1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2010 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
17 #include <linux/kernel.h>
18 #include <linux/timer.h>
19 #include <linux/errno.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/interrupt.h>
24 #include <linux/pci.h>
25 #include <linux/init.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/bitops.h>
33 #include <linux/delay.h>
34 #include <asm/byteorder.h>
36 #include <linux/time.h>
37 #include <linux/ethtool.h>
38 #include <linux/mii.h>
39 #include <linux/if_vlan.h>
40 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
45 #include <net/checksum.h>
46 #include <linux/workqueue.h>
47 #include <linux/crc32.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/firmware.h>
51 #include <linux/log2.h>
53 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
60 #define DRV_MODULE_NAME "bnx2"
61 #define DRV_MODULE_VERSION "2.0.17"
62 #define DRV_MODULE_RELDATE "July 18, 2010"
63 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j6.fw"
64 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
65 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j15.fw"
66 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j10.fw"
67 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j10.fw"
69 #define RUN_AT(x) (jiffies + (x))
71 /* Time in jiffies before concluding the transmitter is hung. */
72 #define TX_TIMEOUT (5*HZ)
74 static char version
[] __devinitdata
=
75 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
77 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
78 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
79 MODULE_LICENSE("GPL");
80 MODULE_VERSION(DRV_MODULE_VERSION
);
81 MODULE_FIRMWARE(FW_MIPS_FILE_06
);
82 MODULE_FIRMWARE(FW_RV2P_FILE_06
);
83 MODULE_FIRMWARE(FW_MIPS_FILE_09
);
84 MODULE_FIRMWARE(FW_RV2P_FILE_09
);
85 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax
);
87 static int disable_msi
= 0;
89 module_param(disable_msi
, int, 0);
90 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
106 /* indexed by board_t, above */
109 } board_info
[] __devinitdata
= {
110 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
111 { "HP NC370T Multifunction Gigabit Server Adapter" },
112 { "HP NC370i Multifunction Gigabit Server Adapter" },
113 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
114 { "HP NC370F Multifunction Gigabit Server Adapter" },
115 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
116 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
117 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
118 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
119 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
120 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
123 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl
) = {
124 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
125 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
126 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
127 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
128 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
129 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
130 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
131 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
132 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
133 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
134 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
135 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
136 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
137 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
138 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
139 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
140 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
141 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
142 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
143 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
144 { PCI_VENDOR_ID_BROADCOM
, 0x163c,
145 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716S
},
149 static const struct flash_spec flash_table
[] =
151 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
152 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
154 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
155 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
156 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
158 /* Expansion entry 0001 */
159 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
160 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
161 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
163 /* Saifun SA25F010 (non-buffered flash) */
164 /* strap, cfg1, & write1 need updates */
165 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
166 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
167 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
168 "Non-buffered flash (128kB)"},
169 /* Saifun SA25F020 (non-buffered flash) */
170 /* strap, cfg1, & write1 need updates */
171 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
172 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
173 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
174 "Non-buffered flash (256kB)"},
175 /* Expansion entry 0100 */
176 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
177 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
178 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
180 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
181 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
182 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
183 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
184 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
185 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
186 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
187 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
188 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
189 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
190 /* Saifun SA25F005 (non-buffered flash) */
191 /* strap, cfg1, & write1 need updates */
192 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
193 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
194 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
195 "Non-buffered flash (64kB)"},
197 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
198 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
199 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
201 /* Expansion entry 1001 */
202 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
203 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
204 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
206 /* Expansion entry 1010 */
207 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
208 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
209 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
211 /* ATMEL AT45DB011B (buffered flash) */
212 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
213 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
214 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
215 "Buffered flash (128kB)"},
216 /* Expansion entry 1100 */
217 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
218 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
219 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
221 /* Expansion entry 1101 */
222 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
223 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
224 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
226 /* Ateml Expansion entry 1110 */
227 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
228 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
229 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
230 "Entry 1110 (Atmel)"},
231 /* ATMEL AT45DB021B (buffered flash) */
232 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
233 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
234 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
235 "Buffered flash (256kB)"},
238 static const struct flash_spec flash_5709
= {
239 .flags
= BNX2_NV_BUFFERED
,
240 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
241 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
242 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
243 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
244 .name
= "5709 Buffered flash (256kB)",
247 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
249 static void bnx2_init_napi(struct bnx2
*bp
);
250 static void bnx2_del_napi(struct bnx2
*bp
);
252 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
256 /* Tell compiler to fetch tx_prod and tx_cons from memory. */
259 /* The ring uses 256 indices for 255 entries, one of them
260 * needs to be skipped.
262 diff
= txr
->tx_prod
- txr
->tx_cons
;
263 if (unlikely(diff
>= TX_DESC_CNT
)) {
265 if (diff
== TX_DESC_CNT
)
266 diff
= MAX_TX_DESC_CNT
;
268 return (bp
->tx_ring_size
- diff
);
272 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
276 spin_lock_bh(&bp
->indirect_lock
);
277 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
278 val
= REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
279 spin_unlock_bh(&bp
->indirect_lock
);
284 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
286 spin_lock_bh(&bp
->indirect_lock
);
287 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
288 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
289 spin_unlock_bh(&bp
->indirect_lock
);
293 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
295 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
299 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
301 return (bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
));
305 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
308 spin_lock_bh(&bp
->indirect_lock
);
309 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
312 REG_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
313 REG_WR(bp
, BNX2_CTX_CTX_CTRL
,
314 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
315 for (i
= 0; i
< 5; i
++) {
316 val
= REG_RD(bp
, BNX2_CTX_CTX_CTRL
);
317 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
322 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
323 REG_WR(bp
, BNX2_CTX_DATA
, val
);
325 spin_unlock_bh(&bp
->indirect_lock
);
330 bnx2_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*info
)
332 struct bnx2
*bp
= netdev_priv(dev
);
333 struct drv_ctl_io
*io
= &info
->data
.io
;
336 case DRV_CTL_IO_WR_CMD
:
337 bnx2_reg_wr_ind(bp
, io
->offset
, io
->data
);
339 case DRV_CTL_IO_RD_CMD
:
340 io
->data
= bnx2_reg_rd_ind(bp
, io
->offset
);
342 case DRV_CTL_CTX_WR_CMD
:
343 bnx2_ctx_wr(bp
, io
->cid_addr
, io
->offset
, io
->data
);
351 static void bnx2_setup_cnic_irq_info(struct bnx2
*bp
)
353 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
354 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
357 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
358 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
359 bnapi
->cnic_present
= 0;
360 sb_id
= bp
->irq_nvecs
;
361 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
363 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
364 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
365 bnapi
->cnic_present
= 1;
367 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
370 cp
->irq_arr
[0].vector
= bp
->irq_tbl
[sb_id
].vector
;
371 cp
->irq_arr
[0].status_blk
= (void *)
372 ((unsigned long) bnapi
->status_blk
.msi
+
373 (BNX2_SBLK_MSIX_ALIGN_SIZE
* sb_id
));
374 cp
->irq_arr
[0].status_blk_num
= sb_id
;
378 static int bnx2_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
381 struct bnx2
*bp
= netdev_priv(dev
);
382 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
387 if (cp
->drv_state
& CNIC_DRV_STATE_REGD
)
390 bp
->cnic_data
= data
;
391 rcu_assign_pointer(bp
->cnic_ops
, ops
);
394 cp
->drv_state
= CNIC_DRV_STATE_REGD
;
396 bnx2_setup_cnic_irq_info(bp
);
401 static int bnx2_unregister_cnic(struct net_device
*dev
)
403 struct bnx2
*bp
= netdev_priv(dev
);
404 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
405 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
407 mutex_lock(&bp
->cnic_lock
);
409 bnapi
->cnic_present
= 0;
410 rcu_assign_pointer(bp
->cnic_ops
, NULL
);
411 mutex_unlock(&bp
->cnic_lock
);
416 struct cnic_eth_dev
*bnx2_cnic_probe(struct net_device
*dev
)
418 struct bnx2
*bp
= netdev_priv(dev
);
419 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
421 cp
->drv_owner
= THIS_MODULE
;
422 cp
->chip_id
= bp
->chip_id
;
424 cp
->io_base
= bp
->regview
;
425 cp
->drv_ctl
= bnx2_drv_ctl
;
426 cp
->drv_register_cnic
= bnx2_register_cnic
;
427 cp
->drv_unregister_cnic
= bnx2_unregister_cnic
;
431 EXPORT_SYMBOL(bnx2_cnic_probe
);
434 bnx2_cnic_stop(struct bnx2
*bp
)
436 struct cnic_ops
*c_ops
;
437 struct cnic_ctl_info info
;
439 mutex_lock(&bp
->cnic_lock
);
440 c_ops
= bp
->cnic_ops
;
442 info
.cmd
= CNIC_CTL_STOP_CMD
;
443 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
445 mutex_unlock(&bp
->cnic_lock
);
449 bnx2_cnic_start(struct bnx2
*bp
)
451 struct cnic_ops
*c_ops
;
452 struct cnic_ctl_info info
;
454 mutex_lock(&bp
->cnic_lock
);
455 c_ops
= bp
->cnic_ops
;
457 if (!(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
458 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
460 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
462 info
.cmd
= CNIC_CTL_START_CMD
;
463 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
465 mutex_unlock(&bp
->cnic_lock
);
471 bnx2_cnic_stop(struct bnx2
*bp
)
476 bnx2_cnic_start(struct bnx2
*bp
)
483 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
488 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
489 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
490 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
492 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
493 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
498 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
499 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
500 BNX2_EMAC_MDIO_COMM_START_BUSY
;
501 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
503 for (i
= 0; i
< 50; i
++) {
506 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
507 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
510 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
511 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
517 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
526 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
527 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
528 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
530 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
531 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
540 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
545 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
546 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
547 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
549 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
550 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
555 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
556 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
557 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
558 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
560 for (i
= 0; i
< 50; i
++) {
563 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
564 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
570 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
575 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
576 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
577 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
579 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
580 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
589 bnx2_disable_int(struct bnx2
*bp
)
592 struct bnx2_napi
*bnapi
;
594 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
595 bnapi
= &bp
->bnx2_napi
[i
];
596 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
597 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
599 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
603 bnx2_enable_int(struct bnx2
*bp
)
606 struct bnx2_napi
*bnapi
;
608 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
609 bnapi
= &bp
->bnx2_napi
[i
];
611 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
612 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
613 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
614 bnapi
->last_status_idx
);
616 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
617 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
618 bnapi
->last_status_idx
);
620 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
624 bnx2_disable_int_sync(struct bnx2
*bp
)
628 atomic_inc(&bp
->intr_sem
);
629 if (!netif_running(bp
->dev
))
632 bnx2_disable_int(bp
);
633 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
634 synchronize_irq(bp
->irq_tbl
[i
].vector
);
638 bnx2_napi_disable(struct bnx2
*bp
)
642 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
643 napi_disable(&bp
->bnx2_napi
[i
].napi
);
647 bnx2_napi_enable(struct bnx2
*bp
)
651 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
652 napi_enable(&bp
->bnx2_napi
[i
].napi
);
656 bnx2_netif_stop(struct bnx2
*bp
, bool stop_cnic
)
660 if (netif_running(bp
->dev
)) {
661 bnx2_napi_disable(bp
);
662 netif_tx_disable(bp
->dev
);
664 bnx2_disable_int_sync(bp
);
665 netif_carrier_off(bp
->dev
); /* prevent tx timeout */
669 bnx2_netif_start(struct bnx2
*bp
, bool start_cnic
)
671 if (atomic_dec_and_test(&bp
->intr_sem
)) {
672 if (netif_running(bp
->dev
)) {
673 netif_tx_wake_all_queues(bp
->dev
);
674 spin_lock_bh(&bp
->phy_lock
);
676 netif_carrier_on(bp
->dev
);
677 spin_unlock_bh(&bp
->phy_lock
);
678 bnx2_napi_enable(bp
);
687 bnx2_free_tx_mem(struct bnx2
*bp
)
691 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
692 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
693 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
695 if (txr
->tx_desc_ring
) {
696 dma_free_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
698 txr
->tx_desc_mapping
);
699 txr
->tx_desc_ring
= NULL
;
701 kfree(txr
->tx_buf_ring
);
702 txr
->tx_buf_ring
= NULL
;
707 bnx2_free_rx_mem(struct bnx2
*bp
)
711 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
712 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
713 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
716 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
717 if (rxr
->rx_desc_ring
[j
])
718 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
719 rxr
->rx_desc_ring
[j
],
720 rxr
->rx_desc_mapping
[j
]);
721 rxr
->rx_desc_ring
[j
] = NULL
;
723 vfree(rxr
->rx_buf_ring
);
724 rxr
->rx_buf_ring
= NULL
;
726 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
727 if (rxr
->rx_pg_desc_ring
[j
])
728 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
729 rxr
->rx_pg_desc_ring
[j
],
730 rxr
->rx_pg_desc_mapping
[j
]);
731 rxr
->rx_pg_desc_ring
[j
] = NULL
;
733 vfree(rxr
->rx_pg_ring
);
734 rxr
->rx_pg_ring
= NULL
;
739 bnx2_alloc_tx_mem(struct bnx2
*bp
)
743 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
744 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
745 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
747 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
748 if (txr
->tx_buf_ring
== NULL
)
752 dma_alloc_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
753 &txr
->tx_desc_mapping
, GFP_KERNEL
);
754 if (txr
->tx_desc_ring
== NULL
)
761 bnx2_alloc_rx_mem(struct bnx2
*bp
)
765 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
766 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
767 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
771 vmalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
772 if (rxr
->rx_buf_ring
== NULL
)
775 memset(rxr
->rx_buf_ring
, 0,
776 SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
778 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
779 rxr
->rx_desc_ring
[j
] =
780 dma_alloc_coherent(&bp
->pdev
->dev
,
782 &rxr
->rx_desc_mapping
[j
],
784 if (rxr
->rx_desc_ring
[j
] == NULL
)
789 if (bp
->rx_pg_ring_size
) {
790 rxr
->rx_pg_ring
= vmalloc(SW_RXPG_RING_SIZE
*
792 if (rxr
->rx_pg_ring
== NULL
)
795 memset(rxr
->rx_pg_ring
, 0, SW_RXPG_RING_SIZE
*
799 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
800 rxr
->rx_pg_desc_ring
[j
] =
801 dma_alloc_coherent(&bp
->pdev
->dev
,
803 &rxr
->rx_pg_desc_mapping
[j
],
805 if (rxr
->rx_pg_desc_ring
[j
] == NULL
)
814 bnx2_free_mem(struct bnx2
*bp
)
817 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
819 bnx2_free_tx_mem(bp
);
820 bnx2_free_rx_mem(bp
);
822 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
823 if (bp
->ctx_blk
[i
]) {
824 dma_free_coherent(&bp
->pdev
->dev
, BCM_PAGE_SIZE
,
826 bp
->ctx_blk_mapping
[i
]);
827 bp
->ctx_blk
[i
] = NULL
;
830 if (bnapi
->status_blk
.msi
) {
831 dma_free_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
832 bnapi
->status_blk
.msi
,
833 bp
->status_blk_mapping
);
834 bnapi
->status_blk
.msi
= NULL
;
835 bp
->stats_blk
= NULL
;
840 bnx2_alloc_mem(struct bnx2
*bp
)
842 int i
, status_blk_size
, err
;
843 struct bnx2_napi
*bnapi
;
846 /* Combine status and statistics blocks into one allocation. */
847 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
848 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
849 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
850 BNX2_SBLK_MSIX_ALIGN_SIZE
);
851 bp
->status_stats_size
= status_blk_size
+
852 sizeof(struct statistics_block
);
854 status_blk
= dma_alloc_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
855 &bp
->status_blk_mapping
, GFP_KERNEL
);
856 if (status_blk
== NULL
)
859 memset(status_blk
, 0, bp
->status_stats_size
);
861 bnapi
= &bp
->bnx2_napi
[0];
862 bnapi
->status_blk
.msi
= status_blk
;
863 bnapi
->hw_tx_cons_ptr
=
864 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
865 bnapi
->hw_rx_cons_ptr
=
866 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
867 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
868 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
869 struct status_block_msix
*sblk
;
871 bnapi
= &bp
->bnx2_napi
[i
];
873 sblk
= (void *) (status_blk
+
874 BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
875 bnapi
->status_blk
.msix
= sblk
;
876 bnapi
->hw_tx_cons_ptr
=
877 &sblk
->status_tx_quick_consumer_index
;
878 bnapi
->hw_rx_cons_ptr
=
879 &sblk
->status_rx_quick_consumer_index
;
880 bnapi
->int_num
= i
<< 24;
884 bp
->stats_blk
= status_blk
+ status_blk_size
;
886 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
888 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
889 bp
->ctx_pages
= 0x2000 / BCM_PAGE_SIZE
;
890 if (bp
->ctx_pages
== 0)
892 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
893 bp
->ctx_blk
[i
] = dma_alloc_coherent(&bp
->pdev
->dev
,
895 &bp
->ctx_blk_mapping
[i
],
897 if (bp
->ctx_blk
[i
] == NULL
)
902 err
= bnx2_alloc_rx_mem(bp
);
906 err
= bnx2_alloc_tx_mem(bp
);
918 bnx2_report_fw_link(struct bnx2
*bp
)
920 u32 fw_link_status
= 0;
922 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
928 switch (bp
->line_speed
) {
930 if (bp
->duplex
== DUPLEX_HALF
)
931 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
933 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
936 if (bp
->duplex
== DUPLEX_HALF
)
937 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
939 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
942 if (bp
->duplex
== DUPLEX_HALF
)
943 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
945 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
948 if (bp
->duplex
== DUPLEX_HALF
)
949 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
951 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
955 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
958 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
960 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
961 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
963 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
964 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
965 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
967 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
971 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
973 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
977 bnx2_xceiver_str(struct bnx2
*bp
)
979 return ((bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
980 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
985 bnx2_report_link(struct bnx2
*bp
)
988 netif_carrier_on(bp
->dev
);
989 netdev_info(bp
->dev
, "NIC %s Link is Up, %d Mbps %s duplex",
990 bnx2_xceiver_str(bp
),
992 bp
->duplex
== DUPLEX_FULL
? "full" : "half");
995 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
996 pr_cont(", receive ");
997 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
998 pr_cont("& transmit ");
1001 pr_cont(", transmit ");
1003 pr_cont("flow control ON");
1007 netif_carrier_off(bp
->dev
);
1008 netdev_err(bp
->dev
, "NIC %s Link is Down\n",
1009 bnx2_xceiver_str(bp
));
1012 bnx2_report_fw_link(bp
);
1016 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
1018 u32 local_adv
, remote_adv
;
1021 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1022 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1024 if (bp
->duplex
== DUPLEX_FULL
) {
1025 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1030 if (bp
->duplex
!= DUPLEX_FULL
) {
1034 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1035 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
1038 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1039 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
1040 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1041 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
1042 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1046 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1047 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1049 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1050 u32 new_local_adv
= 0;
1051 u32 new_remote_adv
= 0;
1053 if (local_adv
& ADVERTISE_1000XPAUSE
)
1054 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
1055 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
1056 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
1057 if (remote_adv
& ADVERTISE_1000XPAUSE
)
1058 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
1059 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
1060 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
1062 local_adv
= new_local_adv
;
1063 remote_adv
= new_remote_adv
;
1066 /* See Table 28B-3 of 802.3ab-1999 spec. */
1067 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
1068 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
1069 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1070 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1072 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
1073 bp
->flow_ctrl
= FLOW_CTRL_RX
;
1077 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1078 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1082 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
1083 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
1084 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
1086 bp
->flow_ctrl
= FLOW_CTRL_TX
;
1092 bnx2_5709s_linkup(struct bnx2
*bp
)
1098 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
1099 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
1100 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1102 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
1103 bp
->line_speed
= bp
->req_line_speed
;
1104 bp
->duplex
= bp
->req_duplex
;
1107 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
1109 case MII_BNX2_GP_TOP_AN_SPEED_10
:
1110 bp
->line_speed
= SPEED_10
;
1112 case MII_BNX2_GP_TOP_AN_SPEED_100
:
1113 bp
->line_speed
= SPEED_100
;
1115 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
1116 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
1117 bp
->line_speed
= SPEED_1000
;
1119 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
1120 bp
->line_speed
= SPEED_2500
;
1123 if (val
& MII_BNX2_GP_TOP_AN_FD
)
1124 bp
->duplex
= DUPLEX_FULL
;
1126 bp
->duplex
= DUPLEX_HALF
;
1131 bnx2_5708s_linkup(struct bnx2
*bp
)
1136 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1137 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
1138 case BCM5708S_1000X_STAT1_SPEED_10
:
1139 bp
->line_speed
= SPEED_10
;
1141 case BCM5708S_1000X_STAT1_SPEED_100
:
1142 bp
->line_speed
= SPEED_100
;
1144 case BCM5708S_1000X_STAT1_SPEED_1G
:
1145 bp
->line_speed
= SPEED_1000
;
1147 case BCM5708S_1000X_STAT1_SPEED_2G5
:
1148 bp
->line_speed
= SPEED_2500
;
1151 if (val
& BCM5708S_1000X_STAT1_FD
)
1152 bp
->duplex
= DUPLEX_FULL
;
1154 bp
->duplex
= DUPLEX_HALF
;
1160 bnx2_5706s_linkup(struct bnx2
*bp
)
1162 u32 bmcr
, local_adv
, remote_adv
, common
;
1165 bp
->line_speed
= SPEED_1000
;
1167 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1168 if (bmcr
& BMCR_FULLDPLX
) {
1169 bp
->duplex
= DUPLEX_FULL
;
1172 bp
->duplex
= DUPLEX_HALF
;
1175 if (!(bmcr
& BMCR_ANENABLE
)) {
1179 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1180 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1182 common
= local_adv
& remote_adv
;
1183 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1185 if (common
& ADVERTISE_1000XFULL
) {
1186 bp
->duplex
= DUPLEX_FULL
;
1189 bp
->duplex
= DUPLEX_HALF
;
1197 bnx2_copper_linkup(struct bnx2
*bp
)
1201 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1202 if (bmcr
& BMCR_ANENABLE
) {
1203 u32 local_adv
, remote_adv
, common
;
1205 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1206 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1208 common
= local_adv
& (remote_adv
>> 2);
1209 if (common
& ADVERTISE_1000FULL
) {
1210 bp
->line_speed
= SPEED_1000
;
1211 bp
->duplex
= DUPLEX_FULL
;
1213 else if (common
& ADVERTISE_1000HALF
) {
1214 bp
->line_speed
= SPEED_1000
;
1215 bp
->duplex
= DUPLEX_HALF
;
1218 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1219 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1221 common
= local_adv
& remote_adv
;
1222 if (common
& ADVERTISE_100FULL
) {
1223 bp
->line_speed
= SPEED_100
;
1224 bp
->duplex
= DUPLEX_FULL
;
1226 else if (common
& ADVERTISE_100HALF
) {
1227 bp
->line_speed
= SPEED_100
;
1228 bp
->duplex
= DUPLEX_HALF
;
1230 else if (common
& ADVERTISE_10FULL
) {
1231 bp
->line_speed
= SPEED_10
;
1232 bp
->duplex
= DUPLEX_FULL
;
1234 else if (common
& ADVERTISE_10HALF
) {
1235 bp
->line_speed
= SPEED_10
;
1236 bp
->duplex
= DUPLEX_HALF
;
1245 if (bmcr
& BMCR_SPEED100
) {
1246 bp
->line_speed
= SPEED_100
;
1249 bp
->line_speed
= SPEED_10
;
1251 if (bmcr
& BMCR_FULLDPLX
) {
1252 bp
->duplex
= DUPLEX_FULL
;
1255 bp
->duplex
= DUPLEX_HALF
;
1263 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1265 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1267 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1268 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1271 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1272 u32 lo_water
, hi_water
;
1274 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1275 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DEFAULT
;
1277 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DIS
;
1278 if (lo_water
>= bp
->rx_ring_size
)
1281 hi_water
= min_t(int, bp
->rx_ring_size
/ 4, lo_water
+ 16);
1283 if (hi_water
<= lo_water
)
1286 hi_water
/= BNX2_L2CTX_HI_WATER_MARK_SCALE
;
1287 lo_water
/= BNX2_L2CTX_LO_WATER_MARK_SCALE
;
1291 else if (hi_water
== 0)
1293 val
|= lo_water
| (hi_water
<< BNX2_L2CTX_HI_WATER_MARK_SHIFT
);
1295 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1299 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1304 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1307 bnx2_init_rx_context(bp
, cid
);
1312 bnx2_set_mac_link(struct bnx2
*bp
)
1316 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1317 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1318 (bp
->duplex
== DUPLEX_HALF
)) {
1319 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1322 /* Configure the EMAC mode register. */
1323 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
1325 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1326 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1327 BNX2_EMAC_MODE_25G_MODE
);
1330 switch (bp
->line_speed
) {
1332 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
1333 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1338 val
|= BNX2_EMAC_MODE_PORT_MII
;
1341 val
|= BNX2_EMAC_MODE_25G_MODE
;
1344 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1349 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1352 /* Set the MAC to operate in the appropriate duplex mode. */
1353 if (bp
->duplex
== DUPLEX_HALF
)
1354 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1355 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
1357 /* Enable/disable rx PAUSE. */
1358 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1360 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1361 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1362 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1364 /* Enable/disable tx PAUSE. */
1365 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
1366 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1368 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1369 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1370 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1372 /* Acknowledge the interrupt. */
1373 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1375 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1376 bnx2_init_all_rx_contexts(bp
);
1380 bnx2_enable_bmsr1(struct bnx2
*bp
)
1382 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1383 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1384 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1385 MII_BNX2_BLK_ADDR_GP_STATUS
);
1389 bnx2_disable_bmsr1(struct bnx2
*bp
)
1391 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1392 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1393 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1394 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1398 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1403 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1406 if (bp
->autoneg
& AUTONEG_SPEED
)
1407 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1409 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1410 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1412 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1413 if (!(up1
& BCM5708S_UP1_2G5
)) {
1414 up1
|= BCM5708S_UP1_2G5
;
1415 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1419 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1420 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1421 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1427 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1432 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1435 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1436 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1438 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1439 if (up1
& BCM5708S_UP1_2G5
) {
1440 up1
&= ~BCM5708S_UP1_2G5
;
1441 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1445 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1446 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1447 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1453 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1455 u32
uninitialized_var(bmcr
);
1458 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1461 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1464 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1465 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1466 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1467 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1468 val
|= MII_BNX2_SD_MISC1_FORCE
|
1469 MII_BNX2_SD_MISC1_FORCE_2_5G
;
1470 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1473 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1474 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1475 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1477 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1478 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1480 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1488 if (bp
->autoneg
& AUTONEG_SPEED
) {
1489 bmcr
&= ~BMCR_ANENABLE
;
1490 if (bp
->req_duplex
== DUPLEX_FULL
)
1491 bmcr
|= BMCR_FULLDPLX
;
1493 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1497 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1499 u32
uninitialized_var(bmcr
);
1502 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1505 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1508 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1509 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1510 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1511 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1512 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1515 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1516 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1517 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1519 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1520 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1522 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1530 if (bp
->autoneg
& AUTONEG_SPEED
)
1531 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1532 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1536 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1540 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1541 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1543 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1545 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1549 bnx2_set_link(struct bnx2
*bp
)
1554 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1559 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1562 link_up
= bp
->link_up
;
1564 bnx2_enable_bmsr1(bp
);
1565 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1566 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1567 bnx2_disable_bmsr1(bp
);
1569 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1570 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
1573 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1574 bnx2_5706s_force_link_dn(bp
, 0);
1575 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1577 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
1579 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1580 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1581 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1583 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1584 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1585 bmsr
|= BMSR_LSTATUS
;
1587 bmsr
&= ~BMSR_LSTATUS
;
1590 if (bmsr
& BMSR_LSTATUS
) {
1593 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1594 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1595 bnx2_5706s_linkup(bp
);
1596 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1597 bnx2_5708s_linkup(bp
);
1598 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1599 bnx2_5709s_linkup(bp
);
1602 bnx2_copper_linkup(bp
);
1604 bnx2_resolve_flow_ctrl(bp
);
1607 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1608 (bp
->autoneg
& AUTONEG_SPEED
))
1609 bnx2_disable_forced_2g5(bp
);
1611 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1614 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1615 bmcr
|= BMCR_ANENABLE
;
1616 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1618 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1623 if (bp
->link_up
!= link_up
) {
1624 bnx2_report_link(bp
);
1627 bnx2_set_mac_link(bp
);
1633 bnx2_reset_phy(struct bnx2
*bp
)
1638 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1640 #define PHY_RESET_MAX_WAIT 100
1641 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1644 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1645 if (!(reg
& BMCR_RESET
)) {
1650 if (i
== PHY_RESET_MAX_WAIT
) {
1657 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1661 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1662 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1664 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1665 adv
= ADVERTISE_1000XPAUSE
;
1668 adv
= ADVERTISE_PAUSE_CAP
;
1671 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1672 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1673 adv
= ADVERTISE_1000XPSE_ASYM
;
1676 adv
= ADVERTISE_PAUSE_ASYM
;
1679 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1680 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1681 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1684 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1690 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1693 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1694 __releases(&bp
->phy_lock
)
1695 __acquires(&bp
->phy_lock
)
1697 u32 speed_arg
= 0, pause_adv
;
1699 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1701 if (bp
->autoneg
& AUTONEG_SPEED
) {
1702 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1703 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1704 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1705 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1706 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1707 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1708 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1709 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1710 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1711 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1712 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1713 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1714 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1716 if (bp
->req_line_speed
== SPEED_2500
)
1717 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1718 else if (bp
->req_line_speed
== SPEED_1000
)
1719 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1720 else if (bp
->req_line_speed
== SPEED_100
) {
1721 if (bp
->req_duplex
== DUPLEX_FULL
)
1722 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1724 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1725 } else if (bp
->req_line_speed
== SPEED_10
) {
1726 if (bp
->req_duplex
== DUPLEX_FULL
)
1727 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1729 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1733 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1734 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1735 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1736 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1738 if (port
== PORT_TP
)
1739 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1740 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1742 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1744 spin_unlock_bh(&bp
->phy_lock
);
1745 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1746 spin_lock_bh(&bp
->phy_lock
);
1752 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1753 __releases(&bp
->phy_lock
)
1754 __acquires(&bp
->phy_lock
)
1759 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1760 return (bnx2_setup_remote_phy(bp
, port
));
1762 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1764 int force_link_down
= 0;
1766 if (bp
->req_line_speed
== SPEED_2500
) {
1767 if (!bnx2_test_and_enable_2g5(bp
))
1768 force_link_down
= 1;
1769 } else if (bp
->req_line_speed
== SPEED_1000
) {
1770 if (bnx2_test_and_disable_2g5(bp
))
1771 force_link_down
= 1;
1773 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1774 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1776 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1777 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1778 new_bmcr
|= BMCR_SPEED1000
;
1780 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1781 if (bp
->req_line_speed
== SPEED_2500
)
1782 bnx2_enable_forced_2g5(bp
);
1783 else if (bp
->req_line_speed
== SPEED_1000
) {
1784 bnx2_disable_forced_2g5(bp
);
1785 new_bmcr
&= ~0x2000;
1788 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1789 if (bp
->req_line_speed
== SPEED_2500
)
1790 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1792 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1795 if (bp
->req_duplex
== DUPLEX_FULL
) {
1796 adv
|= ADVERTISE_1000XFULL
;
1797 new_bmcr
|= BMCR_FULLDPLX
;
1800 adv
|= ADVERTISE_1000XHALF
;
1801 new_bmcr
&= ~BMCR_FULLDPLX
;
1803 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1804 /* Force a link down visible on the other side */
1806 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1807 ~(ADVERTISE_1000XFULL
|
1808 ADVERTISE_1000XHALF
));
1809 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1810 BMCR_ANRESTART
| BMCR_ANENABLE
);
1813 netif_carrier_off(bp
->dev
);
1814 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1815 bnx2_report_link(bp
);
1817 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1818 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1820 bnx2_resolve_flow_ctrl(bp
);
1821 bnx2_set_mac_link(bp
);
1826 bnx2_test_and_enable_2g5(bp
);
1828 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1829 new_adv
|= ADVERTISE_1000XFULL
;
1831 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1833 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1834 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1836 bp
->serdes_an_pending
= 0;
1837 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1838 /* Force a link down visible on the other side */
1840 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1841 spin_unlock_bh(&bp
->phy_lock
);
1843 spin_lock_bh(&bp
->phy_lock
);
1846 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1847 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1849 /* Speed up link-up time when the link partner
1850 * does not autonegotiate which is very common
1851 * in blade servers. Some blade servers use
1852 * IPMI for kerboard input and it's important
1853 * to minimize link disruptions. Autoneg. involves
1854 * exchanging base pages plus 3 next pages and
1855 * normally completes in about 120 msec.
1857 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
1858 bp
->serdes_an_pending
= 1;
1859 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1861 bnx2_resolve_flow_ctrl(bp
);
1862 bnx2_set_mac_link(bp
);
1868 #define ETHTOOL_ALL_FIBRE_SPEED \
1869 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1870 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1871 (ADVERTISED_1000baseT_Full)
1873 #define ETHTOOL_ALL_COPPER_SPEED \
1874 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1875 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1876 ADVERTISED_1000baseT_Full)
1878 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1879 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1881 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1884 bnx2_set_default_remote_link(struct bnx2
*bp
)
1888 if (bp
->phy_port
== PORT_TP
)
1889 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1891 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1893 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1894 bp
->req_line_speed
= 0;
1895 bp
->autoneg
|= AUTONEG_SPEED
;
1896 bp
->advertising
= ADVERTISED_Autoneg
;
1897 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1898 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1899 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1900 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1901 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1902 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1903 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1904 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1905 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1906 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1907 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1908 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1911 bp
->advertising
= 0;
1912 bp
->req_duplex
= DUPLEX_FULL
;
1913 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1914 bp
->req_line_speed
= SPEED_10
;
1915 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1916 bp
->req_duplex
= DUPLEX_HALF
;
1918 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1919 bp
->req_line_speed
= SPEED_100
;
1920 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1921 bp
->req_duplex
= DUPLEX_HALF
;
1923 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1924 bp
->req_line_speed
= SPEED_1000
;
1925 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1926 bp
->req_line_speed
= SPEED_2500
;
1931 bnx2_set_default_link(struct bnx2
*bp
)
1933 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1934 bnx2_set_default_remote_link(bp
);
1938 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1939 bp
->req_line_speed
= 0;
1940 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1943 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1945 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1946 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1947 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1949 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1950 bp
->req_duplex
= DUPLEX_FULL
;
1953 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1957 bnx2_send_heart_beat(struct bnx2
*bp
)
1962 spin_lock(&bp
->indirect_lock
);
1963 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1964 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1965 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1966 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1967 spin_unlock(&bp
->indirect_lock
);
1971 bnx2_remote_phy_event(struct bnx2
*bp
)
1974 u8 link_up
= bp
->link_up
;
1977 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1979 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1980 bnx2_send_heart_beat(bp
);
1982 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1984 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1990 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1991 bp
->duplex
= DUPLEX_FULL
;
1993 case BNX2_LINK_STATUS_10HALF
:
1994 bp
->duplex
= DUPLEX_HALF
;
1995 case BNX2_LINK_STATUS_10FULL
:
1996 bp
->line_speed
= SPEED_10
;
1998 case BNX2_LINK_STATUS_100HALF
:
1999 bp
->duplex
= DUPLEX_HALF
;
2000 case BNX2_LINK_STATUS_100BASE_T4
:
2001 case BNX2_LINK_STATUS_100FULL
:
2002 bp
->line_speed
= SPEED_100
;
2004 case BNX2_LINK_STATUS_1000HALF
:
2005 bp
->duplex
= DUPLEX_HALF
;
2006 case BNX2_LINK_STATUS_1000FULL
:
2007 bp
->line_speed
= SPEED_1000
;
2009 case BNX2_LINK_STATUS_2500HALF
:
2010 bp
->duplex
= DUPLEX_HALF
;
2011 case BNX2_LINK_STATUS_2500FULL
:
2012 bp
->line_speed
= SPEED_2500
;
2020 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
2021 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
2022 if (bp
->duplex
== DUPLEX_FULL
)
2023 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
2025 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
2026 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
2027 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
2028 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
2031 old_port
= bp
->phy_port
;
2032 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
2033 bp
->phy_port
= PORT_FIBRE
;
2035 bp
->phy_port
= PORT_TP
;
2037 if (old_port
!= bp
->phy_port
)
2038 bnx2_set_default_link(bp
);
2041 if (bp
->link_up
!= link_up
)
2042 bnx2_report_link(bp
);
2044 bnx2_set_mac_link(bp
);
2048 bnx2_set_remote_link(struct bnx2
*bp
)
2052 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
2054 case BNX2_FW_EVT_CODE_LINK_EVENT
:
2055 bnx2_remote_phy_event(bp
);
2057 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
2059 bnx2_send_heart_beat(bp
);
2066 bnx2_setup_copper_phy(struct bnx2
*bp
)
2067 __releases(&bp
->phy_lock
)
2068 __acquires(&bp
->phy_lock
)
2073 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
2075 if (bp
->autoneg
& AUTONEG_SPEED
) {
2076 u32 adv_reg
, adv1000_reg
;
2077 u32 new_adv_reg
= 0;
2078 u32 new_adv1000_reg
= 0;
2080 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
2081 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
2082 ADVERTISE_PAUSE_ASYM
);
2084 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
2085 adv1000_reg
&= PHY_ALL_1000_SPEED
;
2087 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
2088 new_adv_reg
|= ADVERTISE_10HALF
;
2089 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
2090 new_adv_reg
|= ADVERTISE_10FULL
;
2091 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
2092 new_adv_reg
|= ADVERTISE_100HALF
;
2093 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
2094 new_adv_reg
|= ADVERTISE_100FULL
;
2095 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
2096 new_adv1000_reg
|= ADVERTISE_1000FULL
;
2098 new_adv_reg
|= ADVERTISE_CSMA
;
2100 new_adv_reg
|= bnx2_phy_get_pause_adv(bp
);
2102 if ((adv1000_reg
!= new_adv1000_reg
) ||
2103 (adv_reg
!= new_adv_reg
) ||
2104 ((bmcr
& BMCR_ANENABLE
) == 0)) {
2106 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv_reg
);
2107 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000_reg
);
2108 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
2111 else if (bp
->link_up
) {
2112 /* Flow ctrl may have changed from auto to forced */
2113 /* or vice-versa. */
2115 bnx2_resolve_flow_ctrl(bp
);
2116 bnx2_set_mac_link(bp
);
2122 if (bp
->req_line_speed
== SPEED_100
) {
2123 new_bmcr
|= BMCR_SPEED100
;
2125 if (bp
->req_duplex
== DUPLEX_FULL
) {
2126 new_bmcr
|= BMCR_FULLDPLX
;
2128 if (new_bmcr
!= bmcr
) {
2131 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2132 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2134 if (bmsr
& BMSR_LSTATUS
) {
2135 /* Force link down */
2136 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
2137 spin_unlock_bh(&bp
->phy_lock
);
2139 spin_lock_bh(&bp
->phy_lock
);
2141 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2142 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2145 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
2147 /* Normally, the new speed is setup after the link has
2148 * gone down and up again. In some cases, link will not go
2149 * down so we need to set up the new speed here.
2151 if (bmsr
& BMSR_LSTATUS
) {
2152 bp
->line_speed
= bp
->req_line_speed
;
2153 bp
->duplex
= bp
->req_duplex
;
2154 bnx2_resolve_flow_ctrl(bp
);
2155 bnx2_set_mac_link(bp
);
2158 bnx2_resolve_flow_ctrl(bp
);
2159 bnx2_set_mac_link(bp
);
2165 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
2166 __releases(&bp
->phy_lock
)
2167 __acquires(&bp
->phy_lock
)
2169 if (bp
->loopback
== MAC_LOOPBACK
)
2172 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2173 return (bnx2_setup_serdes_phy(bp
, port
));
2176 return (bnx2_setup_copper_phy(bp
));
2181 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
2185 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
2186 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
2187 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
2188 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
2189 bp
->mii_lpa
= MII_LPA
+ 0x10;
2190 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
2192 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
2193 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
2195 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2199 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
2201 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
2202 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
2203 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2204 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2206 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2207 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2208 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2209 val
|= BCM5708S_UP1_2G5
;
2211 val
&= ~BCM5708S_UP1_2G5
;
2212 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2214 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2215 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2216 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2217 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2219 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2221 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2222 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2223 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2225 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2231 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2238 bp
->mii_up1
= BCM5708S_UP1
;
2240 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2241 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2242 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2244 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2245 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2246 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2248 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2249 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2250 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2252 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2253 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2254 val
|= BCM5708S_UP1_2G5
;
2255 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2258 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
2259 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
2260 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
2261 /* increase tx signal amplitude */
2262 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2263 BCM5708S_BLK_ADDR_TX_MISC
);
2264 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2265 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2266 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2267 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2270 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2271 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2276 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2277 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2278 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2279 BCM5708S_BLK_ADDR_TX_MISC
);
2280 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2281 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2282 BCM5708S_BLK_ADDR_DIG
);
2289 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2294 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2296 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2297 REG_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2299 if (bp
->dev
->mtu
> 1500) {
2302 /* Set extended packet length bit */
2303 bnx2_write_phy(bp
, 0x18, 0x7);
2304 bnx2_read_phy(bp
, 0x18, &val
);
2305 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2307 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2308 bnx2_read_phy(bp
, 0x1c, &val
);
2309 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2314 bnx2_write_phy(bp
, 0x18, 0x7);
2315 bnx2_read_phy(bp
, 0x18, &val
);
2316 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2318 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2319 bnx2_read_phy(bp
, 0x1c, &val
);
2320 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2327 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2334 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2335 bnx2_write_phy(bp
, 0x18, 0x0c00);
2336 bnx2_write_phy(bp
, 0x17, 0x000a);
2337 bnx2_write_phy(bp
, 0x15, 0x310b);
2338 bnx2_write_phy(bp
, 0x17, 0x201f);
2339 bnx2_write_phy(bp
, 0x15, 0x9506);
2340 bnx2_write_phy(bp
, 0x17, 0x401f);
2341 bnx2_write_phy(bp
, 0x15, 0x14e2);
2342 bnx2_write_phy(bp
, 0x18, 0x0400);
2345 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2346 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2347 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2348 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2350 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2353 if (bp
->dev
->mtu
> 1500) {
2354 /* Set extended packet length bit */
2355 bnx2_write_phy(bp
, 0x18, 0x7);
2356 bnx2_read_phy(bp
, 0x18, &val
);
2357 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2359 bnx2_read_phy(bp
, 0x10, &val
);
2360 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2363 bnx2_write_phy(bp
, 0x18, 0x7);
2364 bnx2_read_phy(bp
, 0x18, &val
);
2365 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2367 bnx2_read_phy(bp
, 0x10, &val
);
2368 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2371 /* ethernet@wirespeed */
2372 bnx2_write_phy(bp
, 0x18, 0x7007);
2373 bnx2_read_phy(bp
, 0x18, &val
);
2374 bnx2_write_phy(bp
, 0x18, val
| (1 << 15) | (1 << 4));
2380 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2381 __releases(&bp
->phy_lock
)
2382 __acquires(&bp
->phy_lock
)
2387 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2388 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2390 bp
->mii_bmcr
= MII_BMCR
;
2391 bp
->mii_bmsr
= MII_BMSR
;
2392 bp
->mii_bmsr1
= MII_BMSR
;
2393 bp
->mii_adv
= MII_ADVERTISE
;
2394 bp
->mii_lpa
= MII_LPA
;
2396 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2398 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2401 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2402 bp
->phy_id
= val
<< 16;
2403 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2404 bp
->phy_id
|= val
& 0xffff;
2406 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2407 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2408 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2409 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
2410 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2411 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2412 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2415 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2420 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2426 bnx2_set_mac_loopback(struct bnx2
*bp
)
2430 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2431 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2432 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2433 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2438 static int bnx2_test_link(struct bnx2
*);
2441 bnx2_set_phy_loopback(struct bnx2
*bp
)
2446 spin_lock_bh(&bp
->phy_lock
);
2447 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2449 spin_unlock_bh(&bp
->phy_lock
);
2453 for (i
= 0; i
< 10; i
++) {
2454 if (bnx2_test_link(bp
) == 0)
2459 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2460 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2461 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2462 BNX2_EMAC_MODE_25G_MODE
);
2464 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2465 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2471 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2477 msg_data
|= bp
->fw_wr_seq
;
2479 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2484 /* wait for an acknowledgement. */
2485 for (i
= 0; i
< (BNX2_FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2488 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2490 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2493 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2496 /* If we timed out, inform the firmware that this is the case. */
2497 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2499 pr_err("fw sync timeout, reset code = %x\n", msg_data
);
2501 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2502 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2504 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2509 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2516 bnx2_init_5709_context(struct bnx2
*bp
)
2521 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2522 val
|= (BCM_PAGE_BITS
- 8) << 16;
2523 REG_WR(bp
, BNX2_CTX_COMMAND
, val
);
2524 for (i
= 0; i
< 10; i
++) {
2525 val
= REG_RD(bp
, BNX2_CTX_COMMAND
);
2526 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2530 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2533 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2537 memset(bp
->ctx_blk
[i
], 0, BCM_PAGE_SIZE
);
2541 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2542 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2543 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2544 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2545 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2546 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2547 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2548 for (j
= 0; j
< 10; j
++) {
2550 val
= REG_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2551 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2555 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2564 bnx2_init_context(struct bnx2
*bp
)
2570 u32 vcid_addr
, pcid_addr
, offset
;
2575 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2578 vcid_addr
= GET_PCID_ADDR(vcid
);
2580 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2585 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2588 vcid_addr
= GET_CID_ADDR(vcid
);
2589 pcid_addr
= vcid_addr
;
2592 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2593 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2594 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2596 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2597 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2599 /* Zero out the context. */
2600 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2601 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2607 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2613 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2614 if (good_mbuf
== NULL
) {
2615 pr_err("Failed to allocate memory in %s\n", __func__
);
2619 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2620 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2624 /* Allocate a bunch of mbufs and save the good ones in an array. */
2625 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2626 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2627 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2628 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2630 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2632 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2634 /* The addresses with Bit 9 set are bad memory blocks. */
2635 if (!(val
& (1 << 9))) {
2636 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2640 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2643 /* Free the good ones back to the mbuf pool thus discarding
2644 * all the bad ones. */
2645 while (good_mbuf_cnt
) {
2648 val
= good_mbuf
[good_mbuf_cnt
];
2649 val
= (val
<< 9) | val
| 1;
2651 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2658 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2662 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2664 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2666 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2667 (mac_addr
[4] << 8) | mac_addr
[5];
2669 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2673 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2676 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2677 struct rx_bd
*rxbd
=
2678 &rxr
->rx_pg_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2679 struct page
*page
= alloc_page(gfp
);
2683 mapping
= dma_map_page(&bp
->pdev
->dev
, page
, 0, PAGE_SIZE
,
2684 PCI_DMA_FROMDEVICE
);
2685 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2691 dma_unmap_addr_set(rx_pg
, mapping
, mapping
);
2692 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2693 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2698 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2700 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2701 struct page
*page
= rx_pg
->page
;
2706 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(rx_pg
, mapping
),
2707 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2714 bnx2_alloc_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2716 struct sk_buff
*skb
;
2717 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2719 struct rx_bd
*rxbd
= &rxr
->rx_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2720 unsigned long align
;
2722 skb
= __netdev_alloc_skb(bp
->dev
, bp
->rx_buf_size
, gfp
);
2727 if (unlikely((align
= (unsigned long) skb
->data
& (BNX2_RX_ALIGN
- 1))))
2728 skb_reserve(skb
, BNX2_RX_ALIGN
- align
);
2730 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, bp
->rx_buf_use_size
,
2731 PCI_DMA_FROMDEVICE
);
2732 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2738 rx_buf
->desc
= (struct l2_fhdr
*) skb
->data
;
2739 dma_unmap_addr_set(rx_buf
, mapping
, mapping
);
2741 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2742 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2744 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2750 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2752 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2753 u32 new_link_state
, old_link_state
;
2756 new_link_state
= sblk
->status_attn_bits
& event
;
2757 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2758 if (new_link_state
!= old_link_state
) {
2760 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2762 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2770 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2772 spin_lock(&bp
->phy_lock
);
2774 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2776 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2777 bnx2_set_remote_link(bp
);
2779 spin_unlock(&bp
->phy_lock
);
2784 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2788 /* Tell compiler that status block fields can change. */
2790 cons
= *bnapi
->hw_tx_cons_ptr
;
2792 if (unlikely((cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
))
2798 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2800 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2801 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2802 int tx_pkt
= 0, index
;
2803 struct netdev_queue
*txq
;
2805 index
= (bnapi
- bp
->bnx2_napi
);
2806 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2808 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2809 sw_cons
= txr
->tx_cons
;
2811 while (sw_cons
!= hw_cons
) {
2812 struct sw_tx_bd
*tx_buf
;
2813 struct sk_buff
*skb
;
2816 sw_ring_cons
= TX_RING_IDX(sw_cons
);
2818 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2821 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2822 prefetch(&skb
->end
);
2824 /* partial BD completions possible with TSO packets */
2825 if (tx_buf
->is_gso
) {
2826 u16 last_idx
, last_ring_idx
;
2828 last_idx
= sw_cons
+ tx_buf
->nr_frags
+ 1;
2829 last_ring_idx
= sw_ring_cons
+ tx_buf
->nr_frags
+ 1;
2830 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
2833 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2838 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
2839 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2842 last
= tx_buf
->nr_frags
;
2844 for (i
= 0; i
< last
; i
++) {
2845 sw_cons
= NEXT_TX_BD(sw_cons
);
2847 dma_unmap_page(&bp
->pdev
->dev
,
2849 &txr
->tx_buf_ring
[TX_RING_IDX(sw_cons
)],
2851 skb_shinfo(skb
)->frags
[i
].size
,
2855 sw_cons
= NEXT_TX_BD(sw_cons
);
2859 if (tx_pkt
== budget
)
2862 if (hw_cons
== sw_cons
)
2863 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2866 txr
->hw_tx_cons
= hw_cons
;
2867 txr
->tx_cons
= sw_cons
;
2869 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2870 * before checking for netif_tx_queue_stopped(). Without the
2871 * memory barrier, there is a small possibility that bnx2_start_xmit()
2872 * will miss it and cause the queue to be stopped forever.
2876 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2877 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2878 __netif_tx_lock(txq
, smp_processor_id());
2879 if ((netif_tx_queue_stopped(txq
)) &&
2880 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2881 netif_tx_wake_queue(txq
);
2882 __netif_tx_unlock(txq
);
2889 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2890 struct sk_buff
*skb
, int count
)
2892 struct sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2893 struct rx_bd
*cons_bd
, *prod_bd
;
2896 u16 cons
= rxr
->rx_pg_cons
;
2898 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2900 /* The caller was unable to allocate a new page to replace the
2901 * last one in the frags array, so we need to recycle that page
2902 * and then free the skb.
2906 struct skb_shared_info
*shinfo
;
2908 shinfo
= skb_shinfo(skb
);
2910 page
= shinfo
->frags
[shinfo
->nr_frags
].page
;
2911 shinfo
->frags
[shinfo
->nr_frags
].page
= NULL
;
2913 cons_rx_pg
->page
= page
;
2917 hw_prod
= rxr
->rx_pg_prod
;
2919 for (i
= 0; i
< count
; i
++) {
2920 prod
= RX_PG_RING_IDX(hw_prod
);
2922 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2923 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2924 cons_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2925 prod_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2928 prod_rx_pg
->page
= cons_rx_pg
->page
;
2929 cons_rx_pg
->page
= NULL
;
2930 dma_unmap_addr_set(prod_rx_pg
, mapping
,
2931 dma_unmap_addr(cons_rx_pg
, mapping
));
2933 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2934 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2937 cons
= RX_PG_RING_IDX(NEXT_RX_BD(cons
));
2938 hw_prod
= NEXT_RX_BD(hw_prod
);
2940 rxr
->rx_pg_prod
= hw_prod
;
2941 rxr
->rx_pg_cons
= cons
;
2945 bnx2_reuse_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2946 struct sk_buff
*skb
, u16 cons
, u16 prod
)
2948 struct sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2949 struct rx_bd
*cons_bd
, *prod_bd
;
2951 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
2952 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
2954 dma_sync_single_for_device(&bp
->pdev
->dev
,
2955 dma_unmap_addr(cons_rx_buf
, mapping
),
2956 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2958 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2960 prod_rx_buf
->skb
= skb
;
2961 prod_rx_buf
->desc
= (struct l2_fhdr
*) skb
->data
;
2966 dma_unmap_addr_set(prod_rx_buf
, mapping
,
2967 dma_unmap_addr(cons_rx_buf
, mapping
));
2969 cons_bd
= &rxr
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2970 prod_bd
= &rxr
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2971 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2972 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2976 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, struct sk_buff
*skb
,
2977 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
2981 u16 prod
= ring_idx
& 0xffff;
2983 err
= bnx2_alloc_rx_skb(bp
, rxr
, prod
, GFP_ATOMIC
);
2984 if (unlikely(err
)) {
2985 bnx2_reuse_rx_skb(bp
, rxr
, skb
, (u16
) (ring_idx
>> 16), prod
);
2987 unsigned int raw_len
= len
+ 4;
2988 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
2990 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
2995 skb_reserve(skb
, BNX2_RX_OFFSET
);
2996 dma_unmap_single(&bp
->pdev
->dev
, dma_addr
, bp
->rx_buf_use_size
,
2997 PCI_DMA_FROMDEVICE
);
3003 unsigned int i
, frag_len
, frag_size
, pages
;
3004 struct sw_pg
*rx_pg
;
3005 u16 pg_cons
= rxr
->rx_pg_cons
;
3006 u16 pg_prod
= rxr
->rx_pg_prod
;
3008 frag_size
= len
+ 4 - hdr_len
;
3009 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
3010 skb_put(skb
, hdr_len
);
3012 for (i
= 0; i
< pages
; i
++) {
3013 dma_addr_t mapping_old
;
3015 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
3016 if (unlikely(frag_len
<= 4)) {
3017 unsigned int tail
= 4 - frag_len
;
3019 rxr
->rx_pg_cons
= pg_cons
;
3020 rxr
->rx_pg_prod
= pg_prod
;
3021 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
3028 &skb_shinfo(skb
)->frags
[i
- 1];
3030 skb
->data_len
-= tail
;
3031 skb
->truesize
-= tail
;
3035 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
3037 /* Don't unmap yet. If we're unable to allocate a new
3038 * page, we need to recycle the page and the DMA addr.
3040 mapping_old
= dma_unmap_addr(rx_pg
, mapping
);
3044 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
3047 err
= bnx2_alloc_rx_page(bp
, rxr
,
3048 RX_PG_RING_IDX(pg_prod
),
3050 if (unlikely(err
)) {
3051 rxr
->rx_pg_cons
= pg_cons
;
3052 rxr
->rx_pg_prod
= pg_prod
;
3053 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
3058 dma_unmap_page(&bp
->pdev
->dev
, mapping_old
,
3059 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3061 frag_size
-= frag_len
;
3062 skb
->data_len
+= frag_len
;
3063 skb
->truesize
+= frag_len
;
3064 skb
->len
+= frag_len
;
3066 pg_prod
= NEXT_RX_BD(pg_prod
);
3067 pg_cons
= RX_PG_RING_IDX(NEXT_RX_BD(pg_cons
));
3069 rxr
->rx_pg_prod
= pg_prod
;
3070 rxr
->rx_pg_cons
= pg_cons
;
3076 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
3080 /* Tell compiler that status block fields can change. */
3082 cons
= *bnapi
->hw_rx_cons_ptr
;
3084 if (unlikely((cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
))
3090 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
3092 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3093 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
3094 struct l2_fhdr
*rx_hdr
;
3095 int rx_pkt
= 0, pg_ring_used
= 0;
3097 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3098 sw_cons
= rxr
->rx_cons
;
3099 sw_prod
= rxr
->rx_prod
;
3101 /* Memory barrier necessary as speculative reads of the rx
3102 * buffer can be ahead of the index in the status block
3105 while (sw_cons
!= hw_cons
) {
3106 unsigned int len
, hdr_len
;
3108 struct sw_bd
*rx_buf
, *next_rx_buf
;
3109 struct sk_buff
*skb
;
3110 dma_addr_t dma_addr
;
3112 int hw_vlan __maybe_unused
= 0;
3114 sw_ring_cons
= RX_RING_IDX(sw_cons
);
3115 sw_ring_prod
= RX_RING_IDX(sw_prod
);
3117 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
3122 &rxr
->rx_buf_ring
[RX_RING_IDX(NEXT_RX_BD(sw_cons
))];
3123 prefetch(next_rx_buf
->desc
);
3127 dma_addr
= dma_unmap_addr(rx_buf
, mapping
);
3129 dma_sync_single_for_cpu(&bp
->pdev
->dev
, dma_addr
,
3130 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
3131 PCI_DMA_FROMDEVICE
);
3133 rx_hdr
= rx_buf
->desc
;
3134 len
= rx_hdr
->l2_fhdr_pkt_len
;
3135 status
= rx_hdr
->l2_fhdr_status
;
3138 if (status
& L2_FHDR_STATUS_SPLIT
) {
3139 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
3141 } else if (len
> bp
->rx_jumbo_thresh
) {
3142 hdr_len
= bp
->rx_jumbo_thresh
;
3146 if (unlikely(status
& (L2_FHDR_ERRORS_BAD_CRC
|
3147 L2_FHDR_ERRORS_PHY_DECODE
|
3148 L2_FHDR_ERRORS_ALIGNMENT
|
3149 L2_FHDR_ERRORS_TOO_SHORT
|
3150 L2_FHDR_ERRORS_GIANT_FRAME
))) {
3152 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
3157 pages
= PAGE_ALIGN(len
- hdr_len
) >> PAGE_SHIFT
;
3159 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3166 if (len
<= bp
->rx_copy_thresh
) {
3167 struct sk_buff
*new_skb
;
3169 new_skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
3170 if (new_skb
== NULL
) {
3171 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
3177 skb_copy_from_linear_data_offset(skb
,
3179 new_skb
->data
, len
+ 6);
3180 skb_reserve(new_skb
, 6);
3181 skb_put(new_skb
, len
);
3183 bnx2_reuse_rx_skb(bp
, rxr
, skb
,
3184 sw_ring_cons
, sw_ring_prod
);
3187 } else if (unlikely(bnx2_rx_skb(bp
, rxr
, skb
, len
, hdr_len
,
3188 dma_addr
, (sw_ring_cons
<< 16) | sw_ring_prod
)))
3191 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
3192 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) {
3193 vtag
= rx_hdr
->l2_fhdr_vlan_tag
;
3200 struct vlan_ethhdr
*ve
= (struct vlan_ethhdr
*)
3203 memmove(ve
, skb
->data
+ 4, ETH_ALEN
* 2);
3204 ve
->h_vlan_proto
= htons(ETH_P_8021Q
);
3205 ve
->h_vlan_TCI
= htons(vtag
);
3210 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
3212 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
3213 (ntohs(skb
->protocol
) != 0x8100)) {
3220 skb
->ip_summed
= CHECKSUM_NONE
;
3222 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
3223 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
3225 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
3226 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
3227 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3229 if ((bp
->dev
->features
& NETIF_F_RXHASH
) &&
3230 ((status
& L2_FHDR_STATUS_USE_RXHASH
) ==
3231 L2_FHDR_STATUS_USE_RXHASH
))
3232 skb
->rxhash
= rx_hdr
->l2_fhdr_hash
;
3234 skb_record_rx_queue(skb
, bnapi
- &bp
->bnx2_napi
[0]);
3238 vlan_gro_receive(&bnapi
->napi
, bp
->vlgrp
, vtag
, skb
);
3241 napi_gro_receive(&bnapi
->napi
, skb
);
3246 sw_cons
= NEXT_RX_BD(sw_cons
);
3247 sw_prod
= NEXT_RX_BD(sw_prod
);
3249 if ((rx_pkt
== budget
))
3252 /* Refresh hw_cons to see if there is new work */
3253 if (sw_cons
== hw_cons
) {
3254 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3258 rxr
->rx_cons
= sw_cons
;
3259 rxr
->rx_prod
= sw_prod
;
3262 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3264 REG_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3266 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3274 /* MSI ISR - The only difference between this and the INTx ISR
3275 * is that the MSI interrupt is always serviced.
3278 bnx2_msi(int irq
, void *dev_instance
)
3280 struct bnx2_napi
*bnapi
= dev_instance
;
3281 struct bnx2
*bp
= bnapi
->bp
;
3283 prefetch(bnapi
->status_blk
.msi
);
3284 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3285 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3286 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3288 /* Return here if interrupt is disabled. */
3289 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3292 napi_schedule(&bnapi
->napi
);
3298 bnx2_msi_1shot(int irq
, void *dev_instance
)
3300 struct bnx2_napi
*bnapi
= dev_instance
;
3301 struct bnx2
*bp
= bnapi
->bp
;
3303 prefetch(bnapi
->status_blk
.msi
);
3305 /* Return here if interrupt is disabled. */
3306 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3309 napi_schedule(&bnapi
->napi
);
3315 bnx2_interrupt(int irq
, void *dev_instance
)
3317 struct bnx2_napi
*bnapi
= dev_instance
;
3318 struct bnx2
*bp
= bnapi
->bp
;
3319 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3321 /* When using INTx, it is possible for the interrupt to arrive
3322 * at the CPU before the status block posted prior to the
3323 * interrupt. Reading a register will flush the status block.
3324 * When using MSI, the MSI message will always complete after
3325 * the status block write.
3327 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3328 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3329 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3332 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3333 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3334 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3336 /* Read back to deassert IRQ immediately to avoid too many
3337 * spurious interrupts.
3339 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3341 /* Return here if interrupt is shared and is disabled. */
3342 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3345 if (napi_schedule_prep(&bnapi
->napi
)) {
3346 bnapi
->last_status_idx
= sblk
->status_idx
;
3347 __napi_schedule(&bnapi
->napi
);
3354 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3356 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3357 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3359 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3360 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3365 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3366 STATUS_ATTN_BITS_TIMER_ABORT)
3369 bnx2_has_work(struct bnx2_napi
*bnapi
)
3371 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3373 if (bnx2_has_fast_work(bnapi
))
3377 if (bnapi
->cnic_present
&& (bnapi
->cnic_tag
!= sblk
->status_idx
))
3381 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3382 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3389 bnx2_chk_missed_msi(struct bnx2
*bp
)
3391 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
3394 if (bnx2_has_work(bnapi
)) {
3395 msi_ctrl
= REG_RD(bp
, BNX2_PCICFG_MSI_CONTROL
);
3396 if (!(msi_ctrl
& BNX2_PCICFG_MSI_CONTROL_ENABLE
))
3399 if (bnapi
->last_status_idx
== bp
->idle_chk_status_idx
) {
3400 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
&
3401 ~BNX2_PCICFG_MSI_CONTROL_ENABLE
);
3402 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
);
3403 bnx2_msi(bp
->irq_tbl
[0].vector
, bnapi
);
3407 bp
->idle_chk_status_idx
= bnapi
->last_status_idx
;
3411 static void bnx2_poll_cnic(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3413 struct cnic_ops
*c_ops
;
3415 if (!bnapi
->cnic_present
)
3419 c_ops
= rcu_dereference(bp
->cnic_ops
);
3421 bnapi
->cnic_tag
= c_ops
->cnic_handler(bp
->cnic_data
,
3422 bnapi
->status_blk
.msi
);
3427 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3429 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3430 u32 status_attn_bits
= sblk
->status_attn_bits
;
3431 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3433 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3434 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3436 bnx2_phy_int(bp
, bnapi
);
3438 /* This is needed to take care of transient status
3439 * during link changes.
3441 REG_WR(bp
, BNX2_HC_COMMAND
,
3442 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3443 REG_RD(bp
, BNX2_HC_COMMAND
);
3447 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3448 int work_done
, int budget
)
3450 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3451 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3453 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3454 bnx2_tx_int(bp
, bnapi
, 0);
3456 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3457 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3462 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3464 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3465 struct bnx2
*bp
= bnapi
->bp
;
3467 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3470 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3471 if (unlikely(work_done
>= budget
))
3474 bnapi
->last_status_idx
= sblk
->status_idx
;
3475 /* status idx must be read before checking for more work. */
3477 if (likely(!bnx2_has_fast_work(bnapi
))) {
3479 napi_complete(napi
);
3480 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3481 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3482 bnapi
->last_status_idx
);
3489 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3491 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3492 struct bnx2
*bp
= bnapi
->bp
;
3494 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3497 bnx2_poll_link(bp
, bnapi
);
3499 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3502 bnx2_poll_cnic(bp
, bnapi
);
3505 /* bnapi->last_status_idx is used below to tell the hw how
3506 * much work has been processed, so we must read it before
3507 * checking for more work.
3509 bnapi
->last_status_idx
= sblk
->status_idx
;
3511 if (unlikely(work_done
>= budget
))
3515 if (likely(!bnx2_has_work(bnapi
))) {
3516 napi_complete(napi
);
3517 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3518 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3519 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3520 bnapi
->last_status_idx
);
3523 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3524 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3525 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3526 bnapi
->last_status_idx
);
3528 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3529 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3530 bnapi
->last_status_idx
);
3538 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3539 * from set_multicast.
3542 bnx2_set_rx_mode(struct net_device
*dev
)
3544 struct bnx2
*bp
= netdev_priv(dev
);
3545 u32 rx_mode
, sort_mode
;
3546 struct netdev_hw_addr
*ha
;
3549 if (!netif_running(dev
))
3552 spin_lock_bh(&bp
->phy_lock
);
3554 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3555 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3556 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3558 if (!bp
->vlgrp
&& (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3559 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3561 if (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
)
3562 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3564 if (dev
->flags
& IFF_PROMISC
) {
3565 /* Promiscuous mode. */
3566 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3567 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3568 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3570 else if (dev
->flags
& IFF_ALLMULTI
) {
3571 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3572 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3575 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3578 /* Accept one or more multicast(s). */
3579 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3584 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3586 netdev_for_each_mc_addr(ha
, dev
) {
3587 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
3589 regidx
= (bit
& 0xe0) >> 5;
3591 mc_filter
[regidx
] |= (1 << bit
);
3594 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3595 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3599 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3602 if (netdev_uc_count(dev
) > BNX2_MAX_UNICAST_ADDRESSES
) {
3603 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3604 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3605 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3606 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3607 /* Add all entries into to the match filter list */
3609 netdev_for_each_uc_addr(ha
, dev
) {
3610 bnx2_set_mac_addr(bp
, ha
->addr
,
3611 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3613 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3619 if (rx_mode
!= bp
->rx_mode
) {
3620 bp
->rx_mode
= rx_mode
;
3621 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3624 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3625 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3626 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3628 spin_unlock_bh(&bp
->phy_lock
);
3631 static int __devinit
3632 check_fw_section(const struct firmware
*fw
,
3633 const struct bnx2_fw_file_section
*section
,
3634 u32 alignment
, bool non_empty
)
3636 u32 offset
= be32_to_cpu(section
->offset
);
3637 u32 len
= be32_to_cpu(section
->len
);
3639 if ((offset
== 0 && len
!= 0) || offset
>= fw
->size
|| offset
& 3)
3641 if ((non_empty
&& len
== 0) || len
> fw
->size
- offset
||
3642 len
& (alignment
- 1))
3647 static int __devinit
3648 check_mips_fw_entry(const struct firmware
*fw
,
3649 const struct bnx2_mips_fw_file_entry
*entry
)
3651 if (check_fw_section(fw
, &entry
->text
, 4, true) ||
3652 check_fw_section(fw
, &entry
->data
, 4, false) ||
3653 check_fw_section(fw
, &entry
->rodata
, 4, false))
3658 static int __devinit
3659 bnx2_request_firmware(struct bnx2
*bp
)
3661 const char *mips_fw_file
, *rv2p_fw_file
;
3662 const struct bnx2_mips_fw_file
*mips_fw
;
3663 const struct bnx2_rv2p_fw_file
*rv2p_fw
;
3666 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3667 mips_fw_file
= FW_MIPS_FILE_09
;
3668 if ((CHIP_ID(bp
) == CHIP_ID_5709_A0
) ||
3669 (CHIP_ID(bp
) == CHIP_ID_5709_A1
))
3670 rv2p_fw_file
= FW_RV2P_FILE_09_Ax
;
3672 rv2p_fw_file
= FW_RV2P_FILE_09
;
3674 mips_fw_file
= FW_MIPS_FILE_06
;
3675 rv2p_fw_file
= FW_RV2P_FILE_06
;
3678 rc
= request_firmware(&bp
->mips_firmware
, mips_fw_file
, &bp
->pdev
->dev
);
3680 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file
);
3684 rc
= request_firmware(&bp
->rv2p_firmware
, rv2p_fw_file
, &bp
->pdev
->dev
);
3686 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file
);
3689 mips_fw
= (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3690 rv2p_fw
= (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3691 if (bp
->mips_firmware
->size
< sizeof(*mips_fw
) ||
3692 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->com
) ||
3693 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->cp
) ||
3694 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->rxp
) ||
3695 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->tpat
) ||
3696 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->txp
)) {
3697 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file
);
3700 if (bp
->rv2p_firmware
->size
< sizeof(*rv2p_fw
) ||
3701 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc1
.rv2p
, 8, true) ||
3702 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc2
.rv2p
, 8, true)) {
3703 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file
);
3711 rv2p_fw_fixup(u32 rv2p_proc
, int idx
, u32 loc
, u32 rv2p_code
)
3714 case RV2P_P1_FIXUP_PAGE_SIZE_IDX
:
3715 rv2p_code
&= ~RV2P_BD_PAGE_SIZE_MSK
;
3716 rv2p_code
|= RV2P_BD_PAGE_SIZE
;
3723 load_rv2p_fw(struct bnx2
*bp
, u32 rv2p_proc
,
3724 const struct bnx2_rv2p_fw_file_entry
*fw_entry
)
3726 u32 rv2p_code_len
, file_offset
;
3731 rv2p_code_len
= be32_to_cpu(fw_entry
->rv2p
.len
);
3732 file_offset
= be32_to_cpu(fw_entry
->rv2p
.offset
);
3734 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3736 if (rv2p_proc
== RV2P_PROC1
) {
3737 cmd
= BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3738 addr
= BNX2_RV2P_PROC1_ADDR_CMD
;
3740 cmd
= BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3741 addr
= BNX2_RV2P_PROC2_ADDR_CMD
;
3744 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3745 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, be32_to_cpu(*rv2p_code
));
3747 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, be32_to_cpu(*rv2p_code
));
3750 val
= (i
/ 8) | cmd
;
3751 REG_WR(bp
, addr
, val
);
3754 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3755 for (i
= 0; i
< 8; i
++) {
3758 loc
= be32_to_cpu(fw_entry
->fixup
[i
]);
3759 if (loc
&& ((loc
* 4) < rv2p_code_len
)) {
3760 code
= be32_to_cpu(*(rv2p_code
+ loc
- 1));
3761 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, code
);
3762 code
= be32_to_cpu(*(rv2p_code
+ loc
));
3763 code
= rv2p_fw_fixup(rv2p_proc
, i
, loc
, code
);
3764 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, code
);
3766 val
= (loc
/ 2) | cmd
;
3767 REG_WR(bp
, addr
, val
);
3771 /* Reset the processor, un-stall is done later. */
3772 if (rv2p_proc
== RV2P_PROC1
) {
3773 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3776 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3783 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
,
3784 const struct bnx2_mips_fw_file_entry
*fw_entry
)
3786 u32 addr
, len
, file_offset
;
3792 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3793 val
|= cpu_reg
->mode_value_halt
;
3794 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3795 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3797 /* Load the Text area. */
3798 addr
= be32_to_cpu(fw_entry
->text
.addr
);
3799 len
= be32_to_cpu(fw_entry
->text
.len
);
3800 file_offset
= be32_to_cpu(fw_entry
->text
.offset
);
3801 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3803 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3807 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3808 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3811 /* Load the Data area. */
3812 addr
= be32_to_cpu(fw_entry
->data
.addr
);
3813 len
= be32_to_cpu(fw_entry
->data
.len
);
3814 file_offset
= be32_to_cpu(fw_entry
->data
.offset
);
3815 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3817 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3821 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3822 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3825 /* Load the Read-Only area. */
3826 addr
= be32_to_cpu(fw_entry
->rodata
.addr
);
3827 len
= be32_to_cpu(fw_entry
->rodata
.len
);
3828 file_offset
= be32_to_cpu(fw_entry
->rodata
.offset
);
3829 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3831 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3835 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3836 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3839 /* Clear the pre-fetch instruction. */
3840 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3842 val
= be32_to_cpu(fw_entry
->start_addr
);
3843 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, val
);
3845 /* Start the CPU. */
3846 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3847 val
&= ~cpu_reg
->mode_value_halt
;
3848 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3849 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3855 bnx2_init_cpus(struct bnx2
*bp
)
3857 const struct bnx2_mips_fw_file
*mips_fw
=
3858 (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3859 const struct bnx2_rv2p_fw_file
*rv2p_fw
=
3860 (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3863 /* Initialize the RV2P processor. */
3864 load_rv2p_fw(bp
, RV2P_PROC1
, &rv2p_fw
->proc1
);
3865 load_rv2p_fw(bp
, RV2P_PROC2
, &rv2p_fw
->proc2
);
3867 /* Initialize the RX Processor. */
3868 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, &mips_fw
->rxp
);
3872 /* Initialize the TX Processor. */
3873 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, &mips_fw
->txp
);
3877 /* Initialize the TX Patch-up Processor. */
3878 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, &mips_fw
->tpat
);
3882 /* Initialize the Completion Processor. */
3883 rc
= load_cpu_fw(bp
, &cpu_reg_com
, &mips_fw
->com
);
3887 /* Initialize the Command Processor. */
3888 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, &mips_fw
->cp
);
3895 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
3899 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3905 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3906 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3907 PCI_PM_CTRL_PME_STATUS
);
3909 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3910 /* delay required during transition out of D3hot */
3913 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3914 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
3915 val
&= ~BNX2_EMAC_MODE_MPKT
;
3916 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3918 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3919 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3920 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3931 autoneg
= bp
->autoneg
;
3932 advertising
= bp
->advertising
;
3934 if (bp
->phy_port
== PORT_TP
) {
3935 bp
->autoneg
= AUTONEG_SPEED
;
3936 bp
->advertising
= ADVERTISED_10baseT_Half
|
3937 ADVERTISED_10baseT_Full
|
3938 ADVERTISED_100baseT_Half
|
3939 ADVERTISED_100baseT_Full
|
3943 spin_lock_bh(&bp
->phy_lock
);
3944 bnx2_setup_phy(bp
, bp
->phy_port
);
3945 spin_unlock_bh(&bp
->phy_lock
);
3947 bp
->autoneg
= autoneg
;
3948 bp
->advertising
= advertising
;
3950 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3952 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3954 /* Enable port mode. */
3955 val
&= ~BNX2_EMAC_MODE_PORT
;
3956 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3957 BNX2_EMAC_MODE_ACPI_RCVD
|
3958 BNX2_EMAC_MODE_MPKT
;
3959 if (bp
->phy_port
== PORT_TP
)
3960 val
|= BNX2_EMAC_MODE_PORT_MII
;
3962 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3963 if (bp
->line_speed
== SPEED_2500
)
3964 val
|= BNX2_EMAC_MODE_25G_MODE
;
3967 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3969 /* receive all multicast */
3970 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3971 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3974 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
3975 BNX2_EMAC_RX_MODE_SORT_MODE
);
3977 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
3978 BNX2_RPM_SORT_USER0_MC_EN
;
3979 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3980 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
3981 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
3982 BNX2_RPM_SORT_USER0_ENA
);
3984 /* Need to enable EMAC and RPM for WOL. */
3985 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
3986 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
3987 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
3988 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
3990 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3991 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3992 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3994 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
3997 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
4000 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
))
4001 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
,
4004 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4005 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4006 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
4015 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
4017 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
4020 /* No more memory access after this point until
4021 * device is brought back to D0.
4033 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
4038 /* Request access to the flash interface. */
4039 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
4040 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4041 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
4042 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
4048 if (j
>= NVRAM_TIMEOUT_COUNT
)
4055 bnx2_release_nvram_lock(struct bnx2
*bp
)
4060 /* Relinquish nvram interface. */
4061 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
4063 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4064 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
4065 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
4071 if (j
>= NVRAM_TIMEOUT_COUNT
)
4079 bnx2_enable_nvram_write(struct bnx2
*bp
)
4083 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4084 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
4086 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
4089 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4090 REG_WR(bp
, BNX2_NVM_COMMAND
,
4091 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
4093 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4096 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4097 if (val
& BNX2_NVM_COMMAND_DONE
)
4101 if (j
>= NVRAM_TIMEOUT_COUNT
)
4108 bnx2_disable_nvram_write(struct bnx2
*bp
)
4112 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4113 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
4118 bnx2_enable_nvram_access(struct bnx2
*bp
)
4122 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4123 /* Enable both bits, even on read. */
4124 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4125 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
4129 bnx2_disable_nvram_access(struct bnx2
*bp
)
4133 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4134 /* Disable both bits, even after read. */
4135 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4136 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
4137 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
4141 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
4146 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
4147 /* Buffered flash, no erase needed */
4150 /* Build an erase command */
4151 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
4152 BNX2_NVM_COMMAND_DOIT
;
4154 /* Need to clear DONE bit separately. */
4155 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4157 /* Address of the NVRAM to read from. */
4158 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4160 /* Issue an erase command. */
4161 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4163 /* Wait for completion. */
4164 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4169 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4170 if (val
& BNX2_NVM_COMMAND_DONE
)
4174 if (j
>= NVRAM_TIMEOUT_COUNT
)
4181 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
4186 /* Build the command word. */
4187 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
4189 /* Calculate an offset of a buffered flash, not needed for 5709. */
4190 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4191 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4192 bp
->flash_info
->page_bits
) +
4193 (offset
% bp
->flash_info
->page_size
);
4196 /* Need to clear DONE bit separately. */
4197 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4199 /* Address of the NVRAM to read from. */
4200 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4202 /* Issue a read command. */
4203 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4205 /* Wait for completion. */
4206 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4211 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4212 if (val
& BNX2_NVM_COMMAND_DONE
) {
4213 __be32 v
= cpu_to_be32(REG_RD(bp
, BNX2_NVM_READ
));
4214 memcpy(ret_val
, &v
, 4);
4218 if (j
>= NVRAM_TIMEOUT_COUNT
)
4226 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
4232 /* Build the command word. */
4233 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
4235 /* Calculate an offset of a buffered flash, not needed for 5709. */
4236 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4237 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4238 bp
->flash_info
->page_bits
) +
4239 (offset
% bp
->flash_info
->page_size
);
4242 /* Need to clear DONE bit separately. */
4243 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4245 memcpy(&val32
, val
, 4);
4247 /* Write the data. */
4248 REG_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
4250 /* Address of the NVRAM to write to. */
4251 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4253 /* Issue the write command. */
4254 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4256 /* Wait for completion. */
4257 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4260 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
4263 if (j
>= NVRAM_TIMEOUT_COUNT
)
4270 bnx2_init_nvram(struct bnx2
*bp
)
4273 int j
, entry_count
, rc
= 0;
4274 const struct flash_spec
*flash
;
4276 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4277 bp
->flash_info
= &flash_5709
;
4278 goto get_flash_size
;
4281 /* Determine the selected interface. */
4282 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
4284 entry_count
= ARRAY_SIZE(flash_table
);
4286 if (val
& 0x40000000) {
4288 /* Flash interface has been reconfigured */
4289 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4291 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
4292 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
4293 bp
->flash_info
= flash
;
4300 /* Not yet been reconfigured */
4302 if (val
& (1 << 23))
4303 mask
= FLASH_BACKUP_STRAP_MASK
;
4305 mask
= FLASH_STRAP_MASK
;
4307 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4310 if ((val
& mask
) == (flash
->strapping
& mask
)) {
4311 bp
->flash_info
= flash
;
4313 /* Request access to the flash interface. */
4314 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4317 /* Enable access to flash interface */
4318 bnx2_enable_nvram_access(bp
);
4320 /* Reconfigure the flash interface */
4321 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
4322 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
4323 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
4324 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
4326 /* Disable access to flash interface */
4327 bnx2_disable_nvram_access(bp
);
4328 bnx2_release_nvram_lock(bp
);
4333 } /* if (val & 0x40000000) */
4335 if (j
== entry_count
) {
4336 bp
->flash_info
= NULL
;
4337 pr_alert("Unknown flash/EEPROM type\n");
4342 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4343 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4345 bp
->flash_size
= val
;
4347 bp
->flash_size
= bp
->flash_info
->total_size
;
4353 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4357 u32 cmd_flags
, offset32
, len32
, extra
;
4362 /* Request access to the flash interface. */
4363 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4366 /* Enable access to flash interface */
4367 bnx2_enable_nvram_access(bp
);
4380 pre_len
= 4 - (offset
& 3);
4382 if (pre_len
>= len32
) {
4384 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4385 BNX2_NVM_COMMAND_LAST
;
4388 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4391 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4396 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4403 extra
= 4 - (len32
& 3);
4404 len32
= (len32
+ 4) & ~3;
4411 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4413 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4414 BNX2_NVM_COMMAND_LAST
;
4416 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4418 memcpy(ret_buf
, buf
, 4 - extra
);
4420 else if (len32
> 0) {
4423 /* Read the first word. */
4427 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4429 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4431 /* Advance to the next dword. */
4436 while (len32
> 4 && rc
== 0) {
4437 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4439 /* Advance to the next dword. */
4448 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4449 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4451 memcpy(ret_buf
, buf
, 4 - extra
);
4454 /* Disable access to flash interface */
4455 bnx2_disable_nvram_access(bp
);
4457 bnx2_release_nvram_lock(bp
);
4463 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4466 u32 written
, offset32
, len32
;
4467 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4469 int align_start
, align_end
;
4474 align_start
= align_end
= 0;
4476 if ((align_start
= (offset32
& 3))) {
4478 len32
+= align_start
;
4481 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4486 align_end
= 4 - (len32
& 3);
4488 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4492 if (align_start
|| align_end
) {
4493 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4494 if (align_buf
== NULL
)
4497 memcpy(align_buf
, start
, 4);
4500 memcpy(align_buf
+ len32
- 4, end
, 4);
4502 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4506 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4507 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4508 if (flash_buffer
== NULL
) {
4510 goto nvram_write_end
;
4515 while ((written
< len32
) && (rc
== 0)) {
4516 u32 page_start
, page_end
, data_start
, data_end
;
4517 u32 addr
, cmd_flags
;
4520 /* Find the page_start addr */
4521 page_start
= offset32
+ written
;
4522 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4523 /* Find the page_end addr */
4524 page_end
= page_start
+ bp
->flash_info
->page_size
;
4525 /* Find the data_start addr */
4526 data_start
= (written
== 0) ? offset32
: page_start
;
4527 /* Find the data_end addr */
4528 data_end
= (page_end
> offset32
+ len32
) ?
4529 (offset32
+ len32
) : page_end
;
4531 /* Request access to the flash interface. */
4532 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4533 goto nvram_write_end
;
4535 /* Enable access to flash interface */
4536 bnx2_enable_nvram_access(bp
);
4538 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4539 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4542 /* Read the whole page into the buffer
4543 * (non-buffer flash only) */
4544 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4545 if (j
== (bp
->flash_info
->page_size
- 4)) {
4546 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4548 rc
= bnx2_nvram_read_dword(bp
,
4554 goto nvram_write_end
;
4560 /* Enable writes to flash interface (unlock write-protect) */
4561 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4562 goto nvram_write_end
;
4564 /* Loop to write back the buffer data from page_start to
4567 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4568 /* Erase the page */
4569 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4570 goto nvram_write_end
;
4572 /* Re-enable the write again for the actual write */
4573 bnx2_enable_nvram_write(bp
);
4575 for (addr
= page_start
; addr
< data_start
;
4576 addr
+= 4, i
+= 4) {
4578 rc
= bnx2_nvram_write_dword(bp
, addr
,
4579 &flash_buffer
[i
], cmd_flags
);
4582 goto nvram_write_end
;
4588 /* Loop to write the new data from data_start to data_end */
4589 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4590 if ((addr
== page_end
- 4) ||
4591 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4592 (addr
== data_end
- 4))) {
4594 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4596 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4600 goto nvram_write_end
;
4606 /* Loop to write back the buffer data from data_end
4608 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4609 for (addr
= data_end
; addr
< page_end
;
4610 addr
+= 4, i
+= 4) {
4612 if (addr
== page_end
-4) {
4613 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4615 rc
= bnx2_nvram_write_dword(bp
, addr
,
4616 &flash_buffer
[i
], cmd_flags
);
4619 goto nvram_write_end
;
4625 /* Disable writes to flash interface (lock write-protect) */
4626 bnx2_disable_nvram_write(bp
);
4628 /* Disable access to flash interface */
4629 bnx2_disable_nvram_access(bp
);
4630 bnx2_release_nvram_lock(bp
);
4632 /* Increment written */
4633 written
+= data_end
- data_start
;
4637 kfree(flash_buffer
);
4643 bnx2_init_fw_cap(struct bnx2
*bp
)
4647 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4648 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4650 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4651 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4653 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4654 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4657 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4658 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4659 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4662 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4663 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4666 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4668 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4669 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4670 bp
->phy_port
= PORT_FIBRE
;
4672 bp
->phy_port
= PORT_TP
;
4674 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4675 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4678 if (netif_running(bp
->dev
) && sig
)
4679 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4683 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4685 REG_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4687 REG_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4688 REG_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4692 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4698 /* Wait for the current PCI transaction to complete before
4699 * issuing a reset. */
4700 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4701 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4702 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4703 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4704 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4705 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4708 /* Wait for the firmware to tell us it is ok to issue a reset. */
4709 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4711 /* Deposit a driver reset signature so the firmware knows that
4712 * this is a soft reset. */
4713 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4714 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4716 /* Do a dummy read to force the chip to complete all current transaction
4717 * before we issue a reset. */
4718 val
= REG_RD(bp
, BNX2_MISC_ID
);
4720 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4721 REG_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4722 REG_RD(bp
, BNX2_MISC_COMMAND
);
4725 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4726 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4728 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, val
);
4731 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4732 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4733 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4736 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4738 /* Reading back any register after chip reset will hang the
4739 * bus on 5706 A0 and A1. The msleep below provides plenty
4740 * of margin for write posting.
4742 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4743 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
4746 /* Reset takes approximate 30 usec */
4747 for (i
= 0; i
< 10; i
++) {
4748 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4749 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4750 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4755 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4756 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4757 pr_err("Chip reset did not complete\n");
4762 /* Make sure byte swapping is properly configured. */
4763 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4764 if (val
!= 0x01020304) {
4765 pr_err("Chip not in correct endian mode\n");
4769 /* Wait for the firmware to finish its initialization. */
4770 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4774 spin_lock_bh(&bp
->phy_lock
);
4775 old_port
= bp
->phy_port
;
4776 bnx2_init_fw_cap(bp
);
4777 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4778 old_port
!= bp
->phy_port
)
4779 bnx2_set_default_remote_link(bp
);
4780 spin_unlock_bh(&bp
->phy_lock
);
4782 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4783 /* Adjust the voltage regular to two steps lower. The default
4784 * of this register is 0x0000000e. */
4785 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4787 /* Remove bad rbuf memory from the free pool. */
4788 rc
= bnx2_alloc_bad_rbuf(bp
);
4791 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4792 bnx2_setup_msix_tbl(bp
);
4793 /* Prevent MSIX table reads and write from timing out */
4794 REG_WR(bp
, BNX2_MISC_ECO_HW_CTL
,
4795 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN
);
4802 bnx2_init_chip(struct bnx2
*bp
)
4807 /* Make sure the interrupt is not active. */
4808 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4810 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4811 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4813 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4815 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4816 DMA_READ_CHANS
<< 12 |
4817 DMA_WRITE_CHANS
<< 16;
4819 val
|= (0x2 << 20) | (1 << 11);
4821 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4824 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
4825 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& BNX2_FLAG_PCIX
))
4826 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4828 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
4830 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4831 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
4832 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4833 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4836 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4839 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4841 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4842 val16
& ~PCI_X_CMD_ERO
);
4845 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4846 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4847 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4848 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4850 /* Initialize context mapping and zero out the quick contexts. The
4851 * context block must have already been enabled. */
4852 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4853 rc
= bnx2_init_5709_context(bp
);
4857 bnx2_init_context(bp
);
4859 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4862 bnx2_init_nvram(bp
);
4864 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4866 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
4867 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4868 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4869 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4870 val
|= BNX2_MQ_CONFIG_BIN_MQ_MODE
;
4871 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
4872 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4875 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
4877 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4878 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4879 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4881 val
= (BCM_PAGE_BITS
- 8) << 24;
4882 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4884 /* Configure page size. */
4885 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
4886 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4887 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
4888 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4890 val
= bp
->mac_addr
[0] +
4891 (bp
->mac_addr
[1] << 8) +
4892 (bp
->mac_addr
[2] << 16) +
4894 (bp
->mac_addr
[4] << 8) +
4895 (bp
->mac_addr
[5] << 16);
4896 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4898 /* Program the MTU. Also include 4 bytes for CRC32. */
4900 val
= mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4901 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4902 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4903 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4908 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG
, BNX2_RBUF_CONFIG_VAL(mtu
));
4909 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG2
, BNX2_RBUF_CONFIG2_VAL(mtu
));
4910 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG3
, BNX2_RBUF_CONFIG3_VAL(mtu
));
4912 memset(bp
->bnx2_napi
[0].status_blk
.msi
, 0, bp
->status_stats_size
);
4913 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
4914 bp
->bnx2_napi
[i
].last_status_idx
= 0;
4916 bp
->idle_chk_status_idx
= 0xffff;
4918 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
4920 /* Set up how to generate a link change interrupt. */
4921 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
4923 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
4924 (u64
) bp
->status_blk_mapping
& 0xffffffff);
4925 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
4927 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
4928 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
4929 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
4930 (u64
) bp
->stats_blk_mapping
>> 32);
4932 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
4933 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
4935 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
4936 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
4938 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
4939 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
4941 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4943 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4945 REG_WR(bp
, BNX2_HC_COM_TICKS
,
4946 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
4948 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
4949 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
4951 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
)
4952 REG_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
4954 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
4955 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
4957 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
4958 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
4960 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
4961 BNX2_HC_CONFIG_COLLECT_STATS
;
4964 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4965 REG_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
4966 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
4968 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
4971 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
4972 val
|= BNX2_HC_CONFIG_ONE_SHOT
| BNX2_HC_CONFIG_USE_INT_PARAM
;
4974 REG_WR(bp
, BNX2_HC_CONFIG
, val
);
4976 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
4977 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
4978 BNX2_HC_SB_CONFIG_1
;
4981 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
4982 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
4983 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
4985 REG_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
4986 (bp
->tx_quick_cons_trip_int
<< 16) |
4987 bp
->tx_quick_cons_trip
);
4989 REG_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
4990 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4992 REG_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
4993 (bp
->rx_quick_cons_trip_int
<< 16) |
4994 bp
->rx_quick_cons_trip
);
4996 REG_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
4997 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
5000 /* Clear internal stats counters. */
5001 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
5003 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
5005 /* Initialize the receive filter. */
5006 bnx2_set_rx_mode(bp
->dev
);
5008 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5009 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
5010 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
5011 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
5013 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
5016 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
5017 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
5021 bp
->hc_cmd
= REG_RD(bp
, BNX2_HC_COMMAND
);
5027 bnx2_clear_ring_states(struct bnx2
*bp
)
5029 struct bnx2_napi
*bnapi
;
5030 struct bnx2_tx_ring_info
*txr
;
5031 struct bnx2_rx_ring_info
*rxr
;
5034 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5035 bnapi
= &bp
->bnx2_napi
[i
];
5036 txr
= &bnapi
->tx_ring
;
5037 rxr
= &bnapi
->rx_ring
;
5040 txr
->hw_tx_cons
= 0;
5041 rxr
->rx_prod_bseq
= 0;
5044 rxr
->rx_pg_prod
= 0;
5045 rxr
->rx_pg_cons
= 0;
5050 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
5052 u32 val
, offset0
, offset1
, offset2
, offset3
;
5053 u32 cid_addr
= GET_CID_ADDR(cid
);
5055 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5056 offset0
= BNX2_L2CTX_TYPE_XI
;
5057 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
5058 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
5059 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
5061 offset0
= BNX2_L2CTX_TYPE
;
5062 offset1
= BNX2_L2CTX_CMD_TYPE
;
5063 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
5064 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
5066 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
5067 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
5069 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
5070 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
5072 val
= (u64
) txr
->tx_desc_mapping
>> 32;
5073 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
5075 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5076 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
5080 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
5084 struct bnx2_napi
*bnapi
;
5085 struct bnx2_tx_ring_info
*txr
;
5087 bnapi
= &bp
->bnx2_napi
[ring_num
];
5088 txr
= &bnapi
->tx_ring
;
5093 cid
= TX_TSS_CID
+ ring_num
- 1;
5095 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
5097 txbd
= &txr
->tx_desc_ring
[MAX_TX_DESC_CNT
];
5099 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
5100 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5103 txr
->tx_prod_bseq
= 0;
5105 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
5106 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
5108 bnx2_init_tx_context(bp
, cid
, txr
);
5112 bnx2_init_rxbd_rings(struct rx_bd
*rx_ring
[], dma_addr_t dma
[], u32 buf_size
,
5118 for (i
= 0; i
< num_rings
; i
++) {
5121 rxbd
= &rx_ring
[i
][0];
5122 for (j
= 0; j
< MAX_RX_DESC_CNT
; j
++, rxbd
++) {
5123 rxbd
->rx_bd_len
= buf_size
;
5124 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
5126 if (i
== (num_rings
- 1))
5130 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
5131 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
5136 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
5139 u16 prod
, ring_prod
;
5140 u32 cid
, rx_cid_addr
, val
;
5141 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
5142 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5147 cid
= RX_RSS_CID
+ ring_num
- 1;
5149 rx_cid_addr
= GET_CID_ADDR(cid
);
5151 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
5152 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
5154 bnx2_init_rx_context(bp
, cid
);
5156 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5157 val
= REG_RD(bp
, BNX2_MQ_MAP_L2_5
);
5158 REG_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
5161 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
5162 if (bp
->rx_pg_ring_size
) {
5163 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
5164 rxr
->rx_pg_desc_mapping
,
5165 PAGE_SIZE
, bp
->rx_max_pg_ring
);
5166 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
5167 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
5168 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
5169 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
5171 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
5172 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
5174 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
5175 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
5177 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5178 REG_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
5181 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
5182 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
5184 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
5185 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
5187 ring_prod
= prod
= rxr
->rx_pg_prod
;
5188 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
5189 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5190 netdev_warn(bp
->dev
, "init'ed rx page ring %d with %d/%d pages only\n",
5191 ring_num
, i
, bp
->rx_pg_ring_size
);
5194 prod
= NEXT_RX_BD(prod
);
5195 ring_prod
= RX_PG_RING_IDX(prod
);
5197 rxr
->rx_pg_prod
= prod
;
5199 ring_prod
= prod
= rxr
->rx_prod
;
5200 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
5201 if (bnx2_alloc_rx_skb(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5202 netdev_warn(bp
->dev
, "init'ed rx ring %d with %d/%d skbs only\n",
5203 ring_num
, i
, bp
->rx_ring_size
);
5206 prod
= NEXT_RX_BD(prod
);
5207 ring_prod
= RX_RING_IDX(prod
);
5209 rxr
->rx_prod
= prod
;
5211 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
5212 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
5213 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
5215 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
5216 REG_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
5218 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
5222 bnx2_init_all_rings(struct bnx2
*bp
)
5227 bnx2_clear_ring_states(bp
);
5229 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
5230 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
5231 bnx2_init_tx_ring(bp
, i
);
5233 if (bp
->num_tx_rings
> 1)
5234 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
5237 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
5238 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
5240 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
5241 bnx2_init_rx_ring(bp
, i
);
5243 if (bp
->num_rx_rings
> 1) {
5245 u8
*tbl
= (u8
*) &tbl_32
;
5247 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
,
5248 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
);
5250 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
5251 tbl
[i
% 4] = i
% (bp
->num_rx_rings
- 1);
5254 BNX2_RXP_SCRATCH_RSS_TBL
+ i
,
5255 cpu_to_be32(tbl_32
));
5258 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
5259 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
5261 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
5266 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
5268 u32 max
, num_rings
= 1;
5270 while (ring_size
> MAX_RX_DESC_CNT
) {
5271 ring_size
-= MAX_RX_DESC_CNT
;
5274 /* round to next power of 2 */
5276 while ((max
& num_rings
) == 0)
5279 if (num_rings
!= max
)
5286 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
5288 u32 rx_size
, rx_space
, jumbo_size
;
5290 /* 8 for CRC and VLAN */
5291 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
5293 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
5294 sizeof(struct skb_shared_info
);
5296 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
5297 bp
->rx_pg_ring_size
= 0;
5298 bp
->rx_max_pg_ring
= 0;
5299 bp
->rx_max_pg_ring_idx
= 0;
5300 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
5301 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
5303 jumbo_size
= size
* pages
;
5304 if (jumbo_size
> MAX_TOTAL_RX_PG_DESC_CNT
)
5305 jumbo_size
= MAX_TOTAL_RX_PG_DESC_CNT
;
5307 bp
->rx_pg_ring_size
= jumbo_size
;
5308 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
5310 bp
->rx_max_pg_ring_idx
= (bp
->rx_max_pg_ring
* RX_DESC_CNT
) - 1;
5311 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
5312 bp
->rx_copy_thresh
= 0;
5315 bp
->rx_buf_use_size
= rx_size
;
5317 bp
->rx_buf_size
= bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
;
5318 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
5319 bp
->rx_ring_size
= size
;
5320 bp
->rx_max_ring
= bnx2_find_max_ring(size
, MAX_RX_RINGS
);
5321 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* RX_DESC_CNT
) - 1;
5325 bnx2_free_tx_skbs(struct bnx2
*bp
)
5329 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
5330 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5331 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5334 if (txr
->tx_buf_ring
== NULL
)
5337 for (j
= 0; j
< TX_DESC_CNT
; ) {
5338 struct sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
5339 struct sk_buff
*skb
= tx_buf
->skb
;
5347 dma_unmap_single(&bp
->pdev
->dev
,
5348 dma_unmap_addr(tx_buf
, mapping
),
5354 last
= tx_buf
->nr_frags
;
5356 for (k
= 0; k
< last
; k
++, j
++) {
5357 tx_buf
= &txr
->tx_buf_ring
[TX_RING_IDX(j
)];
5358 dma_unmap_page(&bp
->pdev
->dev
,
5359 dma_unmap_addr(tx_buf
, mapping
),
5360 skb_shinfo(skb
)->frags
[k
].size
,
5369 bnx2_free_rx_skbs(struct bnx2
*bp
)
5373 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5374 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5375 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5378 if (rxr
->rx_buf_ring
== NULL
)
5381 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5382 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5383 struct sk_buff
*skb
= rx_buf
->skb
;
5388 dma_unmap_single(&bp
->pdev
->dev
,
5389 dma_unmap_addr(rx_buf
, mapping
),
5390 bp
->rx_buf_use_size
,
5391 PCI_DMA_FROMDEVICE
);
5397 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5398 bnx2_free_rx_page(bp
, rxr
, j
);
5403 bnx2_free_skbs(struct bnx2
*bp
)
5405 bnx2_free_tx_skbs(bp
);
5406 bnx2_free_rx_skbs(bp
);
5410 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5414 rc
= bnx2_reset_chip(bp
, reset_code
);
5419 if ((rc
= bnx2_init_chip(bp
)) != 0)
5422 bnx2_init_all_rings(bp
);
5427 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5431 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5434 spin_lock_bh(&bp
->phy_lock
);
5435 bnx2_init_phy(bp
, reset_phy
);
5437 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5438 bnx2_remote_phy_event(bp
);
5439 spin_unlock_bh(&bp
->phy_lock
);
5444 bnx2_shutdown_chip(struct bnx2
*bp
)
5448 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5449 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5451 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5453 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5455 return bnx2_reset_chip(bp
, reset_code
);
5459 bnx2_test_registers(struct bnx2
*bp
)
5463 static const struct {
5466 #define BNX2_FL_NOT_5709 1
5470 { 0x006c, 0, 0x00000000, 0x0000003f },
5471 { 0x0090, 0, 0xffffffff, 0x00000000 },
5472 { 0x0094, 0, 0x00000000, 0x00000000 },
5474 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5475 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5476 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5477 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5478 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5479 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5480 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5481 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5482 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5484 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5485 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5486 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5487 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5488 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5489 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5491 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5492 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5493 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5495 { 0x1000, 0, 0x00000000, 0x00000001 },
5496 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5498 { 0x1408, 0, 0x01c00800, 0x00000000 },
5499 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5500 { 0x14a8, 0, 0x00000000, 0x000001ff },
5501 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5502 { 0x14b0, 0, 0x00000002, 0x00000001 },
5503 { 0x14b8, 0, 0x00000000, 0x00000000 },
5504 { 0x14c0, 0, 0x00000000, 0x00000009 },
5505 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5506 { 0x14cc, 0, 0x00000000, 0x00000001 },
5507 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5509 { 0x1800, 0, 0x00000000, 0x00000001 },
5510 { 0x1804, 0, 0x00000000, 0x00000003 },
5512 { 0x2800, 0, 0x00000000, 0x00000001 },
5513 { 0x2804, 0, 0x00000000, 0x00003f01 },
5514 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5515 { 0x2810, 0, 0xffff0000, 0x00000000 },
5516 { 0x2814, 0, 0xffff0000, 0x00000000 },
5517 { 0x2818, 0, 0xffff0000, 0x00000000 },
5518 { 0x281c, 0, 0xffff0000, 0x00000000 },
5519 { 0x2834, 0, 0xffffffff, 0x00000000 },
5520 { 0x2840, 0, 0x00000000, 0xffffffff },
5521 { 0x2844, 0, 0x00000000, 0xffffffff },
5522 { 0x2848, 0, 0xffffffff, 0x00000000 },
5523 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5525 { 0x2c00, 0, 0x00000000, 0x00000011 },
5526 { 0x2c04, 0, 0x00000000, 0x00030007 },
5528 { 0x3c00, 0, 0x00000000, 0x00000001 },
5529 { 0x3c04, 0, 0x00000000, 0x00070000 },
5530 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5531 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5532 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5533 { 0x3c14, 0, 0x00000000, 0xffffffff },
5534 { 0x3c18, 0, 0x00000000, 0xffffffff },
5535 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5536 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5538 { 0x5004, 0, 0x00000000, 0x0000007f },
5539 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5541 { 0x5c00, 0, 0x00000000, 0x00000001 },
5542 { 0x5c04, 0, 0x00000000, 0x0003000f },
5543 { 0x5c08, 0, 0x00000003, 0x00000000 },
5544 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5545 { 0x5c10, 0, 0x00000000, 0xffffffff },
5546 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5547 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5548 { 0x5c88, 0, 0x00000000, 0x00077373 },
5549 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5551 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5552 { 0x680c, 0, 0xffffffff, 0x00000000 },
5553 { 0x6810, 0, 0xffffffff, 0x00000000 },
5554 { 0x6814, 0, 0xffffffff, 0x00000000 },
5555 { 0x6818, 0, 0xffffffff, 0x00000000 },
5556 { 0x681c, 0, 0xffffffff, 0x00000000 },
5557 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5558 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5559 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5560 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5561 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5562 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5563 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5564 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5565 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5566 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5567 { 0x684c, 0, 0xffffffff, 0x00000000 },
5568 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5569 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5570 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5571 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5572 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5573 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5575 { 0xffff, 0, 0x00000000, 0x00000000 },
5580 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5583 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5584 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5585 u16 flags
= reg_tbl
[i
].flags
;
5587 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5590 offset
= (u32
) reg_tbl
[i
].offset
;
5591 rw_mask
= reg_tbl
[i
].rw_mask
;
5592 ro_mask
= reg_tbl
[i
].ro_mask
;
5594 save_val
= readl(bp
->regview
+ offset
);
5596 writel(0, bp
->regview
+ offset
);
5598 val
= readl(bp
->regview
+ offset
);
5599 if ((val
& rw_mask
) != 0) {
5603 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5607 writel(0xffffffff, bp
->regview
+ offset
);
5609 val
= readl(bp
->regview
+ offset
);
5610 if ((val
& rw_mask
) != rw_mask
) {
5614 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5618 writel(save_val
, bp
->regview
+ offset
);
5622 writel(save_val
, bp
->regview
+ offset
);
5630 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5632 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5633 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5636 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5639 for (offset
= 0; offset
< size
; offset
+= 4) {
5641 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5643 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5653 bnx2_test_memory(struct bnx2
*bp
)
5657 static struct mem_entry
{
5660 } mem_tbl_5706
[] = {
5661 { 0x60000, 0x4000 },
5662 { 0xa0000, 0x3000 },
5663 { 0xe0000, 0x4000 },
5664 { 0x120000, 0x4000 },
5665 { 0x1a0000, 0x4000 },
5666 { 0x160000, 0x4000 },
5670 { 0x60000, 0x4000 },
5671 { 0xa0000, 0x3000 },
5672 { 0xe0000, 0x4000 },
5673 { 0x120000, 0x4000 },
5674 { 0x1a0000, 0x4000 },
5677 struct mem_entry
*mem_tbl
;
5679 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5680 mem_tbl
= mem_tbl_5709
;
5682 mem_tbl
= mem_tbl_5706
;
5684 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5685 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5686 mem_tbl
[i
].len
)) != 0) {
5694 #define BNX2_MAC_LOOPBACK 0
5695 #define BNX2_PHY_LOOPBACK 1
5698 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5700 unsigned int pkt_size
, num_pkts
, i
;
5701 struct sk_buff
*skb
, *rx_skb
;
5702 unsigned char *packet
;
5703 u16 rx_start_idx
, rx_idx
;
5706 struct sw_bd
*rx_buf
;
5707 struct l2_fhdr
*rx_hdr
;
5709 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5710 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5711 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5715 txr
= &tx_napi
->tx_ring
;
5716 rxr
= &bnapi
->rx_ring
;
5717 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5718 bp
->loopback
= MAC_LOOPBACK
;
5719 bnx2_set_mac_loopback(bp
);
5721 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5722 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5725 bp
->loopback
= PHY_LOOPBACK
;
5726 bnx2_set_phy_loopback(bp
);
5731 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5732 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5735 packet
= skb_put(skb
, pkt_size
);
5736 memcpy(packet
, bp
->dev
->dev_addr
, 6);
5737 memset(packet
+ 6, 0x0, 8);
5738 for (i
= 14; i
< pkt_size
; i
++)
5739 packet
[i
] = (unsigned char) (i
& 0xff);
5741 map
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, pkt_size
,
5743 if (dma_mapping_error(&bp
->pdev
->dev
, map
)) {
5748 REG_WR(bp
, BNX2_HC_COMMAND
,
5749 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5751 REG_RD(bp
, BNX2_HC_COMMAND
);
5754 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5758 txbd
= &txr
->tx_desc_ring
[TX_RING_IDX(txr
->tx_prod
)];
5760 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5761 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5762 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5763 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5766 txr
->tx_prod
= NEXT_TX_BD(txr
->tx_prod
);
5767 txr
->tx_prod_bseq
+= pkt_size
;
5769 REG_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5770 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5774 REG_WR(bp
, BNX2_HC_COMMAND
,
5775 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5777 REG_RD(bp
, BNX2_HC_COMMAND
);
5781 dma_unmap_single(&bp
->pdev
->dev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
5784 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5785 goto loopback_test_done
;
5787 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5788 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5789 goto loopback_test_done
;
5792 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5793 rx_skb
= rx_buf
->skb
;
5795 rx_hdr
= rx_buf
->desc
;
5796 skb_reserve(rx_skb
, BNX2_RX_OFFSET
);
5798 dma_sync_single_for_cpu(&bp
->pdev
->dev
,
5799 dma_unmap_addr(rx_buf
, mapping
),
5800 bp
->rx_buf_size
, PCI_DMA_FROMDEVICE
);
5802 if (rx_hdr
->l2_fhdr_status
&
5803 (L2_FHDR_ERRORS_BAD_CRC
|
5804 L2_FHDR_ERRORS_PHY_DECODE
|
5805 L2_FHDR_ERRORS_ALIGNMENT
|
5806 L2_FHDR_ERRORS_TOO_SHORT
|
5807 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5809 goto loopback_test_done
;
5812 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5813 goto loopback_test_done
;
5816 for (i
= 14; i
< pkt_size
; i
++) {
5817 if (*(rx_skb
->data
+ i
) != (unsigned char) (i
& 0xff)) {
5818 goto loopback_test_done
;
5829 #define BNX2_MAC_LOOPBACK_FAILED 1
5830 #define BNX2_PHY_LOOPBACK_FAILED 2
5831 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5832 BNX2_PHY_LOOPBACK_FAILED)
5835 bnx2_test_loopback(struct bnx2
*bp
)
5839 if (!netif_running(bp
->dev
))
5840 return BNX2_LOOPBACK_FAILED
;
5842 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5843 spin_lock_bh(&bp
->phy_lock
);
5844 bnx2_init_phy(bp
, 1);
5845 spin_unlock_bh(&bp
->phy_lock
);
5846 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5847 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5848 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5849 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5853 #define NVRAM_SIZE 0x200
5854 #define CRC32_RESIDUAL 0xdebb20e3
5857 bnx2_test_nvram(struct bnx2
*bp
)
5859 __be32 buf
[NVRAM_SIZE
/ 4];
5860 u8
*data
= (u8
*) buf
;
5864 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5865 goto test_nvram_done
;
5867 magic
= be32_to_cpu(buf
[0]);
5868 if (magic
!= 0x669955aa) {
5870 goto test_nvram_done
;
5873 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5874 goto test_nvram_done
;
5876 csum
= ether_crc_le(0x100, data
);
5877 if (csum
!= CRC32_RESIDUAL
) {
5879 goto test_nvram_done
;
5882 csum
= ether_crc_le(0x100, data
+ 0x100);
5883 if (csum
!= CRC32_RESIDUAL
) {
5892 bnx2_test_link(struct bnx2
*bp
)
5896 if (!netif_running(bp
->dev
))
5899 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
5904 spin_lock_bh(&bp
->phy_lock
);
5905 bnx2_enable_bmsr1(bp
);
5906 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5907 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5908 bnx2_disable_bmsr1(bp
);
5909 spin_unlock_bh(&bp
->phy_lock
);
5911 if (bmsr
& BMSR_LSTATUS
) {
5918 bnx2_test_intr(struct bnx2
*bp
)
5923 if (!netif_running(bp
->dev
))
5926 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
5928 /* This register is not touched during run-time. */
5929 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
5930 REG_RD(bp
, BNX2_HC_COMMAND
);
5932 for (i
= 0; i
< 10; i
++) {
5933 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
5939 msleep_interruptible(10);
5947 /* Determining link for parallel detection. */
5949 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
5951 u32 mode_ctl
, an_dbg
, exp
;
5953 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
5956 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
5957 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
5959 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
5962 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5963 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5964 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5966 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
5969 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
5970 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5971 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5973 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
5980 bnx2_5706_serdes_timer(struct bnx2
*bp
)
5984 spin_lock(&bp
->phy_lock
);
5985 if (bp
->serdes_an_pending
) {
5986 bp
->serdes_an_pending
--;
5988 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5991 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5993 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5995 if (bmcr
& BMCR_ANENABLE
) {
5996 if (bnx2_5706_serdes_has_link(bp
)) {
5997 bmcr
&= ~BMCR_ANENABLE
;
5998 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
5999 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
6000 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
6004 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
6005 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
6008 bnx2_write_phy(bp
, 0x17, 0x0f01);
6009 bnx2_read_phy(bp
, 0x15, &phy2
);
6013 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6014 bmcr
|= BMCR_ANENABLE
;
6015 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
6017 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
6020 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6025 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
6026 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6027 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6029 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
6030 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
6031 bnx2_5706s_force_link_dn(bp
, 1);
6032 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
6035 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
6038 spin_unlock(&bp
->phy_lock
);
6042 bnx2_5708_serdes_timer(struct bnx2
*bp
)
6044 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
6047 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
6048 bp
->serdes_an_pending
= 0;
6052 spin_lock(&bp
->phy_lock
);
6053 if (bp
->serdes_an_pending
)
6054 bp
->serdes_an_pending
--;
6055 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6058 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6059 if (bmcr
& BMCR_ANENABLE
) {
6060 bnx2_enable_forced_2g5(bp
);
6061 bp
->current_interval
= BNX2_SERDES_FORCED_TIMEOUT
;
6063 bnx2_disable_forced_2g5(bp
);
6064 bp
->serdes_an_pending
= 2;
6065 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6069 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6071 spin_unlock(&bp
->phy_lock
);
6075 bnx2_timer(unsigned long data
)
6077 struct bnx2
*bp
= (struct bnx2
*) data
;
6079 if (!netif_running(bp
->dev
))
6082 if (atomic_read(&bp
->intr_sem
) != 0)
6083 goto bnx2_restart_timer
;
6085 if ((bp
->flags
& (BNX2_FLAG_USING_MSI
| BNX2_FLAG_ONE_SHOT_MSI
)) ==
6086 BNX2_FLAG_USING_MSI
)
6087 bnx2_chk_missed_msi(bp
);
6089 bnx2_send_heart_beat(bp
);
6091 bp
->stats_blk
->stat_FwRxDrop
=
6092 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
6094 /* workaround occasional corrupted counters */
6095 if ((bp
->flags
& BNX2_FLAG_BROKEN_STATS
) && bp
->stats_ticks
)
6096 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
6097 BNX2_HC_COMMAND_STATS_NOW
);
6099 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6100 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
6101 bnx2_5706_serdes_timer(bp
);
6103 bnx2_5708_serdes_timer(bp
);
6107 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6111 bnx2_request_irq(struct bnx2
*bp
)
6113 unsigned long flags
;
6114 struct bnx2_irq
*irq
;
6117 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
6120 flags
= IRQF_SHARED
;
6122 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6123 irq
= &bp
->irq_tbl
[i
];
6124 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
6134 bnx2_free_irq(struct bnx2
*bp
)
6136 struct bnx2_irq
*irq
;
6139 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6140 irq
= &bp
->irq_tbl
[i
];
6142 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
6145 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6146 pci_disable_msi(bp
->pdev
);
6147 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6148 pci_disable_msix(bp
->pdev
);
6150 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
6154 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
6156 int i
, total_vecs
, rc
;
6157 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
6158 struct net_device
*dev
= bp
->dev
;
6159 const int len
= sizeof(bp
->irq_tbl
[0].name
);
6161 bnx2_setup_msix_tbl(bp
);
6162 REG_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
6163 REG_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
6164 REG_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
6166 /* Need to flush the previous three writes to ensure MSI-X
6167 * is setup properly */
6168 REG_RD(bp
, BNX2_PCI_MSIX_CONTROL
);
6170 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6171 msix_ent
[i
].entry
= i
;
6172 msix_ent
[i
].vector
= 0;
6175 total_vecs
= msix_vecs
;
6180 while (total_vecs
>= BNX2_MIN_MSIX_VEC
) {
6181 rc
= pci_enable_msix(bp
->pdev
, msix_ent
, total_vecs
);
6191 msix_vecs
= total_vecs
;
6195 bp
->irq_nvecs
= msix_vecs
;
6196 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
6197 for (i
= 0; i
< total_vecs
; i
++) {
6198 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
6199 snprintf(bp
->irq_tbl
[i
].name
, len
, "%s-%d", dev
->name
, i
);
6200 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
6205 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
6207 int cpus
= num_online_cpus();
6208 int msix_vecs
= min(cpus
+ 1, RX_MAX_RINGS
);
6210 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
6211 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
6213 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6215 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
)
6216 bnx2_enable_msix(bp
, msix_vecs
);
6218 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
6219 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
6220 if (pci_enable_msi(bp
->pdev
) == 0) {
6221 bp
->flags
|= BNX2_FLAG_USING_MSI
;
6222 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
6223 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
6224 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
6226 bp
->irq_tbl
[0].handler
= bnx2_msi
;
6228 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6232 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
6233 bp
->dev
->real_num_tx_queues
= bp
->num_tx_rings
;
6235 bp
->num_rx_rings
= bp
->irq_nvecs
;
6238 /* Called with rtnl_lock */
6240 bnx2_open(struct net_device
*dev
)
6242 struct bnx2
*bp
= netdev_priv(dev
);
6245 netif_carrier_off(dev
);
6247 bnx2_set_power_state(bp
, PCI_D0
);
6248 bnx2_disable_int(bp
);
6250 bnx2_setup_int_mode(bp
, disable_msi
);
6252 bnx2_napi_enable(bp
);
6253 rc
= bnx2_alloc_mem(bp
);
6257 rc
= bnx2_request_irq(bp
);
6261 rc
= bnx2_init_nic(bp
, 1);
6265 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6267 atomic_set(&bp
->intr_sem
, 0);
6269 memset(bp
->temp_stats_blk
, 0, sizeof(struct statistics_block
));
6271 bnx2_enable_int(bp
);
6273 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
6274 /* Test MSI to make sure it is working
6275 * If MSI test fails, go back to INTx mode
6277 if (bnx2_test_intr(bp
) != 0) {
6278 netdev_warn(bp
->dev
, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6280 bnx2_disable_int(bp
);
6283 bnx2_setup_int_mode(bp
, 1);
6285 rc
= bnx2_init_nic(bp
, 0);
6288 rc
= bnx2_request_irq(bp
);
6291 del_timer_sync(&bp
->timer
);
6294 bnx2_enable_int(bp
);
6297 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6298 netdev_info(dev
, "using MSI\n");
6299 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6300 netdev_info(dev
, "using MSIX\n");
6302 netif_tx_start_all_queues(dev
);
6307 bnx2_napi_disable(bp
);
6316 bnx2_reset_task(struct work_struct
*work
)
6318 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
6321 if (!netif_running(bp
->dev
)) {
6326 bnx2_netif_stop(bp
, true);
6328 bnx2_init_nic(bp
, 1);
6330 atomic_set(&bp
->intr_sem
, 1);
6331 bnx2_netif_start(bp
, true);
6336 bnx2_dump_state(struct bnx2
*bp
)
6338 struct net_device
*dev
= bp
->dev
;
6339 u32 mcp_p0
, mcp_p1
, val1
, val2
;
6341 pci_read_config_dword(bp
->pdev
, PCI_COMMAND
, &val1
);
6342 netdev_err(dev
, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
6343 atomic_read(&bp
->intr_sem
), val1
);
6344 pci_read_config_dword(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &val1
);
6345 pci_read_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, &val2
);
6346 netdev_err(dev
, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1
, val2
);
6347 netdev_err(dev
, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6348 REG_RD(bp
, BNX2_EMAC_TX_STATUS
),
6349 REG_RD(bp
, BNX2_EMAC_RX_STATUS
));
6350 netdev_err(dev
, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6351 REG_RD(bp
, BNX2_RPM_MGMT_PKT_CTRL
));
6352 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
6353 mcp_p0
= BNX2_MCP_STATE_P0
;
6354 mcp_p1
= BNX2_MCP_STATE_P1
;
6356 mcp_p0
= BNX2_MCP_STATE_P0_5708
;
6357 mcp_p1
= BNX2_MCP_STATE_P1_5708
;
6359 netdev_err(dev
, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
6360 bnx2_reg_rd_ind(bp
, mcp_p0
), bnx2_reg_rd_ind(bp
, mcp_p1
));
6361 netdev_err(dev
, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6362 REG_RD(bp
, BNX2_HC_STATS_INTERRUPT_STATUS
));
6363 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6364 netdev_err(dev
, "DEBUG: PBA[%08x]\n",
6365 REG_RD(bp
, BNX2_PCI_GRC_WINDOW3_BASE
));
6369 bnx2_tx_timeout(struct net_device
*dev
)
6371 struct bnx2
*bp
= netdev_priv(dev
);
6373 bnx2_dump_state(bp
);
6375 /* This allows the netif to be shutdown gracefully before resetting */
6376 schedule_work(&bp
->reset_task
);
6380 /* Called with rtnl_lock */
6382 bnx2_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*vlgrp
)
6384 struct bnx2
*bp
= netdev_priv(dev
);
6386 if (netif_running(dev
))
6387 bnx2_netif_stop(bp
, false);
6391 if (!netif_running(dev
))
6394 bnx2_set_rx_mode(dev
);
6395 if (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
)
6396 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
6398 bnx2_netif_start(bp
, false);
6402 /* Called with netif_tx_lock.
6403 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6404 * netif_wake_queue().
6407 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
6409 struct bnx2
*bp
= netdev_priv(dev
);
6412 struct sw_tx_bd
*tx_buf
;
6413 u32 len
, vlan_tag_flags
, last_frag
, mss
;
6414 u16 prod
, ring_prod
;
6416 struct bnx2_napi
*bnapi
;
6417 struct bnx2_tx_ring_info
*txr
;
6418 struct netdev_queue
*txq
;
6420 /* Determine which tx ring we will be placed on */
6421 i
= skb_get_queue_mapping(skb
);
6422 bnapi
= &bp
->bnx2_napi
[i
];
6423 txr
= &bnapi
->tx_ring
;
6424 txq
= netdev_get_tx_queue(dev
, i
);
6426 if (unlikely(bnx2_tx_avail(bp
, txr
) <
6427 (skb_shinfo(skb
)->nr_frags
+ 1))) {
6428 netif_tx_stop_queue(txq
);
6429 netdev_err(dev
, "BUG! Tx ring full when queue awake!\n");
6431 return NETDEV_TX_BUSY
;
6433 len
= skb_headlen(skb
);
6434 prod
= txr
->tx_prod
;
6435 ring_prod
= TX_RING_IDX(prod
);
6438 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6439 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
6443 if (bp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
6445 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
6448 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
6452 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
6454 tcp_opt_len
= tcp_optlen(skb
);
6456 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6457 u32 tcp_off
= skb_transport_offset(skb
) -
6458 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6460 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6461 TX_BD_FLAGS_SW_FLAGS
;
6462 if (likely(tcp_off
== 0))
6463 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6466 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6467 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6468 ((tcp_off
& 0x10) <<
6469 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6470 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6474 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6475 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6476 (tcp_opt_len
>> 2)) << 8;
6482 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
6483 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
6485 return NETDEV_TX_OK
;
6488 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6490 dma_unmap_addr_set(tx_buf
, mapping
, mapping
);
6492 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6494 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6495 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6496 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6497 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6499 last_frag
= skb_shinfo(skb
)->nr_frags
;
6500 tx_buf
->nr_frags
= last_frag
;
6501 tx_buf
->is_gso
= skb_is_gso(skb
);
6503 for (i
= 0; i
< last_frag
; i
++) {
6504 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6506 prod
= NEXT_TX_BD(prod
);
6507 ring_prod
= TX_RING_IDX(prod
);
6508 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6511 mapping
= dma_map_page(&bp
->pdev
->dev
, frag
->page
, frag
->page_offset
,
6512 len
, PCI_DMA_TODEVICE
);
6513 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
))
6515 dma_unmap_addr_set(&txr
->tx_buf_ring
[ring_prod
], mapping
,
6518 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6519 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6520 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6521 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6524 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6526 prod
= NEXT_TX_BD(prod
);
6527 txr
->tx_prod_bseq
+= skb
->len
;
6529 REG_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6530 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6534 txr
->tx_prod
= prod
;
6536 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6537 netif_tx_stop_queue(txq
);
6539 /* netif_tx_stop_queue() must be done before checking
6540 * tx index in bnx2_tx_avail() below, because in
6541 * bnx2_tx_int(), we update tx index before checking for
6542 * netif_tx_queue_stopped().
6545 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6546 netif_tx_wake_queue(txq
);
6549 return NETDEV_TX_OK
;
6551 /* save value of frag that failed */
6554 /* start back at beginning and unmap skb */
6555 prod
= txr
->tx_prod
;
6556 ring_prod
= TX_RING_IDX(prod
);
6557 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6559 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6560 skb_headlen(skb
), PCI_DMA_TODEVICE
);
6562 /* unmap remaining mapped pages */
6563 for (i
= 0; i
< last_frag
; i
++) {
6564 prod
= NEXT_TX_BD(prod
);
6565 ring_prod
= TX_RING_IDX(prod
);
6566 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6567 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6568 skb_shinfo(skb
)->frags
[i
].size
,
6573 return NETDEV_TX_OK
;
6576 /* Called with rtnl_lock */
6578 bnx2_close(struct net_device
*dev
)
6580 struct bnx2
*bp
= netdev_priv(dev
);
6582 cancel_work_sync(&bp
->reset_task
);
6584 bnx2_disable_int_sync(bp
);
6585 bnx2_napi_disable(bp
);
6586 del_timer_sync(&bp
->timer
);
6587 bnx2_shutdown_chip(bp
);
6593 netif_carrier_off(bp
->dev
);
6594 bnx2_set_power_state(bp
, PCI_D3hot
);
6599 bnx2_save_stats(struct bnx2
*bp
)
6601 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
6602 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
6605 /* The 1st 10 counters are 64-bit counters */
6606 for (i
= 0; i
< 20; i
+= 2) {
6610 hi
= temp_stats
[i
] + hw_stats
[i
];
6611 lo
= (u64
) temp_stats
[i
+ 1] + (u64
) hw_stats
[i
+ 1];
6612 if (lo
> 0xffffffff)
6615 temp_stats
[i
+ 1] = lo
& 0xffffffff;
6618 for ( ; i
< sizeof(struct statistics_block
) / 4; i
++)
6619 temp_stats
[i
] += hw_stats
[i
];
6622 #define GET_64BIT_NET_STATS64(ctr) \
6623 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
6625 #define GET_64BIT_NET_STATS(ctr) \
6626 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6627 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6629 #define GET_32BIT_NET_STATS(ctr) \
6630 (unsigned long) (bp->stats_blk->ctr + \
6631 bp->temp_stats_blk->ctr)
6633 static struct rtnl_link_stats64
*
6634 bnx2_get_stats64(struct net_device
*dev
, struct rtnl_link_stats64
*net_stats
)
6636 struct bnx2
*bp
= netdev_priv(dev
);
6638 if (bp
->stats_blk
== NULL
)
6641 net_stats
->rx_packets
=
6642 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts
) +
6643 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
) +
6644 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts
);
6646 net_stats
->tx_packets
=
6647 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts
) +
6648 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts
) +
6649 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts
);
6651 net_stats
->rx_bytes
=
6652 GET_64BIT_NET_STATS(stat_IfHCInOctets
);
6654 net_stats
->tx_bytes
=
6655 GET_64BIT_NET_STATS(stat_IfHCOutOctets
);
6657 net_stats
->multicast
=
6658 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
);
6660 net_stats
->collisions
=
6661 GET_32BIT_NET_STATS(stat_EtherStatsCollisions
);
6663 net_stats
->rx_length_errors
=
6664 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts
) +
6665 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts
);
6667 net_stats
->rx_over_errors
=
6668 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6669 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
);
6671 net_stats
->rx_frame_errors
=
6672 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors
);
6674 net_stats
->rx_crc_errors
=
6675 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors
);
6677 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6678 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6679 net_stats
->rx_crc_errors
;
6681 net_stats
->tx_aborted_errors
=
6682 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions
) +
6683 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions
);
6685 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
6686 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6687 net_stats
->tx_carrier_errors
= 0;
6689 net_stats
->tx_carrier_errors
=
6690 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors
);
6693 net_stats
->tx_errors
=
6694 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
) +
6695 net_stats
->tx_aborted_errors
+
6696 net_stats
->tx_carrier_errors
;
6698 net_stats
->rx_missed_errors
=
6699 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6700 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
) +
6701 GET_32BIT_NET_STATS(stat_FwRxDrop
);
6706 /* All ethtool functions called with rtnl_lock */
6709 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6711 struct bnx2
*bp
= netdev_priv(dev
);
6712 int support_serdes
= 0, support_copper
= 0;
6714 cmd
->supported
= SUPPORTED_Autoneg
;
6715 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6718 } else if (bp
->phy_port
== PORT_FIBRE
)
6723 if (support_serdes
) {
6724 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
6726 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6727 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
6730 if (support_copper
) {
6731 cmd
->supported
|= SUPPORTED_10baseT_Half
|
6732 SUPPORTED_10baseT_Full
|
6733 SUPPORTED_100baseT_Half
|
6734 SUPPORTED_100baseT_Full
|
6735 SUPPORTED_1000baseT_Full
|
6740 spin_lock_bh(&bp
->phy_lock
);
6741 cmd
->port
= bp
->phy_port
;
6742 cmd
->advertising
= bp
->advertising
;
6744 if (bp
->autoneg
& AUTONEG_SPEED
) {
6745 cmd
->autoneg
= AUTONEG_ENABLE
;
6748 cmd
->autoneg
= AUTONEG_DISABLE
;
6751 if (netif_carrier_ok(dev
)) {
6752 cmd
->speed
= bp
->line_speed
;
6753 cmd
->duplex
= bp
->duplex
;
6759 spin_unlock_bh(&bp
->phy_lock
);
6761 cmd
->transceiver
= XCVR_INTERNAL
;
6762 cmd
->phy_address
= bp
->phy_addr
;
6768 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6770 struct bnx2
*bp
= netdev_priv(dev
);
6771 u8 autoneg
= bp
->autoneg
;
6772 u8 req_duplex
= bp
->req_duplex
;
6773 u16 req_line_speed
= bp
->req_line_speed
;
6774 u32 advertising
= bp
->advertising
;
6777 spin_lock_bh(&bp
->phy_lock
);
6779 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
6780 goto err_out_unlock
;
6782 if (cmd
->port
!= bp
->phy_port
&&
6783 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6784 goto err_out_unlock
;
6786 /* If device is down, we can store the settings only if the user
6787 * is setting the currently active port.
6789 if (!netif_running(dev
) && cmd
->port
!= bp
->phy_port
)
6790 goto err_out_unlock
;
6792 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
6793 autoneg
|= AUTONEG_SPEED
;
6795 advertising
= cmd
->advertising
;
6796 if (cmd
->port
== PORT_TP
) {
6797 advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6799 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6801 advertising
&= ETHTOOL_ALL_FIBRE_SPEED
;
6803 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6805 advertising
|= ADVERTISED_Autoneg
;
6808 if (cmd
->port
== PORT_FIBRE
) {
6809 if ((cmd
->speed
!= SPEED_1000
&&
6810 cmd
->speed
!= SPEED_2500
) ||
6811 (cmd
->duplex
!= DUPLEX_FULL
))
6812 goto err_out_unlock
;
6814 if (cmd
->speed
== SPEED_2500
&&
6815 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
6816 goto err_out_unlock
;
6818 else if (cmd
->speed
== SPEED_1000
|| cmd
->speed
== SPEED_2500
)
6819 goto err_out_unlock
;
6821 autoneg
&= ~AUTONEG_SPEED
;
6822 req_line_speed
= cmd
->speed
;
6823 req_duplex
= cmd
->duplex
;
6827 bp
->autoneg
= autoneg
;
6828 bp
->advertising
= advertising
;
6829 bp
->req_line_speed
= req_line_speed
;
6830 bp
->req_duplex
= req_duplex
;
6833 /* If device is down, the new settings will be picked up when it is
6836 if (netif_running(dev
))
6837 err
= bnx2_setup_phy(bp
, cmd
->port
);
6840 spin_unlock_bh(&bp
->phy_lock
);
6846 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
6848 struct bnx2
*bp
= netdev_priv(dev
);
6850 strcpy(info
->driver
, DRV_MODULE_NAME
);
6851 strcpy(info
->version
, DRV_MODULE_VERSION
);
6852 strcpy(info
->bus_info
, pci_name(bp
->pdev
));
6853 strcpy(info
->fw_version
, bp
->fw_version
);
6856 #define BNX2_REGDUMP_LEN (32 * 1024)
6859 bnx2_get_regs_len(struct net_device
*dev
)
6861 return BNX2_REGDUMP_LEN
;
6865 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
6867 u32
*p
= _p
, i
, offset
;
6869 struct bnx2
*bp
= netdev_priv(dev
);
6870 u32 reg_boundaries
[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6871 0x0800, 0x0880, 0x0c00, 0x0c10,
6872 0x0c30, 0x0d08, 0x1000, 0x101c,
6873 0x1040, 0x1048, 0x1080, 0x10a4,
6874 0x1400, 0x1490, 0x1498, 0x14f0,
6875 0x1500, 0x155c, 0x1580, 0x15dc,
6876 0x1600, 0x1658, 0x1680, 0x16d8,
6877 0x1800, 0x1820, 0x1840, 0x1854,
6878 0x1880, 0x1894, 0x1900, 0x1984,
6879 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6880 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6881 0x2000, 0x2030, 0x23c0, 0x2400,
6882 0x2800, 0x2820, 0x2830, 0x2850,
6883 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6884 0x3c00, 0x3c94, 0x4000, 0x4010,
6885 0x4080, 0x4090, 0x43c0, 0x4458,
6886 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6887 0x4fc0, 0x5010, 0x53c0, 0x5444,
6888 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6889 0x5fc0, 0x6000, 0x6400, 0x6428,
6890 0x6800, 0x6848, 0x684c, 0x6860,
6891 0x6888, 0x6910, 0x8000 };
6895 memset(p
, 0, BNX2_REGDUMP_LEN
);
6897 if (!netif_running(bp
->dev
))
6901 offset
= reg_boundaries
[0];
6903 while (offset
< BNX2_REGDUMP_LEN
) {
6904 *p
++ = REG_RD(bp
, offset
);
6906 if (offset
== reg_boundaries
[i
+ 1]) {
6907 offset
= reg_boundaries
[i
+ 2];
6908 p
= (u32
*) (orig_p
+ offset
);
6915 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6917 struct bnx2
*bp
= netdev_priv(dev
);
6919 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
6924 wol
->supported
= WAKE_MAGIC
;
6926 wol
->wolopts
= WAKE_MAGIC
;
6930 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
6934 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6936 struct bnx2
*bp
= netdev_priv(dev
);
6938 if (wol
->wolopts
& ~WAKE_MAGIC
)
6941 if (wol
->wolopts
& WAKE_MAGIC
) {
6942 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
6954 bnx2_nway_reset(struct net_device
*dev
)
6956 struct bnx2
*bp
= netdev_priv(dev
);
6959 if (!netif_running(dev
))
6962 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
6966 spin_lock_bh(&bp
->phy_lock
);
6968 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6971 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
6972 spin_unlock_bh(&bp
->phy_lock
);
6976 /* Force a link down visible on the other side */
6977 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6978 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
6979 spin_unlock_bh(&bp
->phy_lock
);
6983 spin_lock_bh(&bp
->phy_lock
);
6985 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
6986 bp
->serdes_an_pending
= 1;
6987 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6990 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6991 bmcr
&= ~BMCR_LOOPBACK
;
6992 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
6994 spin_unlock_bh(&bp
->phy_lock
);
7000 bnx2_get_link(struct net_device
*dev
)
7002 struct bnx2
*bp
= netdev_priv(dev
);
7008 bnx2_get_eeprom_len(struct net_device
*dev
)
7010 struct bnx2
*bp
= netdev_priv(dev
);
7012 if (bp
->flash_info
== NULL
)
7015 return (int) bp
->flash_size
;
7019 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
7022 struct bnx2
*bp
= netdev_priv(dev
);
7025 if (!netif_running(dev
))
7028 /* parameters already validated in ethtool_get_eeprom */
7030 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7036 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
7039 struct bnx2
*bp
= netdev_priv(dev
);
7042 if (!netif_running(dev
))
7045 /* parameters already validated in ethtool_set_eeprom */
7047 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7053 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7055 struct bnx2
*bp
= netdev_priv(dev
);
7057 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
7059 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
7060 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
7061 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
7062 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
7064 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
7065 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
7066 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
7067 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
7069 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
7075 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7077 struct bnx2
*bp
= netdev_priv(dev
);
7079 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
7080 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
7082 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
7083 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
7085 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
7086 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
7088 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
7089 if (bp
->rx_quick_cons_trip_int
> 0xff)
7090 bp
->rx_quick_cons_trip_int
= 0xff;
7092 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
7093 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
7095 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
7096 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
7098 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
7099 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
7101 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
7102 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
7105 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
7106 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
) {
7107 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
7108 bp
->stats_ticks
= USEC_PER_SEC
;
7110 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
7111 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7112 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7114 if (netif_running(bp
->dev
)) {
7115 bnx2_netif_stop(bp
, true);
7116 bnx2_init_nic(bp
, 0);
7117 bnx2_netif_start(bp
, true);
7124 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7126 struct bnx2
*bp
= netdev_priv(dev
);
7128 ering
->rx_max_pending
= MAX_TOTAL_RX_DESC_CNT
;
7129 ering
->rx_mini_max_pending
= 0;
7130 ering
->rx_jumbo_max_pending
= MAX_TOTAL_RX_PG_DESC_CNT
;
7132 ering
->rx_pending
= bp
->rx_ring_size
;
7133 ering
->rx_mini_pending
= 0;
7134 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
7136 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
7137 ering
->tx_pending
= bp
->tx_ring_size
;
7141 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
)
7143 if (netif_running(bp
->dev
)) {
7144 /* Reset will erase chipset stats; save them */
7145 bnx2_save_stats(bp
);
7147 bnx2_netif_stop(bp
, true);
7148 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
7153 bnx2_set_rx_ring_size(bp
, rx
);
7154 bp
->tx_ring_size
= tx
;
7156 if (netif_running(bp
->dev
)) {
7159 rc
= bnx2_alloc_mem(bp
);
7161 rc
= bnx2_init_nic(bp
, 0);
7164 bnx2_napi_enable(bp
);
7169 mutex_lock(&bp
->cnic_lock
);
7170 /* Let cnic know about the new status block. */
7171 if (bp
->cnic_eth_dev
.drv_state
& CNIC_DRV_STATE_REGD
)
7172 bnx2_setup_cnic_irq_info(bp
);
7173 mutex_unlock(&bp
->cnic_lock
);
7175 bnx2_netif_start(bp
, true);
7181 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7183 struct bnx2
*bp
= netdev_priv(dev
);
7186 if ((ering
->rx_pending
> MAX_TOTAL_RX_DESC_CNT
) ||
7187 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
7188 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
7192 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
);
7197 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7199 struct bnx2
*bp
= netdev_priv(dev
);
7201 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
7202 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
7203 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
7207 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7209 struct bnx2
*bp
= netdev_priv(dev
);
7211 bp
->req_flow_ctrl
= 0;
7212 if (epause
->rx_pause
)
7213 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
7214 if (epause
->tx_pause
)
7215 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
7217 if (epause
->autoneg
) {
7218 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
7221 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
7224 if (netif_running(dev
)) {
7225 spin_lock_bh(&bp
->phy_lock
);
7226 bnx2_setup_phy(bp
, bp
->phy_port
);
7227 spin_unlock_bh(&bp
->phy_lock
);
7234 bnx2_get_rx_csum(struct net_device
*dev
)
7236 struct bnx2
*bp
= netdev_priv(dev
);
7242 bnx2_set_rx_csum(struct net_device
*dev
, u32 data
)
7244 struct bnx2
*bp
= netdev_priv(dev
);
7251 bnx2_set_tso(struct net_device
*dev
, u32 data
)
7253 struct bnx2
*bp
= netdev_priv(dev
);
7256 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
7257 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7258 dev
->features
|= NETIF_F_TSO6
;
7260 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
|
7266 char string
[ETH_GSTRING_LEN
];
7267 } bnx2_stats_str_arr
[] = {
7269 { "rx_error_bytes" },
7271 { "tx_error_bytes" },
7272 { "rx_ucast_packets" },
7273 { "rx_mcast_packets" },
7274 { "rx_bcast_packets" },
7275 { "tx_ucast_packets" },
7276 { "tx_mcast_packets" },
7277 { "tx_bcast_packets" },
7278 { "tx_mac_errors" },
7279 { "tx_carrier_errors" },
7280 { "rx_crc_errors" },
7281 { "rx_align_errors" },
7282 { "tx_single_collisions" },
7283 { "tx_multi_collisions" },
7285 { "tx_excess_collisions" },
7286 { "tx_late_collisions" },
7287 { "tx_total_collisions" },
7290 { "rx_undersize_packets" },
7291 { "rx_oversize_packets" },
7292 { "rx_64_byte_packets" },
7293 { "rx_65_to_127_byte_packets" },
7294 { "rx_128_to_255_byte_packets" },
7295 { "rx_256_to_511_byte_packets" },
7296 { "rx_512_to_1023_byte_packets" },
7297 { "rx_1024_to_1522_byte_packets" },
7298 { "rx_1523_to_9022_byte_packets" },
7299 { "tx_64_byte_packets" },
7300 { "tx_65_to_127_byte_packets" },
7301 { "tx_128_to_255_byte_packets" },
7302 { "tx_256_to_511_byte_packets" },
7303 { "tx_512_to_1023_byte_packets" },
7304 { "tx_1024_to_1522_byte_packets" },
7305 { "tx_1523_to_9022_byte_packets" },
7306 { "rx_xon_frames" },
7307 { "rx_xoff_frames" },
7308 { "tx_xon_frames" },
7309 { "tx_xoff_frames" },
7310 { "rx_mac_ctrl_frames" },
7311 { "rx_filtered_packets" },
7312 { "rx_ftq_discards" },
7314 { "rx_fw_discards" },
7317 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7318 sizeof(bnx2_stats_str_arr[0]))
7320 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7322 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
7323 STATS_OFFSET32(stat_IfHCInOctets_hi
),
7324 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
7325 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
7326 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
7327 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
7328 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
7329 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
7330 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
7331 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
7332 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
7333 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
7334 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
7335 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
7336 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
7337 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
7338 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
7339 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
7340 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
7341 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
7342 STATS_OFFSET32(stat_EtherStatsCollisions
),
7343 STATS_OFFSET32(stat_EtherStatsFragments
),
7344 STATS_OFFSET32(stat_EtherStatsJabbers
),
7345 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
7346 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
7347 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
7348 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
7349 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
7350 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
7351 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
7352 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
7353 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
7354 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
7355 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
7356 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
7357 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
7358 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
7359 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
7360 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
7361 STATS_OFFSET32(stat_XonPauseFramesReceived
),
7362 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
7363 STATS_OFFSET32(stat_OutXonSent
),
7364 STATS_OFFSET32(stat_OutXoffSent
),
7365 STATS_OFFSET32(stat_MacControlFramesReceived
),
7366 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
7367 STATS_OFFSET32(stat_IfInFTQDiscards
),
7368 STATS_OFFSET32(stat_IfInMBUFDiscards
),
7369 STATS_OFFSET32(stat_FwRxDrop
),
7372 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7373 * skipped because of errata.
7375 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
7376 8,0,8,8,8,8,8,8,8,8,
7377 4,0,4,4,4,4,4,4,4,4,
7378 4,4,4,4,4,4,4,4,4,4,
7379 4,4,4,4,4,4,4,4,4,4,
7383 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
7384 8,0,8,8,8,8,8,8,8,8,
7385 4,4,4,4,4,4,4,4,4,4,
7386 4,4,4,4,4,4,4,4,4,4,
7387 4,4,4,4,4,4,4,4,4,4,
7391 #define BNX2_NUM_TESTS 6
7394 char string
[ETH_GSTRING_LEN
];
7395 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
7396 { "register_test (offline)" },
7397 { "memory_test (offline)" },
7398 { "loopback_test (offline)" },
7399 { "nvram_test (online)" },
7400 { "interrupt_test (online)" },
7401 { "link_test (online)" },
7405 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
7409 return BNX2_NUM_TESTS
;
7411 return BNX2_NUM_STATS
;
7418 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
7420 struct bnx2
*bp
= netdev_priv(dev
);
7422 bnx2_set_power_state(bp
, PCI_D0
);
7424 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
7425 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
7428 bnx2_netif_stop(bp
, true);
7429 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
7432 if (bnx2_test_registers(bp
) != 0) {
7434 etest
->flags
|= ETH_TEST_FL_FAILED
;
7436 if (bnx2_test_memory(bp
) != 0) {
7438 etest
->flags
|= ETH_TEST_FL_FAILED
;
7440 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
7441 etest
->flags
|= ETH_TEST_FL_FAILED
;
7443 if (!netif_running(bp
->dev
))
7444 bnx2_shutdown_chip(bp
);
7446 bnx2_init_nic(bp
, 1);
7447 bnx2_netif_start(bp
, true);
7450 /* wait for link up */
7451 for (i
= 0; i
< 7; i
++) {
7454 msleep_interruptible(1000);
7458 if (bnx2_test_nvram(bp
) != 0) {
7460 etest
->flags
|= ETH_TEST_FL_FAILED
;
7462 if (bnx2_test_intr(bp
) != 0) {
7464 etest
->flags
|= ETH_TEST_FL_FAILED
;
7467 if (bnx2_test_link(bp
) != 0) {
7469 etest
->flags
|= ETH_TEST_FL_FAILED
;
7472 if (!netif_running(bp
->dev
))
7473 bnx2_set_power_state(bp
, PCI_D3hot
);
7477 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
7479 switch (stringset
) {
7481 memcpy(buf
, bnx2_stats_str_arr
,
7482 sizeof(bnx2_stats_str_arr
));
7485 memcpy(buf
, bnx2_tests_str_arr
,
7486 sizeof(bnx2_tests_str_arr
));
7492 bnx2_get_ethtool_stats(struct net_device
*dev
,
7493 struct ethtool_stats
*stats
, u64
*buf
)
7495 struct bnx2
*bp
= netdev_priv(dev
);
7497 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
7498 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
7499 u8
*stats_len_arr
= NULL
;
7501 if (hw_stats
== NULL
) {
7502 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
7506 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
7507 (CHIP_ID(bp
) == CHIP_ID_5706_A1
) ||
7508 (CHIP_ID(bp
) == CHIP_ID_5706_A2
) ||
7509 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
7510 stats_len_arr
= bnx2_5706_stats_len_arr
;
7512 stats_len_arr
= bnx2_5708_stats_len_arr
;
7514 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
7515 unsigned long offset
;
7517 if (stats_len_arr
[i
] == 0) {
7518 /* skip this counter */
7523 offset
= bnx2_stats_offset_arr
[i
];
7524 if (stats_len_arr
[i
] == 4) {
7525 /* 4-byte counter */
7526 buf
[i
] = (u64
) *(hw_stats
+ offset
) +
7527 *(temp_stats
+ offset
);
7530 /* 8-byte counter */
7531 buf
[i
] = (((u64
) *(hw_stats
+ offset
)) << 32) +
7532 *(hw_stats
+ offset
+ 1) +
7533 (((u64
) *(temp_stats
+ offset
)) << 32) +
7534 *(temp_stats
+ offset
+ 1);
7539 bnx2_phys_id(struct net_device
*dev
, u32 data
)
7541 struct bnx2
*bp
= netdev_priv(dev
);
7545 bnx2_set_power_state(bp
, PCI_D0
);
7550 save
= REG_RD(bp
, BNX2_MISC_CFG
);
7551 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7553 for (i
= 0; i
< (data
* 2); i
++) {
7555 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7558 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7559 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7560 BNX2_EMAC_LED_100MB_OVERRIDE
|
7561 BNX2_EMAC_LED_10MB_OVERRIDE
|
7562 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7563 BNX2_EMAC_LED_TRAFFIC
);
7565 msleep_interruptible(500);
7566 if (signal_pending(current
))
7569 REG_WR(bp
, BNX2_EMAC_LED
, 0);
7570 REG_WR(bp
, BNX2_MISC_CFG
, save
);
7572 if (!netif_running(dev
))
7573 bnx2_set_power_state(bp
, PCI_D3hot
);
7579 bnx2_set_tx_csum(struct net_device
*dev
, u32 data
)
7581 struct bnx2
*bp
= netdev_priv(dev
);
7583 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7584 return (ethtool_op_set_tx_ipv6_csum(dev
, data
));
7586 return (ethtool_op_set_tx_csum(dev
, data
));
7590 bnx2_set_flags(struct net_device
*dev
, u32 data
)
7592 return ethtool_op_set_flags(dev
, data
, ETH_FLAG_RXHASH
);
7595 static const struct ethtool_ops bnx2_ethtool_ops
= {
7596 .get_settings
= bnx2_get_settings
,
7597 .set_settings
= bnx2_set_settings
,
7598 .get_drvinfo
= bnx2_get_drvinfo
,
7599 .get_regs_len
= bnx2_get_regs_len
,
7600 .get_regs
= bnx2_get_regs
,
7601 .get_wol
= bnx2_get_wol
,
7602 .set_wol
= bnx2_set_wol
,
7603 .nway_reset
= bnx2_nway_reset
,
7604 .get_link
= bnx2_get_link
,
7605 .get_eeprom_len
= bnx2_get_eeprom_len
,
7606 .get_eeprom
= bnx2_get_eeprom
,
7607 .set_eeprom
= bnx2_set_eeprom
,
7608 .get_coalesce
= bnx2_get_coalesce
,
7609 .set_coalesce
= bnx2_set_coalesce
,
7610 .get_ringparam
= bnx2_get_ringparam
,
7611 .set_ringparam
= bnx2_set_ringparam
,
7612 .get_pauseparam
= bnx2_get_pauseparam
,
7613 .set_pauseparam
= bnx2_set_pauseparam
,
7614 .get_rx_csum
= bnx2_get_rx_csum
,
7615 .set_rx_csum
= bnx2_set_rx_csum
,
7616 .set_tx_csum
= bnx2_set_tx_csum
,
7617 .set_sg
= ethtool_op_set_sg
,
7618 .set_tso
= bnx2_set_tso
,
7619 .self_test
= bnx2_self_test
,
7620 .get_strings
= bnx2_get_strings
,
7621 .phys_id
= bnx2_phys_id
,
7622 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7623 .get_sset_count
= bnx2_get_sset_count
,
7624 .set_flags
= bnx2_set_flags
,
7625 .get_flags
= ethtool_op_get_flags
,
7628 /* Called with rtnl_lock */
7630 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7632 struct mii_ioctl_data
*data
= if_mii(ifr
);
7633 struct bnx2
*bp
= netdev_priv(dev
);
7638 data
->phy_id
= bp
->phy_addr
;
7644 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7647 if (!netif_running(dev
))
7650 spin_lock_bh(&bp
->phy_lock
);
7651 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7652 spin_unlock_bh(&bp
->phy_lock
);
7654 data
->val_out
= mii_regval
;
7660 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7663 if (!netif_running(dev
))
7666 spin_lock_bh(&bp
->phy_lock
);
7667 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7668 spin_unlock_bh(&bp
->phy_lock
);
7679 /* Called with rtnl_lock */
7681 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7683 struct sockaddr
*addr
= p
;
7684 struct bnx2
*bp
= netdev_priv(dev
);
7686 if (!is_valid_ether_addr(addr
->sa_data
))
7689 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7690 if (netif_running(dev
))
7691 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7696 /* Called with rtnl_lock */
7698 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7700 struct bnx2
*bp
= netdev_priv(dev
);
7702 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
7703 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
7707 return (bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
));
7710 #ifdef CONFIG_NET_POLL_CONTROLLER
7712 poll_bnx2(struct net_device
*dev
)
7714 struct bnx2
*bp
= netdev_priv(dev
);
7717 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
7718 struct bnx2_irq
*irq
= &bp
->irq_tbl
[i
];
7720 disable_irq(irq
->vector
);
7721 irq
->handler(irq
->vector
, &bp
->bnx2_napi
[i
]);
7722 enable_irq(irq
->vector
);
7727 static void __devinit
7728 bnx2_get_5709_media(struct bnx2
*bp
)
7730 u32 val
= REG_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7731 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7734 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7736 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7737 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7741 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7742 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7744 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7746 if (PCI_FUNC(bp
->pdev
->devfn
) == 0) {
7751 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7759 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7765 static void __devinit
7766 bnx2_get_pci_speed(struct bnx2
*bp
)
7770 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7771 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7774 bp
->flags
|= BNX2_FLAG_PCIX
;
7776 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7778 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
7780 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
7781 bp
->bus_speed_mhz
= 133;
7784 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
7785 bp
->bus_speed_mhz
= 100;
7788 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
7789 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
7790 bp
->bus_speed_mhz
= 66;
7793 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
7794 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
7795 bp
->bus_speed_mhz
= 50;
7798 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
7799 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
7800 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
7801 bp
->bus_speed_mhz
= 33;
7806 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
7807 bp
->bus_speed_mhz
= 66;
7809 bp
->bus_speed_mhz
= 33;
7812 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
7813 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
7817 static void __devinit
7818 bnx2_read_vpd_fw_ver(struct bnx2
*bp
)
7822 unsigned int block_end
, rosize
, len
;
7824 #define BNX2_VPD_NVRAM_OFFSET 0x300
7825 #define BNX2_VPD_LEN 128
7826 #define BNX2_MAX_VER_SLEN 30
7828 data
= kmalloc(256, GFP_KERNEL
);
7832 rc
= bnx2_nvram_read(bp
, BNX2_VPD_NVRAM_OFFSET
, data
+ BNX2_VPD_LEN
,
7837 for (i
= 0; i
< BNX2_VPD_LEN
; i
+= 4) {
7838 data
[i
] = data
[i
+ BNX2_VPD_LEN
+ 3];
7839 data
[i
+ 1] = data
[i
+ BNX2_VPD_LEN
+ 2];
7840 data
[i
+ 2] = data
[i
+ BNX2_VPD_LEN
+ 1];
7841 data
[i
+ 3] = data
[i
+ BNX2_VPD_LEN
];
7844 i
= pci_vpd_find_tag(data
, 0, BNX2_VPD_LEN
, PCI_VPD_LRDT_RO_DATA
);
7848 rosize
= pci_vpd_lrdt_size(&data
[i
]);
7849 i
+= PCI_VPD_LRDT_TAG_SIZE
;
7850 block_end
= i
+ rosize
;
7852 if (block_end
> BNX2_VPD_LEN
)
7855 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
7856 PCI_VPD_RO_KEYWORD_MFR_ID
);
7860 len
= pci_vpd_info_field_size(&data
[j
]);
7862 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
7863 if (j
+ len
> block_end
|| len
!= 4 ||
7864 memcmp(&data
[j
], "1028", 4))
7867 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
7868 PCI_VPD_RO_KEYWORD_VENDOR0
);
7872 len
= pci_vpd_info_field_size(&data
[j
]);
7874 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
7875 if (j
+ len
> block_end
|| len
> BNX2_MAX_VER_SLEN
)
7878 memcpy(bp
->fw_version
, &data
[j
], len
);
7879 bp
->fw_version
[len
] = ' ';
7885 static int __devinit
7886 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
7889 unsigned long mem_len
;
7892 u64 dma_mask
, persist_dma_mask
;
7894 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7895 bp
= netdev_priv(dev
);
7900 bp
->temp_stats_blk
=
7901 kzalloc(sizeof(struct statistics_block
), GFP_KERNEL
);
7903 if (bp
->temp_stats_blk
== NULL
) {
7908 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7909 rc
= pci_enable_device(pdev
);
7911 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
7915 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
7917 "Cannot find PCI device base address, aborting\n");
7919 goto err_out_disable
;
7922 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
7924 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
7925 goto err_out_disable
;
7928 pci_set_master(pdev
);
7929 pci_save_state(pdev
);
7931 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
7932 if (bp
->pm_cap
== 0) {
7934 "Cannot find power management capability, aborting\n");
7936 goto err_out_release
;
7942 spin_lock_init(&bp
->phy_lock
);
7943 spin_lock_init(&bp
->indirect_lock
);
7945 mutex_init(&bp
->cnic_lock
);
7947 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
7949 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
7950 mem_len
= MB_GET_CID_ADDR(TX_TSS_CID
+ TX_MAX_TSS_RINGS
+ 1);
7951 dev
->mem_end
= dev
->mem_start
+ mem_len
;
7952 dev
->irq
= pdev
->irq
;
7954 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
7957 dev_err(&pdev
->dev
, "Cannot map register space, aborting\n");
7959 goto err_out_release
;
7962 /* Configure byte swap and enable write to the reg_window registers.
7963 * Rely on CPU to do target byte swapping on big endian systems
7964 * The chip's target access swapping will not swap all accesses
7966 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
,
7967 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
7968 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
7970 bnx2_set_power_state(bp
, PCI_D0
);
7972 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
7974 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
7975 if (pci_find_capability(pdev
, PCI_CAP_ID_EXP
) == 0) {
7977 "Cannot find PCIE capability, aborting\n");
7981 bp
->flags
|= BNX2_FLAG_PCIE
;
7982 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
7983 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
7985 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
7986 if (bp
->pcix_cap
== 0) {
7988 "Cannot find PCIX capability, aborting\n");
7992 bp
->flags
|= BNX2_FLAG_BROKEN_STATS
;
7995 if (CHIP_NUM(bp
) == CHIP_NUM_5709
&& CHIP_REV(bp
) != CHIP_REV_Ax
) {
7996 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
))
7997 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
8000 if (CHIP_ID(bp
) != CHIP_ID_5706_A0
&& CHIP_ID(bp
) != CHIP_ID_5706_A1
) {
8001 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
))
8002 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
8005 /* 5708 cannot support DMA addresses > 40-bit. */
8006 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
8007 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(40);
8009 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(64);
8011 /* Configure DMA attributes. */
8012 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
8013 dev
->features
|= NETIF_F_HIGHDMA
;
8014 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
8017 "pci_set_consistent_dma_mask failed, aborting\n");
8020 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) != 0) {
8021 dev_err(&pdev
->dev
, "System does not support DMA, aborting\n");
8025 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
8026 bnx2_get_pci_speed(bp
);
8028 /* 5706A0 may falsely detect SERR and PERR. */
8029 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
8030 reg
= REG_RD(bp
, PCI_COMMAND
);
8031 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
8032 REG_WR(bp
, PCI_COMMAND
, reg
);
8034 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
8035 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
8038 "5706 A1 can only be used in a PCIX bus, aborting\n");
8042 bnx2_init_nvram(bp
);
8044 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
8046 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
8047 BNX2_SHM_HDR_SIGNATURE_SIG
) {
8048 u32 off
= PCI_FUNC(pdev
->devfn
) << 2;
8050 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
8052 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
8054 /* Get the permanent MAC address. First we need to make sure the
8055 * firmware is actually running.
8057 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
8059 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
8060 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
8061 dev_err(&pdev
->dev
, "Firmware not running, aborting\n");
8066 bnx2_read_vpd_fw_ver(bp
);
8068 j
= strlen(bp
->fw_version
);
8069 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
8070 for (i
= 0; i
< 3 && j
< 24; i
++) {
8074 bp
->fw_version
[j
++] = 'b';
8075 bp
->fw_version
[j
++] = 'c';
8076 bp
->fw_version
[j
++] = ' ';
8078 num
= (u8
) (reg
>> (24 - (i
* 8)));
8079 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
8080 if (num
>= k
|| !skip0
|| k
== 1) {
8081 bp
->fw_version
[j
++] = (num
/ k
) + '0';
8086 bp
->fw_version
[j
++] = '.';
8088 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
8089 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
8092 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
8093 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
8095 for (i
= 0; i
< 30; i
++) {
8096 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8097 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
8102 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8103 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
8104 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
8105 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
8106 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
8109 bp
->fw_version
[j
++] = ' ';
8110 for (i
= 0; i
< 3 && j
< 28; i
++) {
8111 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
8113 memcpy(&bp
->fw_version
[j
], ®
, 4);
8118 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
8119 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
8120 bp
->mac_addr
[1] = (u8
) reg
;
8122 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
8123 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
8124 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
8125 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
8126 bp
->mac_addr
[5] = (u8
) reg
;
8128 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
8129 bnx2_set_rx_ring_size(bp
, 255);
8133 bp
->tx_quick_cons_trip_int
= 2;
8134 bp
->tx_quick_cons_trip
= 20;
8135 bp
->tx_ticks_int
= 18;
8138 bp
->rx_quick_cons_trip_int
= 2;
8139 bp
->rx_quick_cons_trip
= 12;
8140 bp
->rx_ticks_int
= 18;
8143 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
8145 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
8149 /* Disable WOL support if we are running on a SERDES chip. */
8150 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
8151 bnx2_get_5709_media(bp
);
8152 else if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
)
8153 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
8155 bp
->phy_port
= PORT_TP
;
8156 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
8157 bp
->phy_port
= PORT_FIBRE
;
8158 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
8159 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
8160 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8163 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
8164 /* Don't do parallel detect on this board because of
8165 * some board problems. The link will not go down
8166 * if we do parallel detect.
8168 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
8169 pdev
->subsystem_device
== 0x310c)
8170 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
8173 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
8174 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
8176 } else if (CHIP_NUM(bp
) == CHIP_NUM_5706
||
8177 CHIP_NUM(bp
) == CHIP_NUM_5708
)
8178 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
8179 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
&&
8180 (CHIP_REV(bp
) == CHIP_REV_Ax
||
8181 CHIP_REV(bp
) == CHIP_REV_Bx
))
8182 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
8184 bnx2_init_fw_cap(bp
);
8186 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
8187 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
8188 (CHIP_ID(bp
) == CHIP_ID_5708_B1
) ||
8189 !(REG_RD(bp
, BNX2_PCI_CONFIG_3
) & BNX2_PCI_CONFIG_3_VAUX_PRESET
)) {
8190 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8194 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
8195 bp
->tx_quick_cons_trip_int
=
8196 bp
->tx_quick_cons_trip
;
8197 bp
->tx_ticks_int
= bp
->tx_ticks
;
8198 bp
->rx_quick_cons_trip_int
=
8199 bp
->rx_quick_cons_trip
;
8200 bp
->rx_ticks_int
= bp
->rx_ticks
;
8201 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
8202 bp
->com_ticks_int
= bp
->com_ticks
;
8203 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
8206 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8208 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8209 * with byte enables disabled on the unused 32-bit word. This is legal
8210 * but causes problems on the AMD 8132 which will eventually stop
8211 * responding after a while.
8213 * AMD believes this incompatibility is unique to the 5706, and
8214 * prefers to locally disable MSI rather than globally disabling it.
8216 if (CHIP_NUM(bp
) == CHIP_NUM_5706
&& disable_msi
== 0) {
8217 struct pci_dev
*amd_8132
= NULL
;
8219 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
8220 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
8223 if (amd_8132
->revision
>= 0x10 &&
8224 amd_8132
->revision
<= 0x13) {
8226 pci_dev_put(amd_8132
);
8232 bnx2_set_default_link(bp
);
8233 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
8235 init_timer(&bp
->timer
);
8236 bp
->timer
.expires
= RUN_AT(BNX2_TIMER_INTERVAL
);
8237 bp
->timer
.data
= (unsigned long) bp
;
8238 bp
->timer
.function
= bnx2_timer
;
8244 iounmap(bp
->regview
);
8249 pci_release_regions(pdev
);
8252 pci_disable_device(pdev
);
8253 pci_set_drvdata(pdev
, NULL
);
8259 static char * __devinit
8260 bnx2_bus_string(struct bnx2
*bp
, char *str
)
8264 if (bp
->flags
& BNX2_FLAG_PCIE
) {
8265 s
+= sprintf(s
, "PCI Express");
8267 s
+= sprintf(s
, "PCI");
8268 if (bp
->flags
& BNX2_FLAG_PCIX
)
8269 s
+= sprintf(s
, "-X");
8270 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
8271 s
+= sprintf(s
, " 32-bit");
8273 s
+= sprintf(s
, " 64-bit");
8274 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
8280 bnx2_del_napi(struct bnx2
*bp
)
8284 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
8285 netif_napi_del(&bp
->bnx2_napi
[i
].napi
);
8289 bnx2_init_napi(struct bnx2
*bp
)
8293 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
8294 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
8295 int (*poll
)(struct napi_struct
*, int);
8300 poll
= bnx2_poll_msix
;
8302 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
8307 static const struct net_device_ops bnx2_netdev_ops
= {
8308 .ndo_open
= bnx2_open
,
8309 .ndo_start_xmit
= bnx2_start_xmit
,
8310 .ndo_stop
= bnx2_close
,
8311 .ndo_get_stats64
= bnx2_get_stats64
,
8312 .ndo_set_rx_mode
= bnx2_set_rx_mode
,
8313 .ndo_do_ioctl
= bnx2_ioctl
,
8314 .ndo_validate_addr
= eth_validate_addr
,
8315 .ndo_set_mac_address
= bnx2_change_mac_addr
,
8316 .ndo_change_mtu
= bnx2_change_mtu
,
8317 .ndo_tx_timeout
= bnx2_tx_timeout
,
8319 .ndo_vlan_rx_register
= bnx2_vlan_rx_register
,
8321 #ifdef CONFIG_NET_POLL_CONTROLLER
8322 .ndo_poll_controller
= poll_bnx2
,
8326 static void inline vlan_features_add(struct net_device
*dev
, unsigned long flags
)
8329 dev
->vlan_features
|= flags
;
8333 static int __devinit
8334 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8336 static int version_printed
= 0;
8337 struct net_device
*dev
= NULL
;
8342 if (version_printed
++ == 0)
8343 pr_info("%s", version
);
8345 /* dev zeroed in init_etherdev */
8346 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
8351 rc
= bnx2_init_board(pdev
, dev
);
8357 dev
->netdev_ops
= &bnx2_netdev_ops
;
8358 dev
->watchdog_timeo
= TX_TIMEOUT
;
8359 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
8361 bp
= netdev_priv(dev
);
8363 pci_set_drvdata(pdev
, dev
);
8365 rc
= bnx2_request_firmware(bp
);
8369 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
8370 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
8372 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_GRO
|
8374 vlan_features_add(dev
, NETIF_F_IP_CSUM
| NETIF_F_SG
);
8375 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
8376 dev
->features
|= NETIF_F_IPV6_CSUM
;
8377 vlan_features_add(dev
, NETIF_F_IPV6_CSUM
);
8380 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
8382 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
8383 vlan_features_add(dev
, NETIF_F_TSO
| NETIF_F_TSO_ECN
);
8384 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
8385 dev
->features
|= NETIF_F_TSO6
;
8386 vlan_features_add(dev
, NETIF_F_TSO6
);
8388 if ((rc
= register_netdev(dev
))) {
8389 dev_err(&pdev
->dev
, "Cannot register net device\n");
8393 netdev_info(dev
, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
8394 board_info
[ent
->driver_data
].name
,
8395 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
8396 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
8397 bnx2_bus_string(bp
, str
),
8399 bp
->pdev
->irq
, dev
->dev_addr
);
8404 if (bp
->mips_firmware
)
8405 release_firmware(bp
->mips_firmware
);
8406 if (bp
->rv2p_firmware
)
8407 release_firmware(bp
->rv2p_firmware
);
8410 iounmap(bp
->regview
);
8411 pci_release_regions(pdev
);
8412 pci_disable_device(pdev
);
8413 pci_set_drvdata(pdev
, NULL
);
8418 static void __devexit
8419 bnx2_remove_one(struct pci_dev
*pdev
)
8421 struct net_device
*dev
= pci_get_drvdata(pdev
);
8422 struct bnx2
*bp
= netdev_priv(dev
);
8424 flush_scheduled_work();
8426 unregister_netdev(dev
);
8428 if (bp
->mips_firmware
)
8429 release_firmware(bp
->mips_firmware
);
8430 if (bp
->rv2p_firmware
)
8431 release_firmware(bp
->rv2p_firmware
);
8434 iounmap(bp
->regview
);
8436 kfree(bp
->temp_stats_blk
);
8439 pci_release_regions(pdev
);
8440 pci_disable_device(pdev
);
8441 pci_set_drvdata(pdev
, NULL
);
8445 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
8447 struct net_device
*dev
= pci_get_drvdata(pdev
);
8448 struct bnx2
*bp
= netdev_priv(dev
);
8450 /* PCI register 4 needs to be saved whether netif_running() or not.
8451 * MSI address and data need to be saved if using MSI and
8454 pci_save_state(pdev
);
8455 if (!netif_running(dev
))
8458 flush_scheduled_work();
8459 bnx2_netif_stop(bp
, true);
8460 netif_device_detach(dev
);
8461 del_timer_sync(&bp
->timer
);
8462 bnx2_shutdown_chip(bp
);
8464 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
8469 bnx2_resume(struct pci_dev
*pdev
)
8471 struct net_device
*dev
= pci_get_drvdata(pdev
);
8472 struct bnx2
*bp
= netdev_priv(dev
);
8474 pci_restore_state(pdev
);
8475 if (!netif_running(dev
))
8478 bnx2_set_power_state(bp
, PCI_D0
);
8479 netif_device_attach(dev
);
8480 bnx2_init_nic(bp
, 1);
8481 bnx2_netif_start(bp
, true);
8486 * bnx2_io_error_detected - called when PCI error is detected
8487 * @pdev: Pointer to PCI device
8488 * @state: The current pci connection state
8490 * This function is called after a PCI bus error affecting
8491 * this device has been detected.
8493 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
8494 pci_channel_state_t state
)
8496 struct net_device
*dev
= pci_get_drvdata(pdev
);
8497 struct bnx2
*bp
= netdev_priv(dev
);
8500 netif_device_detach(dev
);
8502 if (state
== pci_channel_io_perm_failure
) {
8504 return PCI_ERS_RESULT_DISCONNECT
;
8507 if (netif_running(dev
)) {
8508 bnx2_netif_stop(bp
, true);
8509 del_timer_sync(&bp
->timer
);
8510 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
8513 pci_disable_device(pdev
);
8516 /* Request a slot slot reset. */
8517 return PCI_ERS_RESULT_NEED_RESET
;
8521 * bnx2_io_slot_reset - called after the pci bus has been reset.
8522 * @pdev: Pointer to PCI device
8524 * Restart the card from scratch, as if from a cold-boot.
8526 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
8528 struct net_device
*dev
= pci_get_drvdata(pdev
);
8529 struct bnx2
*bp
= netdev_priv(dev
);
8532 if (pci_enable_device(pdev
)) {
8534 "Cannot re-enable PCI device after reset\n");
8536 return PCI_ERS_RESULT_DISCONNECT
;
8538 pci_set_master(pdev
);
8539 pci_restore_state(pdev
);
8540 pci_save_state(pdev
);
8542 if (netif_running(dev
)) {
8543 bnx2_set_power_state(bp
, PCI_D0
);
8544 bnx2_init_nic(bp
, 1);
8548 return PCI_ERS_RESULT_RECOVERED
;
8552 * bnx2_io_resume - called when traffic can start flowing again.
8553 * @pdev: Pointer to PCI device
8555 * This callback is called when the error recovery driver tells us that
8556 * its OK to resume normal operation.
8558 static void bnx2_io_resume(struct pci_dev
*pdev
)
8560 struct net_device
*dev
= pci_get_drvdata(pdev
);
8561 struct bnx2
*bp
= netdev_priv(dev
);
8564 if (netif_running(dev
))
8565 bnx2_netif_start(bp
, true);
8567 netif_device_attach(dev
);
8571 static struct pci_error_handlers bnx2_err_handler
= {
8572 .error_detected
= bnx2_io_error_detected
,
8573 .slot_reset
= bnx2_io_slot_reset
,
8574 .resume
= bnx2_io_resume
,
8577 static struct pci_driver bnx2_pci_driver
= {
8578 .name
= DRV_MODULE_NAME
,
8579 .id_table
= bnx2_pci_tbl
,
8580 .probe
= bnx2_init_one
,
8581 .remove
= __devexit_p(bnx2_remove_one
),
8582 .suspend
= bnx2_suspend
,
8583 .resume
= bnx2_resume
,
8584 .err_handler
= &bnx2_err_handler
,
8587 static int __init
bnx2_init(void)
8589 return pci_register_driver(&bnx2_pci_driver
);
8592 static void __exit
bnx2_cleanup(void)
8594 pci_unregister_driver(&bnx2_pci_driver
);
8597 module_init(bnx2_init
);
8598 module_exit(bnx2_cleanup
);