block: blk_delay_queue() should use kblockd workqueue
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / blk-core.c
blobe2bacfa46cc3ee07684b276791e01870c68e26f7
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/block.h>
35 #include "blk.h"
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
41 static int __make_request(struct request_queue *q, struct bio *bio);
44 * For the allocated request tables
46 static struct kmem_cache *request_cachep;
49 * For queue allocation
51 struct kmem_cache *blk_requestq_cachep;
54 * Controlling structure to kblockd
56 static struct workqueue_struct *kblockd_workqueue;
58 static void drive_stat_acct(struct request *rq, int new_io)
60 struct hd_struct *part;
61 int rw = rq_data_dir(rq);
62 int cpu;
64 if (!blk_do_io_stat(rq))
65 return;
67 cpu = part_stat_lock();
69 if (!new_io) {
70 part = rq->part;
71 part_stat_inc(cpu, part, merges[rw]);
72 } else {
73 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
74 if (!hd_struct_try_get(part)) {
76 * The partition is already being removed,
77 * the request will be accounted on the disk only
79 * We take a reference on disk->part0 although that
80 * partition will never be deleted, so we can treat
81 * it as any other partition.
83 part = &rq->rq_disk->part0;
84 hd_struct_get(part);
86 part_round_stats(cpu, part);
87 part_inc_in_flight(part, rw);
88 rq->part = part;
91 part_stat_unlock();
94 void blk_queue_congestion_threshold(struct request_queue *q)
96 int nr;
98 nr = q->nr_requests - (q->nr_requests / 8) + 1;
99 if (nr > q->nr_requests)
100 nr = q->nr_requests;
101 q->nr_congestion_on = nr;
103 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
104 if (nr < 1)
105 nr = 1;
106 q->nr_congestion_off = nr;
110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
111 * @bdev: device
113 * Locates the passed device's request queue and returns the address of its
114 * backing_dev_info
116 * Will return NULL if the request queue cannot be located.
118 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
120 struct backing_dev_info *ret = NULL;
121 struct request_queue *q = bdev_get_queue(bdev);
123 if (q)
124 ret = &q->backing_dev_info;
125 return ret;
127 EXPORT_SYMBOL(blk_get_backing_dev_info);
129 void blk_rq_init(struct request_queue *q, struct request *rq)
131 memset(rq, 0, sizeof(*rq));
133 INIT_LIST_HEAD(&rq->queuelist);
134 INIT_LIST_HEAD(&rq->timeout_list);
135 rq->cpu = -1;
136 rq->q = q;
137 rq->__sector = (sector_t) -1;
138 INIT_HLIST_NODE(&rq->hash);
139 RB_CLEAR_NODE(&rq->rb_node);
140 rq->cmd = rq->__cmd;
141 rq->cmd_len = BLK_MAX_CDB;
142 rq->tag = -1;
143 rq->ref_count = 1;
144 rq->start_time = jiffies;
145 set_start_time_ns(rq);
146 rq->part = NULL;
148 EXPORT_SYMBOL(blk_rq_init);
150 static void req_bio_endio(struct request *rq, struct bio *bio,
151 unsigned int nbytes, int error)
153 if (error)
154 clear_bit(BIO_UPTODATE, &bio->bi_flags);
155 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
156 error = -EIO;
158 if (unlikely(nbytes > bio->bi_size)) {
159 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
160 __func__, nbytes, bio->bi_size);
161 nbytes = bio->bi_size;
164 if (unlikely(rq->cmd_flags & REQ_QUIET))
165 set_bit(BIO_QUIET, &bio->bi_flags);
167 bio->bi_size -= nbytes;
168 bio->bi_sector += (nbytes >> 9);
170 if (bio_integrity(bio))
171 bio_integrity_advance(bio, nbytes);
173 /* don't actually finish bio if it's part of flush sequence */
174 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
175 bio_endio(bio, error);
178 void blk_dump_rq_flags(struct request *rq, char *msg)
180 int bit;
182 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
183 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184 rq->cmd_flags);
186 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
187 (unsigned long long)blk_rq_pos(rq),
188 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
189 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
190 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
192 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
193 printk(KERN_INFO " cdb: ");
194 for (bit = 0; bit < BLK_MAX_CDB; bit++)
195 printk("%02x ", rq->cmd[bit]);
196 printk("\n");
199 EXPORT_SYMBOL(blk_dump_rq_flags);
201 static void blk_delay_work(struct work_struct *work)
203 struct request_queue *q;
205 q = container_of(work, struct request_queue, delay_work.work);
206 spin_lock_irq(q->queue_lock);
207 __blk_run_queue(q, false);
208 spin_unlock_irq(q->queue_lock);
212 * blk_delay_queue - restart queueing after defined interval
213 * @q: The &struct request_queue in question
214 * @msecs: Delay in msecs
216 * Description:
217 * Sometimes queueing needs to be postponed for a little while, to allow
218 * resources to come back. This function will make sure that queueing is
219 * restarted around the specified time.
221 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
223 queue_delayed_work(kblockd_workqueue, &q->delay_work,
224 msecs_to_jiffies(msecs));
226 EXPORT_SYMBOL(blk_delay_queue);
229 * blk_start_queue - restart a previously stopped queue
230 * @q: The &struct request_queue in question
232 * Description:
233 * blk_start_queue() will clear the stop flag on the queue, and call
234 * the request_fn for the queue if it was in a stopped state when
235 * entered. Also see blk_stop_queue(). Queue lock must be held.
237 void blk_start_queue(struct request_queue *q)
239 WARN_ON(!irqs_disabled());
241 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
242 __blk_run_queue(q, false);
244 EXPORT_SYMBOL(blk_start_queue);
247 * blk_stop_queue - stop a queue
248 * @q: The &struct request_queue in question
250 * Description:
251 * The Linux block layer assumes that a block driver will consume all
252 * entries on the request queue when the request_fn strategy is called.
253 * Often this will not happen, because of hardware limitations (queue
254 * depth settings). If a device driver gets a 'queue full' response,
255 * or if it simply chooses not to queue more I/O at one point, it can
256 * call this function to prevent the request_fn from being called until
257 * the driver has signalled it's ready to go again. This happens by calling
258 * blk_start_queue() to restart queue operations. Queue lock must be held.
260 void blk_stop_queue(struct request_queue *q)
262 __cancel_delayed_work(&q->delay_work);
263 queue_flag_set(QUEUE_FLAG_STOPPED, q);
265 EXPORT_SYMBOL(blk_stop_queue);
268 * blk_sync_queue - cancel any pending callbacks on a queue
269 * @q: the queue
271 * Description:
272 * The block layer may perform asynchronous callback activity
273 * on a queue, such as calling the unplug function after a timeout.
274 * A block device may call blk_sync_queue to ensure that any
275 * such activity is cancelled, thus allowing it to release resources
276 * that the callbacks might use. The caller must already have made sure
277 * that its ->make_request_fn will not re-add plugging prior to calling
278 * this function.
280 * This function does not cancel any asynchronous activity arising
281 * out of elevator or throttling code. That would require elevaotor_exit()
282 * and blk_throtl_exit() to be called with queue lock initialized.
285 void blk_sync_queue(struct request_queue *q)
287 del_timer_sync(&q->timeout);
288 cancel_delayed_work_sync(&q->delay_work);
290 EXPORT_SYMBOL(blk_sync_queue);
293 * __blk_run_queue - run a single device queue
294 * @q: The queue to run
295 * @force_kblockd: Don't run @q->request_fn directly. Use kblockd.
297 * Description:
298 * See @blk_run_queue. This variant must be called with the queue lock
299 * held and interrupts disabled. If force_kblockd is true, then it is
300 * safe to call this without holding the queue lock.
303 void __blk_run_queue(struct request_queue *q, bool force_kblockd)
305 if (unlikely(blk_queue_stopped(q)))
306 return;
309 * Only recurse once to avoid overrunning the stack, let the unplug
310 * handling reinvoke the handler shortly if we already got there.
312 if (!force_kblockd && !queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
313 q->request_fn(q);
314 queue_flag_clear(QUEUE_FLAG_REENTER, q);
315 } else
316 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
318 EXPORT_SYMBOL(__blk_run_queue);
321 * blk_run_queue - run a single device queue
322 * @q: The queue to run
324 * Description:
325 * Invoke request handling on this queue, if it has pending work to do.
326 * May be used to restart queueing when a request has completed.
328 void blk_run_queue(struct request_queue *q)
330 unsigned long flags;
332 spin_lock_irqsave(q->queue_lock, flags);
333 __blk_run_queue(q, false);
334 spin_unlock_irqrestore(q->queue_lock, flags);
336 EXPORT_SYMBOL(blk_run_queue);
338 void blk_put_queue(struct request_queue *q)
340 kobject_put(&q->kobj);
344 * Note: If a driver supplied the queue lock, it should not zap that lock
345 * unexpectedly as some queue cleanup components like elevator_exit() and
346 * blk_throtl_exit() need queue lock.
348 void blk_cleanup_queue(struct request_queue *q)
351 * We know we have process context here, so we can be a little
352 * cautious and ensure that pending block actions on this device
353 * are done before moving on. Going into this function, we should
354 * not have processes doing IO to this device.
356 blk_sync_queue(q);
358 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
359 mutex_lock(&q->sysfs_lock);
360 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
361 mutex_unlock(&q->sysfs_lock);
363 if (q->elevator)
364 elevator_exit(q->elevator);
366 blk_throtl_exit(q);
368 blk_put_queue(q);
370 EXPORT_SYMBOL(blk_cleanup_queue);
372 static int blk_init_free_list(struct request_queue *q)
374 struct request_list *rl = &q->rq;
376 if (unlikely(rl->rq_pool))
377 return 0;
379 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
380 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
381 rl->elvpriv = 0;
382 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
383 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
385 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
386 mempool_free_slab, request_cachep, q->node);
388 if (!rl->rq_pool)
389 return -ENOMEM;
391 return 0;
394 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
396 return blk_alloc_queue_node(gfp_mask, -1);
398 EXPORT_SYMBOL(blk_alloc_queue);
400 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
402 struct request_queue *q;
403 int err;
405 q = kmem_cache_alloc_node(blk_requestq_cachep,
406 gfp_mask | __GFP_ZERO, node_id);
407 if (!q)
408 return NULL;
410 q->backing_dev_info.ra_pages =
411 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
412 q->backing_dev_info.state = 0;
413 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
414 q->backing_dev_info.name = "block";
416 err = bdi_init(&q->backing_dev_info);
417 if (err) {
418 kmem_cache_free(blk_requestq_cachep, q);
419 return NULL;
422 if (blk_throtl_init(q)) {
423 kmem_cache_free(blk_requestq_cachep, q);
424 return NULL;
427 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
428 laptop_mode_timer_fn, (unsigned long) q);
429 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
430 INIT_LIST_HEAD(&q->timeout_list);
431 INIT_LIST_HEAD(&q->flush_queue[0]);
432 INIT_LIST_HEAD(&q->flush_queue[1]);
433 INIT_LIST_HEAD(&q->flush_data_in_flight);
434 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
436 kobject_init(&q->kobj, &blk_queue_ktype);
438 mutex_init(&q->sysfs_lock);
439 spin_lock_init(&q->__queue_lock);
442 * By default initialize queue_lock to internal lock and driver can
443 * override it later if need be.
445 q->queue_lock = &q->__queue_lock;
447 return q;
449 EXPORT_SYMBOL(blk_alloc_queue_node);
452 * blk_init_queue - prepare a request queue for use with a block device
453 * @rfn: The function to be called to process requests that have been
454 * placed on the queue.
455 * @lock: Request queue spin lock
457 * Description:
458 * If a block device wishes to use the standard request handling procedures,
459 * which sorts requests and coalesces adjacent requests, then it must
460 * call blk_init_queue(). The function @rfn will be called when there
461 * are requests on the queue that need to be processed. If the device
462 * supports plugging, then @rfn may not be called immediately when requests
463 * are available on the queue, but may be called at some time later instead.
464 * Plugged queues are generally unplugged when a buffer belonging to one
465 * of the requests on the queue is needed, or due to memory pressure.
467 * @rfn is not required, or even expected, to remove all requests off the
468 * queue, but only as many as it can handle at a time. If it does leave
469 * requests on the queue, it is responsible for arranging that the requests
470 * get dealt with eventually.
472 * The queue spin lock must be held while manipulating the requests on the
473 * request queue; this lock will be taken also from interrupt context, so irq
474 * disabling is needed for it.
476 * Function returns a pointer to the initialized request queue, or %NULL if
477 * it didn't succeed.
479 * Note:
480 * blk_init_queue() must be paired with a blk_cleanup_queue() call
481 * when the block device is deactivated (such as at module unload).
484 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
486 return blk_init_queue_node(rfn, lock, -1);
488 EXPORT_SYMBOL(blk_init_queue);
490 struct request_queue *
491 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
493 struct request_queue *uninit_q, *q;
495 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
496 if (!uninit_q)
497 return NULL;
499 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
500 if (!q)
501 blk_cleanup_queue(uninit_q);
503 return q;
505 EXPORT_SYMBOL(blk_init_queue_node);
507 struct request_queue *
508 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
509 spinlock_t *lock)
511 return blk_init_allocated_queue_node(q, rfn, lock, -1);
513 EXPORT_SYMBOL(blk_init_allocated_queue);
515 struct request_queue *
516 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
517 spinlock_t *lock, int node_id)
519 if (!q)
520 return NULL;
522 q->node = node_id;
523 if (blk_init_free_list(q))
524 return NULL;
526 q->request_fn = rfn;
527 q->prep_rq_fn = NULL;
528 q->unprep_rq_fn = NULL;
529 q->queue_flags = QUEUE_FLAG_DEFAULT;
531 /* Override internal queue lock with supplied lock pointer */
532 if (lock)
533 q->queue_lock = lock;
536 * This also sets hw/phys segments, boundary and size
538 blk_queue_make_request(q, __make_request);
540 q->sg_reserved_size = INT_MAX;
543 * all done
545 if (!elevator_init(q, NULL)) {
546 blk_queue_congestion_threshold(q);
547 return q;
550 return NULL;
552 EXPORT_SYMBOL(blk_init_allocated_queue_node);
554 int blk_get_queue(struct request_queue *q)
556 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
557 kobject_get(&q->kobj);
558 return 0;
561 return 1;
564 static inline void blk_free_request(struct request_queue *q, struct request *rq)
566 BUG_ON(rq->cmd_flags & REQ_ON_PLUG);
568 if (rq->cmd_flags & REQ_ELVPRIV)
569 elv_put_request(q, rq);
570 mempool_free(rq, q->rq.rq_pool);
573 static struct request *
574 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
576 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
578 if (!rq)
579 return NULL;
581 blk_rq_init(q, rq);
583 rq->cmd_flags = flags | REQ_ALLOCED;
585 if (priv) {
586 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
587 mempool_free(rq, q->rq.rq_pool);
588 return NULL;
590 rq->cmd_flags |= REQ_ELVPRIV;
593 return rq;
597 * ioc_batching returns true if the ioc is a valid batching request and
598 * should be given priority access to a request.
600 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
602 if (!ioc)
603 return 0;
606 * Make sure the process is able to allocate at least 1 request
607 * even if the batch times out, otherwise we could theoretically
608 * lose wakeups.
610 return ioc->nr_batch_requests == q->nr_batching ||
611 (ioc->nr_batch_requests > 0
612 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
616 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
617 * will cause the process to be a "batcher" on all queues in the system. This
618 * is the behaviour we want though - once it gets a wakeup it should be given
619 * a nice run.
621 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
623 if (!ioc || ioc_batching(q, ioc))
624 return;
626 ioc->nr_batch_requests = q->nr_batching;
627 ioc->last_waited = jiffies;
630 static void __freed_request(struct request_queue *q, int sync)
632 struct request_list *rl = &q->rq;
634 if (rl->count[sync] < queue_congestion_off_threshold(q))
635 blk_clear_queue_congested(q, sync);
637 if (rl->count[sync] + 1 <= q->nr_requests) {
638 if (waitqueue_active(&rl->wait[sync]))
639 wake_up(&rl->wait[sync]);
641 blk_clear_queue_full(q, sync);
646 * A request has just been released. Account for it, update the full and
647 * congestion status, wake up any waiters. Called under q->queue_lock.
649 static void freed_request(struct request_queue *q, int sync, int priv)
651 struct request_list *rl = &q->rq;
653 rl->count[sync]--;
654 if (priv)
655 rl->elvpriv--;
657 __freed_request(q, sync);
659 if (unlikely(rl->starved[sync ^ 1]))
660 __freed_request(q, sync ^ 1);
664 * Determine if elevator data should be initialized when allocating the
665 * request associated with @bio.
667 static bool blk_rq_should_init_elevator(struct bio *bio)
669 if (!bio)
670 return true;
673 * Flush requests do not use the elevator so skip initialization.
674 * This allows a request to share the flush and elevator data.
676 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
677 return false;
679 return true;
683 * Get a free request, queue_lock must be held.
684 * Returns NULL on failure, with queue_lock held.
685 * Returns !NULL on success, with queue_lock *not held*.
687 static struct request *get_request(struct request_queue *q, int rw_flags,
688 struct bio *bio, gfp_t gfp_mask)
690 struct request *rq = NULL;
691 struct request_list *rl = &q->rq;
692 struct io_context *ioc = NULL;
693 const bool is_sync = rw_is_sync(rw_flags) != 0;
694 int may_queue, priv = 0;
696 may_queue = elv_may_queue(q, rw_flags);
697 if (may_queue == ELV_MQUEUE_NO)
698 goto rq_starved;
700 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
701 if (rl->count[is_sync]+1 >= q->nr_requests) {
702 ioc = current_io_context(GFP_ATOMIC, q->node);
704 * The queue will fill after this allocation, so set
705 * it as full, and mark this process as "batching".
706 * This process will be allowed to complete a batch of
707 * requests, others will be blocked.
709 if (!blk_queue_full(q, is_sync)) {
710 ioc_set_batching(q, ioc);
711 blk_set_queue_full(q, is_sync);
712 } else {
713 if (may_queue != ELV_MQUEUE_MUST
714 && !ioc_batching(q, ioc)) {
716 * The queue is full and the allocating
717 * process is not a "batcher", and not
718 * exempted by the IO scheduler
720 goto out;
724 blk_set_queue_congested(q, is_sync);
728 * Only allow batching queuers to allocate up to 50% over the defined
729 * limit of requests, otherwise we could have thousands of requests
730 * allocated with any setting of ->nr_requests
732 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
733 goto out;
735 rl->count[is_sync]++;
736 rl->starved[is_sync] = 0;
738 if (blk_rq_should_init_elevator(bio)) {
739 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
740 if (priv)
741 rl->elvpriv++;
744 if (blk_queue_io_stat(q))
745 rw_flags |= REQ_IO_STAT;
746 spin_unlock_irq(q->queue_lock);
748 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
749 if (unlikely(!rq)) {
751 * Allocation failed presumably due to memory. Undo anything
752 * we might have messed up.
754 * Allocating task should really be put onto the front of the
755 * wait queue, but this is pretty rare.
757 spin_lock_irq(q->queue_lock);
758 freed_request(q, is_sync, priv);
761 * in the very unlikely event that allocation failed and no
762 * requests for this direction was pending, mark us starved
763 * so that freeing of a request in the other direction will
764 * notice us. another possible fix would be to split the
765 * rq mempool into READ and WRITE
767 rq_starved:
768 if (unlikely(rl->count[is_sync] == 0))
769 rl->starved[is_sync] = 1;
771 goto out;
775 * ioc may be NULL here, and ioc_batching will be false. That's
776 * OK, if the queue is under the request limit then requests need
777 * not count toward the nr_batch_requests limit. There will always
778 * be some limit enforced by BLK_BATCH_TIME.
780 if (ioc_batching(q, ioc))
781 ioc->nr_batch_requests--;
783 trace_block_getrq(q, bio, rw_flags & 1);
784 out:
785 return rq;
789 * No available requests for this queue, wait for some requests to become
790 * available.
792 * Called with q->queue_lock held, and returns with it unlocked.
794 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
795 struct bio *bio)
797 const bool is_sync = rw_is_sync(rw_flags) != 0;
798 struct request *rq;
800 rq = get_request(q, rw_flags, bio, GFP_NOIO);
801 while (!rq) {
802 DEFINE_WAIT(wait);
803 struct io_context *ioc;
804 struct request_list *rl = &q->rq;
806 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
807 TASK_UNINTERRUPTIBLE);
809 trace_block_sleeprq(q, bio, rw_flags & 1);
811 spin_unlock_irq(q->queue_lock);
812 io_schedule();
815 * After sleeping, we become a "batching" process and
816 * will be able to allocate at least one request, and
817 * up to a big batch of them for a small period time.
818 * See ioc_batching, ioc_set_batching
820 ioc = current_io_context(GFP_NOIO, q->node);
821 ioc_set_batching(q, ioc);
823 spin_lock_irq(q->queue_lock);
824 finish_wait(&rl->wait[is_sync], &wait);
826 rq = get_request(q, rw_flags, bio, GFP_NOIO);
829 return rq;
832 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
834 struct request *rq;
836 BUG_ON(rw != READ && rw != WRITE);
838 spin_lock_irq(q->queue_lock);
839 if (gfp_mask & __GFP_WAIT) {
840 rq = get_request_wait(q, rw, NULL);
841 } else {
842 rq = get_request(q, rw, NULL, gfp_mask);
843 if (!rq)
844 spin_unlock_irq(q->queue_lock);
846 /* q->queue_lock is unlocked at this point */
848 return rq;
850 EXPORT_SYMBOL(blk_get_request);
853 * blk_make_request - given a bio, allocate a corresponding struct request.
854 * @q: target request queue
855 * @bio: The bio describing the memory mappings that will be submitted for IO.
856 * It may be a chained-bio properly constructed by block/bio layer.
857 * @gfp_mask: gfp flags to be used for memory allocation
859 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
860 * type commands. Where the struct request needs to be farther initialized by
861 * the caller. It is passed a &struct bio, which describes the memory info of
862 * the I/O transfer.
864 * The caller of blk_make_request must make sure that bi_io_vec
865 * are set to describe the memory buffers. That bio_data_dir() will return
866 * the needed direction of the request. (And all bio's in the passed bio-chain
867 * are properly set accordingly)
869 * If called under none-sleepable conditions, mapped bio buffers must not
870 * need bouncing, by calling the appropriate masked or flagged allocator,
871 * suitable for the target device. Otherwise the call to blk_queue_bounce will
872 * BUG.
874 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
875 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
876 * anything but the first bio in the chain. Otherwise you risk waiting for IO
877 * completion of a bio that hasn't been submitted yet, thus resulting in a
878 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
879 * of bio_alloc(), as that avoids the mempool deadlock.
880 * If possible a big IO should be split into smaller parts when allocation
881 * fails. Partial allocation should not be an error, or you risk a live-lock.
883 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
884 gfp_t gfp_mask)
886 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
888 if (unlikely(!rq))
889 return ERR_PTR(-ENOMEM);
891 for_each_bio(bio) {
892 struct bio *bounce_bio = bio;
893 int ret;
895 blk_queue_bounce(q, &bounce_bio);
896 ret = blk_rq_append_bio(q, rq, bounce_bio);
897 if (unlikely(ret)) {
898 blk_put_request(rq);
899 return ERR_PTR(ret);
903 return rq;
905 EXPORT_SYMBOL(blk_make_request);
908 * blk_requeue_request - put a request back on queue
909 * @q: request queue where request should be inserted
910 * @rq: request to be inserted
912 * Description:
913 * Drivers often keep queueing requests until the hardware cannot accept
914 * more, when that condition happens we need to put the request back
915 * on the queue. Must be called with queue lock held.
917 void blk_requeue_request(struct request_queue *q, struct request *rq)
919 blk_delete_timer(rq);
920 blk_clear_rq_complete(rq);
921 trace_block_rq_requeue(q, rq);
923 if (blk_rq_tagged(rq))
924 blk_queue_end_tag(q, rq);
926 BUG_ON(blk_queued_rq(rq));
928 elv_requeue_request(q, rq);
930 EXPORT_SYMBOL(blk_requeue_request);
932 static void add_acct_request(struct request_queue *q, struct request *rq,
933 int where)
935 drive_stat_acct(rq, 1);
936 __elv_add_request(q, rq, where);
940 * blk_insert_request - insert a special request into a request queue
941 * @q: request queue where request should be inserted
942 * @rq: request to be inserted
943 * @at_head: insert request at head or tail of queue
944 * @data: private data
946 * Description:
947 * Many block devices need to execute commands asynchronously, so they don't
948 * block the whole kernel from preemption during request execution. This is
949 * accomplished normally by inserting aritficial requests tagged as
950 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
951 * be scheduled for actual execution by the request queue.
953 * We have the option of inserting the head or the tail of the queue.
954 * Typically we use the tail for new ioctls and so forth. We use the head
955 * of the queue for things like a QUEUE_FULL message from a device, or a
956 * host that is unable to accept a particular command.
958 void blk_insert_request(struct request_queue *q, struct request *rq,
959 int at_head, void *data)
961 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
962 unsigned long flags;
965 * tell I/O scheduler that this isn't a regular read/write (ie it
966 * must not attempt merges on this) and that it acts as a soft
967 * barrier
969 rq->cmd_type = REQ_TYPE_SPECIAL;
971 rq->special = data;
973 spin_lock_irqsave(q->queue_lock, flags);
976 * If command is tagged, release the tag
978 if (blk_rq_tagged(rq))
979 blk_queue_end_tag(q, rq);
981 add_acct_request(q, rq, where);
982 __blk_run_queue(q, false);
983 spin_unlock_irqrestore(q->queue_lock, flags);
985 EXPORT_SYMBOL(blk_insert_request);
987 static void part_round_stats_single(int cpu, struct hd_struct *part,
988 unsigned long now)
990 if (now == part->stamp)
991 return;
993 if (part_in_flight(part)) {
994 __part_stat_add(cpu, part, time_in_queue,
995 part_in_flight(part) * (now - part->stamp));
996 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
998 part->stamp = now;
1002 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1003 * @cpu: cpu number for stats access
1004 * @part: target partition
1006 * The average IO queue length and utilisation statistics are maintained
1007 * by observing the current state of the queue length and the amount of
1008 * time it has been in this state for.
1010 * Normally, that accounting is done on IO completion, but that can result
1011 * in more than a second's worth of IO being accounted for within any one
1012 * second, leading to >100% utilisation. To deal with that, we call this
1013 * function to do a round-off before returning the results when reading
1014 * /proc/diskstats. This accounts immediately for all queue usage up to
1015 * the current jiffies and restarts the counters again.
1017 void part_round_stats(int cpu, struct hd_struct *part)
1019 unsigned long now = jiffies;
1021 if (part->partno)
1022 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1023 part_round_stats_single(cpu, part, now);
1025 EXPORT_SYMBOL_GPL(part_round_stats);
1028 * queue lock must be held
1030 void __blk_put_request(struct request_queue *q, struct request *req)
1032 if (unlikely(!q))
1033 return;
1034 if (unlikely(--req->ref_count))
1035 return;
1037 elv_completed_request(q, req);
1039 /* this is a bio leak */
1040 WARN_ON(req->bio != NULL);
1043 * Request may not have originated from ll_rw_blk. if not,
1044 * it didn't come out of our reserved rq pools
1046 if (req->cmd_flags & REQ_ALLOCED) {
1047 int is_sync = rq_is_sync(req) != 0;
1048 int priv = req->cmd_flags & REQ_ELVPRIV;
1050 BUG_ON(!list_empty(&req->queuelist));
1051 BUG_ON(!hlist_unhashed(&req->hash));
1053 blk_free_request(q, req);
1054 freed_request(q, is_sync, priv);
1057 EXPORT_SYMBOL_GPL(__blk_put_request);
1059 void blk_put_request(struct request *req)
1061 unsigned long flags;
1062 struct request_queue *q = req->q;
1064 spin_lock_irqsave(q->queue_lock, flags);
1065 __blk_put_request(q, req);
1066 spin_unlock_irqrestore(q->queue_lock, flags);
1068 EXPORT_SYMBOL(blk_put_request);
1071 * blk_add_request_payload - add a payload to a request
1072 * @rq: request to update
1073 * @page: page backing the payload
1074 * @len: length of the payload.
1076 * This allows to later add a payload to an already submitted request by
1077 * a block driver. The driver needs to take care of freeing the payload
1078 * itself.
1080 * Note that this is a quite horrible hack and nothing but handling of
1081 * discard requests should ever use it.
1083 void blk_add_request_payload(struct request *rq, struct page *page,
1084 unsigned int len)
1086 struct bio *bio = rq->bio;
1088 bio->bi_io_vec->bv_page = page;
1089 bio->bi_io_vec->bv_offset = 0;
1090 bio->bi_io_vec->bv_len = len;
1092 bio->bi_size = len;
1093 bio->bi_vcnt = 1;
1094 bio->bi_phys_segments = 1;
1096 rq->__data_len = rq->resid_len = len;
1097 rq->nr_phys_segments = 1;
1098 rq->buffer = bio_data(bio);
1100 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1102 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1103 struct bio *bio)
1105 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1108 * Debug stuff, kill later
1110 if (!rq_mergeable(req)) {
1111 blk_dump_rq_flags(req, "back");
1112 return false;
1115 if (!ll_back_merge_fn(q, req, bio))
1116 return false;
1118 trace_block_bio_backmerge(q, bio);
1120 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1121 blk_rq_set_mixed_merge(req);
1123 req->biotail->bi_next = bio;
1124 req->biotail = bio;
1125 req->__data_len += bio->bi_size;
1126 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1128 drive_stat_acct(req, 0);
1129 return true;
1132 static bool bio_attempt_front_merge(struct request_queue *q,
1133 struct request *req, struct bio *bio)
1135 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1136 sector_t sector;
1139 * Debug stuff, kill later
1141 if (!rq_mergeable(req)) {
1142 blk_dump_rq_flags(req, "front");
1143 return false;
1146 if (!ll_front_merge_fn(q, req, bio))
1147 return false;
1149 trace_block_bio_frontmerge(q, bio);
1151 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1152 blk_rq_set_mixed_merge(req);
1154 sector = bio->bi_sector;
1156 bio->bi_next = req->bio;
1157 req->bio = bio;
1160 * may not be valid. if the low level driver said
1161 * it didn't need a bounce buffer then it better
1162 * not touch req->buffer either...
1164 req->buffer = bio_data(bio);
1165 req->__sector = bio->bi_sector;
1166 req->__data_len += bio->bi_size;
1167 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1169 drive_stat_acct(req, 0);
1170 return true;
1174 * Attempts to merge with the plugged list in the current process. Returns
1175 * true if merge was successful, otherwise false.
1177 static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1178 struct bio *bio)
1180 struct blk_plug *plug;
1181 struct request *rq;
1182 bool ret = false;
1184 plug = tsk->plug;
1185 if (!plug)
1186 goto out;
1188 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1189 int el_ret;
1191 if (rq->q != q)
1192 continue;
1194 el_ret = elv_try_merge(rq, bio);
1195 if (el_ret == ELEVATOR_BACK_MERGE) {
1196 ret = bio_attempt_back_merge(q, rq, bio);
1197 if (ret)
1198 break;
1199 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1200 ret = bio_attempt_front_merge(q, rq, bio);
1201 if (ret)
1202 break;
1205 out:
1206 return ret;
1209 void init_request_from_bio(struct request *req, struct bio *bio)
1211 req->cpu = bio->bi_comp_cpu;
1212 req->cmd_type = REQ_TYPE_FS;
1214 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1215 if (bio->bi_rw & REQ_RAHEAD)
1216 req->cmd_flags |= REQ_FAILFAST_MASK;
1218 req->errors = 0;
1219 req->__sector = bio->bi_sector;
1220 req->ioprio = bio_prio(bio);
1221 blk_rq_bio_prep(req->q, req, bio);
1224 static int __make_request(struct request_queue *q, struct bio *bio)
1226 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1227 struct blk_plug *plug;
1228 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1229 struct request *req;
1232 * low level driver can indicate that it wants pages above a
1233 * certain limit bounced to low memory (ie for highmem, or even
1234 * ISA dma in theory)
1236 blk_queue_bounce(q, &bio);
1238 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1239 spin_lock_irq(q->queue_lock);
1240 where = ELEVATOR_INSERT_FLUSH;
1241 goto get_rq;
1245 * Check if we can merge with the plugged list before grabbing
1246 * any locks.
1248 if (attempt_plug_merge(current, q, bio))
1249 goto out;
1251 spin_lock_irq(q->queue_lock);
1253 el_ret = elv_merge(q, &req, bio);
1254 if (el_ret == ELEVATOR_BACK_MERGE) {
1255 BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1256 if (bio_attempt_back_merge(q, req, bio)) {
1257 if (!attempt_back_merge(q, req))
1258 elv_merged_request(q, req, el_ret);
1259 goto out_unlock;
1261 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1262 BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1263 if (bio_attempt_front_merge(q, req, bio)) {
1264 if (!attempt_front_merge(q, req))
1265 elv_merged_request(q, req, el_ret);
1266 goto out_unlock;
1270 get_rq:
1272 * This sync check and mask will be re-done in init_request_from_bio(),
1273 * but we need to set it earlier to expose the sync flag to the
1274 * rq allocator and io schedulers.
1276 rw_flags = bio_data_dir(bio);
1277 if (sync)
1278 rw_flags |= REQ_SYNC;
1281 * Grab a free request. This is might sleep but can not fail.
1282 * Returns with the queue unlocked.
1284 req = get_request_wait(q, rw_flags, bio);
1287 * After dropping the lock and possibly sleeping here, our request
1288 * may now be mergeable after it had proven unmergeable (above).
1289 * We don't worry about that case for efficiency. It won't happen
1290 * often, and the elevators are able to handle it.
1292 init_request_from_bio(req, bio);
1294 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1295 bio_flagged(bio, BIO_CPU_AFFINE)) {
1296 req->cpu = blk_cpu_to_group(get_cpu());
1297 put_cpu();
1300 plug = current->plug;
1301 if (plug) {
1303 * If this is the first request added after a plug, fire
1304 * of a plug trace. If others have been added before, check
1305 * if we have multiple devices in this plug. If so, make a
1306 * note to sort the list before dispatch.
1308 if (list_empty(&plug->list))
1309 trace_block_plug(q);
1310 else if (!plug->should_sort) {
1311 struct request *__rq;
1313 __rq = list_entry_rq(plug->list.prev);
1314 if (__rq->q != q)
1315 plug->should_sort = 1;
1318 * Debug flag, kill later
1320 req->cmd_flags |= REQ_ON_PLUG;
1321 list_add_tail(&req->queuelist, &plug->list);
1322 drive_stat_acct(req, 1);
1323 } else {
1324 spin_lock_irq(q->queue_lock);
1325 add_acct_request(q, req, where);
1326 __blk_run_queue(q, false);
1327 out_unlock:
1328 spin_unlock_irq(q->queue_lock);
1330 out:
1331 return 0;
1335 * If bio->bi_dev is a partition, remap the location
1337 static inline void blk_partition_remap(struct bio *bio)
1339 struct block_device *bdev = bio->bi_bdev;
1341 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1342 struct hd_struct *p = bdev->bd_part;
1344 bio->bi_sector += p->start_sect;
1345 bio->bi_bdev = bdev->bd_contains;
1347 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1348 bdev->bd_dev,
1349 bio->bi_sector - p->start_sect);
1353 static void handle_bad_sector(struct bio *bio)
1355 char b[BDEVNAME_SIZE];
1357 printk(KERN_INFO "attempt to access beyond end of device\n");
1358 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1359 bdevname(bio->bi_bdev, b),
1360 bio->bi_rw,
1361 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1362 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1364 set_bit(BIO_EOF, &bio->bi_flags);
1367 #ifdef CONFIG_FAIL_MAKE_REQUEST
1369 static DECLARE_FAULT_ATTR(fail_make_request);
1371 static int __init setup_fail_make_request(char *str)
1373 return setup_fault_attr(&fail_make_request, str);
1375 __setup("fail_make_request=", setup_fail_make_request);
1377 static int should_fail_request(struct bio *bio)
1379 struct hd_struct *part = bio->bi_bdev->bd_part;
1381 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1382 return should_fail(&fail_make_request, bio->bi_size);
1384 return 0;
1387 static int __init fail_make_request_debugfs(void)
1389 return init_fault_attr_dentries(&fail_make_request,
1390 "fail_make_request");
1393 late_initcall(fail_make_request_debugfs);
1395 #else /* CONFIG_FAIL_MAKE_REQUEST */
1397 static inline int should_fail_request(struct bio *bio)
1399 return 0;
1402 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1405 * Check whether this bio extends beyond the end of the device.
1407 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1409 sector_t maxsector;
1411 if (!nr_sectors)
1412 return 0;
1414 /* Test device or partition size, when known. */
1415 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1416 if (maxsector) {
1417 sector_t sector = bio->bi_sector;
1419 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1421 * This may well happen - the kernel calls bread()
1422 * without checking the size of the device, e.g., when
1423 * mounting a device.
1425 handle_bad_sector(bio);
1426 return 1;
1430 return 0;
1434 * generic_make_request - hand a buffer to its device driver for I/O
1435 * @bio: The bio describing the location in memory and on the device.
1437 * generic_make_request() is used to make I/O requests of block
1438 * devices. It is passed a &struct bio, which describes the I/O that needs
1439 * to be done.
1441 * generic_make_request() does not return any status. The
1442 * success/failure status of the request, along with notification of
1443 * completion, is delivered asynchronously through the bio->bi_end_io
1444 * function described (one day) else where.
1446 * The caller of generic_make_request must make sure that bi_io_vec
1447 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1448 * set to describe the device address, and the
1449 * bi_end_io and optionally bi_private are set to describe how
1450 * completion notification should be signaled.
1452 * generic_make_request and the drivers it calls may use bi_next if this
1453 * bio happens to be merged with someone else, and may change bi_dev and
1454 * bi_sector for remaps as it sees fit. So the values of these fields
1455 * should NOT be depended on after the call to generic_make_request.
1457 static inline void __generic_make_request(struct bio *bio)
1459 struct request_queue *q;
1460 sector_t old_sector;
1461 int ret, nr_sectors = bio_sectors(bio);
1462 dev_t old_dev;
1463 int err = -EIO;
1465 might_sleep();
1467 if (bio_check_eod(bio, nr_sectors))
1468 goto end_io;
1471 * Resolve the mapping until finished. (drivers are
1472 * still free to implement/resolve their own stacking
1473 * by explicitly returning 0)
1475 * NOTE: we don't repeat the blk_size check for each new device.
1476 * Stacking drivers are expected to know what they are doing.
1478 old_sector = -1;
1479 old_dev = 0;
1480 do {
1481 char b[BDEVNAME_SIZE];
1483 q = bdev_get_queue(bio->bi_bdev);
1484 if (unlikely(!q)) {
1485 printk(KERN_ERR
1486 "generic_make_request: Trying to access "
1487 "nonexistent block-device %s (%Lu)\n",
1488 bdevname(bio->bi_bdev, b),
1489 (long long) bio->bi_sector);
1490 goto end_io;
1493 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1494 nr_sectors > queue_max_hw_sectors(q))) {
1495 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1496 bdevname(bio->bi_bdev, b),
1497 bio_sectors(bio),
1498 queue_max_hw_sectors(q));
1499 goto end_io;
1502 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1503 goto end_io;
1505 if (should_fail_request(bio))
1506 goto end_io;
1509 * If this device has partitions, remap block n
1510 * of partition p to block n+start(p) of the disk.
1512 blk_partition_remap(bio);
1514 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1515 goto end_io;
1517 if (old_sector != -1)
1518 trace_block_bio_remap(q, bio, old_dev, old_sector);
1520 old_sector = bio->bi_sector;
1521 old_dev = bio->bi_bdev->bd_dev;
1523 if (bio_check_eod(bio, nr_sectors))
1524 goto end_io;
1527 * Filter flush bio's early so that make_request based
1528 * drivers without flush support don't have to worry
1529 * about them.
1531 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1532 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1533 if (!nr_sectors) {
1534 err = 0;
1535 goto end_io;
1539 if ((bio->bi_rw & REQ_DISCARD) &&
1540 (!blk_queue_discard(q) ||
1541 ((bio->bi_rw & REQ_SECURE) &&
1542 !blk_queue_secdiscard(q)))) {
1543 err = -EOPNOTSUPP;
1544 goto end_io;
1547 blk_throtl_bio(q, &bio);
1550 * If bio = NULL, bio has been throttled and will be submitted
1551 * later.
1553 if (!bio)
1554 break;
1556 trace_block_bio_queue(q, bio);
1558 ret = q->make_request_fn(q, bio);
1559 } while (ret);
1561 return;
1563 end_io:
1564 bio_endio(bio, err);
1568 * We only want one ->make_request_fn to be active at a time,
1569 * else stack usage with stacked devices could be a problem.
1570 * So use current->bio_list to keep a list of requests
1571 * submited by a make_request_fn function.
1572 * current->bio_list is also used as a flag to say if
1573 * generic_make_request is currently active in this task or not.
1574 * If it is NULL, then no make_request is active. If it is non-NULL,
1575 * then a make_request is active, and new requests should be added
1576 * at the tail
1578 void generic_make_request(struct bio *bio)
1580 struct bio_list bio_list_on_stack;
1582 if (current->bio_list) {
1583 /* make_request is active */
1584 bio_list_add(current->bio_list, bio);
1585 return;
1587 /* following loop may be a bit non-obvious, and so deserves some
1588 * explanation.
1589 * Before entering the loop, bio->bi_next is NULL (as all callers
1590 * ensure that) so we have a list with a single bio.
1591 * We pretend that we have just taken it off a longer list, so
1592 * we assign bio_list to a pointer to the bio_list_on_stack,
1593 * thus initialising the bio_list of new bios to be
1594 * added. __generic_make_request may indeed add some more bios
1595 * through a recursive call to generic_make_request. If it
1596 * did, we find a non-NULL value in bio_list and re-enter the loop
1597 * from the top. In this case we really did just take the bio
1598 * of the top of the list (no pretending) and so remove it from
1599 * bio_list, and call into __generic_make_request again.
1601 * The loop was structured like this to make only one call to
1602 * __generic_make_request (which is important as it is large and
1603 * inlined) and to keep the structure simple.
1605 BUG_ON(bio->bi_next);
1606 bio_list_init(&bio_list_on_stack);
1607 current->bio_list = &bio_list_on_stack;
1608 do {
1609 __generic_make_request(bio);
1610 bio = bio_list_pop(current->bio_list);
1611 } while (bio);
1612 current->bio_list = NULL; /* deactivate */
1614 EXPORT_SYMBOL(generic_make_request);
1617 * submit_bio - submit a bio to the block device layer for I/O
1618 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1619 * @bio: The &struct bio which describes the I/O
1621 * submit_bio() is very similar in purpose to generic_make_request(), and
1622 * uses that function to do most of the work. Both are fairly rough
1623 * interfaces; @bio must be presetup and ready for I/O.
1626 void submit_bio(int rw, struct bio *bio)
1628 int count = bio_sectors(bio);
1630 bio->bi_rw |= rw;
1633 * If it's a regular read/write or a barrier with data attached,
1634 * go through the normal accounting stuff before submission.
1636 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1637 if (rw & WRITE) {
1638 count_vm_events(PGPGOUT, count);
1639 } else {
1640 task_io_account_read(bio->bi_size);
1641 count_vm_events(PGPGIN, count);
1644 if (unlikely(block_dump)) {
1645 char b[BDEVNAME_SIZE];
1646 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1647 current->comm, task_pid_nr(current),
1648 (rw & WRITE) ? "WRITE" : "READ",
1649 (unsigned long long)bio->bi_sector,
1650 bdevname(bio->bi_bdev, b),
1651 count);
1655 generic_make_request(bio);
1657 EXPORT_SYMBOL(submit_bio);
1660 * blk_rq_check_limits - Helper function to check a request for the queue limit
1661 * @q: the queue
1662 * @rq: the request being checked
1664 * Description:
1665 * @rq may have been made based on weaker limitations of upper-level queues
1666 * in request stacking drivers, and it may violate the limitation of @q.
1667 * Since the block layer and the underlying device driver trust @rq
1668 * after it is inserted to @q, it should be checked against @q before
1669 * the insertion using this generic function.
1671 * This function should also be useful for request stacking drivers
1672 * in some cases below, so export this function.
1673 * Request stacking drivers like request-based dm may change the queue
1674 * limits while requests are in the queue (e.g. dm's table swapping).
1675 * Such request stacking drivers should check those requests agaist
1676 * the new queue limits again when they dispatch those requests,
1677 * although such checkings are also done against the old queue limits
1678 * when submitting requests.
1680 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1682 if (rq->cmd_flags & REQ_DISCARD)
1683 return 0;
1685 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1686 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1687 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1688 return -EIO;
1692 * queue's settings related to segment counting like q->bounce_pfn
1693 * may differ from that of other stacking queues.
1694 * Recalculate it to check the request correctly on this queue's
1695 * limitation.
1697 blk_recalc_rq_segments(rq);
1698 if (rq->nr_phys_segments > queue_max_segments(q)) {
1699 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1700 return -EIO;
1703 return 0;
1705 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1708 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1709 * @q: the queue to submit the request
1710 * @rq: the request being queued
1712 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1714 unsigned long flags;
1716 if (blk_rq_check_limits(q, rq))
1717 return -EIO;
1719 #ifdef CONFIG_FAIL_MAKE_REQUEST
1720 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1721 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1722 return -EIO;
1723 #endif
1725 spin_lock_irqsave(q->queue_lock, flags);
1728 * Submitting request must be dequeued before calling this function
1729 * because it will be linked to another request_queue
1731 BUG_ON(blk_queued_rq(rq));
1733 add_acct_request(q, rq, ELEVATOR_INSERT_BACK);
1734 spin_unlock_irqrestore(q->queue_lock, flags);
1736 return 0;
1738 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1741 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1742 * @rq: request to examine
1744 * Description:
1745 * A request could be merge of IOs which require different failure
1746 * handling. This function determines the number of bytes which
1747 * can be failed from the beginning of the request without
1748 * crossing into area which need to be retried further.
1750 * Return:
1751 * The number of bytes to fail.
1753 * Context:
1754 * queue_lock must be held.
1756 unsigned int blk_rq_err_bytes(const struct request *rq)
1758 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1759 unsigned int bytes = 0;
1760 struct bio *bio;
1762 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1763 return blk_rq_bytes(rq);
1766 * Currently the only 'mixing' which can happen is between
1767 * different fastfail types. We can safely fail portions
1768 * which have all the failfast bits that the first one has -
1769 * the ones which are at least as eager to fail as the first
1770 * one.
1772 for (bio = rq->bio; bio; bio = bio->bi_next) {
1773 if ((bio->bi_rw & ff) != ff)
1774 break;
1775 bytes += bio->bi_size;
1778 /* this could lead to infinite loop */
1779 BUG_ON(blk_rq_bytes(rq) && !bytes);
1780 return bytes;
1782 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1784 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1786 if (blk_do_io_stat(req)) {
1787 const int rw = rq_data_dir(req);
1788 struct hd_struct *part;
1789 int cpu;
1791 cpu = part_stat_lock();
1792 part = req->part;
1793 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1794 part_stat_unlock();
1798 static void blk_account_io_done(struct request *req)
1801 * Account IO completion. flush_rq isn't accounted as a
1802 * normal IO on queueing nor completion. Accounting the
1803 * containing request is enough.
1805 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1806 unsigned long duration = jiffies - req->start_time;
1807 const int rw = rq_data_dir(req);
1808 struct hd_struct *part;
1809 int cpu;
1811 cpu = part_stat_lock();
1812 part = req->part;
1814 part_stat_inc(cpu, part, ios[rw]);
1815 part_stat_add(cpu, part, ticks[rw], duration);
1816 part_round_stats(cpu, part);
1817 part_dec_in_flight(part, rw);
1819 hd_struct_put(part);
1820 part_stat_unlock();
1825 * blk_peek_request - peek at the top of a request queue
1826 * @q: request queue to peek at
1828 * Description:
1829 * Return the request at the top of @q. The returned request
1830 * should be started using blk_start_request() before LLD starts
1831 * processing it.
1833 * Return:
1834 * Pointer to the request at the top of @q if available. Null
1835 * otherwise.
1837 * Context:
1838 * queue_lock must be held.
1840 struct request *blk_peek_request(struct request_queue *q)
1842 struct request *rq;
1843 int ret;
1845 while ((rq = __elv_next_request(q)) != NULL) {
1846 if (!(rq->cmd_flags & REQ_STARTED)) {
1848 * This is the first time the device driver
1849 * sees this request (possibly after
1850 * requeueing). Notify IO scheduler.
1852 if (rq->cmd_flags & REQ_SORTED)
1853 elv_activate_rq(q, rq);
1856 * just mark as started even if we don't start
1857 * it, a request that has been delayed should
1858 * not be passed by new incoming requests
1860 rq->cmd_flags |= REQ_STARTED;
1861 trace_block_rq_issue(q, rq);
1864 if (!q->boundary_rq || q->boundary_rq == rq) {
1865 q->end_sector = rq_end_sector(rq);
1866 q->boundary_rq = NULL;
1869 if (rq->cmd_flags & REQ_DONTPREP)
1870 break;
1872 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1874 * make sure space for the drain appears we
1875 * know we can do this because max_hw_segments
1876 * has been adjusted to be one fewer than the
1877 * device can handle
1879 rq->nr_phys_segments++;
1882 if (!q->prep_rq_fn)
1883 break;
1885 ret = q->prep_rq_fn(q, rq);
1886 if (ret == BLKPREP_OK) {
1887 break;
1888 } else if (ret == BLKPREP_DEFER) {
1890 * the request may have been (partially) prepped.
1891 * we need to keep this request in the front to
1892 * avoid resource deadlock. REQ_STARTED will
1893 * prevent other fs requests from passing this one.
1895 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1896 !(rq->cmd_flags & REQ_DONTPREP)) {
1898 * remove the space for the drain we added
1899 * so that we don't add it again
1901 --rq->nr_phys_segments;
1904 rq = NULL;
1905 break;
1906 } else if (ret == BLKPREP_KILL) {
1907 rq->cmd_flags |= REQ_QUIET;
1909 * Mark this request as started so we don't trigger
1910 * any debug logic in the end I/O path.
1912 blk_start_request(rq);
1913 __blk_end_request_all(rq, -EIO);
1914 } else {
1915 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1916 break;
1920 return rq;
1922 EXPORT_SYMBOL(blk_peek_request);
1924 void blk_dequeue_request(struct request *rq)
1926 struct request_queue *q = rq->q;
1928 BUG_ON(list_empty(&rq->queuelist));
1929 BUG_ON(ELV_ON_HASH(rq));
1931 list_del_init(&rq->queuelist);
1934 * the time frame between a request being removed from the lists
1935 * and to it is freed is accounted as io that is in progress at
1936 * the driver side.
1938 if (blk_account_rq(rq)) {
1939 q->in_flight[rq_is_sync(rq)]++;
1940 set_io_start_time_ns(rq);
1945 * blk_start_request - start request processing on the driver
1946 * @req: request to dequeue
1948 * Description:
1949 * Dequeue @req and start timeout timer on it. This hands off the
1950 * request to the driver.
1952 * Block internal functions which don't want to start timer should
1953 * call blk_dequeue_request().
1955 * Context:
1956 * queue_lock must be held.
1958 void blk_start_request(struct request *req)
1960 blk_dequeue_request(req);
1963 * We are now handing the request to the hardware, initialize
1964 * resid_len to full count and add the timeout handler.
1966 req->resid_len = blk_rq_bytes(req);
1967 if (unlikely(blk_bidi_rq(req)))
1968 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1970 blk_add_timer(req);
1972 EXPORT_SYMBOL(blk_start_request);
1975 * blk_fetch_request - fetch a request from a request queue
1976 * @q: request queue to fetch a request from
1978 * Description:
1979 * Return the request at the top of @q. The request is started on
1980 * return and LLD can start processing it immediately.
1982 * Return:
1983 * Pointer to the request at the top of @q if available. Null
1984 * otherwise.
1986 * Context:
1987 * queue_lock must be held.
1989 struct request *blk_fetch_request(struct request_queue *q)
1991 struct request *rq;
1993 rq = blk_peek_request(q);
1994 if (rq)
1995 blk_start_request(rq);
1996 return rq;
1998 EXPORT_SYMBOL(blk_fetch_request);
2001 * blk_update_request - Special helper function for request stacking drivers
2002 * @req: the request being processed
2003 * @error: %0 for success, < %0 for error
2004 * @nr_bytes: number of bytes to complete @req
2006 * Description:
2007 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2008 * the request structure even if @req doesn't have leftover.
2009 * If @req has leftover, sets it up for the next range of segments.
2011 * This special helper function is only for request stacking drivers
2012 * (e.g. request-based dm) so that they can handle partial completion.
2013 * Actual device drivers should use blk_end_request instead.
2015 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2016 * %false return from this function.
2018 * Return:
2019 * %false - this request doesn't have any more data
2020 * %true - this request has more data
2022 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2024 int total_bytes, bio_nbytes, next_idx = 0;
2025 struct bio *bio;
2027 if (!req->bio)
2028 return false;
2030 trace_block_rq_complete(req->q, req);
2033 * For fs requests, rq is just carrier of independent bio's
2034 * and each partial completion should be handled separately.
2035 * Reset per-request error on each partial completion.
2037 * TODO: tj: This is too subtle. It would be better to let
2038 * low level drivers do what they see fit.
2040 if (req->cmd_type == REQ_TYPE_FS)
2041 req->errors = 0;
2043 if (error && req->cmd_type == REQ_TYPE_FS &&
2044 !(req->cmd_flags & REQ_QUIET)) {
2045 char *error_type;
2047 switch (error) {
2048 case -ENOLINK:
2049 error_type = "recoverable transport";
2050 break;
2051 case -EREMOTEIO:
2052 error_type = "critical target";
2053 break;
2054 case -EBADE:
2055 error_type = "critical nexus";
2056 break;
2057 case -EIO:
2058 default:
2059 error_type = "I/O";
2060 break;
2062 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2063 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2064 (unsigned long long)blk_rq_pos(req));
2067 blk_account_io_completion(req, nr_bytes);
2069 total_bytes = bio_nbytes = 0;
2070 while ((bio = req->bio) != NULL) {
2071 int nbytes;
2073 if (nr_bytes >= bio->bi_size) {
2074 req->bio = bio->bi_next;
2075 nbytes = bio->bi_size;
2076 req_bio_endio(req, bio, nbytes, error);
2077 next_idx = 0;
2078 bio_nbytes = 0;
2079 } else {
2080 int idx = bio->bi_idx + next_idx;
2082 if (unlikely(idx >= bio->bi_vcnt)) {
2083 blk_dump_rq_flags(req, "__end_that");
2084 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2085 __func__, idx, bio->bi_vcnt);
2086 break;
2089 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2090 BIO_BUG_ON(nbytes > bio->bi_size);
2093 * not a complete bvec done
2095 if (unlikely(nbytes > nr_bytes)) {
2096 bio_nbytes += nr_bytes;
2097 total_bytes += nr_bytes;
2098 break;
2102 * advance to the next vector
2104 next_idx++;
2105 bio_nbytes += nbytes;
2108 total_bytes += nbytes;
2109 nr_bytes -= nbytes;
2111 bio = req->bio;
2112 if (bio) {
2114 * end more in this run, or just return 'not-done'
2116 if (unlikely(nr_bytes <= 0))
2117 break;
2122 * completely done
2124 if (!req->bio) {
2126 * Reset counters so that the request stacking driver
2127 * can find how many bytes remain in the request
2128 * later.
2130 req->__data_len = 0;
2131 return false;
2135 * if the request wasn't completed, update state
2137 if (bio_nbytes) {
2138 req_bio_endio(req, bio, bio_nbytes, error);
2139 bio->bi_idx += next_idx;
2140 bio_iovec(bio)->bv_offset += nr_bytes;
2141 bio_iovec(bio)->bv_len -= nr_bytes;
2144 req->__data_len -= total_bytes;
2145 req->buffer = bio_data(req->bio);
2147 /* update sector only for requests with clear definition of sector */
2148 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2149 req->__sector += total_bytes >> 9;
2151 /* mixed attributes always follow the first bio */
2152 if (req->cmd_flags & REQ_MIXED_MERGE) {
2153 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2154 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2158 * If total number of sectors is less than the first segment
2159 * size, something has gone terribly wrong.
2161 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2162 blk_dump_rq_flags(req, "request botched");
2163 req->__data_len = blk_rq_cur_bytes(req);
2166 /* recalculate the number of segments */
2167 blk_recalc_rq_segments(req);
2169 return true;
2171 EXPORT_SYMBOL_GPL(blk_update_request);
2173 static bool blk_update_bidi_request(struct request *rq, int error,
2174 unsigned int nr_bytes,
2175 unsigned int bidi_bytes)
2177 if (blk_update_request(rq, error, nr_bytes))
2178 return true;
2180 /* Bidi request must be completed as a whole */
2181 if (unlikely(blk_bidi_rq(rq)) &&
2182 blk_update_request(rq->next_rq, error, bidi_bytes))
2183 return true;
2185 if (blk_queue_add_random(rq->q))
2186 add_disk_randomness(rq->rq_disk);
2188 return false;
2192 * blk_unprep_request - unprepare a request
2193 * @req: the request
2195 * This function makes a request ready for complete resubmission (or
2196 * completion). It happens only after all error handling is complete,
2197 * so represents the appropriate moment to deallocate any resources
2198 * that were allocated to the request in the prep_rq_fn. The queue
2199 * lock is held when calling this.
2201 void blk_unprep_request(struct request *req)
2203 struct request_queue *q = req->q;
2205 req->cmd_flags &= ~REQ_DONTPREP;
2206 if (q->unprep_rq_fn)
2207 q->unprep_rq_fn(q, req);
2209 EXPORT_SYMBOL_GPL(blk_unprep_request);
2212 * queue lock must be held
2214 static void blk_finish_request(struct request *req, int error)
2216 if (blk_rq_tagged(req))
2217 blk_queue_end_tag(req->q, req);
2219 BUG_ON(blk_queued_rq(req));
2221 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2222 laptop_io_completion(&req->q->backing_dev_info);
2224 blk_delete_timer(req);
2226 if (req->cmd_flags & REQ_DONTPREP)
2227 blk_unprep_request(req);
2230 blk_account_io_done(req);
2232 if (req->end_io)
2233 req->end_io(req, error);
2234 else {
2235 if (blk_bidi_rq(req))
2236 __blk_put_request(req->next_rq->q, req->next_rq);
2238 __blk_put_request(req->q, req);
2243 * blk_end_bidi_request - Complete a bidi request
2244 * @rq: the request to complete
2245 * @error: %0 for success, < %0 for error
2246 * @nr_bytes: number of bytes to complete @rq
2247 * @bidi_bytes: number of bytes to complete @rq->next_rq
2249 * Description:
2250 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2251 * Drivers that supports bidi can safely call this member for any
2252 * type of request, bidi or uni. In the later case @bidi_bytes is
2253 * just ignored.
2255 * Return:
2256 * %false - we are done with this request
2257 * %true - still buffers pending for this request
2259 static bool blk_end_bidi_request(struct request *rq, int error,
2260 unsigned int nr_bytes, unsigned int bidi_bytes)
2262 struct request_queue *q = rq->q;
2263 unsigned long flags;
2265 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2266 return true;
2268 spin_lock_irqsave(q->queue_lock, flags);
2269 blk_finish_request(rq, error);
2270 spin_unlock_irqrestore(q->queue_lock, flags);
2272 return false;
2276 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2277 * @rq: the request to complete
2278 * @error: %0 for success, < %0 for error
2279 * @nr_bytes: number of bytes to complete @rq
2280 * @bidi_bytes: number of bytes to complete @rq->next_rq
2282 * Description:
2283 * Identical to blk_end_bidi_request() except that queue lock is
2284 * assumed to be locked on entry and remains so on return.
2286 * Return:
2287 * %false - we are done with this request
2288 * %true - still buffers pending for this request
2290 static bool __blk_end_bidi_request(struct request *rq, int error,
2291 unsigned int nr_bytes, unsigned int bidi_bytes)
2293 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2294 return true;
2296 blk_finish_request(rq, error);
2298 return false;
2302 * blk_end_request - Helper function for drivers to complete the request.
2303 * @rq: the request being processed
2304 * @error: %0 for success, < %0 for error
2305 * @nr_bytes: number of bytes to complete
2307 * Description:
2308 * Ends I/O on a number of bytes attached to @rq.
2309 * If @rq has leftover, sets it up for the next range of segments.
2311 * Return:
2312 * %false - we are done with this request
2313 * %true - still buffers pending for this request
2315 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2317 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2319 EXPORT_SYMBOL(blk_end_request);
2322 * blk_end_request_all - Helper function for drives to finish the request.
2323 * @rq: the request to finish
2324 * @error: %0 for success, < %0 for error
2326 * Description:
2327 * Completely finish @rq.
2329 void blk_end_request_all(struct request *rq, int error)
2331 bool pending;
2332 unsigned int bidi_bytes = 0;
2334 if (unlikely(blk_bidi_rq(rq)))
2335 bidi_bytes = blk_rq_bytes(rq->next_rq);
2337 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2338 BUG_ON(pending);
2340 EXPORT_SYMBOL(blk_end_request_all);
2343 * blk_end_request_cur - Helper function to finish the current request chunk.
2344 * @rq: the request to finish the current chunk for
2345 * @error: %0 for success, < %0 for error
2347 * Description:
2348 * Complete the current consecutively mapped chunk from @rq.
2350 * Return:
2351 * %false - we are done with this request
2352 * %true - still buffers pending for this request
2354 bool blk_end_request_cur(struct request *rq, int error)
2356 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2358 EXPORT_SYMBOL(blk_end_request_cur);
2361 * blk_end_request_err - Finish a request till the next failure boundary.
2362 * @rq: the request to finish till the next failure boundary for
2363 * @error: must be negative errno
2365 * Description:
2366 * Complete @rq till the next failure boundary.
2368 * Return:
2369 * %false - we are done with this request
2370 * %true - still buffers pending for this request
2372 bool blk_end_request_err(struct request *rq, int error)
2374 WARN_ON(error >= 0);
2375 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2377 EXPORT_SYMBOL_GPL(blk_end_request_err);
2380 * __blk_end_request - Helper function for drivers to complete the request.
2381 * @rq: the request being processed
2382 * @error: %0 for success, < %0 for error
2383 * @nr_bytes: number of bytes to complete
2385 * Description:
2386 * Must be called with queue lock held unlike blk_end_request().
2388 * Return:
2389 * %false - we are done with this request
2390 * %true - still buffers pending for this request
2392 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2394 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2396 EXPORT_SYMBOL(__blk_end_request);
2399 * __blk_end_request_all - Helper function for drives to finish the request.
2400 * @rq: the request to finish
2401 * @error: %0 for success, < %0 for error
2403 * Description:
2404 * Completely finish @rq. Must be called with queue lock held.
2406 void __blk_end_request_all(struct request *rq, int error)
2408 bool pending;
2409 unsigned int bidi_bytes = 0;
2411 if (unlikely(blk_bidi_rq(rq)))
2412 bidi_bytes = blk_rq_bytes(rq->next_rq);
2414 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2415 BUG_ON(pending);
2417 EXPORT_SYMBOL(__blk_end_request_all);
2420 * __blk_end_request_cur - Helper function to finish the current request chunk.
2421 * @rq: the request to finish the current chunk for
2422 * @error: %0 for success, < %0 for error
2424 * Description:
2425 * Complete the current consecutively mapped chunk from @rq. Must
2426 * be called with queue lock held.
2428 * Return:
2429 * %false - we are done with this request
2430 * %true - still buffers pending for this request
2432 bool __blk_end_request_cur(struct request *rq, int error)
2434 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2436 EXPORT_SYMBOL(__blk_end_request_cur);
2439 * __blk_end_request_err - Finish a request till the next failure boundary.
2440 * @rq: the request to finish till the next failure boundary for
2441 * @error: must be negative errno
2443 * Description:
2444 * Complete @rq till the next failure boundary. Must be called
2445 * with queue lock held.
2447 * Return:
2448 * %false - we are done with this request
2449 * %true - still buffers pending for this request
2451 bool __blk_end_request_err(struct request *rq, int error)
2453 WARN_ON(error >= 0);
2454 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2456 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2458 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2459 struct bio *bio)
2461 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2462 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2464 if (bio_has_data(bio)) {
2465 rq->nr_phys_segments = bio_phys_segments(q, bio);
2466 rq->buffer = bio_data(bio);
2468 rq->__data_len = bio->bi_size;
2469 rq->bio = rq->biotail = bio;
2471 if (bio->bi_bdev)
2472 rq->rq_disk = bio->bi_bdev->bd_disk;
2475 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2477 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2478 * @rq: the request to be flushed
2480 * Description:
2481 * Flush all pages in @rq.
2483 void rq_flush_dcache_pages(struct request *rq)
2485 struct req_iterator iter;
2486 struct bio_vec *bvec;
2488 rq_for_each_segment(bvec, rq, iter)
2489 flush_dcache_page(bvec->bv_page);
2491 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2492 #endif
2495 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2496 * @q : the queue of the device being checked
2498 * Description:
2499 * Check if underlying low-level drivers of a device are busy.
2500 * If the drivers want to export their busy state, they must set own
2501 * exporting function using blk_queue_lld_busy() first.
2503 * Basically, this function is used only by request stacking drivers
2504 * to stop dispatching requests to underlying devices when underlying
2505 * devices are busy. This behavior helps more I/O merging on the queue
2506 * of the request stacking driver and prevents I/O throughput regression
2507 * on burst I/O load.
2509 * Return:
2510 * 0 - Not busy (The request stacking driver should dispatch request)
2511 * 1 - Busy (The request stacking driver should stop dispatching request)
2513 int blk_lld_busy(struct request_queue *q)
2515 if (q->lld_busy_fn)
2516 return q->lld_busy_fn(q);
2518 return 0;
2520 EXPORT_SYMBOL_GPL(blk_lld_busy);
2523 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2524 * @rq: the clone request to be cleaned up
2526 * Description:
2527 * Free all bios in @rq for a cloned request.
2529 void blk_rq_unprep_clone(struct request *rq)
2531 struct bio *bio;
2533 while ((bio = rq->bio) != NULL) {
2534 rq->bio = bio->bi_next;
2536 bio_put(bio);
2539 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2542 * Copy attributes of the original request to the clone request.
2543 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2545 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2547 dst->cpu = src->cpu;
2548 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2549 dst->cmd_type = src->cmd_type;
2550 dst->__sector = blk_rq_pos(src);
2551 dst->__data_len = blk_rq_bytes(src);
2552 dst->nr_phys_segments = src->nr_phys_segments;
2553 dst->ioprio = src->ioprio;
2554 dst->extra_len = src->extra_len;
2558 * blk_rq_prep_clone - Helper function to setup clone request
2559 * @rq: the request to be setup
2560 * @rq_src: original request to be cloned
2561 * @bs: bio_set that bios for clone are allocated from
2562 * @gfp_mask: memory allocation mask for bio
2563 * @bio_ctr: setup function to be called for each clone bio.
2564 * Returns %0 for success, non %0 for failure.
2565 * @data: private data to be passed to @bio_ctr
2567 * Description:
2568 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2569 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2570 * are not copied, and copying such parts is the caller's responsibility.
2571 * Also, pages which the original bios are pointing to are not copied
2572 * and the cloned bios just point same pages.
2573 * So cloned bios must be completed before original bios, which means
2574 * the caller must complete @rq before @rq_src.
2576 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2577 struct bio_set *bs, gfp_t gfp_mask,
2578 int (*bio_ctr)(struct bio *, struct bio *, void *),
2579 void *data)
2581 struct bio *bio, *bio_src;
2583 if (!bs)
2584 bs = fs_bio_set;
2586 blk_rq_init(NULL, rq);
2588 __rq_for_each_bio(bio_src, rq_src) {
2589 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2590 if (!bio)
2591 goto free_and_out;
2593 __bio_clone(bio, bio_src);
2595 if (bio_integrity(bio_src) &&
2596 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2597 goto free_and_out;
2599 if (bio_ctr && bio_ctr(bio, bio_src, data))
2600 goto free_and_out;
2602 if (rq->bio) {
2603 rq->biotail->bi_next = bio;
2604 rq->biotail = bio;
2605 } else
2606 rq->bio = rq->biotail = bio;
2609 __blk_rq_prep_clone(rq, rq_src);
2611 return 0;
2613 free_and_out:
2614 if (bio)
2615 bio_free(bio, bs);
2616 blk_rq_unprep_clone(rq);
2618 return -ENOMEM;
2620 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2622 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2624 return queue_work(kblockd_workqueue, work);
2626 EXPORT_SYMBOL(kblockd_schedule_work);
2628 int kblockd_schedule_delayed_work(struct request_queue *q,
2629 struct delayed_work *dwork, unsigned long delay)
2631 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2633 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2635 #define PLUG_MAGIC 0x91827364
2637 void blk_start_plug(struct blk_plug *plug)
2639 struct task_struct *tsk = current;
2641 plug->magic = PLUG_MAGIC;
2642 INIT_LIST_HEAD(&plug->list);
2643 INIT_LIST_HEAD(&plug->cb_list);
2644 plug->should_sort = 0;
2647 * If this is a nested plug, don't actually assign it. It will be
2648 * flushed on its own.
2650 if (!tsk->plug) {
2652 * Store ordering should not be needed here, since a potential
2653 * preempt will imply a full memory barrier
2655 tsk->plug = plug;
2658 EXPORT_SYMBOL(blk_start_plug);
2660 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2662 struct request *rqa = container_of(a, struct request, queuelist);
2663 struct request *rqb = container_of(b, struct request, queuelist);
2665 return !(rqa->q <= rqb->q);
2669 * If 'from_schedule' is true, then postpone the dispatch of requests
2670 * until a safe kblockd context. We due this to avoid accidental big
2671 * additional stack usage in driver dispatch, in places where the originally
2672 * plugger did not intend it.
2674 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2675 bool from_schedule)
2676 __releases(q->queue_lock)
2678 trace_block_unplug(q, depth, !from_schedule);
2681 * If we are punting this to kblockd, then we can safely drop
2682 * the queue_lock before waking kblockd (which needs to take
2683 * this lock).
2685 if (from_schedule) {
2686 spin_unlock(q->queue_lock);
2687 __blk_run_queue(q, true);
2688 } else {
2689 __blk_run_queue(q, false);
2690 spin_unlock(q->queue_lock);
2695 static void flush_plug_callbacks(struct blk_plug *plug)
2697 LIST_HEAD(callbacks);
2699 if (list_empty(&plug->cb_list))
2700 return;
2702 list_splice_init(&plug->cb_list, &callbacks);
2704 while (!list_empty(&callbacks)) {
2705 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2706 struct blk_plug_cb,
2707 list);
2708 list_del(&cb->list);
2709 cb->callback(cb);
2713 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2715 struct request_queue *q;
2716 unsigned long flags;
2717 struct request *rq;
2718 LIST_HEAD(list);
2719 unsigned int depth;
2721 BUG_ON(plug->magic != PLUG_MAGIC);
2723 flush_plug_callbacks(plug);
2724 if (list_empty(&plug->list))
2725 return;
2727 list_splice_init(&plug->list, &list);
2729 if (plug->should_sort) {
2730 list_sort(NULL, &list, plug_rq_cmp);
2731 plug->should_sort = 0;
2734 q = NULL;
2735 depth = 0;
2738 * Save and disable interrupts here, to avoid doing it for every
2739 * queue lock we have to take.
2741 local_irq_save(flags);
2742 while (!list_empty(&list)) {
2743 rq = list_entry_rq(list.next);
2744 list_del_init(&rq->queuelist);
2745 BUG_ON(!(rq->cmd_flags & REQ_ON_PLUG));
2746 BUG_ON(!rq->q);
2747 if (rq->q != q) {
2749 * This drops the queue lock
2751 if (q)
2752 queue_unplugged(q, depth, from_schedule);
2753 q = rq->q;
2754 depth = 0;
2755 spin_lock(q->queue_lock);
2757 rq->cmd_flags &= ~REQ_ON_PLUG;
2760 * rq is already accounted, so use raw insert
2762 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2763 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2764 else
2765 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2767 depth++;
2771 * This drops the queue lock
2773 if (q)
2774 queue_unplugged(q, depth, from_schedule);
2776 local_irq_restore(flags);
2778 EXPORT_SYMBOL(blk_flush_plug_list);
2780 void blk_finish_plug(struct blk_plug *plug)
2782 blk_flush_plug_list(plug, false);
2784 if (plug == current->plug)
2785 current->plug = NULL;
2787 EXPORT_SYMBOL(blk_finish_plug);
2789 int __init blk_dev_init(void)
2791 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2792 sizeof(((struct request *)0)->cmd_flags));
2794 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2795 kblockd_workqueue = alloc_workqueue("kblockd",
2796 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2797 if (!kblockd_workqueue)
2798 panic("Failed to create kblockd\n");
2800 request_cachep = kmem_cache_create("blkdev_requests",
2801 sizeof(struct request), 0, SLAB_PANIC, NULL);
2803 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2804 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2806 return 0;