2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_utils.h"
43 * Look up an inode by number in the given file system.
44 * The inode is looked up in the cache held in each AG.
45 * If the inode is found in the cache, attach it to the provided
48 * If it is not in core, read it in from the file system's device,
49 * add it to the cache and attach the provided vnode.
51 * The inode is locked according to the value of the lock_flags parameter.
52 * This flag parameter indicates how and if the inode's IO lock and inode lock
55 * mp -- the mount point structure for the current file system. It points
56 * to the inode hash table.
57 * tp -- a pointer to the current transaction if there is one. This is
58 * simply passed through to the xfs_iread() call.
59 * ino -- the number of the inode desired. This is the unique identifier
60 * within the file system for the inode being requested.
61 * lock_flags -- flags indicating how to lock the inode. See the comment
62 * for xfs_ilock() for a list of valid values.
63 * bno -- the block number starting the buffer containing the inode,
64 * if known (as by bulkstat), else 0.
79 bhv_vnode_t
*inode_vp
;
81 xfs_icluster_t
*icl
, *new_icl
= NULL
;
82 unsigned long first_index
, mask
;
86 /* the radix tree exists only in inode capable AGs */
87 if (XFS_INO_TO_AGNO(mp
, ino
) >= mp
->m_maxagi
)
90 /* get the perag structure and ensure that it's inode capable */
91 pag
= xfs_get_perag(mp
, ino
);
92 if (!pag
->pagi_inodeok
)
94 ASSERT(pag
->pag_ici_init
);
95 agino
= XFS_INO_TO_AGINO(mp
, ino
);
98 read_lock(&pag
->pag_ici_lock
);
99 ip
= radix_tree_lookup(&pag
->pag_ici_root
, agino
);
103 * If INEW is set this inode is being set up
104 * we need to pause and try again.
106 if (xfs_iflags_test(ip
, XFS_INEW
)) {
107 read_unlock(&pag
->pag_ici_lock
);
109 XFS_STATS_INC(xs_ig_frecycle
);
114 inode_vp
= XFS_ITOV_NULL(ip
);
115 if (inode_vp
== NULL
) {
117 * If IRECLAIM is set this inode is
118 * on its way out of the system,
119 * we need to pause and try again.
121 if (xfs_iflags_test(ip
, XFS_IRECLAIM
)) {
122 read_unlock(&pag
->pag_ici_lock
);
124 XFS_STATS_INC(xs_ig_frecycle
);
128 ASSERT(xfs_iflags_test(ip
, XFS_IRECLAIMABLE
));
131 * If lookup is racing with unlink, then we
132 * should return an error immediately so we
133 * don't remove it from the reclaim list and
134 * potentially leak the inode.
136 if ((ip
->i_d
.di_mode
== 0) &&
137 !(flags
& XFS_IGET_CREATE
)) {
138 read_unlock(&pag
->pag_ici_lock
);
139 xfs_put_perag(mp
, pag
);
144 * There may be transactions sitting in the
145 * incore log buffers or being flushed to disk
146 * at this time. We can't clear the
147 * XFS_IRECLAIMABLE flag until these
148 * transactions have hit the disk, otherwise we
149 * will void the guarantee the flag provides
152 if (xfs_ipincount(ip
)) {
153 read_unlock(&pag
->pag_ici_lock
);
155 XFS_LOG_FORCE
|XFS_LOG_SYNC
);
156 XFS_STATS_INC(xs_ig_frecycle
);
160 vn_trace_exit(ip
, "xfs_iget.alloc",
161 (inst_t
*)__return_address
);
163 XFS_STATS_INC(xs_ig_found
);
165 xfs_iflags_clear(ip
, XFS_IRECLAIMABLE
);
166 read_unlock(&pag
->pag_ici_lock
);
169 list_del_init(&ip
->i_reclaim
);
170 XFS_MOUNT_IUNLOCK(mp
);
174 } else if (vp
!= inode_vp
) {
175 struct inode
*inode
= vn_to_inode(inode_vp
);
177 /* The inode is being torn down, pause and
180 if (inode
->i_state
& (I_FREEING
| I_CLEAR
)) {
181 read_unlock(&pag
->pag_ici_lock
);
183 XFS_STATS_INC(xs_ig_frecycle
);
187 /* Chances are the other vnode (the one in the inode) is being torn
188 * down right now, and we landed on top of it. Question is, what do
189 * we do? Unhook the old inode and hook up the new one?
192 "xfs_iget_core: ambiguous vns: vp/0x%p, invp/0x%p",
199 read_unlock(&pag
->pag_ici_lock
);
200 XFS_STATS_INC(xs_ig_found
);
203 if (ip
->i_d
.di_mode
== 0) {
204 if (!(flags
& XFS_IGET_CREATE
)) {
205 xfs_put_perag(mp
, pag
);
208 xfs_iocore_inode_reinit(ip
);
212 xfs_ilock(ip
, lock_flags
);
214 xfs_iflags_clear(ip
, XFS_ISTALE
);
215 vn_trace_exit(ip
, "xfs_iget.found",
216 (inst_t
*)__return_address
);
223 read_unlock(&pag
->pag_ici_lock
);
224 XFS_STATS_INC(xs_ig_missed
);
227 * Read the disk inode attributes into a new inode structure and get
228 * a new vnode for it. This should also initialize i_ino and i_mount.
230 error
= xfs_iread(mp
, tp
, ino
, &ip
, bno
,
231 (flags
& XFS_IGET_BULKSTAT
) ? XFS_IMAP_BULKSTAT
: 0);
233 xfs_put_perag(mp
, pag
);
237 vn_trace_exit(ip
, "xfs_iget.alloc", (inst_t
*)__return_address
);
239 xfs_inode_lock_init(ip
, vp
);
240 xfs_iocore_inode_init(ip
);
242 xfs_ilock(ip
, lock_flags
);
244 if ((ip
->i_d
.di_mode
== 0) && !(flags
& XFS_IGET_CREATE
)) {
246 xfs_put_perag(mp
, pag
);
251 * This is a bit messy - we preallocate everything we _might_
252 * need before we pick up the ici lock. That way we don't have to
253 * juggle locks and go all the way back to the start.
255 new_icl
= kmem_zone_alloc(xfs_icluster_zone
, KM_SLEEP
);
256 if (radix_tree_preload(GFP_KERNEL
)) {
260 mask
= ~(((XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
)) - 1);
261 first_index
= agino
& mask
;
262 write_lock(&pag
->pag_ici_lock
);
265 * Find the cluster if it exists
268 if (radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)&iq
,
270 if ((XFS_INO_TO_AGINO(mp
, iq
->i_ino
) & mask
) == first_index
)
275 * insert the new inode
277 error
= radix_tree_insert(&pag
->pag_ici_root
, agino
, ip
);
278 if (unlikely(error
)) {
279 BUG_ON(error
!= -EEXIST
);
280 write_unlock(&pag
->pag_ici_lock
);
281 radix_tree_preload_end();
283 XFS_STATS_INC(xs_ig_dup
);
288 * These values _must_ be set before releasing ihlock!
290 ip
->i_udquot
= ip
->i_gdquot
= NULL
;
291 xfs_iflags_set(ip
, XFS_INEW
);
293 ASSERT(ip
->i_cluster
== NULL
);
296 spin_lock_init(&new_icl
->icl_lock
);
297 INIT_HLIST_HEAD(&new_icl
->icl_inodes
);
301 ASSERT(!hlist_empty(&icl
->icl_inodes
));
303 spin_lock(&icl
->icl_lock
);
304 hlist_add_head(&ip
->i_cnode
, &icl
->icl_inodes
);
306 spin_unlock(&icl
->icl_lock
);
308 write_unlock(&pag
->pag_ici_lock
);
309 radix_tree_preload_end();
311 kmem_zone_free(xfs_icluster_zone
, new_icl
);
314 * Link ip to its mount and thread it on the mount's inode list.
317 if ((iq
= mp
->m_inodes
)) {
318 ASSERT(iq
->i_mprev
->i_mnext
== iq
);
319 ip
->i_mprev
= iq
->i_mprev
;
320 iq
->i_mprev
->i_mnext
= ip
;
329 XFS_MOUNT_IUNLOCK(mp
);
330 xfs_put_perag(mp
, pag
);
333 ASSERT(ip
->i_df
.if_ext_max
==
334 XFS_IFORK_DSIZE(ip
) / sizeof(xfs_bmbt_rec_t
));
336 ASSERT(((ip
->i_d
.di_flags
& XFS_DIFLAG_REALTIME
) != 0) ==
337 ((ip
->i_iocore
.io_flags
& XFS_IOCORE_RT
) != 0));
339 xfs_iflags_set(ip
, XFS_IMODIFIED
);
343 * If we have a real type for an on-disk inode, we can set ops(&unlock)
344 * now. If it's a new inode being created, xfs_ialloc will handle it.
346 xfs_initialize_vnode(mp
, vp
, ip
);
352 * The 'normal' internal xfs_iget, if needed it will
353 * 'allocate', or 'get', the vnode.
366 bhv_vnode_t
*vp
= NULL
;
369 XFS_STATS_INC(xs_ig_attempts
);
372 inode
= iget_locked(mp
->m_super
, ino
);
376 vp
= vn_from_inode(inode
);
377 if (inode
->i_state
& I_NEW
) {
378 vn_initialize(inode
);
379 error
= xfs_iget_core(vp
, mp
, tp
, ino
, flags
,
380 lock_flags
, ipp
, bno
);
383 if (inode
->i_state
& I_NEW
)
384 unlock_new_inode(inode
);
389 * If the inode is not fully constructed due to
390 * filehandle mismatches wait for the inode to go
391 * away and try again.
393 * iget_locked will call __wait_on_freeing_inode
394 * to wait for the inode to go away.
396 if (is_bad_inode(inode
) ||
397 ((ip
= xfs_vtoi(vp
)) == NULL
)) {
404 xfs_ilock(ip
, lock_flags
);
405 XFS_STATS_INC(xs_ig_found
);
410 error
= ENOMEM
; /* If we got no inode we are out of memory */
416 * Do the setup for the various locks within the incore inode.
423 mrlock_init(&ip
->i_lock
, MRLOCK_ALLOW_EQUAL_PRI
|MRLOCK_BARRIER
,
424 "xfsino", ip
->i_ino
);
425 mrlock_init(&ip
->i_iolock
, MRLOCK_BARRIER
, "xfsio", ip
->i_ino
);
426 init_waitqueue_head(&ip
->i_ipin_wait
);
427 atomic_set(&ip
->i_pincount
, 0);
428 initnsema(&ip
->i_flock
, 1, "xfsfino");
432 * Look for the inode corresponding to the given ino in the hash table.
433 * If it is there and its i_transp pointer matches tp, return it.
434 * Otherwise, return NULL.
437 xfs_inode_incore(xfs_mount_t
*mp
,
444 pag
= xfs_get_perag(mp
, ino
);
445 read_lock(&pag
->pag_ici_lock
);
446 ip
= radix_tree_lookup(&pag
->pag_ici_root
, XFS_INO_TO_AGINO(mp
, ino
));
447 read_unlock(&pag
->pag_ici_lock
);
448 xfs_put_perag(mp
, pag
);
450 /* the returned inode must match the transaction */
451 if (ip
&& (ip
->i_transp
!= tp
))
457 * Decrement reference count of an inode structure and unlock it.
459 * ip -- the inode being released
460 * lock_flags -- this parameter indicates the inode's locks to be
461 * to be released. See the comment on xfs_iunlock() for a list
465 xfs_iput(xfs_inode_t
*ip
,
468 bhv_vnode_t
*vp
= XFS_ITOV(ip
);
470 vn_trace_entry(ip
, "xfs_iput", (inst_t
*)__return_address
);
471 xfs_iunlock(ip
, lock_flags
);
476 * Special iput for brand-new inodes that are still locked
479 xfs_iput_new(xfs_inode_t
*ip
,
482 bhv_vnode_t
*vp
= XFS_ITOV(ip
);
483 struct inode
*inode
= vn_to_inode(vp
);
485 vn_trace_entry(ip
, "xfs_iput_new", (inst_t
*)__return_address
);
487 if ((ip
->i_d
.di_mode
== 0)) {
488 ASSERT(!xfs_iflags_test(ip
, XFS_IRECLAIMABLE
));
491 if (inode
->i_state
& I_NEW
)
492 unlock_new_inode(inode
);
494 xfs_iunlock(ip
, lock_flags
);
500 * This routine embodies the part of the reclaim code that pulls
501 * the inode from the inode hash table and the mount structure's
503 * This should only be called from xfs_reclaim().
506 xfs_ireclaim(xfs_inode_t
*ip
)
511 * Remove from old hash list and mount list.
513 XFS_STATS_INC(xs_ig_reclaims
);
518 * Here we do a spurious inode lock in order to coordinate with
519 * xfs_sync(). This is because xfs_sync() references the inodes
520 * in the mount list without taking references on the corresponding
521 * vnodes. We make that OK here by ensuring that we wait until
522 * the inode is unlocked in xfs_sync() before we go ahead and
523 * free it. We get both the regular lock and the io lock because
524 * the xfs_sync() code may need to drop the regular one but will
525 * still hold the io lock.
527 xfs_ilock(ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
530 * Release dquots (and their references) if any. An inode may escape
531 * xfs_inactive and get here via vn_alloc->vn_reclaim path.
533 XFS_QM_DQDETACH(ip
->i_mount
, ip
);
536 * Pull our behavior descriptor from the vnode chain.
538 vp
= XFS_ITOV_NULL(ip
);
540 vn_to_inode(vp
)->i_private
= NULL
;
545 * Free all memory associated with the inode.
547 xfs_iunlock(ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
552 * This routine removes an about-to-be-destroyed inode from
553 * all of the lists in which it is located with the exception
554 * of the behavior chain.
560 xfs_mount_t
*mp
= ip
->i_mount
;
561 xfs_perag_t
*pag
= xfs_get_perag(mp
, ip
->i_ino
);
564 write_lock(&pag
->pag_ici_lock
);
565 radix_tree_delete(&pag
->pag_ici_root
, XFS_INO_TO_AGINO(mp
, ip
->i_ino
));
566 write_unlock(&pag
->pag_ici_lock
);
567 xfs_put_perag(mp
, pag
);
570 * Remove from cluster list
573 spin_lock(&ip
->i_cluster
->icl_lock
);
574 hlist_del(&ip
->i_cnode
);
575 spin_unlock(&ip
->i_cluster
->icl_lock
);
577 /* was last inode in cluster? */
578 if (hlist_empty(&ip
->i_cluster
->icl_inodes
))
579 kmem_zone_free(xfs_icluster_zone
, ip
->i_cluster
);
582 * Remove from mount's inode list.
585 ASSERT((ip
->i_mnext
!= NULL
) && (ip
->i_mprev
!= NULL
));
587 iq
->i_mprev
= ip
->i_mprev
;
588 ip
->i_mprev
->i_mnext
= iq
;
591 * Fix up the head pointer if it points to the inode being deleted.
593 if (mp
->m_inodes
== ip
) {
601 /* Deal with the deleted inodes list */
602 list_del_init(&ip
->i_reclaim
);
605 XFS_MOUNT_IUNLOCK(mp
);
609 * This is a wrapper routine around the xfs_ilock() routine
610 * used to centralize some grungy code. It is used in places
611 * that wish to lock the inode solely for reading the extents.
612 * The reason these places can't just call xfs_ilock(SHARED)
613 * is that the inode lock also guards to bringing in of the
614 * extents from disk for a file in b-tree format. If the inode
615 * is in b-tree format, then we need to lock the inode exclusively
616 * until the extents are read in. Locking it exclusively all
617 * the time would limit our parallelism unnecessarily, though.
618 * What we do instead is check to see if the extents have been
619 * read in yet, and only lock the inode exclusively if they
622 * The function returns a value which should be given to the
623 * corresponding xfs_iunlock_map_shared(). This value is
624 * the mode in which the lock was actually taken.
627 xfs_ilock_map_shared(
632 if ((ip
->i_d
.di_format
== XFS_DINODE_FMT_BTREE
) &&
633 ((ip
->i_df
.if_flags
& XFS_IFEXTENTS
) == 0)) {
634 lock_mode
= XFS_ILOCK_EXCL
;
636 lock_mode
= XFS_ILOCK_SHARED
;
639 xfs_ilock(ip
, lock_mode
);
645 * This is simply the unlock routine to go with xfs_ilock_map_shared().
646 * All it does is call xfs_iunlock() with the given lock_mode.
649 xfs_iunlock_map_shared(
651 unsigned int lock_mode
)
653 xfs_iunlock(ip
, lock_mode
);
657 * The xfs inode contains 2 locks: a multi-reader lock called the
658 * i_iolock and a multi-reader lock called the i_lock. This routine
659 * allows either or both of the locks to be obtained.
661 * The 2 locks should always be ordered so that the IO lock is
662 * obtained first in order to prevent deadlock.
664 * ip -- the inode being locked
665 * lock_flags -- this parameter indicates the inode's locks
666 * to be locked. It can be:
671 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
672 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
673 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
674 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
677 xfs_ilock(xfs_inode_t
*ip
,
681 * You can't set both SHARED and EXCL for the same lock,
682 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
683 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
685 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
686 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
687 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
688 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
689 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_DEP_MASK
)) == 0);
691 if (lock_flags
& XFS_IOLOCK_EXCL
) {
692 mrupdate_nested(&ip
->i_iolock
, XFS_IOLOCK_DEP(lock_flags
));
693 } else if (lock_flags
& XFS_IOLOCK_SHARED
) {
694 mraccess_nested(&ip
->i_iolock
, XFS_IOLOCK_DEP(lock_flags
));
696 if (lock_flags
& XFS_ILOCK_EXCL
) {
697 mrupdate_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
698 } else if (lock_flags
& XFS_ILOCK_SHARED
) {
699 mraccess_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
701 xfs_ilock_trace(ip
, 1, lock_flags
, (inst_t
*)__return_address
);
705 * This is just like xfs_ilock(), except that the caller
706 * is guaranteed not to sleep. It returns 1 if it gets
707 * the requested locks and 0 otherwise. If the IO lock is
708 * obtained but the inode lock cannot be, then the IO lock
709 * is dropped before returning.
711 * ip -- the inode being locked
712 * lock_flags -- this parameter indicates the inode's locks to be
713 * to be locked. See the comment for xfs_ilock() for a list
718 xfs_ilock_nowait(xfs_inode_t
*ip
,
725 * You can't set both SHARED and EXCL for the same lock,
726 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
727 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
729 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
730 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
731 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
732 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
733 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_DEP_MASK
)) == 0);
736 if (lock_flags
& XFS_IOLOCK_EXCL
) {
737 iolocked
= mrtryupdate(&ip
->i_iolock
);
741 } else if (lock_flags
& XFS_IOLOCK_SHARED
) {
742 iolocked
= mrtryaccess(&ip
->i_iolock
);
747 if (lock_flags
& XFS_ILOCK_EXCL
) {
748 ilocked
= mrtryupdate(&ip
->i_lock
);
751 mrunlock(&ip
->i_iolock
);
755 } else if (lock_flags
& XFS_ILOCK_SHARED
) {
756 ilocked
= mrtryaccess(&ip
->i_lock
);
759 mrunlock(&ip
->i_iolock
);
764 xfs_ilock_trace(ip
, 2, lock_flags
, (inst_t
*)__return_address
);
769 * xfs_iunlock() is used to drop the inode locks acquired with
770 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
771 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
772 * that we know which locks to drop.
774 * ip -- the inode being unlocked
775 * lock_flags -- this parameter indicates the inode's locks to be
776 * to be unlocked. See the comment for xfs_ilock() for a list
777 * of valid values for this parameter.
781 xfs_iunlock(xfs_inode_t
*ip
,
785 * You can't set both SHARED and EXCL for the same lock,
786 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
787 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
789 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
790 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
791 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
792 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
793 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_IUNLOCK_NONOTIFY
|
794 XFS_LOCK_DEP_MASK
)) == 0);
795 ASSERT(lock_flags
!= 0);
797 if (lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) {
798 ASSERT(!(lock_flags
& XFS_IOLOCK_SHARED
) ||
799 (ismrlocked(&ip
->i_iolock
, MR_ACCESS
)));
800 ASSERT(!(lock_flags
& XFS_IOLOCK_EXCL
) ||
801 (ismrlocked(&ip
->i_iolock
, MR_UPDATE
)));
802 mrunlock(&ip
->i_iolock
);
805 if (lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) {
806 ASSERT(!(lock_flags
& XFS_ILOCK_SHARED
) ||
807 (ismrlocked(&ip
->i_lock
, MR_ACCESS
)));
808 ASSERT(!(lock_flags
& XFS_ILOCK_EXCL
) ||
809 (ismrlocked(&ip
->i_lock
, MR_UPDATE
)));
810 mrunlock(&ip
->i_lock
);
813 * Let the AIL know that this item has been unlocked in case
814 * it is in the AIL and anyone is waiting on it. Don't do
815 * this if the caller has asked us not to.
817 if (!(lock_flags
& XFS_IUNLOCK_NONOTIFY
) &&
818 ip
->i_itemp
!= NULL
) {
819 xfs_trans_unlocked_item(ip
->i_mount
,
820 (xfs_log_item_t
*)(ip
->i_itemp
));
823 xfs_ilock_trace(ip
, 3, lock_flags
, (inst_t
*)__return_address
);
827 * give up write locks. the i/o lock cannot be held nested
828 * if it is being demoted.
831 xfs_ilock_demote(xfs_inode_t
*ip
,
834 ASSERT(lock_flags
& (XFS_IOLOCK_EXCL
|XFS_ILOCK_EXCL
));
835 ASSERT((lock_flags
& ~(XFS_IOLOCK_EXCL
|XFS_ILOCK_EXCL
)) == 0);
837 if (lock_flags
& XFS_ILOCK_EXCL
) {
838 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
));
839 mrdemote(&ip
->i_lock
);
841 if (lock_flags
& XFS_IOLOCK_EXCL
) {
842 ASSERT(ismrlocked(&ip
->i_iolock
, MR_UPDATE
));
843 mrdemote(&ip
->i_iolock
);
848 * The following three routines simply manage the i_flock
849 * semaphore embedded in the inode. This semaphore synchronizes
850 * processes attempting to flush the in-core inode back to disk.
853 xfs_iflock(xfs_inode_t
*ip
)
855 psema(&(ip
->i_flock
), PINOD
|PLTWAIT
);
859 xfs_iflock_nowait(xfs_inode_t
*ip
)
861 return (cpsema(&(ip
->i_flock
)));
865 xfs_ifunlock(xfs_inode_t
*ip
)
867 ASSERT(issemalocked(&(ip
->i_flock
)));
868 vsema(&(ip
->i_flock
));