4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/cpumask.h>
21 #include <linux/module.h>
22 #include <linux/sysfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/mnt_namespace.h>
25 #include <linux/namei.h>
26 #include <linux/nsproxy.h>
27 #include <linux/security.h>
28 #include <linux/mount.h>
29 #include <linux/ramfs.h>
30 #include <linux/log2.h>
31 #include <linux/idr.h>
32 #include <linux/fs_struct.h>
33 #include <linux/fsnotify.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40 #define HASH_SIZE (1UL << HASH_SHIFT)
43 static DEFINE_IDA(mnt_id_ida
);
44 static DEFINE_IDA(mnt_group_ida
);
45 static DEFINE_SPINLOCK(mnt_id_lock
);
46 static int mnt_id_start
= 0;
47 static int mnt_group_start
= 1;
49 static struct list_head
*mount_hashtable __read_mostly
;
50 static struct kmem_cache
*mnt_cache __read_mostly
;
51 static struct rw_semaphore namespace_sem
;
54 struct kobject
*fs_kobj
;
55 EXPORT_SYMBOL_GPL(fs_kobj
);
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
65 DEFINE_BRLOCK(vfsmount_lock
);
67 static inline unsigned long hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
69 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
70 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
71 tmp
= tmp
+ (tmp
>> HASH_SHIFT
);
72 return tmp
& (HASH_SIZE
- 1);
75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
81 static int mnt_alloc_id(struct vfsmount
*mnt
)
86 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
87 spin_lock(&mnt_id_lock
);
88 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
90 mnt_id_start
= mnt
->mnt_id
+ 1;
91 spin_unlock(&mnt_id_lock
);
98 static void mnt_free_id(struct vfsmount
*mnt
)
100 int id
= mnt
->mnt_id
;
101 spin_lock(&mnt_id_lock
);
102 ida_remove(&mnt_id_ida
, id
);
103 if (mnt_id_start
> id
)
105 spin_unlock(&mnt_id_lock
);
109 * Allocate a new peer group ID
111 * mnt_group_ida is protected by namespace_sem
113 static int mnt_alloc_group_id(struct vfsmount
*mnt
)
117 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
120 res
= ida_get_new_above(&mnt_group_ida
,
124 mnt_group_start
= mnt
->mnt_group_id
+ 1;
130 * Release a peer group ID
132 void mnt_release_group_id(struct vfsmount
*mnt
)
134 int id
= mnt
->mnt_group_id
;
135 ida_remove(&mnt_group_ida
, id
);
136 if (mnt_group_start
> id
)
137 mnt_group_start
= id
;
138 mnt
->mnt_group_id
= 0;
141 struct vfsmount
*alloc_vfsmnt(const char *name
)
143 struct vfsmount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
147 err
= mnt_alloc_id(mnt
);
152 mnt
->mnt_devname
= kstrdup(name
, GFP_KERNEL
);
153 if (!mnt
->mnt_devname
)
157 atomic_set(&mnt
->mnt_count
, 1);
158 INIT_LIST_HEAD(&mnt
->mnt_hash
);
159 INIT_LIST_HEAD(&mnt
->mnt_child
);
160 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
161 INIT_LIST_HEAD(&mnt
->mnt_list
);
162 INIT_LIST_HEAD(&mnt
->mnt_expire
);
163 INIT_LIST_HEAD(&mnt
->mnt_share
);
164 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
165 INIT_LIST_HEAD(&mnt
->mnt_slave
);
166 #ifdef CONFIG_FSNOTIFY
167 INIT_HLIST_HEAD(&mnt
->mnt_fsnotify_marks
);
170 mnt
->mnt_writers
= alloc_percpu(int);
171 if (!mnt
->mnt_writers
)
172 goto out_free_devname
;
174 mnt
->mnt_writers
= 0;
181 kfree(mnt
->mnt_devname
);
186 kmem_cache_free(mnt_cache
, mnt
);
191 * Most r/o checks on a fs are for operations that take
192 * discrete amounts of time, like a write() or unlink().
193 * We must keep track of when those operations start
194 * (for permission checks) and when they end, so that
195 * we can determine when writes are able to occur to
199 * __mnt_is_readonly: check whether a mount is read-only
200 * @mnt: the mount to check for its write status
202 * This shouldn't be used directly ouside of the VFS.
203 * It does not guarantee that the filesystem will stay
204 * r/w, just that it is right *now*. This can not and
205 * should not be used in place of IS_RDONLY(inode).
206 * mnt_want/drop_write() will _keep_ the filesystem
209 int __mnt_is_readonly(struct vfsmount
*mnt
)
211 if (mnt
->mnt_flags
& MNT_READONLY
)
213 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
217 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
219 static inline void inc_mnt_writers(struct vfsmount
*mnt
)
222 (*per_cpu_ptr(mnt
->mnt_writers
, smp_processor_id()))++;
228 static inline void dec_mnt_writers(struct vfsmount
*mnt
)
231 (*per_cpu_ptr(mnt
->mnt_writers
, smp_processor_id()))--;
237 static unsigned int count_mnt_writers(struct vfsmount
*mnt
)
240 unsigned int count
= 0;
243 for_each_possible_cpu(cpu
) {
244 count
+= *per_cpu_ptr(mnt
->mnt_writers
, cpu
);
249 return mnt
->mnt_writers
;
254 * Most r/o checks on a fs are for operations that take
255 * discrete amounts of time, like a write() or unlink().
256 * We must keep track of when those operations start
257 * (for permission checks) and when they end, so that
258 * we can determine when writes are able to occur to
262 * mnt_want_write - get write access to a mount
263 * @mnt: the mount on which to take a write
265 * This tells the low-level filesystem that a write is
266 * about to be performed to it, and makes sure that
267 * writes are allowed before returning success. When
268 * the write operation is finished, mnt_drop_write()
269 * must be called. This is effectively a refcount.
271 int mnt_want_write(struct vfsmount
*mnt
)
276 inc_mnt_writers(mnt
);
278 * The store to inc_mnt_writers must be visible before we pass
279 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
280 * incremented count after it has set MNT_WRITE_HOLD.
283 while (mnt
->mnt_flags
& MNT_WRITE_HOLD
)
286 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
287 * be set to match its requirements. So we must not load that until
288 * MNT_WRITE_HOLD is cleared.
291 if (__mnt_is_readonly(mnt
)) {
292 dec_mnt_writers(mnt
);
300 EXPORT_SYMBOL_GPL(mnt_want_write
);
303 * mnt_clone_write - get write access to a mount
304 * @mnt: the mount on which to take a write
306 * This is effectively like mnt_want_write, except
307 * it must only be used to take an extra write reference
308 * on a mountpoint that we already know has a write reference
309 * on it. This allows some optimisation.
311 * After finished, mnt_drop_write must be called as usual to
312 * drop the reference.
314 int mnt_clone_write(struct vfsmount
*mnt
)
316 /* superblock may be r/o */
317 if (__mnt_is_readonly(mnt
))
320 inc_mnt_writers(mnt
);
324 EXPORT_SYMBOL_GPL(mnt_clone_write
);
327 * mnt_want_write_file - get write access to a file's mount
328 * @file: the file who's mount on which to take a write
330 * This is like mnt_want_write, but it takes a file and can
331 * do some optimisations if the file is open for write already
333 int mnt_want_write_file(struct file
*file
)
335 struct inode
*inode
= file
->f_dentry
->d_inode
;
336 if (!(file
->f_mode
& FMODE_WRITE
) || special_file(inode
->i_mode
))
337 return mnt_want_write(file
->f_path
.mnt
);
339 return mnt_clone_write(file
->f_path
.mnt
);
341 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
344 * mnt_drop_write - give up write access to a mount
345 * @mnt: the mount on which to give up write access
347 * Tells the low-level filesystem that we are done
348 * performing writes to it. Must be matched with
349 * mnt_want_write() call above.
351 void mnt_drop_write(struct vfsmount
*mnt
)
354 dec_mnt_writers(mnt
);
357 EXPORT_SYMBOL_GPL(mnt_drop_write
);
359 static int mnt_make_readonly(struct vfsmount
*mnt
)
363 br_write_lock(vfsmount_lock
);
364 mnt
->mnt_flags
|= MNT_WRITE_HOLD
;
366 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
367 * should be visible before we do.
372 * With writers on hold, if this value is zero, then there are
373 * definitely no active writers (although held writers may subsequently
374 * increment the count, they'll have to wait, and decrement it after
375 * seeing MNT_READONLY).
377 * It is OK to have counter incremented on one CPU and decremented on
378 * another: the sum will add up correctly. The danger would be when we
379 * sum up each counter, if we read a counter before it is incremented,
380 * but then read another CPU's count which it has been subsequently
381 * decremented from -- we would see more decrements than we should.
382 * MNT_WRITE_HOLD protects against this scenario, because
383 * mnt_want_write first increments count, then smp_mb, then spins on
384 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
385 * we're counting up here.
387 if (count_mnt_writers(mnt
) > 0)
390 mnt
->mnt_flags
|= MNT_READONLY
;
392 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
393 * that become unheld will see MNT_READONLY.
396 mnt
->mnt_flags
&= ~MNT_WRITE_HOLD
;
397 br_write_unlock(vfsmount_lock
);
401 static void __mnt_unmake_readonly(struct vfsmount
*mnt
)
403 br_write_lock(vfsmount_lock
);
404 mnt
->mnt_flags
&= ~MNT_READONLY
;
405 br_write_unlock(vfsmount_lock
);
408 void simple_set_mnt(struct vfsmount
*mnt
, struct super_block
*sb
)
411 mnt
->mnt_root
= dget(sb
->s_root
);
414 EXPORT_SYMBOL(simple_set_mnt
);
416 void free_vfsmnt(struct vfsmount
*mnt
)
418 kfree(mnt
->mnt_devname
);
421 free_percpu(mnt
->mnt_writers
);
423 kmem_cache_free(mnt_cache
, mnt
);
427 * find the first or last mount at @dentry on vfsmount @mnt depending on
428 * @dir. If @dir is set return the first mount else return the last mount.
429 * vfsmount_lock must be held for read or write.
431 struct vfsmount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
,
434 struct list_head
*head
= mount_hashtable
+ hash(mnt
, dentry
);
435 struct list_head
*tmp
= head
;
436 struct vfsmount
*p
, *found
= NULL
;
439 tmp
= dir
? tmp
->next
: tmp
->prev
;
443 p
= list_entry(tmp
, struct vfsmount
, mnt_hash
);
444 if (p
->mnt_parent
== mnt
&& p
->mnt_mountpoint
== dentry
) {
453 * lookup_mnt increments the ref count before returning
454 * the vfsmount struct.
456 struct vfsmount
*lookup_mnt(struct path
*path
)
458 struct vfsmount
*child_mnt
;
460 br_read_lock(vfsmount_lock
);
461 if ((child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
, 1)))
463 br_read_unlock(vfsmount_lock
);
467 static inline int check_mnt(struct vfsmount
*mnt
)
469 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
473 * vfsmount lock must be held for write
475 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
479 wake_up_interruptible(&ns
->poll
);
484 * vfsmount lock must be held for write
486 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
488 if (ns
&& ns
->event
!= event
) {
490 wake_up_interruptible(&ns
->poll
);
495 * vfsmount lock must be held for write
497 static void detach_mnt(struct vfsmount
*mnt
, struct path
*old_path
)
499 old_path
->dentry
= mnt
->mnt_mountpoint
;
500 old_path
->mnt
= mnt
->mnt_parent
;
501 mnt
->mnt_parent
= mnt
;
502 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
503 list_del_init(&mnt
->mnt_child
);
504 list_del_init(&mnt
->mnt_hash
);
505 old_path
->dentry
->d_mounted
--;
509 * vfsmount lock must be held for write
511 void mnt_set_mountpoint(struct vfsmount
*mnt
, struct dentry
*dentry
,
512 struct vfsmount
*child_mnt
)
514 child_mnt
->mnt_parent
= mntget(mnt
);
515 child_mnt
->mnt_mountpoint
= dget(dentry
);
520 * vfsmount lock must be held for write
522 static void attach_mnt(struct vfsmount
*mnt
, struct path
*path
)
524 mnt_set_mountpoint(path
->mnt
, path
->dentry
, mnt
);
525 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
526 hash(path
->mnt
, path
->dentry
));
527 list_add_tail(&mnt
->mnt_child
, &path
->mnt
->mnt_mounts
);
531 * vfsmount lock must be held for write
533 static void commit_tree(struct vfsmount
*mnt
)
535 struct vfsmount
*parent
= mnt
->mnt_parent
;
538 struct mnt_namespace
*n
= parent
->mnt_ns
;
540 BUG_ON(parent
== mnt
);
542 list_add_tail(&head
, &mnt
->mnt_list
);
543 list_for_each_entry(m
, &head
, mnt_list
)
545 list_splice(&head
, n
->list
.prev
);
547 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
548 hash(parent
, mnt
->mnt_mountpoint
));
549 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
550 touch_mnt_namespace(n
);
553 static struct vfsmount
*next_mnt(struct vfsmount
*p
, struct vfsmount
*root
)
555 struct list_head
*next
= p
->mnt_mounts
.next
;
556 if (next
== &p
->mnt_mounts
) {
560 next
= p
->mnt_child
.next
;
561 if (next
!= &p
->mnt_parent
->mnt_mounts
)
566 return list_entry(next
, struct vfsmount
, mnt_child
);
569 static struct vfsmount
*skip_mnt_tree(struct vfsmount
*p
)
571 struct list_head
*prev
= p
->mnt_mounts
.prev
;
572 while (prev
!= &p
->mnt_mounts
) {
573 p
= list_entry(prev
, struct vfsmount
, mnt_child
);
574 prev
= p
->mnt_mounts
.prev
;
579 static struct vfsmount
*clone_mnt(struct vfsmount
*old
, struct dentry
*root
,
582 struct super_block
*sb
= old
->mnt_sb
;
583 struct vfsmount
*mnt
= alloc_vfsmnt(old
->mnt_devname
);
586 if (flag
& (CL_SLAVE
| CL_PRIVATE
))
587 mnt
->mnt_group_id
= 0; /* not a peer of original */
589 mnt
->mnt_group_id
= old
->mnt_group_id
;
591 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
592 int err
= mnt_alloc_group_id(mnt
);
597 mnt
->mnt_flags
= old
->mnt_flags
& ~MNT_WRITE_HOLD
;
598 atomic_inc(&sb
->s_active
);
600 mnt
->mnt_root
= dget(root
);
601 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
602 mnt
->mnt_parent
= mnt
;
604 if (flag
& CL_SLAVE
) {
605 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
606 mnt
->mnt_master
= old
;
607 CLEAR_MNT_SHARED(mnt
);
608 } else if (!(flag
& CL_PRIVATE
)) {
609 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
610 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
611 if (IS_MNT_SLAVE(old
))
612 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
613 mnt
->mnt_master
= old
->mnt_master
;
615 if (flag
& CL_MAKE_SHARED
)
618 /* stick the duplicate mount on the same expiry list
619 * as the original if that was on one */
620 if (flag
& CL_EXPIRE
) {
621 if (!list_empty(&old
->mnt_expire
))
622 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
632 static inline void __mntput(struct vfsmount
*mnt
)
634 struct super_block
*sb
= mnt
->mnt_sb
;
636 * This probably indicates that somebody messed
637 * up a mnt_want/drop_write() pair. If this
638 * happens, the filesystem was probably unable
639 * to make r/w->r/o transitions.
642 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
643 * provides barriers, so count_mnt_writers() below is safe. AV
645 WARN_ON(count_mnt_writers(mnt
));
646 fsnotify_vfsmount_delete(mnt
);
649 deactivate_super(sb
);
652 void mntput_no_expire(struct vfsmount
*mnt
)
655 if (atomic_add_unless(&mnt
->mnt_count
, -1, 1))
657 br_write_lock(vfsmount_lock
);
658 if (!atomic_dec_and_test(&mnt
->mnt_count
)) {
659 br_write_unlock(vfsmount_lock
);
662 if (likely(!mnt
->mnt_pinned
)) {
663 br_write_unlock(vfsmount_lock
);
667 atomic_add(mnt
->mnt_pinned
+ 1, &mnt
->mnt_count
);
669 br_write_unlock(vfsmount_lock
);
670 acct_auto_close_mnt(mnt
);
673 EXPORT_SYMBOL(mntput_no_expire
);
675 void mnt_pin(struct vfsmount
*mnt
)
677 br_write_lock(vfsmount_lock
);
679 br_write_unlock(vfsmount_lock
);
682 EXPORT_SYMBOL(mnt_pin
);
684 void mnt_unpin(struct vfsmount
*mnt
)
686 br_write_lock(vfsmount_lock
);
687 if (mnt
->mnt_pinned
) {
688 atomic_inc(&mnt
->mnt_count
);
691 br_write_unlock(vfsmount_lock
);
694 EXPORT_SYMBOL(mnt_unpin
);
696 static inline void mangle(struct seq_file
*m
, const char *s
)
698 seq_escape(m
, s
, " \t\n\\");
702 * Simple .show_options callback for filesystems which don't want to
703 * implement more complex mount option showing.
705 * See also save_mount_options().
707 int generic_show_options(struct seq_file
*m
, struct vfsmount
*mnt
)
712 options
= rcu_dereference(mnt
->mnt_sb
->s_options
);
714 if (options
!= NULL
&& options
[0]) {
722 EXPORT_SYMBOL(generic_show_options
);
725 * If filesystem uses generic_show_options(), this function should be
726 * called from the fill_super() callback.
728 * The .remount_fs callback usually needs to be handled in a special
729 * way, to make sure, that previous options are not overwritten if the
732 * Also note, that if the filesystem's .remount_fs function doesn't
733 * reset all options to their default value, but changes only newly
734 * given options, then the displayed options will not reflect reality
737 void save_mount_options(struct super_block
*sb
, char *options
)
739 BUG_ON(sb
->s_options
);
740 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
742 EXPORT_SYMBOL(save_mount_options
);
744 void replace_mount_options(struct super_block
*sb
, char *options
)
746 char *old
= sb
->s_options
;
747 rcu_assign_pointer(sb
->s_options
, options
);
753 EXPORT_SYMBOL(replace_mount_options
);
755 #ifdef CONFIG_PROC_FS
757 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
759 struct proc_mounts
*p
= m
->private;
761 down_read(&namespace_sem
);
762 return seq_list_start(&p
->ns
->list
, *pos
);
765 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
767 struct proc_mounts
*p
= m
->private;
769 return seq_list_next(v
, &p
->ns
->list
, pos
);
772 static void m_stop(struct seq_file
*m
, void *v
)
774 up_read(&namespace_sem
);
777 int mnt_had_events(struct proc_mounts
*p
)
779 struct mnt_namespace
*ns
= p
->ns
;
782 br_read_lock(vfsmount_lock
);
783 if (p
->event
!= ns
->event
) {
784 p
->event
= ns
->event
;
787 br_read_unlock(vfsmount_lock
);
792 struct proc_fs_info
{
797 static int show_sb_opts(struct seq_file
*m
, struct super_block
*sb
)
799 static const struct proc_fs_info fs_info
[] = {
800 { MS_SYNCHRONOUS
, ",sync" },
801 { MS_DIRSYNC
, ",dirsync" },
802 { MS_MANDLOCK
, ",mand" },
805 const struct proc_fs_info
*fs_infop
;
807 for (fs_infop
= fs_info
; fs_infop
->flag
; fs_infop
++) {
808 if (sb
->s_flags
& fs_infop
->flag
)
809 seq_puts(m
, fs_infop
->str
);
812 return security_sb_show_options(m
, sb
);
815 static void show_mnt_opts(struct seq_file
*m
, struct vfsmount
*mnt
)
817 static const struct proc_fs_info mnt_info
[] = {
818 { MNT_NOSUID
, ",nosuid" },
819 { MNT_NODEV
, ",nodev" },
820 { MNT_NOEXEC
, ",noexec" },
821 { MNT_NOATIME
, ",noatime" },
822 { MNT_NODIRATIME
, ",nodiratime" },
823 { MNT_RELATIME
, ",relatime" },
826 const struct proc_fs_info
*fs_infop
;
828 for (fs_infop
= mnt_info
; fs_infop
->flag
; fs_infop
++) {
829 if (mnt
->mnt_flags
& fs_infop
->flag
)
830 seq_puts(m
, fs_infop
->str
);
834 static void show_type(struct seq_file
*m
, struct super_block
*sb
)
836 mangle(m
, sb
->s_type
->name
);
837 if (sb
->s_subtype
&& sb
->s_subtype
[0]) {
839 mangle(m
, sb
->s_subtype
);
843 static int show_vfsmnt(struct seq_file
*m
, void *v
)
845 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
847 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
849 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
851 seq_path(m
, &mnt_path
, " \t\n\\");
853 show_type(m
, mnt
->mnt_sb
);
854 seq_puts(m
, __mnt_is_readonly(mnt
) ? " ro" : " rw");
855 err
= show_sb_opts(m
, mnt
->mnt_sb
);
858 show_mnt_opts(m
, mnt
);
859 if (mnt
->mnt_sb
->s_op
->show_options
)
860 err
= mnt
->mnt_sb
->s_op
->show_options(m
, mnt
);
861 seq_puts(m
, " 0 0\n");
866 const struct seq_operations mounts_op
= {
873 static int show_mountinfo(struct seq_file
*m
, void *v
)
875 struct proc_mounts
*p
= m
->private;
876 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
877 struct super_block
*sb
= mnt
->mnt_sb
;
878 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
879 struct path root
= p
->root
;
882 seq_printf(m
, "%i %i %u:%u ", mnt
->mnt_id
, mnt
->mnt_parent
->mnt_id
,
883 MAJOR(sb
->s_dev
), MINOR(sb
->s_dev
));
884 seq_dentry(m
, mnt
->mnt_root
, " \t\n\\");
886 seq_path_root(m
, &mnt_path
, &root
, " \t\n\\");
887 if (root
.mnt
!= p
->root
.mnt
|| root
.dentry
!= p
->root
.dentry
) {
889 * Mountpoint is outside root, discard that one. Ugly,
890 * but less so than trying to do that in iterator in a
891 * race-free way (due to renames).
895 seq_puts(m
, mnt
->mnt_flags
& MNT_READONLY
? " ro" : " rw");
896 show_mnt_opts(m
, mnt
);
898 /* Tagged fields ("foo:X" or "bar") */
899 if (IS_MNT_SHARED(mnt
))
900 seq_printf(m
, " shared:%i", mnt
->mnt_group_id
);
901 if (IS_MNT_SLAVE(mnt
)) {
902 int master
= mnt
->mnt_master
->mnt_group_id
;
903 int dom
= get_dominating_id(mnt
, &p
->root
);
904 seq_printf(m
, " master:%i", master
);
905 if (dom
&& dom
!= master
)
906 seq_printf(m
, " propagate_from:%i", dom
);
908 if (IS_MNT_UNBINDABLE(mnt
))
909 seq_puts(m
, " unbindable");
911 /* Filesystem specific data */
915 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
916 seq_puts(m
, sb
->s_flags
& MS_RDONLY
? " ro" : " rw");
917 err
= show_sb_opts(m
, sb
);
920 if (sb
->s_op
->show_options
)
921 err
= sb
->s_op
->show_options(m
, mnt
);
927 const struct seq_operations mountinfo_op
= {
931 .show
= show_mountinfo
,
934 static int show_vfsstat(struct seq_file
*m
, void *v
)
936 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
937 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
941 if (mnt
->mnt_devname
) {
942 seq_puts(m
, "device ");
943 mangle(m
, mnt
->mnt_devname
);
945 seq_puts(m
, "no device");
948 seq_puts(m
, " mounted on ");
949 seq_path(m
, &mnt_path
, " \t\n\\");
952 /* file system type */
953 seq_puts(m
, "with fstype ");
954 show_type(m
, mnt
->mnt_sb
);
956 /* optional statistics */
957 if (mnt
->mnt_sb
->s_op
->show_stats
) {
959 err
= mnt
->mnt_sb
->s_op
->show_stats(m
, mnt
);
966 const struct seq_operations mountstats_op
= {
970 .show
= show_vfsstat
,
972 #endif /* CONFIG_PROC_FS */
975 * may_umount_tree - check if a mount tree is busy
976 * @mnt: root of mount tree
978 * This is called to check if a tree of mounts has any
979 * open files, pwds, chroots or sub mounts that are
982 int may_umount_tree(struct vfsmount
*mnt
)
985 int minimum_refs
= 0;
988 br_read_lock(vfsmount_lock
);
989 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
990 actual_refs
+= atomic_read(&p
->mnt_count
);
993 br_read_unlock(vfsmount_lock
);
995 if (actual_refs
> minimum_refs
)
1001 EXPORT_SYMBOL(may_umount_tree
);
1004 * may_umount - check if a mount point is busy
1005 * @mnt: root of mount
1007 * This is called to check if a mount point has any
1008 * open files, pwds, chroots or sub mounts. If the
1009 * mount has sub mounts this will return busy
1010 * regardless of whether the sub mounts are busy.
1012 * Doesn't take quota and stuff into account. IOW, in some cases it will
1013 * give false negatives. The main reason why it's here is that we need
1014 * a non-destructive way to look for easily umountable filesystems.
1016 int may_umount(struct vfsmount
*mnt
)
1019 down_read(&namespace_sem
);
1020 br_read_lock(vfsmount_lock
);
1021 if (propagate_mount_busy(mnt
, 2))
1023 br_read_unlock(vfsmount_lock
);
1024 up_read(&namespace_sem
);
1028 EXPORT_SYMBOL(may_umount
);
1030 void release_mounts(struct list_head
*head
)
1032 struct vfsmount
*mnt
;
1033 while (!list_empty(head
)) {
1034 mnt
= list_first_entry(head
, struct vfsmount
, mnt_hash
);
1035 list_del_init(&mnt
->mnt_hash
);
1036 if (mnt
->mnt_parent
!= mnt
) {
1037 struct dentry
*dentry
;
1040 br_write_lock(vfsmount_lock
);
1041 dentry
= mnt
->mnt_mountpoint
;
1042 m
= mnt
->mnt_parent
;
1043 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
1044 mnt
->mnt_parent
= mnt
;
1046 br_write_unlock(vfsmount_lock
);
1055 * vfsmount lock must be held for write
1056 * namespace_sem must be held for write
1058 void umount_tree(struct vfsmount
*mnt
, int propagate
, struct list_head
*kill
)
1062 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1063 list_move(&p
->mnt_hash
, kill
);
1066 propagate_umount(kill
);
1068 list_for_each_entry(p
, kill
, mnt_hash
) {
1069 list_del_init(&p
->mnt_expire
);
1070 list_del_init(&p
->mnt_list
);
1071 __touch_mnt_namespace(p
->mnt_ns
);
1073 list_del_init(&p
->mnt_child
);
1074 if (p
->mnt_parent
!= p
) {
1075 p
->mnt_parent
->mnt_ghosts
++;
1076 p
->mnt_mountpoint
->d_mounted
--;
1078 change_mnt_propagation(p
, MS_PRIVATE
);
1082 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
);
1084 static int do_umount(struct vfsmount
*mnt
, int flags
)
1086 struct super_block
*sb
= mnt
->mnt_sb
;
1088 LIST_HEAD(umount_list
);
1090 retval
= security_sb_umount(mnt
, flags
);
1095 * Allow userspace to request a mountpoint be expired rather than
1096 * unmounting unconditionally. Unmount only happens if:
1097 * (1) the mark is already set (the mark is cleared by mntput())
1098 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1100 if (flags
& MNT_EXPIRE
) {
1101 if (mnt
== current
->fs
->root
.mnt
||
1102 flags
& (MNT_FORCE
| MNT_DETACH
))
1105 if (atomic_read(&mnt
->mnt_count
) != 2)
1108 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1113 * If we may have to abort operations to get out of this
1114 * mount, and they will themselves hold resources we must
1115 * allow the fs to do things. In the Unix tradition of
1116 * 'Gee thats tricky lets do it in userspace' the umount_begin
1117 * might fail to complete on the first run through as other tasks
1118 * must return, and the like. Thats for the mount program to worry
1119 * about for the moment.
1122 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1123 sb
->s_op
->umount_begin(sb
);
1127 * No sense to grab the lock for this test, but test itself looks
1128 * somewhat bogus. Suggestions for better replacement?
1129 * Ho-hum... In principle, we might treat that as umount + switch
1130 * to rootfs. GC would eventually take care of the old vfsmount.
1131 * Actually it makes sense, especially if rootfs would contain a
1132 * /reboot - static binary that would close all descriptors and
1133 * call reboot(9). Then init(8) could umount root and exec /reboot.
1135 if (mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1137 * Special case for "unmounting" root ...
1138 * we just try to remount it readonly.
1140 down_write(&sb
->s_umount
);
1141 if (!(sb
->s_flags
& MS_RDONLY
))
1142 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1143 up_write(&sb
->s_umount
);
1147 down_write(&namespace_sem
);
1148 br_write_lock(vfsmount_lock
);
1151 if (!(flags
& MNT_DETACH
))
1152 shrink_submounts(mnt
, &umount_list
);
1155 if (flags
& MNT_DETACH
|| !propagate_mount_busy(mnt
, 2)) {
1156 if (!list_empty(&mnt
->mnt_list
))
1157 umount_tree(mnt
, 1, &umount_list
);
1160 br_write_unlock(vfsmount_lock
);
1161 up_write(&namespace_sem
);
1162 release_mounts(&umount_list
);
1167 * Now umount can handle mount points as well as block devices.
1168 * This is important for filesystems which use unnamed block devices.
1170 * We now support a flag for forced unmount like the other 'big iron'
1171 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1174 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1178 int lookup_flags
= 0;
1180 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1183 if (!(flags
& UMOUNT_NOFOLLOW
))
1184 lookup_flags
|= LOOKUP_FOLLOW
;
1186 retval
= user_path_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1190 if (path
.dentry
!= path
.mnt
->mnt_root
)
1192 if (!check_mnt(path
.mnt
))
1196 if (!capable(CAP_SYS_ADMIN
))
1199 retval
= do_umount(path
.mnt
, flags
);
1201 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1203 mntput_no_expire(path
.mnt
);
1208 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1211 * The 2.0 compatible umount. No flags.
1213 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1215 return sys_umount(name
, 0);
1220 static int mount_is_safe(struct path
*path
)
1222 if (capable(CAP_SYS_ADMIN
))
1226 if (S_ISLNK(path
->dentry
->d_inode
->i_mode
))
1228 if (path
->dentry
->d_inode
->i_mode
& S_ISVTX
) {
1229 if (current_uid() != path
->dentry
->d_inode
->i_uid
)
1232 if (inode_permission(path
->dentry
->d_inode
, MAY_WRITE
))
1238 struct vfsmount
*copy_tree(struct vfsmount
*mnt
, struct dentry
*dentry
,
1241 struct vfsmount
*res
, *p
, *q
, *r
, *s
;
1244 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(mnt
))
1247 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1250 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1253 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1254 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1257 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1258 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(s
)) {
1259 s
= skip_mnt_tree(s
);
1262 while (p
!= s
->mnt_parent
) {
1268 path
.dentry
= p
->mnt_mountpoint
;
1269 q
= clone_mnt(p
, p
->mnt_root
, flag
);
1272 br_write_lock(vfsmount_lock
);
1273 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1274 attach_mnt(q
, &path
);
1275 br_write_unlock(vfsmount_lock
);
1281 LIST_HEAD(umount_list
);
1282 br_write_lock(vfsmount_lock
);
1283 umount_tree(res
, 0, &umount_list
);
1284 br_write_unlock(vfsmount_lock
);
1285 release_mounts(&umount_list
);
1290 struct vfsmount
*collect_mounts(struct path
*path
)
1292 struct vfsmount
*tree
;
1293 down_write(&namespace_sem
);
1294 tree
= copy_tree(path
->mnt
, path
->dentry
, CL_COPY_ALL
| CL_PRIVATE
);
1295 up_write(&namespace_sem
);
1299 void drop_collected_mounts(struct vfsmount
*mnt
)
1301 LIST_HEAD(umount_list
);
1302 down_write(&namespace_sem
);
1303 br_write_lock(vfsmount_lock
);
1304 umount_tree(mnt
, 0, &umount_list
);
1305 br_write_unlock(vfsmount_lock
);
1306 up_write(&namespace_sem
);
1307 release_mounts(&umount_list
);
1310 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1311 struct vfsmount
*root
)
1313 struct vfsmount
*mnt
;
1314 int res
= f(root
, arg
);
1317 list_for_each_entry(mnt
, &root
->mnt_list
, mnt_list
) {
1325 static void cleanup_group_ids(struct vfsmount
*mnt
, struct vfsmount
*end
)
1329 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1330 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1331 mnt_release_group_id(p
);
1335 static int invent_group_ids(struct vfsmount
*mnt
, bool recurse
)
1339 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1340 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1341 int err
= mnt_alloc_group_id(p
);
1343 cleanup_group_ids(mnt
, p
);
1353 * @source_mnt : mount tree to be attached
1354 * @nd : place the mount tree @source_mnt is attached
1355 * @parent_nd : if non-null, detach the source_mnt from its parent and
1356 * store the parent mount and mountpoint dentry.
1357 * (done when source_mnt is moved)
1359 * NOTE: in the table below explains the semantics when a source mount
1360 * of a given type is attached to a destination mount of a given type.
1361 * ---------------------------------------------------------------------------
1362 * | BIND MOUNT OPERATION |
1363 * |**************************************************************************
1364 * | source-->| shared | private | slave | unbindable |
1368 * |**************************************************************************
1369 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1371 * |non-shared| shared (+) | private | slave (*) | invalid |
1372 * ***************************************************************************
1373 * A bind operation clones the source mount and mounts the clone on the
1374 * destination mount.
1376 * (++) the cloned mount is propagated to all the mounts in the propagation
1377 * tree of the destination mount and the cloned mount is added to
1378 * the peer group of the source mount.
1379 * (+) the cloned mount is created under the destination mount and is marked
1380 * as shared. The cloned mount is added to the peer group of the source
1382 * (+++) the mount is propagated to all the mounts in the propagation tree
1383 * of the destination mount and the cloned mount is made slave
1384 * of the same master as that of the source mount. The cloned mount
1385 * is marked as 'shared and slave'.
1386 * (*) the cloned mount is made a slave of the same master as that of the
1389 * ---------------------------------------------------------------------------
1390 * | MOVE MOUNT OPERATION |
1391 * |**************************************************************************
1392 * | source-->| shared | private | slave | unbindable |
1396 * |**************************************************************************
1397 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1399 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1400 * ***************************************************************************
1402 * (+) the mount is moved to the destination. And is then propagated to
1403 * all the mounts in the propagation tree of the destination mount.
1404 * (+*) the mount is moved to the destination.
1405 * (+++) the mount is moved to the destination and is then propagated to
1406 * all the mounts belonging to the destination mount's propagation tree.
1407 * the mount is marked as 'shared and slave'.
1408 * (*) the mount continues to be a slave at the new location.
1410 * if the source mount is a tree, the operations explained above is
1411 * applied to each mount in the tree.
1412 * Must be called without spinlocks held, since this function can sleep
1415 static int attach_recursive_mnt(struct vfsmount
*source_mnt
,
1416 struct path
*path
, struct path
*parent_path
)
1418 LIST_HEAD(tree_list
);
1419 struct vfsmount
*dest_mnt
= path
->mnt
;
1420 struct dentry
*dest_dentry
= path
->dentry
;
1421 struct vfsmount
*child
, *p
;
1424 if (IS_MNT_SHARED(dest_mnt
)) {
1425 err
= invent_group_ids(source_mnt
, true);
1429 err
= propagate_mnt(dest_mnt
, dest_dentry
, source_mnt
, &tree_list
);
1431 goto out_cleanup_ids
;
1433 br_write_lock(vfsmount_lock
);
1435 if (IS_MNT_SHARED(dest_mnt
)) {
1436 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1440 detach_mnt(source_mnt
, parent_path
);
1441 attach_mnt(source_mnt
, path
);
1442 touch_mnt_namespace(parent_path
->mnt
->mnt_ns
);
1444 mnt_set_mountpoint(dest_mnt
, dest_dentry
, source_mnt
);
1445 commit_tree(source_mnt
);
1448 list_for_each_entry_safe(child
, p
, &tree_list
, mnt_hash
) {
1449 list_del_init(&child
->mnt_hash
);
1452 br_write_unlock(vfsmount_lock
);
1457 if (IS_MNT_SHARED(dest_mnt
))
1458 cleanup_group_ids(source_mnt
, NULL
);
1463 static int graft_tree(struct vfsmount
*mnt
, struct path
*path
)
1466 if (mnt
->mnt_sb
->s_flags
& MS_NOUSER
)
1469 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1470 S_ISDIR(mnt
->mnt_root
->d_inode
->i_mode
))
1474 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1475 if (cant_mount(path
->dentry
))
1478 if (!d_unlinked(path
->dentry
))
1479 err
= attach_recursive_mnt(mnt
, path
, NULL
);
1481 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1486 * Sanity check the flags to change_mnt_propagation.
1489 static int flags_to_propagation_type(int flags
)
1491 int type
= flags
& ~MS_REC
;
1493 /* Fail if any non-propagation flags are set */
1494 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
1496 /* Only one propagation flag should be set */
1497 if (!is_power_of_2(type
))
1503 * recursively change the type of the mountpoint.
1505 static int do_change_type(struct path
*path
, int flag
)
1507 struct vfsmount
*m
, *mnt
= path
->mnt
;
1508 int recurse
= flag
& MS_REC
;
1512 if (!capable(CAP_SYS_ADMIN
))
1515 if (path
->dentry
!= path
->mnt
->mnt_root
)
1518 type
= flags_to_propagation_type(flag
);
1522 down_write(&namespace_sem
);
1523 if (type
== MS_SHARED
) {
1524 err
= invent_group_ids(mnt
, recurse
);
1529 br_write_lock(vfsmount_lock
);
1530 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
1531 change_mnt_propagation(m
, type
);
1532 br_write_unlock(vfsmount_lock
);
1535 up_write(&namespace_sem
);
1540 * do loopback mount.
1542 static int do_loopback(struct path
*path
, char *old_name
,
1545 struct path old_path
;
1546 struct vfsmount
*mnt
= NULL
;
1547 int err
= mount_is_safe(path
);
1550 if (!old_name
|| !*old_name
)
1552 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1556 down_write(&namespace_sem
);
1558 if (IS_MNT_UNBINDABLE(old_path
.mnt
))
1561 if (!check_mnt(path
->mnt
) || !check_mnt(old_path
.mnt
))
1566 mnt
= copy_tree(old_path
.mnt
, old_path
.dentry
, 0);
1568 mnt
= clone_mnt(old_path
.mnt
, old_path
.dentry
, 0);
1573 err
= graft_tree(mnt
, path
);
1575 LIST_HEAD(umount_list
);
1577 br_write_lock(vfsmount_lock
);
1578 umount_tree(mnt
, 0, &umount_list
);
1579 br_write_unlock(vfsmount_lock
);
1580 release_mounts(&umount_list
);
1584 up_write(&namespace_sem
);
1585 path_put(&old_path
);
1589 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
1592 int readonly_request
= 0;
1594 if (ms_flags
& MS_RDONLY
)
1595 readonly_request
= 1;
1596 if (readonly_request
== __mnt_is_readonly(mnt
))
1599 if (readonly_request
)
1600 error
= mnt_make_readonly(mnt
);
1602 __mnt_unmake_readonly(mnt
);
1607 * change filesystem flags. dir should be a physical root of filesystem.
1608 * If you've mounted a non-root directory somewhere and want to do remount
1609 * on it - tough luck.
1611 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
1615 struct super_block
*sb
= path
->mnt
->mnt_sb
;
1617 if (!capable(CAP_SYS_ADMIN
))
1620 if (!check_mnt(path
->mnt
))
1623 if (path
->dentry
!= path
->mnt
->mnt_root
)
1626 down_write(&sb
->s_umount
);
1627 if (flags
& MS_BIND
)
1628 err
= change_mount_flags(path
->mnt
, flags
);
1630 err
= do_remount_sb(sb
, flags
, data
, 0);
1632 br_write_lock(vfsmount_lock
);
1633 mnt_flags
|= path
->mnt
->mnt_flags
& MNT_PROPAGATION_MASK
;
1634 path
->mnt
->mnt_flags
= mnt_flags
;
1635 br_write_unlock(vfsmount_lock
);
1637 up_write(&sb
->s_umount
);
1639 br_write_lock(vfsmount_lock
);
1640 touch_mnt_namespace(path
->mnt
->mnt_ns
);
1641 br_write_unlock(vfsmount_lock
);
1646 static inline int tree_contains_unbindable(struct vfsmount
*mnt
)
1649 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1650 if (IS_MNT_UNBINDABLE(p
))
1656 static int do_move_mount(struct path
*path
, char *old_name
)
1658 struct path old_path
, parent_path
;
1661 if (!capable(CAP_SYS_ADMIN
))
1663 if (!old_name
|| !*old_name
)
1665 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1669 down_write(&namespace_sem
);
1670 while (d_mountpoint(path
->dentry
) &&
1674 if (!check_mnt(path
->mnt
) || !check_mnt(old_path
.mnt
))
1678 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1679 if (cant_mount(path
->dentry
))
1682 if (d_unlinked(path
->dentry
))
1686 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
1689 if (old_path
.mnt
== old_path
.mnt
->mnt_parent
)
1692 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1693 S_ISDIR(old_path
.dentry
->d_inode
->i_mode
))
1696 * Don't move a mount residing in a shared parent.
1698 if (old_path
.mnt
->mnt_parent
&&
1699 IS_MNT_SHARED(old_path
.mnt
->mnt_parent
))
1702 * Don't move a mount tree containing unbindable mounts to a destination
1703 * mount which is shared.
1705 if (IS_MNT_SHARED(path
->mnt
) &&
1706 tree_contains_unbindable(old_path
.mnt
))
1709 for (p
= path
->mnt
; p
->mnt_parent
!= p
; p
= p
->mnt_parent
)
1710 if (p
== old_path
.mnt
)
1713 err
= attach_recursive_mnt(old_path
.mnt
, path
, &parent_path
);
1717 /* if the mount is moved, it should no longer be expire
1719 list_del_init(&old_path
.mnt
->mnt_expire
);
1721 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1723 up_write(&namespace_sem
);
1725 path_put(&parent_path
);
1726 path_put(&old_path
);
1731 * create a new mount for userspace and request it to be added into the
1734 static int do_new_mount(struct path
*path
, char *type
, int flags
,
1735 int mnt_flags
, char *name
, void *data
)
1737 struct vfsmount
*mnt
;
1742 /* we need capabilities... */
1743 if (!capable(CAP_SYS_ADMIN
))
1746 mnt
= do_kern_mount(type
, flags
, name
, data
);
1748 return PTR_ERR(mnt
);
1750 return do_add_mount(mnt
, path
, mnt_flags
, NULL
);
1754 * add a mount into a namespace's mount tree
1755 * - provide the option of adding the new mount to an expiration list
1757 int do_add_mount(struct vfsmount
*newmnt
, struct path
*path
,
1758 int mnt_flags
, struct list_head
*fslist
)
1762 mnt_flags
&= ~(MNT_SHARED
| MNT_WRITE_HOLD
| MNT_INTERNAL
);
1764 down_write(&namespace_sem
);
1765 /* Something was mounted here while we slept */
1766 while (d_mountpoint(path
->dentry
) &&
1770 if (!(mnt_flags
& MNT_SHRINKABLE
) && !check_mnt(path
->mnt
))
1773 /* Refuse the same filesystem on the same mount point */
1775 if (path
->mnt
->mnt_sb
== newmnt
->mnt_sb
&&
1776 path
->mnt
->mnt_root
== path
->dentry
)
1780 if (S_ISLNK(newmnt
->mnt_root
->d_inode
->i_mode
))
1783 newmnt
->mnt_flags
= mnt_flags
;
1784 if ((err
= graft_tree(newmnt
, path
)))
1787 if (fslist
) /* add to the specified expiration list */
1788 list_add_tail(&newmnt
->mnt_expire
, fslist
);
1790 up_write(&namespace_sem
);
1794 up_write(&namespace_sem
);
1799 EXPORT_SYMBOL_GPL(do_add_mount
);
1802 * process a list of expirable mountpoints with the intent of discarding any
1803 * mountpoints that aren't in use and haven't been touched since last we came
1806 void mark_mounts_for_expiry(struct list_head
*mounts
)
1808 struct vfsmount
*mnt
, *next
;
1809 LIST_HEAD(graveyard
);
1812 if (list_empty(mounts
))
1815 down_write(&namespace_sem
);
1816 br_write_lock(vfsmount_lock
);
1818 /* extract from the expiration list every vfsmount that matches the
1819 * following criteria:
1820 * - only referenced by its parent vfsmount
1821 * - still marked for expiry (marked on the last call here; marks are
1822 * cleared by mntput())
1824 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
1825 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
1826 propagate_mount_busy(mnt
, 1))
1828 list_move(&mnt
->mnt_expire
, &graveyard
);
1830 while (!list_empty(&graveyard
)) {
1831 mnt
= list_first_entry(&graveyard
, struct vfsmount
, mnt_expire
);
1832 touch_mnt_namespace(mnt
->mnt_ns
);
1833 umount_tree(mnt
, 1, &umounts
);
1835 br_write_unlock(vfsmount_lock
);
1836 up_write(&namespace_sem
);
1838 release_mounts(&umounts
);
1841 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
1844 * Ripoff of 'select_parent()'
1846 * search the list of submounts for a given mountpoint, and move any
1847 * shrinkable submounts to the 'graveyard' list.
1849 static int select_submounts(struct vfsmount
*parent
, struct list_head
*graveyard
)
1851 struct vfsmount
*this_parent
= parent
;
1852 struct list_head
*next
;
1856 next
= this_parent
->mnt_mounts
.next
;
1858 while (next
!= &this_parent
->mnt_mounts
) {
1859 struct list_head
*tmp
= next
;
1860 struct vfsmount
*mnt
= list_entry(tmp
, struct vfsmount
, mnt_child
);
1863 if (!(mnt
->mnt_flags
& MNT_SHRINKABLE
))
1866 * Descend a level if the d_mounts list is non-empty.
1868 if (!list_empty(&mnt
->mnt_mounts
)) {
1873 if (!propagate_mount_busy(mnt
, 1)) {
1874 list_move_tail(&mnt
->mnt_expire
, graveyard
);
1879 * All done at this level ... ascend and resume the search
1881 if (this_parent
!= parent
) {
1882 next
= this_parent
->mnt_child
.next
;
1883 this_parent
= this_parent
->mnt_parent
;
1890 * process a list of expirable mountpoints with the intent of discarding any
1891 * submounts of a specific parent mountpoint
1893 * vfsmount_lock must be held for write
1895 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
)
1897 LIST_HEAD(graveyard
);
1900 /* extract submounts of 'mountpoint' from the expiration list */
1901 while (select_submounts(mnt
, &graveyard
)) {
1902 while (!list_empty(&graveyard
)) {
1903 m
= list_first_entry(&graveyard
, struct vfsmount
,
1905 touch_mnt_namespace(m
->mnt_ns
);
1906 umount_tree(m
, 1, umounts
);
1912 * Some copy_from_user() implementations do not return the exact number of
1913 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1914 * Note that this function differs from copy_from_user() in that it will oops
1915 * on bad values of `to', rather than returning a short copy.
1917 static long exact_copy_from_user(void *to
, const void __user
* from
,
1921 const char __user
*f
= from
;
1924 if (!access_ok(VERIFY_READ
, from
, n
))
1928 if (__get_user(c
, f
)) {
1939 int copy_mount_options(const void __user
* data
, unsigned long *where
)
1949 if (!(page
= __get_free_page(GFP_KERNEL
)))
1952 /* We only care that *some* data at the address the user
1953 * gave us is valid. Just in case, we'll zero
1954 * the remainder of the page.
1956 /* copy_from_user cannot cross TASK_SIZE ! */
1957 size
= TASK_SIZE
- (unsigned long)data
;
1958 if (size
> PAGE_SIZE
)
1961 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
1967 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
1972 int copy_mount_string(const void __user
*data
, char **where
)
1981 tmp
= strndup_user(data
, PAGE_SIZE
);
1983 return PTR_ERR(tmp
);
1990 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1991 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1993 * data is a (void *) that can point to any structure up to
1994 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1995 * information (or be NULL).
1997 * Pre-0.97 versions of mount() didn't have a flags word.
1998 * When the flags word was introduced its top half was required
1999 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2000 * Therefore, if this magic number is present, it carries no information
2001 * and must be discarded.
2003 long do_mount(char *dev_name
, char *dir_name
, char *type_page
,
2004 unsigned long flags
, void *data_page
)
2011 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2012 flags
&= ~MS_MGC_MSK
;
2014 /* Basic sanity checks */
2016 if (!dir_name
|| !*dir_name
|| !memchr(dir_name
, 0, PAGE_SIZE
))
2020 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2022 /* ... and get the mountpoint */
2023 retval
= kern_path(dir_name
, LOOKUP_FOLLOW
, &path
);
2027 retval
= security_sb_mount(dev_name
, &path
,
2028 type_page
, flags
, data_page
);
2032 /* Default to relatime unless overriden */
2033 if (!(flags
& MS_NOATIME
))
2034 mnt_flags
|= MNT_RELATIME
;
2036 /* Separate the per-mountpoint flags */
2037 if (flags
& MS_NOSUID
)
2038 mnt_flags
|= MNT_NOSUID
;
2039 if (flags
& MS_NODEV
)
2040 mnt_flags
|= MNT_NODEV
;
2041 if (flags
& MS_NOEXEC
)
2042 mnt_flags
|= MNT_NOEXEC
;
2043 if (flags
& MS_NOATIME
)
2044 mnt_flags
|= MNT_NOATIME
;
2045 if (flags
& MS_NODIRATIME
)
2046 mnt_flags
|= MNT_NODIRATIME
;
2047 if (flags
& MS_STRICTATIME
)
2048 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2049 if (flags
& MS_RDONLY
)
2050 mnt_flags
|= MNT_READONLY
;
2052 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
| MS_BORN
|
2053 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
2056 if (flags
& MS_REMOUNT
)
2057 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
2059 else if (flags
& MS_BIND
)
2060 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2061 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2062 retval
= do_change_type(&path
, flags
);
2063 else if (flags
& MS_MOVE
)
2064 retval
= do_move_mount(&path
, dev_name
);
2066 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
2067 dev_name
, data_page
);
2073 static struct mnt_namespace
*alloc_mnt_ns(void)
2075 struct mnt_namespace
*new_ns
;
2077 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2079 return ERR_PTR(-ENOMEM
);
2080 atomic_set(&new_ns
->count
, 1);
2081 new_ns
->root
= NULL
;
2082 INIT_LIST_HEAD(&new_ns
->list
);
2083 init_waitqueue_head(&new_ns
->poll
);
2089 * Allocate a new namespace structure and populate it with contents
2090 * copied from the namespace of the passed in task structure.
2092 static struct mnt_namespace
*dup_mnt_ns(struct mnt_namespace
*mnt_ns
,
2093 struct fs_struct
*fs
)
2095 struct mnt_namespace
*new_ns
;
2096 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2097 struct vfsmount
*p
, *q
;
2099 new_ns
= alloc_mnt_ns();
2103 down_write(&namespace_sem
);
2104 /* First pass: copy the tree topology */
2105 new_ns
->root
= copy_tree(mnt_ns
->root
, mnt_ns
->root
->mnt_root
,
2106 CL_COPY_ALL
| CL_EXPIRE
);
2107 if (!new_ns
->root
) {
2108 up_write(&namespace_sem
);
2110 return ERR_PTR(-ENOMEM
);
2112 br_write_lock(vfsmount_lock
);
2113 list_add_tail(&new_ns
->list
, &new_ns
->root
->mnt_list
);
2114 br_write_unlock(vfsmount_lock
);
2117 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2118 * as belonging to new namespace. We have already acquired a private
2119 * fs_struct, so tsk->fs->lock is not needed.
2126 if (p
== fs
->root
.mnt
) {
2128 fs
->root
.mnt
= mntget(q
);
2130 if (p
== fs
->pwd
.mnt
) {
2132 fs
->pwd
.mnt
= mntget(q
);
2135 p
= next_mnt(p
, mnt_ns
->root
);
2136 q
= next_mnt(q
, new_ns
->root
);
2138 up_write(&namespace_sem
);
2148 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2149 struct fs_struct
*new_fs
)
2151 struct mnt_namespace
*new_ns
;
2156 if (!(flags
& CLONE_NEWNS
))
2159 new_ns
= dup_mnt_ns(ns
, new_fs
);
2166 * create_mnt_ns - creates a private namespace and adds a root filesystem
2167 * @mnt: pointer to the new root filesystem mountpoint
2169 struct mnt_namespace
*create_mnt_ns(struct vfsmount
*mnt
)
2171 struct mnt_namespace
*new_ns
;
2173 new_ns
= alloc_mnt_ns();
2174 if (!IS_ERR(new_ns
)) {
2175 mnt
->mnt_ns
= new_ns
;
2177 list_add(&new_ns
->list
, &new_ns
->root
->mnt_list
);
2181 EXPORT_SYMBOL(create_mnt_ns
);
2183 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
2184 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
2190 unsigned long data_page
;
2192 ret
= copy_mount_string(type
, &kernel_type
);
2196 kernel_dir
= getname(dir_name
);
2197 if (IS_ERR(kernel_dir
)) {
2198 ret
= PTR_ERR(kernel_dir
);
2202 ret
= copy_mount_string(dev_name
, &kernel_dev
);
2206 ret
= copy_mount_options(data
, &data_page
);
2210 ret
= do_mount(kernel_dev
, kernel_dir
, kernel_type
, flags
,
2211 (void *) data_page
);
2213 free_page(data_page
);
2217 putname(kernel_dir
);
2225 * pivot_root Semantics:
2226 * Moves the root file system of the current process to the directory put_old,
2227 * makes new_root as the new root file system of the current process, and sets
2228 * root/cwd of all processes which had them on the current root to new_root.
2231 * The new_root and put_old must be directories, and must not be on the
2232 * same file system as the current process root. The put_old must be
2233 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2234 * pointed to by put_old must yield the same directory as new_root. No other
2235 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2237 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2238 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2239 * in this situation.
2242 * - we don't move root/cwd if they are not at the root (reason: if something
2243 * cared enough to change them, it's probably wrong to force them elsewhere)
2244 * - it's okay to pick a root that isn't the root of a file system, e.g.
2245 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2246 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2249 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
2250 const char __user
*, put_old
)
2252 struct vfsmount
*tmp
;
2253 struct path
new, old
, parent_path
, root_parent
, root
;
2256 if (!capable(CAP_SYS_ADMIN
))
2259 error
= user_path_dir(new_root
, &new);
2263 if (!check_mnt(new.mnt
))
2266 error
= user_path_dir(put_old
, &old
);
2270 error
= security_sb_pivotroot(&old
, &new);
2276 get_fs_root(current
->fs
, &root
);
2277 down_write(&namespace_sem
);
2278 mutex_lock(&old
.dentry
->d_inode
->i_mutex
);
2280 if (IS_MNT_SHARED(old
.mnt
) ||
2281 IS_MNT_SHARED(new.mnt
->mnt_parent
) ||
2282 IS_MNT_SHARED(root
.mnt
->mnt_parent
))
2284 if (!check_mnt(root
.mnt
))
2287 if (cant_mount(old
.dentry
))
2289 if (d_unlinked(new.dentry
))
2291 if (d_unlinked(old
.dentry
))
2294 if (new.mnt
== root
.mnt
||
2295 old
.mnt
== root
.mnt
)
2296 goto out2
; /* loop, on the same file system */
2298 if (root
.mnt
->mnt_root
!= root
.dentry
)
2299 goto out2
; /* not a mountpoint */
2300 if (root
.mnt
->mnt_parent
== root
.mnt
)
2301 goto out2
; /* not attached */
2302 if (new.mnt
->mnt_root
!= new.dentry
)
2303 goto out2
; /* not a mountpoint */
2304 if (new.mnt
->mnt_parent
== new.mnt
)
2305 goto out2
; /* not attached */
2306 /* make sure we can reach put_old from new_root */
2308 br_write_lock(vfsmount_lock
);
2309 if (tmp
!= new.mnt
) {
2311 if (tmp
->mnt_parent
== tmp
)
2312 goto out3
; /* already mounted on put_old */
2313 if (tmp
->mnt_parent
== new.mnt
)
2315 tmp
= tmp
->mnt_parent
;
2317 if (!is_subdir(tmp
->mnt_mountpoint
, new.dentry
))
2319 } else if (!is_subdir(old
.dentry
, new.dentry
))
2321 detach_mnt(new.mnt
, &parent_path
);
2322 detach_mnt(root
.mnt
, &root_parent
);
2323 /* mount old root on put_old */
2324 attach_mnt(root
.mnt
, &old
);
2325 /* mount new_root on / */
2326 attach_mnt(new.mnt
, &root_parent
);
2327 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
2328 br_write_unlock(vfsmount_lock
);
2329 chroot_fs_refs(&root
, &new);
2331 path_put(&root_parent
);
2332 path_put(&parent_path
);
2334 mutex_unlock(&old
.dentry
->d_inode
->i_mutex
);
2335 up_write(&namespace_sem
);
2343 br_write_unlock(vfsmount_lock
);
2347 static void __init
init_mount_tree(void)
2349 struct vfsmount
*mnt
;
2350 struct mnt_namespace
*ns
;
2353 mnt
= do_kern_mount("rootfs", 0, "rootfs", NULL
);
2355 panic("Can't create rootfs");
2356 ns
= create_mnt_ns(mnt
);
2358 panic("Can't allocate initial namespace");
2360 init_task
.nsproxy
->mnt_ns
= ns
;
2363 root
.mnt
= ns
->root
;
2364 root
.dentry
= ns
->root
->mnt_root
;
2366 set_fs_pwd(current
->fs
, &root
);
2367 set_fs_root(current
->fs
, &root
);
2370 void __init
mnt_init(void)
2375 init_rwsem(&namespace_sem
);
2377 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct vfsmount
),
2378 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2380 mount_hashtable
= (struct list_head
*)__get_free_page(GFP_ATOMIC
);
2382 if (!mount_hashtable
)
2383 panic("Failed to allocate mount hash table\n");
2385 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE
);
2387 for (u
= 0; u
< HASH_SIZE
; u
++)
2388 INIT_LIST_HEAD(&mount_hashtable
[u
]);
2390 br_lock_init(vfsmount_lock
);
2394 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
2396 fs_kobj
= kobject_create_and_add("fs", NULL
);
2398 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
2403 void put_mnt_ns(struct mnt_namespace
*ns
)
2405 LIST_HEAD(umount_list
);
2407 if (!atomic_dec_and_test(&ns
->count
))
2409 down_write(&namespace_sem
);
2410 br_write_lock(vfsmount_lock
);
2411 umount_tree(ns
->root
, 0, &umount_list
);
2412 br_write_unlock(vfsmount_lock
);
2413 up_write(&namespace_sem
);
2414 release_mounts(&umount_list
);
2417 EXPORT_SYMBOL(put_mnt_ns
);