_idx < ifp->if_real_bytes /
4150 XFS_IEXT_BUFSZ);
4151 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4152 nex1 = 0;
4153 continue;
4154 } else {
4155 break;
4158 /* Move extents up (if needed) */
4159 if (nex2) {
4160 memmove(&erp->er_extbuf[nex1],
4161 &erp->er_extbuf[nex1 + ext_diff],
4162 nex2 * sizeof(xfs_bmbt_rec_t));
4164 /* Zero out rest of page */
4165 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4166 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4167 /* Update remaining counters */
4168 erp->er_extcount -= ext_diff;
4169 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4170 ext_cnt -= ext_diff;
4171 nex1 = 0;
4172 erp_idx++;
4173 erp++;
4175 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4176 xfs_iext_irec_compact(ifp);
4180 * Create, destroy, or resize a linear (direct) block of extents.
4182 void
4183 xfs_iext_realloc_direct(
4184 xfs_ifork_t *ifp, /* inode fork pointer */
4185 int new_size) /* new size of extents */
4187 int rnew_size; /* real new size of extents */
4189 rnew_size = new_size;
4191 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4192 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4193 (new_size != ifp->if_real_bytes)));
4195 /* Free extent records */
4196 if (new_size == 0) {
4197 xfs_iext_destroy(ifp);
4199 /* Resize direct extent list and zero any new bytes */
4200 else if (ifp->if_real_bytes) {
4201 /* Check if extents will fit inside the inode */
4202 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4203 xfs_iext_direct_to_inline(ifp, new_size /
4204 (uint)sizeof(xfs_bmbt_rec_t));
4205 ifp->if_bytes = new_size;
4206 return;
4208 if (!is_power_of_2(new_size)){
4209 rnew_size = xfs_iroundup(new_size);
4211 if (rnew_size != ifp->if_real_bytes) {
4212 ifp->if_u1.if_extents =
4213 kmem_realloc(ifp->if_u1.if_extents,
4214 rnew_size,
4215 ifp->if_real_bytes,
4216 KM_SLEEP);
4218 if (rnew_size > ifp->if_real_bytes) {
4219 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4220 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4221 rnew_size - ifp->if_real_bytes);
4225 * Switch from the inline extent buffer to a direct
4226 * extent list. Be sure to include the inline extent
4227 * bytes in new_size.
4229 else {
4230 new_size += ifp->if_bytes;
4231 if (!is_power_of_2(new_size)) {
4232 rnew_size = xfs_iroundup(new_size);
4234 xfs_iext_inline_to_direct(ifp, rnew_size);
4236 ifp->if_real_bytes = rnew_size;
4237 ifp->if_bytes = new_size;
4241 * Switch from linear (direct) extent records to inline buffer.
4243 void
4244 xfs_iext_direct_to_inline(
4245 xfs_ifork_t *ifp, /* inode fork pointer */
4246 xfs_extnum_t nextents) /* number of extents in file */
4248 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4249 ASSERT(nextents <= XFS_INLINE_EXTS);
4251 * The inline buffer was zeroed when we switched
4252 * from inline to direct extent allocation mode,
4253 * so we don't need to clear it here.
4255 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4256 nextents * sizeof(xfs_bmbt_rec_t));
4257 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4258 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4259 ifp->if_real_bytes = 0;
4263 * Switch from inline buffer to linear (direct) extent records.
4264 * new_size should already be rounded up to the next power of 2
4265 * by the caller (when appropriate), so use new_size as it is.
4266 * However, since new_size may be rounded up, we can't update
4267 * if_bytes here. It is the caller's responsibility to update
4268 * if_bytes upon return.
4270 void
4271 xfs_iext_inline_to_direct(
4272 xfs_ifork_t *ifp, /* inode fork pointer */
4273 int new_size) /* number of extents in file */
4275 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
4276 memset(ifp->if_u1.if_extents, 0, new_size);
4277 if (ifp->if_bytes) {
4278 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4279 ifp->if_bytes);
4280 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4281 sizeof(xfs_bmbt_rec_t));
4283 ifp->if_real_bytes = new_size;
4287 * Resize an extent indirection array to new_size bytes.
4289 void
4290 xfs_iext_realloc_indirect(
4291 xfs_ifork_t *ifp, /* inode fork pointer */
4292 int new_size) /* new indirection array size */
4294 int nlists; /* number of irec's (ex lists) */
4295 int size; /* current indirection array size */
4297 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4298 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4299 size = nlists * sizeof(xfs_ext_irec_t);
4300 ASSERT(ifp->if_real_bytes);
4301 ASSERT((new_size >= 0) && (new_size != size));
4302 if (new_size == 0) {
4303 xfs_iext_destroy(ifp);
4304 } else {
4305 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4306 kmem_realloc(ifp->if_u1.if_ext_irec,
4307 new_size, size, KM_SLEEP);
4312 * Switch from indirection array to linear (direct) extent allocations.
4314 void
4315 xfs_iext_indirect_to_direct(
4316 xfs_ifork_t *ifp) /* inode fork pointer */
4318 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
4319 xfs_extnum_t nextents; /* number of extents in file */
4320 int size; /* size of file extents */
4322 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4323 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4324 ASSERT(nextents <= XFS_LINEAR_EXTS);
4325 size = nextents * sizeof(xfs_bmbt_rec_t);
4327 xfs_iext_irec_compact_full(ifp);
4328 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4330 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4331 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4332 ifp->if_flags &= ~XFS_IFEXTIREC;
4333 ifp->if_u1.if_extents = ep;
4334 ifp->if_bytes = size;
4335 if (nextents < XFS_LINEAR_EXTS) {
4336 xfs_iext_realloc_direct(ifp, size);
4341 * Free incore file extents.
4343 void
4344 xfs_iext_destroy(
4345 xfs_ifork_t *ifp) /* inode fork pointer */
4347 if (ifp->if_flags & XFS_IFEXTIREC) {
4348 int erp_idx;
4349 int nlists;
4351 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4352 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4353 xfs_iext_irec_remove(ifp, erp_idx);
4355 ifp->if_flags &= ~XFS_IFEXTIREC;
4356 } else if (ifp->if_real_bytes) {
4357 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4358 } else if (ifp->if_bytes) {
4359 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4360 sizeof(xfs_bmbt_rec_t));
4362 ifp->if_u1.if_extents = NULL;
4363 ifp->if_real_bytes = 0;
4364 ifp->if_bytes = 0;
4368 * Return a pointer to the extent record for file system block bno.
4370 xfs_bmbt_rec_host_t * /* pointer to found extent record */
4371 xfs_iext_bno_to_ext(
4372 xfs_ifork_t *ifp, /* inode fork pointer */
4373 xfs_fileoff_t bno, /* block number to search for */
4374 xfs_extnum_t *idxp) /* index of target extent */
4376 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
4377 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4378 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
4379 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4380 int high; /* upper boundary in search */
4381 xfs_extnum_t idx = 0; /* index of target extent */
4382 int low; /* lower boundary in search */
4383 xfs_extnum_t nextents; /* number of file extents */
4384 xfs_fileoff_t startoff = 0; /* start offset of extent */
4386 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4387 if (nextents == 0) {
4388 *idxp = 0;
4389 return NULL;
4391 low = 0;
4392 if (ifp->if_flags & XFS_IFEXTIREC) {
4393 /* Find target extent list */
4394 int erp_idx = 0;
4395 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4396 base = erp->er_extbuf;
4397 high = erp->er_extcount - 1;
4398 } else {
4399 base = ifp->if_u1.if_extents;
4400 high = nextents - 1;
4402 /* Binary search extent records */
4403 while (low <= high) {
4404 idx = (low + high) >> 1;
4405 ep = base + idx;
4406 startoff = xfs_bmbt_get_startoff(ep);
4407 blockcount = xfs_bmbt_get_blockcount(ep);
4408 if (bno < startoff) {
4409 high = idx - 1;
4410 } else if (bno >= startoff + blockcount) {
4411 low = idx + 1;
4412 } else {
4413 /* Convert back to file-based extent index */
4414 if (ifp->if_flags & XFS_IFEXTIREC) {
4415 idx += erp->er_extoff;
4417 *idxp = idx;
4418 return ep;
4421 /* Convert back to file-based extent index */
4422 if (ifp->if_flags & XFS_IFEXTIREC) {
4423 idx += erp->er_extoff;
4425 if (bno >= startoff + blockcount) {
4426 if (++idx == nextents) {
4427 ep = NULL;
4428 } else {
4429 ep = xfs_iext_get_ext(ifp, idx);
4432 *idxp = idx;
4433 return ep;
4437 * Return a pointer to the indirection array entry containing the
4438 * extent record for filesystem block bno. Store the index of the
4439 * target irec in *erp_idxp.
4441 xfs_ext_irec_t * /* pointer to found extent record */
4442 xfs_iext_bno_to_irec(
4443 xfs_ifork_t *ifp, /* inode fork pointer */
4444 xfs_fileoff_t bno, /* block number to search for */
4445 int *erp_idxp) /* irec index of target ext list */
4447 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4448 xfs_ext_irec_t *erp_next; /* next indirection array entry */
4449 int erp_idx; /* indirection array index */
4450 int nlists; /* number of extent irec's (lists) */
4451 int high; /* binary search upper limit */
4452 int low; /* binary search lower limit */
4454 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4455 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4456 erp_idx = 0;
4457 low = 0;
4458 high = nlists - 1;
4459 while (low <= high) {
4460 erp_idx = (low + high) >> 1;
4461 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4462 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4463 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4464 high = erp_idx - 1;
4465 } else if (erp_next && bno >=
4466 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4467 low = erp_idx + 1;
4468 } else {
4469 break;
4472 *erp_idxp = erp_idx;
4473 return erp;
4477 * Return a pointer to the indirection array entry containing the
4478 * extent record at file extent index *idxp. Store the index of the
4479 * target irec in *erp_idxp and store the page index of the target
4480 * extent record in *idxp.
4482 xfs_ext_irec_t *
4483 xfs_iext_idx_to_irec(
4484 xfs_ifork_t *ifp, /* inode fork pointer */
4485 xfs_extnum_t *idxp, /* extent index (file -> page) */
4486 int *erp_idxp, /* pointer to target irec */
4487 int realloc) /* new bytes were just added */
4489 xfs_ext_irec_t *prev; /* pointer to previous irec */
4490 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4491 int erp_idx; /* indirection array index */
4492 int nlists; /* number of irec's (ex lists) */
4493 int high; /* binary search upper limit */
4494 int low; /* binary search lower limit */
4495 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4497 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4498 ASSERT(page_idx >= 0 && page_idx <=
4499 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4500 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4501 erp_idx = 0;
4502 low = 0;
4503 high = nlists - 1;
4505 /* Binary search extent irec's */
4506 while (low <= high) {
4507 erp_idx = (low + high) >> 1;
4508 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4509 prev = erp_idx > 0 ? erp - 1 : NULL;
4510 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4511 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4512 high = erp_idx - 1;
4513 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4514 (page_idx == erp->er_extoff + erp->er_extcount &&
4515 !realloc)) {
4516 low = erp_idx + 1;
4517 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4518 erp->er_extcount == XFS_LINEAR_EXTS) {
4519 ASSERT(realloc);
4520 page_idx = 0;
4521 erp_idx++;
4522 erp = erp_idx < nlists ? erp + 1 : NULL;
4523 break;
4524 } else {
4525 page_idx -= erp->er_extoff;
4526 break;
4529 *idxp = page_idx;
4530 *erp_idxp = erp_idx;
4531 return(erp);
4535 * Allocate and initialize an indirection array once the space needed
4536 * for incore extents increases above XFS_IEXT_BUFSZ.
4538 void
4539 xfs_iext_irec_init(
4540 xfs_ifork_t *ifp) /* inode fork pointer */
4542 xfs_ext_irec_t *erp; /* indirection array pointer */
4543 xfs_extnum_t nextents; /* number of extents in file */
4545 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4546 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4547 ASSERT(nextents <= XFS_LINEAR_EXTS);
4549 erp = (xfs_ext_irec_t *)
4550 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4552 if (nextents == 0) {
4553 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4554 } else if (!ifp->if_real_bytes) {
4555 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4556 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4557 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4559 erp->er_extbuf = ifp->if_u1.if_extents;
4560 erp->er_extcount = nextents;
4561 erp->er_extoff = 0;
4563 ifp->if_flags |= XFS_IFEXTIREC;
4564 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4565 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4566 ifp->if_u1.if_ext_irec = erp;
4568 return;
4572 * Allocate and initialize a new entry in the indirection array.
4574 xfs_ext_irec_t *
4575 xfs_iext_irec_new(
4576 xfs_ifork_t *ifp, /* inode fork pointer */
4577 int erp_idx) /* index for new irec */
4579 xfs_ext_irec_t *erp; /* indirection array pointer */
4580 int i; /* loop counter */
4581 int nlists; /* number of irec's (ex lists) */
4583 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4584 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4586 /* Resize indirection array */
4587 xfs_iext_realloc_indirect(ifp, ++nlists *
4588 sizeof(xfs_ext_irec_t));
4590 * Move records down in the array so the
4591 * new page can use erp_idx.
4593 erp = ifp->if_u1.if_ext_irec;
4594 for (i = nlists - 1; i > erp_idx; i--) {
4595 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4597 ASSERT(i == erp_idx);
4599 /* Initialize new extent record */
4600 erp = ifp->if_u1.if_ext_irec;
4601 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4602 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4603 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4604 erp[erp_idx].er_extcount = 0;
4605 erp[erp_idx].er_extoff = erp_idx > 0 ?
4606 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4607 return (&erp[erp_idx]);
4611 * Remove a record from the indirection array.
4613 void
4614 xfs_iext_irec_remove(
4615 xfs_ifork_t *ifp, /* inode fork pointer */
4616 int erp_idx) /* irec index to remove */
4618 xfs_ext_irec_t *erp; /* indirection array pointer */
4619 int i; /* loop counter */
4620 int nlists; /* number of irec's (ex lists) */
4622 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4623 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4624 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4625 if (erp->er_extbuf) {
4626 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4627 -erp->er_extcount);
4628 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4630 /* Compact extent records */
4631 erp = ifp->if_u1.if_ext_irec;
4632 for (i = erp_idx; i < nlists - 1; i++) {
4633 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4636 * Manually free the last extent record from the indirection
4637 * array. A call to xfs_iext_realloc_indirect() with a size
4638 * of zero would result in a call to xfs_iext_destroy() which
4639 * would in turn call this function again, creating a nasty
4640 * infinite loop.
4642 if (--nlists) {
4643 xfs_iext_realloc_indirect(ifp,
4644 nlists * sizeof(xfs_ext_irec_t));
4645 } else {
4646 kmem_free(ifp->if_u1.if_ext_irec,
4647 sizeof(xfs_ext_irec_t));
4649 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4653 * This is called to clean up large amounts of unused memory allocated
4654 * by the indirection array. Before compacting anything though, verify
4655 * that the indirection array is still needed and switch back to the
4656 * linear extent list (or even the inline buffer) if possible. The
4657 * compaction policy is as follows:
4659 * Full Compaction: Extents fit into a single page (or inline buffer)
4660 * Full Compaction: Extents occupy less than 10% of allocated space
4661 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4662 * No Compaction: Extents occupy at least 50% of allocated space
4664 void
4665 xfs_iext_irec_compact(
4666 xfs_ifork_t *ifp) /* inode fork pointer */
4668 xfs_extnum_t nextents; /* number of extents in file */
4669 int nlists; /* number of irec's (ex lists) */
4671 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4672 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4673 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4675 if (nextents == 0) {
4676 xfs_iext_destroy(ifp);
4677 } else if (nextents <= XFS_INLINE_EXTS) {
4678 xfs_iext_indirect_to_direct(ifp);
4679 xfs_iext_direct_to_inline(ifp, nextents);
4680 } else if (nextents <= XFS_LINEAR_EXTS) {
4681 xfs_iext_indirect_to_direct(ifp);
4682 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4683 xfs_iext_irec_compact_full(ifp);
4684 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4685 xfs_iext_irec_compact_pages(ifp);
4690 * Combine extents from neighboring extent pages.
4692 void
4693 xfs_iext_irec_compact_pages(
4694 xfs_ifork_t *ifp) /* inode fork pointer */
4696 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4697 int erp_idx = 0; /* indirection array index */
4698 int nlists; /* number of irec's (ex lists) */
4700 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4701 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4702 while (erp_idx < nlists - 1) {
4703 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4704 erp_next = erp + 1;
4705 if (erp_next->er_extcount <=
4706 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4707 memmove(&erp->er_extbuf[erp->er_extcount],
4708 erp_next->er_extbuf, erp_next->er_extcount *
4709 sizeof(xfs_bmbt_rec_t));
4710 erp->er_extcount += erp_next->er_extcount;
4712 * Free page before removing extent record
4713 * so er_extoffs don't get modified in
4714 * xfs_iext_irec_remove.
4716 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4717 erp_next->er_extbuf = NULL;
4718 xfs_iext_irec_remove(ifp, erp_idx + 1);
4719 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4720 } else {
4721 erp_idx++;
4727 * Fully compact the extent records managed by the indirection array.
4729 void
4730 xfs_iext_irec_compact_full(
4731 xfs_ifork_t *ifp) /* inode fork pointer */
4733 xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
4734 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4735 int erp_idx = 0; /* extent irec index */
4736 int ext_avail; /* empty entries in ex list */
4737 int ext_diff; /* number of exts to add */
4738 int nlists; /* number of irec's (ex lists) */
4740 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4741 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4742 erp = ifp->if_u1.if_ext_irec;
4743 ep = &erp->er_extbuf[erp->er_extcount];
4744 erp_next = erp + 1;
4745 ep_next = erp_next->er_extbuf;
4746 while (erp_idx < nlists - 1) {
4747 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4748 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4749 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4750 erp->er_extcount += ext_diff;
4751 erp_next->er_extcount -= ext_diff;
4752 /* Remove next page */
4753 if (erp_next->er_extcount == 0) {
4755 * Free page before removing extent record
4756 * so er_extoffs don't get modified in
4757 * xfs_iext_irec_remove.
4759 kmem_free(erp_next->er_extbuf,
4760 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4761 erp_next->er_extbuf = NULL;
4762 xfs_iext_irec_remove(ifp, erp_idx + 1);
4763 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4764 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4765 /* Update next page */
4766 } else {
4767 /* Move rest of page up to become next new page */
4768 memmove(erp_next->er_extbuf, ep_next,
4769 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4770 ep_next = erp_next->er_extbuf;
4771 memset(&ep_next[erp_next->er_extcount], 0,
4772 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4773 sizeof(xfs_bmbt_rec_t));
4775 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4776 erp_idx++;
4777 if (erp_idx < nlists)
4778 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4779 else
4780 break;
4782 ep = &erp->er_extbuf[erp->er_extcount];
4783 erp_next = erp + 1;
4784 ep_next = erp_next->er_extbuf;
4789 * This is called to update the er_extoff field in the indirection
4790 * array when extents have been added or removed from one of the
4791 * extent lists. erp_idx contains the irec index to begin updating
4792 * at and ext_diff contains the number of extents that were added
4793 * or removed.
4795 void
4796 xfs_iext_irec_update_extoffs(
4797 xfs_ifork_t *ifp, /* inode fork pointer */
4798 int erp_idx, /* irec index to update */
4799 int ext_diff) /* number of new extents */
4801 int i; /* loop counter */
4802 int nlists; /* number of irec's (ex lists */
4804 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4805 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4806 for (i = erp_idx; i < nlists; i++) {
4807 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;