BKL: remove extraneous #include <smp_lock.h>
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / reiserfs_fs.h
blobc21072adbfad7e84417b8cf925e2fc0b21172cea
1 /*
2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3 */
5 /* this file has an amazingly stupid
6 name, yura please fix it to be
7 reiserfs.h, and merge all the rest
8 of our .h files that are in this
9 directory into it. */
11 #ifndef _LINUX_REISER_FS_H
12 #define _LINUX_REISER_FS_H
14 #include <linux/types.h>
15 #include <linux/magic.h>
17 #ifdef __KERNEL__
18 #include <linux/slab.h>
19 #include <linux/interrupt.h>
20 #include <linux/sched.h>
21 #include <linux/workqueue.h>
22 #include <asm/unaligned.h>
23 #include <linux/bitops.h>
24 #include <linux/proc_fs.h>
25 #include <linux/buffer_head.h>
26 #include <linux/reiserfs_fs_i.h>
27 #include <linux/reiserfs_fs_sb.h>
28 #endif
31 * include/linux/reiser_fs.h
33 * Reiser File System constants and structures
37 /* ioctl's command */
38 #define REISERFS_IOC_UNPACK _IOW(0xCD,1,long)
39 /* define following flags to be the same as in ext2, so that chattr(1),
40 lsattr(1) will work with us. */
41 #define REISERFS_IOC_GETFLAGS FS_IOC_GETFLAGS
42 #define REISERFS_IOC_SETFLAGS FS_IOC_SETFLAGS
43 #define REISERFS_IOC_GETVERSION FS_IOC_GETVERSION
44 #define REISERFS_IOC_SETVERSION FS_IOC_SETVERSION
46 #ifdef __KERNEL__
47 /* the 32 bit compat definitions with int argument */
48 #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int)
49 #define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
50 #define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
51 #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION
52 #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION
55 * Locking primitives. The write lock is a per superblock
56 * special mutex that has properties close to the Big Kernel Lock
57 * which was used in the previous locking scheme.
59 void reiserfs_write_lock(struct super_block *s);
60 void reiserfs_write_unlock(struct super_block *s);
61 int reiserfs_write_lock_once(struct super_block *s);
62 void reiserfs_write_unlock_once(struct super_block *s, int lock_depth);
64 #ifdef CONFIG_REISERFS_CHECK
65 void reiserfs_lock_check_recursive(struct super_block *s);
66 #else
67 static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
68 #endif
71 * Several mutexes depend on the write lock.
72 * However sometimes we want to relax the write lock while we hold
73 * these mutexes, according to the release/reacquire on schedule()
74 * properties of the Bkl that were used.
75 * Reiserfs performances and locking were based on this scheme.
76 * Now that the write lock is a mutex and not the bkl anymore, doing so
77 * may result in a deadlock:
79 * A acquire write_lock
80 * A acquire j_commit_mutex
81 * A release write_lock and wait for something
82 * B acquire write_lock
83 * B can't acquire j_commit_mutex and sleep
84 * A can't acquire write lock anymore
85 * deadlock
87 * What we do here is avoiding such deadlock by playing the same game
88 * than the Bkl: if we can't acquire a mutex that depends on the write lock,
89 * we release the write lock, wait a bit and then retry.
91 * The mutexes concerned by this hack are:
92 * - The commit mutex of a journal list
93 * - The flush mutex
94 * - The journal lock
95 * - The inode mutex
97 static inline void reiserfs_mutex_lock_safe(struct mutex *m,
98 struct super_block *s)
100 reiserfs_lock_check_recursive(s);
101 reiserfs_write_unlock(s);
102 mutex_lock(m);
103 reiserfs_write_lock(s);
106 static inline void
107 reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
108 struct super_block *s)
110 reiserfs_lock_check_recursive(s);
111 reiserfs_write_unlock(s);
112 mutex_lock_nested(m, subclass);
113 reiserfs_write_lock(s);
116 static inline void
117 reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
119 reiserfs_lock_check_recursive(s);
120 reiserfs_write_unlock(s);
121 down_read(sem);
122 reiserfs_write_lock(s);
126 * When we schedule, we usually want to also release the write lock,
127 * according to the previous bkl based locking scheme of reiserfs.
129 static inline void reiserfs_cond_resched(struct super_block *s)
131 if (need_resched()) {
132 reiserfs_write_unlock(s);
133 schedule();
134 reiserfs_write_lock(s);
138 struct fid;
140 /* in reading the #defines, it may help to understand that they employ
141 the following abbreviations:
143 B = Buffer
144 I = Item header
145 H = Height within the tree (should be changed to LEV)
146 N = Number of the item in the node
147 STAT = stat data
148 DEH = Directory Entry Header
149 EC = Entry Count
150 E = Entry number
151 UL = Unsigned Long
152 BLKH = BLocK Header
153 UNFM = UNForMatted node
154 DC = Disk Child
155 P = Path
157 These #defines are named by concatenating these abbreviations,
158 where first comes the arguments, and last comes the return value,
159 of the macro.
163 #define USE_INODE_GENERATION_COUNTER
165 #define REISERFS_PREALLOCATE
166 #define DISPLACE_NEW_PACKING_LOCALITIES
167 #define PREALLOCATION_SIZE 9
169 /* n must be power of 2 */
170 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
172 // to be ok for alpha and others we have to align structures to 8 byte
173 // boundary.
174 // FIXME: do not change 4 by anything else: there is code which relies on that
175 #define ROUND_UP(x) _ROUND_UP(x,8LL)
177 /* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
178 ** messages.
180 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
182 void __reiserfs_warning(struct super_block *s, const char *id,
183 const char *func, const char *fmt, ...);
184 #define reiserfs_warning(s, id, fmt, args...) \
185 __reiserfs_warning(s, id, __func__, fmt, ##args)
186 /* assertions handling */
188 /** always check a condition and panic if it's false. */
189 #define __RASSERT(cond, scond, format, args...) \
190 do { \
191 if (!(cond)) \
192 reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
193 __FILE__ ":%i:%s: " format "\n", \
194 in_interrupt() ? -1 : task_pid_nr(current), \
195 __LINE__, __func__ , ##args); \
196 } while (0)
198 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
200 #if defined( CONFIG_REISERFS_CHECK )
201 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
202 #else
203 #define RFALSE( cond, format, args... ) do {;} while( 0 )
204 #endif
206 #define CONSTF __attribute_const__
208 * Disk Data Structures
211 /***************************************************************************/
212 /* SUPER BLOCK */
213 /***************************************************************************/
216 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
217 * the version in RAM is part of a larger structure containing fields never written to disk.
219 #define UNSET_HASH 0 // read_super will guess about, what hash names
220 // in directories were sorted with
221 #define TEA_HASH 1
222 #define YURA_HASH 2
223 #define R5_HASH 3
224 #define DEFAULT_HASH R5_HASH
226 struct journal_params {
227 __le32 jp_journal_1st_block; /* where does journal start from on its
228 * device */
229 __le32 jp_journal_dev; /* journal device st_rdev */
230 __le32 jp_journal_size; /* size of the journal */
231 __le32 jp_journal_trans_max; /* max number of blocks in a transaction. */
232 __le32 jp_journal_magic; /* random value made on fs creation (this
233 * was sb_journal_block_count) */
234 __le32 jp_journal_max_batch; /* max number of blocks to batch into a
235 * trans */
236 __le32 jp_journal_max_commit_age; /* in seconds, how old can an async
237 * commit be */
238 __le32 jp_journal_max_trans_age; /* in seconds, how old can a transaction
239 * be */
242 /* this is the super from 3.5.X, where X >= 10 */
243 struct reiserfs_super_block_v1 {
244 __le32 s_block_count; /* blocks count */
245 __le32 s_free_blocks; /* free blocks count */
246 __le32 s_root_block; /* root block number */
247 struct journal_params s_journal;
248 __le16 s_blocksize; /* block size */
249 __le16 s_oid_maxsize; /* max size of object id array, see
250 * get_objectid() commentary */
251 __le16 s_oid_cursize; /* current size of object id array */
252 __le16 s_umount_state; /* this is set to 1 when filesystem was
253 * umounted, to 2 - when not */
254 char s_magic[10]; /* reiserfs magic string indicates that
255 * file system is reiserfs:
256 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
257 __le16 s_fs_state; /* it is set to used by fsck to mark which
258 * phase of rebuilding is done */
259 __le32 s_hash_function_code; /* indicate, what hash function is being use
260 * to sort names in a directory*/
261 __le16 s_tree_height; /* height of disk tree */
262 __le16 s_bmap_nr; /* amount of bitmap blocks needed to address
263 * each block of file system */
264 __le16 s_version; /* this field is only reliable on filesystem
265 * with non-standard journal */
266 __le16 s_reserved_for_journal; /* size in blocks of journal area on main
267 * device, we need to keep after
268 * making fs with non-standard journal */
269 } __attribute__ ((__packed__));
271 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
273 /* this is the on disk super block */
274 struct reiserfs_super_block {
275 struct reiserfs_super_block_v1 s_v1;
276 __le32 s_inode_generation;
277 __le32 s_flags; /* Right now used only by inode-attributes, if enabled */
278 unsigned char s_uuid[16]; /* filesystem unique identifier */
279 unsigned char s_label[16]; /* filesystem volume label */
280 __le16 s_mnt_count; /* Count of mounts since last fsck */
281 __le16 s_max_mnt_count; /* Maximum mounts before check */
282 __le32 s_lastcheck; /* Timestamp of last fsck */
283 __le32 s_check_interval; /* Interval between checks */
284 char s_unused[76]; /* zero filled by mkreiserfs and
285 * reiserfs_convert_objectid_map_v1()
286 * so any additions must be updated
287 * there as well. */
288 } __attribute__ ((__packed__));
290 #define SB_SIZE (sizeof(struct reiserfs_super_block))
292 #define REISERFS_VERSION_1 0
293 #define REISERFS_VERSION_2 2
295 // on-disk super block fields converted to cpu form
296 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
297 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
298 #define SB_BLOCKSIZE(s) \
299 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
300 #define SB_BLOCK_COUNT(s) \
301 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
302 #define SB_FREE_BLOCKS(s) \
303 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
304 #define SB_REISERFS_MAGIC(s) \
305 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
306 #define SB_ROOT_BLOCK(s) \
307 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
308 #define SB_TREE_HEIGHT(s) \
309 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
310 #define SB_REISERFS_STATE(s) \
311 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
312 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
313 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
315 #define PUT_SB_BLOCK_COUNT(s, val) \
316 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
317 #define PUT_SB_FREE_BLOCKS(s, val) \
318 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
319 #define PUT_SB_ROOT_BLOCK(s, val) \
320 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
321 #define PUT_SB_TREE_HEIGHT(s, val) \
322 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
323 #define PUT_SB_REISERFS_STATE(s, val) \
324 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
325 #define PUT_SB_VERSION(s, val) \
326 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
327 #define PUT_SB_BMAP_NR(s, val) \
328 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
330 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
331 #define SB_ONDISK_JOURNAL_SIZE(s) \
332 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
333 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
334 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
335 #define SB_ONDISK_JOURNAL_DEVICE(s) \
336 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
337 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
338 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
340 #define is_block_in_log_or_reserved_area(s, block) \
341 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
342 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
343 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
344 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
346 int is_reiserfs_3_5(struct reiserfs_super_block *rs);
347 int is_reiserfs_3_6(struct reiserfs_super_block *rs);
348 int is_reiserfs_jr(struct reiserfs_super_block *rs);
350 /* ReiserFS leaves the first 64k unused, so that partition labels have
351 enough space. If someone wants to write a fancy bootloader that
352 needs more than 64k, let us know, and this will be increased in size.
353 This number must be larger than than the largest block size on any
354 platform, or code will break. -Hans */
355 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
356 #define REISERFS_FIRST_BLOCK unused_define
357 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
359 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
360 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
362 /* reiserfs internal error code (used by search_by_key and fix_nodes)) */
363 #define CARRY_ON 0
364 #define REPEAT_SEARCH -1
365 #define IO_ERROR -2
366 #define NO_DISK_SPACE -3
367 #define NO_BALANCING_NEEDED (-4)
368 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
369 #define QUOTA_EXCEEDED -6
371 typedef __u32 b_blocknr_t;
372 typedef __le32 unp_t;
374 struct unfm_nodeinfo {
375 unp_t unfm_nodenum;
376 unsigned short unfm_freespace;
379 /* there are two formats of keys: 3.5 and 3.6
381 #define KEY_FORMAT_3_5 0
382 #define KEY_FORMAT_3_6 1
384 /* there are two stat datas */
385 #define STAT_DATA_V1 0
386 #define STAT_DATA_V2 1
388 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
390 return container_of(inode, struct reiserfs_inode_info, vfs_inode);
393 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
395 return sb->s_fs_info;
398 /* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
399 * which overflows on large file systems. */
400 static inline __u32 reiserfs_bmap_count(struct super_block *sb)
402 return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
405 static inline int bmap_would_wrap(unsigned bmap_nr)
407 return bmap_nr > ((1LL << 16) - 1);
410 /** this says about version of key of all items (but stat data) the
411 object consists of */
412 #define get_inode_item_key_version( inode ) \
413 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
415 #define set_inode_item_key_version( inode, version ) \
416 ({ if((version)==KEY_FORMAT_3_6) \
417 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \
418 else \
419 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
421 #define get_inode_sd_version(inode) \
422 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
424 #define set_inode_sd_version(inode, version) \
425 ({ if((version)==STAT_DATA_V2) \
426 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \
427 else \
428 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
430 /* This is an aggressive tail suppression policy, I am hoping it
431 improves our benchmarks. The principle behind it is that percentage
432 space saving is what matters, not absolute space saving. This is
433 non-intuitive, but it helps to understand it if you consider that the
434 cost to access 4 blocks is not much more than the cost to access 1
435 block, if you have to do a seek and rotate. A tail risks a
436 non-linear disk access that is significant as a percentage of total
437 time cost for a 4 block file and saves an amount of space that is
438 less significant as a percentage of space, or so goes the hypothesis.
439 -Hans */
440 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
442 (!(n_tail_size)) || \
443 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
444 ( (n_file_size) >= (n_block_size) * 4 ) || \
445 ( ( (n_file_size) >= (n_block_size) * 3 ) && \
446 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
447 ( ( (n_file_size) >= (n_block_size) * 2 ) && \
448 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
449 ( ( (n_file_size) >= (n_block_size) ) && \
450 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
453 /* Another strategy for tails, this one means only create a tail if all the
454 file would fit into one DIRECT item.
455 Primary intention for this one is to increase performance by decreasing
456 seeking.
458 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
460 (!(n_tail_size)) || \
461 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
465 * values for s_umount_state field
467 #define REISERFS_VALID_FS 1
468 #define REISERFS_ERROR_FS 2
471 // there are 5 item types currently
473 #define TYPE_STAT_DATA 0
474 #define TYPE_INDIRECT 1
475 #define TYPE_DIRECT 2
476 #define TYPE_DIRENTRY 3
477 #define TYPE_MAXTYPE 3
478 #define TYPE_ANY 15 // FIXME: comment is required
480 /***************************************************************************/
481 /* KEY & ITEM HEAD */
482 /***************************************************************************/
485 // directories use this key as well as old files
487 struct offset_v1 {
488 __le32 k_offset;
489 __le32 k_uniqueness;
490 } __attribute__ ((__packed__));
492 struct offset_v2 {
493 __le64 v;
494 } __attribute__ ((__packed__));
496 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
498 __u8 type = le64_to_cpu(v2->v) >> 60;
499 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
502 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
504 v2->v =
505 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
508 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
510 return le64_to_cpu(v2->v) & (~0ULL >> 4);
513 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
515 offset &= (~0ULL >> 4);
516 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
519 /* Key of an item determines its location in the S+tree, and
520 is composed of 4 components */
521 struct reiserfs_key {
522 __le32 k_dir_id; /* packing locality: by default parent
523 directory object id */
524 __le32 k_objectid; /* object identifier */
525 union {
526 struct offset_v1 k_offset_v1;
527 struct offset_v2 k_offset_v2;
528 } __attribute__ ((__packed__)) u;
529 } __attribute__ ((__packed__));
531 struct in_core_key {
532 __u32 k_dir_id; /* packing locality: by default parent
533 directory object id */
534 __u32 k_objectid; /* object identifier */
535 __u64 k_offset;
536 __u8 k_type;
539 struct cpu_key {
540 struct in_core_key on_disk_key;
541 int version;
542 int key_length; /* 3 in all cases but direct2indirect and
543 indirect2direct conversion */
546 /* Our function for comparing keys can compare keys of different
547 lengths. It takes as a parameter the length of the keys it is to
548 compare. These defines are used in determining what is to be passed
549 to it as that parameter. */
550 #define REISERFS_FULL_KEY_LEN 4
551 #define REISERFS_SHORT_KEY_LEN 2
553 /* The result of the key compare */
554 #define FIRST_GREATER 1
555 #define SECOND_GREATER -1
556 #define KEYS_IDENTICAL 0
557 #define KEY_FOUND 1
558 #define KEY_NOT_FOUND 0
560 #define KEY_SIZE (sizeof(struct reiserfs_key))
561 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
563 /* return values for search_by_key and clones */
564 #define ITEM_FOUND 1
565 #define ITEM_NOT_FOUND 0
566 #define ENTRY_FOUND 1
567 #define ENTRY_NOT_FOUND 0
568 #define DIRECTORY_NOT_FOUND -1
569 #define REGULAR_FILE_FOUND -2
570 #define DIRECTORY_FOUND -3
571 #define BYTE_FOUND 1
572 #define BYTE_NOT_FOUND 0
573 #define FILE_NOT_FOUND -1
575 #define POSITION_FOUND 1
576 #define POSITION_NOT_FOUND 0
578 // return values for reiserfs_find_entry and search_by_entry_key
579 #define NAME_FOUND 1
580 #define NAME_NOT_FOUND 0
581 #define GOTO_PREVIOUS_ITEM 2
582 #define NAME_FOUND_INVISIBLE 3
584 /* Everything in the filesystem is stored as a set of items. The
585 item head contains the key of the item, its free space (for
586 indirect items) and specifies the location of the item itself
587 within the block. */
589 struct item_head {
590 /* Everything in the tree is found by searching for it based on
591 * its key.*/
592 struct reiserfs_key ih_key;
593 union {
594 /* The free space in the last unformatted node of an
595 indirect item if this is an indirect item. This
596 equals 0xFFFF iff this is a direct item or stat data
597 item. Note that the key, not this field, is used to
598 determine the item type, and thus which field this
599 union contains. */
600 __le16 ih_free_space_reserved;
601 /* Iff this is a directory item, this field equals the
602 number of directory entries in the directory item. */
603 __le16 ih_entry_count;
604 } __attribute__ ((__packed__)) u;
605 __le16 ih_item_len; /* total size of the item body */
606 __le16 ih_item_location; /* an offset to the item body
607 * within the block */
608 __le16 ih_version; /* 0 for all old items, 2 for new
609 ones. Highest bit is set by fsck
610 temporary, cleaned after all
611 done */
612 } __attribute__ ((__packed__));
613 /* size of item header */
614 #define IH_SIZE (sizeof(struct item_head))
616 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
617 #define ih_version(ih) le16_to_cpu((ih)->ih_version)
618 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
619 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
620 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
622 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
623 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
624 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
625 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
626 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
628 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
630 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
631 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
633 /* these operate on indirect items, where you've got an array of ints
634 ** at a possibly unaligned location. These are a noop on ia32
636 ** p is the array of __u32, i is the index into the array, v is the value
637 ** to store there.
639 #define get_block_num(p, i) get_unaligned_le32((p) + (i))
640 #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
643 // in old version uniqueness field shows key type
645 #define V1_SD_UNIQUENESS 0
646 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
647 #define V1_DIRECT_UNIQUENESS 0xffffffff
648 #define V1_DIRENTRY_UNIQUENESS 500
649 #define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
652 // here are conversion routines
654 static inline int uniqueness2type(__u32 uniqueness) CONSTF;
655 static inline int uniqueness2type(__u32 uniqueness)
657 switch ((int)uniqueness) {
658 case V1_SD_UNIQUENESS:
659 return TYPE_STAT_DATA;
660 case V1_INDIRECT_UNIQUENESS:
661 return TYPE_INDIRECT;
662 case V1_DIRECT_UNIQUENESS:
663 return TYPE_DIRECT;
664 case V1_DIRENTRY_UNIQUENESS:
665 return TYPE_DIRENTRY;
666 case V1_ANY_UNIQUENESS:
667 default:
668 return TYPE_ANY;
672 static inline __u32 type2uniqueness(int type) CONSTF;
673 static inline __u32 type2uniqueness(int type)
675 switch (type) {
676 case TYPE_STAT_DATA:
677 return V1_SD_UNIQUENESS;
678 case TYPE_INDIRECT:
679 return V1_INDIRECT_UNIQUENESS;
680 case TYPE_DIRECT:
681 return V1_DIRECT_UNIQUENESS;
682 case TYPE_DIRENTRY:
683 return V1_DIRENTRY_UNIQUENESS;
684 case TYPE_ANY:
685 default:
686 return V1_ANY_UNIQUENESS;
691 // key is pointer to on disk key which is stored in le, result is cpu,
692 // there is no way to get version of object from key, so, provide
693 // version to these defines
695 static inline loff_t le_key_k_offset(int version,
696 const struct reiserfs_key *key)
698 return (version == KEY_FORMAT_3_5) ?
699 le32_to_cpu(key->u.k_offset_v1.k_offset) :
700 offset_v2_k_offset(&(key->u.k_offset_v2));
703 static inline loff_t le_ih_k_offset(const struct item_head *ih)
705 return le_key_k_offset(ih_version(ih), &(ih->ih_key));
708 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
710 return (version == KEY_FORMAT_3_5) ?
711 uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
712 offset_v2_k_type(&(key->u.k_offset_v2));
715 static inline loff_t le_ih_k_type(const struct item_head *ih)
717 return le_key_k_type(ih_version(ih), &(ih->ih_key));
720 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
721 loff_t offset)
723 (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) : /* jdm check */
724 (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
727 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
729 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
732 static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
733 int type)
735 (version == KEY_FORMAT_3_5) ?
736 (void)(key->u.k_offset_v1.k_uniqueness =
737 cpu_to_le32(type2uniqueness(type)))
738 : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type));
741 static inline void set_le_ih_k_type(struct item_head *ih, int type)
743 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
746 static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
748 return le_key_k_type(version, key) == TYPE_DIRENTRY;
751 static inline int is_direct_le_key(int version, struct reiserfs_key *key)
753 return le_key_k_type(version, key) == TYPE_DIRECT;
756 static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
758 return le_key_k_type(version, key) == TYPE_INDIRECT;
761 static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
763 return le_key_k_type(version, key) == TYPE_STAT_DATA;
767 // item header has version.
769 static inline int is_direntry_le_ih(struct item_head *ih)
771 return is_direntry_le_key(ih_version(ih), &ih->ih_key);
774 static inline int is_direct_le_ih(struct item_head *ih)
776 return is_direct_le_key(ih_version(ih), &ih->ih_key);
779 static inline int is_indirect_le_ih(struct item_head *ih)
781 return is_indirect_le_key(ih_version(ih), &ih->ih_key);
784 static inline int is_statdata_le_ih(struct item_head *ih)
786 return is_statdata_le_key(ih_version(ih), &ih->ih_key);
790 // key is pointer to cpu key, result is cpu
792 static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
794 return key->on_disk_key.k_offset;
797 static inline loff_t cpu_key_k_type(const struct cpu_key *key)
799 return key->on_disk_key.k_type;
802 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
804 key->on_disk_key.k_offset = offset;
807 static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
809 key->on_disk_key.k_type = type;
812 static inline void cpu_key_k_offset_dec(struct cpu_key *key)
814 key->on_disk_key.k_offset--;
817 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
818 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
819 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
820 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
822 /* are these used ? */
823 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
824 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
825 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
826 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
828 #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
829 (!COMP_SHORT_KEYS(ih, key) && \
830 I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
832 /* maximal length of item */
833 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
834 #define MIN_ITEM_LEN 1
836 /* object identifier for root dir */
837 #define REISERFS_ROOT_OBJECTID 2
838 #define REISERFS_ROOT_PARENT_OBJECTID 1
840 extern struct reiserfs_key root_key;
843 * Picture represents a leaf of the S+tree
844 * ______________________________________________________
845 * | | Array of | | |
846 * |Block | Object-Item | F r e e | Objects- |
847 * | head | Headers | S p a c e | Items |
848 * |______|_______________|___________________|___________|
851 /* Header of a disk block. More precisely, header of a formatted leaf
852 or internal node, and not the header of an unformatted node. */
853 struct block_head {
854 __le16 blk_level; /* Level of a block in the tree. */
855 __le16 blk_nr_item; /* Number of keys/items in a block. */
856 __le16 blk_free_space; /* Block free space in bytes. */
857 __le16 blk_reserved;
858 /* dump this in v4/planA */
859 struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */
862 #define BLKH_SIZE (sizeof(struct block_head))
863 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
864 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
865 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
866 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
867 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
868 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
869 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
870 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
871 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
872 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
875 * values for blk_level field of the struct block_head
878 #define FREE_LEVEL 0 /* when node gets removed from the tree its
879 blk_level is set to FREE_LEVEL. It is then
880 used to see whether the node is still in the
881 tree */
883 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */
885 /* Given the buffer head of a formatted node, resolve to the block head of that node. */
886 #define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data))
887 /* Number of items that are in buffer. */
888 #define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh)))
889 #define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh)))
890 #define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh)))
892 #define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
893 #define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
894 #define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
896 /* Get right delimiting key. -- little endian */
897 #define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh))))
899 /* Does the buffer contain a disk leaf. */
900 #define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
902 /* Does the buffer contain a disk internal node */
903 #define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
904 && B_LEVEL(bh) <= MAX_HEIGHT)
906 /***************************************************************************/
907 /* STAT DATA */
908 /***************************************************************************/
911 // old stat data is 32 bytes long. We are going to distinguish new one by
912 // different size
914 struct stat_data_v1 {
915 __le16 sd_mode; /* file type, permissions */
916 __le16 sd_nlink; /* number of hard links */
917 __le16 sd_uid; /* owner */
918 __le16 sd_gid; /* group */
919 __le32 sd_size; /* file size */
920 __le32 sd_atime; /* time of last access */
921 __le32 sd_mtime; /* time file was last modified */
922 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
923 union {
924 __le32 sd_rdev;
925 __le32 sd_blocks; /* number of blocks file uses */
926 } __attribute__ ((__packed__)) u;
927 __le32 sd_first_direct_byte; /* first byte of file which is stored
928 in a direct item: except that if it
929 equals 1 it is a symlink and if it
930 equals ~(__u32)0 there is no
931 direct item. The existence of this
932 field really grates on me. Let's
933 replace it with a macro based on
934 sd_size and our tail suppression
935 policy. Someday. -Hans */
936 } __attribute__ ((__packed__));
938 #define SD_V1_SIZE (sizeof(struct stat_data_v1))
939 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
940 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
941 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
942 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
943 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
944 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
945 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
946 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
947 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
948 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
949 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
950 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
951 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
952 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
953 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
954 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
955 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
956 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
957 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
958 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
959 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
960 #define sd_v1_first_direct_byte(sdp) \
961 (le32_to_cpu((sdp)->sd_first_direct_byte))
962 #define set_sd_v1_first_direct_byte(sdp,v) \
963 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
965 /* inode flags stored in sd_attrs (nee sd_reserved) */
967 /* we want common flags to have the same values as in ext2,
968 so chattr(1) will work without problems */
969 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
970 #define REISERFS_APPEND_FL FS_APPEND_FL
971 #define REISERFS_SYNC_FL FS_SYNC_FL
972 #define REISERFS_NOATIME_FL FS_NOATIME_FL
973 #define REISERFS_NODUMP_FL FS_NODUMP_FL
974 #define REISERFS_SECRM_FL FS_SECRM_FL
975 #define REISERFS_UNRM_FL FS_UNRM_FL
976 #define REISERFS_COMPR_FL FS_COMPR_FL
977 #define REISERFS_NOTAIL_FL FS_NOTAIL_FL
979 /* persistent flags that file inherits from the parent directory */
980 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
981 REISERFS_SYNC_FL | \
982 REISERFS_NOATIME_FL | \
983 REISERFS_NODUMP_FL | \
984 REISERFS_SECRM_FL | \
985 REISERFS_COMPR_FL | \
986 REISERFS_NOTAIL_FL )
988 /* Stat Data on disk (reiserfs version of UFS disk inode minus the
989 address blocks) */
990 struct stat_data {
991 __le16 sd_mode; /* file type, permissions */
992 __le16 sd_attrs; /* persistent inode flags */
993 __le32 sd_nlink; /* number of hard links */
994 __le64 sd_size; /* file size */
995 __le32 sd_uid; /* owner */
996 __le32 sd_gid; /* group */
997 __le32 sd_atime; /* time of last access */
998 __le32 sd_mtime; /* time file was last modified */
999 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
1000 __le32 sd_blocks;
1001 union {
1002 __le32 sd_rdev;
1003 __le32 sd_generation;
1004 //__le32 sd_first_direct_byte;
1005 /* first byte of file which is stored in a
1006 direct item: except that if it equals 1
1007 it is a symlink and if it equals
1008 ~(__u32)0 there is no direct item. The
1009 existence of this field really grates
1010 on me. Let's replace it with a macro
1011 based on sd_size and our tail
1012 suppression policy? */
1013 } __attribute__ ((__packed__)) u;
1014 } __attribute__ ((__packed__));
1016 // this is 44 bytes long
1018 #define SD_SIZE (sizeof(struct stat_data))
1019 #define SD_V2_SIZE SD_SIZE
1020 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
1021 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
1022 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
1023 /* sd_reserved */
1024 /* set_sd_reserved */
1025 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
1026 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
1027 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
1028 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
1029 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
1030 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
1031 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
1032 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
1033 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
1034 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
1035 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
1036 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
1037 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
1038 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
1039 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
1040 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
1041 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
1042 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
1043 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
1044 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
1045 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
1046 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
1048 /***************************************************************************/
1049 /* DIRECTORY STRUCTURE */
1050 /***************************************************************************/
1052 Picture represents the structure of directory items
1053 ________________________________________________
1054 | Array of | | | | | |
1055 | directory |N-1| N-2 | .... | 1st |0th|
1056 | entry headers | | | | | |
1057 |_______________|___|_____|________|_______|___|
1058 <---- directory entries ------>
1060 First directory item has k_offset component 1. We store "." and ".."
1061 in one item, always, we never split "." and ".." into differing
1062 items. This makes, among other things, the code for removing
1063 directories simpler. */
1064 #define SD_OFFSET 0
1065 #define SD_UNIQUENESS 0
1066 #define DOT_OFFSET 1
1067 #define DOT_DOT_OFFSET 2
1068 #define DIRENTRY_UNIQUENESS 500
1070 /* */
1071 #define FIRST_ITEM_OFFSET 1
1074 Q: How to get key of object pointed to by entry from entry?
1076 A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
1077 of object, entry points to */
1079 /* NOT IMPLEMENTED:
1080 Directory will someday contain stat data of object */
1082 struct reiserfs_de_head {
1083 __le32 deh_offset; /* third component of the directory entry key */
1084 __le32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced
1085 by directory entry */
1086 __le32 deh_objectid; /* objectid of the object, that is referenced by directory entry */
1087 __le16 deh_location; /* offset of name in the whole item */
1088 __le16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether
1089 entry is hidden (unlinked) */
1090 } __attribute__ ((__packed__));
1091 #define DEH_SIZE sizeof(struct reiserfs_de_head)
1092 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
1093 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
1094 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
1095 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
1096 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
1098 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
1099 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1100 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1101 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1102 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
1104 /* empty directory contains two entries "." and ".." and their headers */
1105 #define EMPTY_DIR_SIZE \
1106 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1108 /* old format directories have this size when empty */
1109 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1111 #define DEH_Statdata 0 /* not used now */
1112 #define DEH_Visible 2
1114 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1115 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1116 # define ADDR_UNALIGNED_BITS (3)
1117 #endif
1119 /* These are only used to manipulate deh_state.
1120 * Because of this, we'll use the ext2_ bit routines,
1121 * since they are little endian */
1122 #ifdef ADDR_UNALIGNED_BITS
1124 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1125 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1127 # define set_bit_unaligned(nr, addr) ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1128 # define clear_bit_unaligned(nr, addr) ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1129 # define test_bit_unaligned(nr, addr) ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1131 #else
1133 # define set_bit_unaligned(nr, addr) ext2_set_bit(nr, addr)
1134 # define clear_bit_unaligned(nr, addr) ext2_clear_bit(nr, addr)
1135 # define test_bit_unaligned(nr, addr) ext2_test_bit(nr, addr)
1137 #endif
1139 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1140 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1141 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1142 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1144 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1145 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1146 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1148 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1149 __le32 par_dirid, __le32 par_objid);
1150 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1151 __le32 par_dirid, __le32 par_objid);
1153 /* array of the entry headers */
1154 /* get item body */
1155 #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1156 #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1158 /* length of the directory entry in directory item. This define
1159 calculates length of i-th directory entry using directory entry
1160 locations from dir entry head. When it calculates length of 0-th
1161 directory entry, it uses length of whole item in place of entry
1162 location of the non-existent following entry in the calculation.
1163 See picture above.*/
1165 #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1166 ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1168 static inline int entry_length(const struct buffer_head *bh,
1169 const struct item_head *ih, int pos_in_item)
1171 struct reiserfs_de_head *deh;
1173 deh = B_I_DEH(bh, ih) + pos_in_item;
1174 if (pos_in_item)
1175 return deh_location(deh - 1) - deh_location(deh);
1177 return ih_item_len(ih) - deh_location(deh);
1180 /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1181 #define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1183 /* name by bh, ih and entry_num */
1184 #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1186 // two entries per block (at least)
1187 #define REISERFS_MAX_NAME(block_size) 255
1189 /* this structure is used for operations on directory entries. It is
1190 not a disk structure. */
1191 /* When reiserfs_find_entry or search_by_entry_key find directory
1192 entry, they return filled reiserfs_dir_entry structure */
1193 struct reiserfs_dir_entry {
1194 struct buffer_head *de_bh;
1195 int de_item_num;
1196 struct item_head *de_ih;
1197 int de_entry_num;
1198 struct reiserfs_de_head *de_deh;
1199 int de_entrylen;
1200 int de_namelen;
1201 char *de_name;
1202 unsigned long *de_gen_number_bit_string;
1204 __u32 de_dir_id;
1205 __u32 de_objectid;
1207 struct cpu_key de_entry_key;
1210 /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1212 /* pointer to file name, stored in entry */
1213 #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1215 /* length of name */
1216 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1217 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1219 /* hash value occupies bits from 7 up to 30 */
1220 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1221 /* generation number occupies 7 bits starting from 0 up to 6 */
1222 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1223 #define MAX_GENERATION_NUMBER 127
1225 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1228 * Picture represents an internal node of the reiserfs tree
1229 * ______________________________________________________
1230 * | | Array of | Array of | Free |
1231 * |block | keys | pointers | space |
1232 * | head | N | N+1 | |
1233 * |______|_______________|___________________|___________|
1236 /***************************************************************************/
1237 /* DISK CHILD */
1238 /***************************************************************************/
1239 /* Disk child pointer: The pointer from an internal node of the tree
1240 to a node that is on disk. */
1241 struct disk_child {
1242 __le32 dc_block_number; /* Disk child's block number. */
1243 __le16 dc_size; /* Disk child's used space. */
1244 __le16 dc_reserved;
1247 #define DC_SIZE (sizeof(struct disk_child))
1248 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
1249 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
1250 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1251 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1253 /* Get disk child by buffer header and position in the tree node. */
1254 #define B_N_CHILD(bh, n_pos) ((struct disk_child *)\
1255 ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
1257 /* Get disk child number by buffer header and position in the tree node. */
1258 #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
1259 #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
1260 (put_dc_block_number(B_N_CHILD(bh, n_pos), val))
1262 /* maximal value of field child_size in structure disk_child */
1263 /* child size is the combined size of all items and their headers */
1264 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1266 /* amount of used space in buffer (not including block head) */
1267 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1269 /* max and min number of keys in internal node */
1270 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1271 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
1273 /***************************************************************************/
1274 /* PATH STRUCTURES AND DEFINES */
1275 /***************************************************************************/
1277 /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1278 key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it
1279 does not find them in the cache it reads them from disk. For each node search_by_key finds using
1280 reiserfs_bread it then uses bin_search to look through that node. bin_search will find the
1281 position of the block_number of the next node if it is looking through an internal node. If it
1282 is looking through a leaf node bin_search will find the position of the item which has key either
1283 equal to given key, or which is the maximal key less than the given key. */
1285 struct path_element {
1286 struct buffer_head *pe_buffer; /* Pointer to the buffer at the path in the tree. */
1287 int pe_position; /* Position in the tree node which is placed in the */
1288 /* buffer above. */
1291 #define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1292 #define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1293 #define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */
1295 #define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1296 #define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1298 /* We need to keep track of who the ancestors of nodes are. When we
1299 perform a search we record which nodes were visited while
1300 descending the tree looking for the node we searched for. This list
1301 of nodes is called the path. This information is used while
1302 performing balancing. Note that this path information may become
1303 invalid, and this means we must check it when using it to see if it
1304 is still valid. You'll need to read search_by_key and the comments
1305 in it, especially about decrement_counters_in_path(), to understand
1306 this structure.
1308 Paths make the code so much harder to work with and debug.... An
1309 enormous number of bugs are due to them, and trying to write or modify
1310 code that uses them just makes my head hurt. They are based on an
1311 excessive effort to avoid disturbing the precious VFS code.:-( The
1312 gods only know how we are going to SMP the code that uses them.
1313 znodes are the way! */
1315 #define PATH_READA 0x1 /* do read ahead */
1316 #define PATH_READA_BACK 0x2 /* read backwards */
1318 struct treepath {
1319 int path_length; /* Length of the array above. */
1320 int reada;
1321 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */
1322 int pos_in_item;
1325 #define pos_in_item(path) ((path)->pos_in_item)
1327 #define INITIALIZE_PATH(var) \
1328 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1330 /* Get path element by path and path position. */
1331 #define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset))
1333 /* Get buffer header at the path by path and path position. */
1334 #define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
1336 /* Get position in the element at the path by path and path position. */
1337 #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
1339 #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
1340 /* you know, to the person who didn't
1341 write this the macro name does not
1342 at first suggest what it does.
1343 Maybe POSITION_FROM_PATH_END? Or
1344 maybe we should just focus on
1345 dumping paths... -Hans */
1346 #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
1348 #define PATH_PITEM_HEAD(path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path))
1350 /* in do_balance leaf has h == 0 in contrast with path structure,
1351 where root has level == 0. That is why we need these defines */
1352 #define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h)) /* tb->S[h] */
1353 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */
1354 #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1355 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */
1357 #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
1359 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
1360 #define get_ih(path) PATH_PITEM_HEAD(path)
1361 #define get_item_pos(path) PATH_LAST_POSITION(path)
1362 #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1363 #define item_moved(ih,path) comp_items(ih, path)
1364 #define path_changed(ih,path) comp_items (ih, path)
1366 /***************************************************************************/
1367 /* MISC */
1368 /***************************************************************************/
1370 /* Size of pointer to the unformatted node. */
1371 #define UNFM_P_SIZE (sizeof(unp_t))
1372 #define UNFM_P_SHIFT 2
1374 // in in-core inode key is stored on le form
1375 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1377 #define MAX_UL_INT 0xffffffff
1378 #define MAX_INT 0x7ffffff
1379 #define MAX_US_INT 0xffff
1381 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1382 #define U32_MAX (~(__u32)0)
1384 static inline loff_t max_reiserfs_offset(struct inode *inode)
1386 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1387 return (loff_t) U32_MAX;
1389 return (loff_t) ((~(__u64) 0) >> 4);
1392 /*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/
1393 #define MAX_KEY_OBJECTID MAX_UL_INT
1395 #define MAX_B_NUM MAX_UL_INT
1396 #define MAX_FC_NUM MAX_US_INT
1398 /* the purpose is to detect overflow of an unsigned short */
1399 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1401 /* The following defines are used in reiserfs_insert_item and reiserfs_append_item */
1402 #define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */
1403 #define REISERFS_USER_MEM 1 /* reiserfs user memory mode */
1405 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1406 #define get_generation(s) atomic_read (&fs_generation(s))
1407 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1408 #define __fs_changed(gen,s) (gen != get_generation (s))
1409 #define fs_changed(gen,s) \
1410 ({ \
1411 reiserfs_cond_resched(s); \
1412 __fs_changed(gen, s); \
1415 /***************************************************************************/
1416 /* FIXATE NODES */
1417 /***************************************************************************/
1419 #define VI_TYPE_LEFT_MERGEABLE 1
1420 #define VI_TYPE_RIGHT_MERGEABLE 2
1422 /* To make any changes in the tree we always first find node, that
1423 contains item to be changed/deleted or place to insert a new
1424 item. We call this node S. To do balancing we need to decide what
1425 we will shift to left/right neighbor, or to a new node, where new
1426 item will be etc. To make this analysis simpler we build virtual
1427 node. Virtual node is an array of items, that will replace items of
1428 node S. (For instance if we are going to delete an item, virtual
1429 node does not contain it). Virtual node keeps information about
1430 item sizes and types, mergeability of first and last items, sizes
1431 of all entries in directory item. We use this array of items when
1432 calculating what we can shift to neighbors and how many nodes we
1433 have to have if we do not any shiftings, if we shift to left/right
1434 neighbor or to both. */
1435 struct virtual_item {
1436 int vi_index; // index in the array of item operations
1437 unsigned short vi_type; // left/right mergeability
1438 unsigned short vi_item_len; /* length of item that it will have after balancing */
1439 struct item_head *vi_ih;
1440 const char *vi_item; // body of item (old or new)
1441 const void *vi_new_data; // 0 always but paste mode
1442 void *vi_uarea; // item specific area
1445 struct virtual_node {
1446 char *vn_free_ptr; /* this is a pointer to the free space in the buffer */
1447 unsigned short vn_nr_item; /* number of items in virtual node */
1448 short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */
1449 short vn_mode; /* mode of balancing (paste, insert, delete, cut) */
1450 short vn_affected_item_num;
1451 short vn_pos_in_item;
1452 struct item_head *vn_ins_ih; /* item header of inserted item, 0 for other modes */
1453 const void *vn_data;
1454 struct virtual_item *vn_vi; /* array of items (including a new one, excluding item to be deleted) */
1457 /* used by directory items when creating virtual nodes */
1458 struct direntry_uarea {
1459 int flags;
1460 __u16 entry_count;
1461 __u16 entry_sizes[1];
1462 } __attribute__ ((__packed__));
1464 /***************************************************************************/
1465 /* TREE BALANCE */
1466 /***************************************************************************/
1468 /* This temporary structure is used in tree balance algorithms, and
1469 constructed as we go to the extent that its various parts are
1470 needed. It contains arrays of nodes that can potentially be
1471 involved in the balancing of node S, and parameters that define how
1472 each of the nodes must be balanced. Note that in these algorithms
1473 for balancing the worst case is to need to balance the current node
1474 S and the left and right neighbors and all of their parents plus
1475 create a new node. We implement S1 balancing for the leaf nodes
1476 and S0 balancing for the internal nodes (S1 and S0 are defined in
1477 our papers.)*/
1479 #define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */
1481 /* maximum number of FEB blocknrs on a single level */
1482 #define MAX_AMOUNT_NEEDED 2
1484 /* someday somebody will prefix every field in this struct with tb_ */
1485 struct tree_balance {
1486 int tb_mode;
1487 int need_balance_dirty;
1488 struct super_block *tb_sb;
1489 struct reiserfs_transaction_handle *transaction_handle;
1490 struct treepath *tb_path;
1491 struct buffer_head *L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */
1492 struct buffer_head *R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path */
1493 struct buffer_head *FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */
1494 struct buffer_head *FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */
1495 struct buffer_head *CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */
1496 struct buffer_head *CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */
1498 struct buffer_head *FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
1499 cur_blknum. */
1500 struct buffer_head *used[MAX_FEB_SIZE];
1501 struct buffer_head *thrown[MAX_FEB_SIZE];
1502 int lnum[MAX_HEIGHT]; /* array of number of items which must be
1503 shifted to the left in order to balance the
1504 current node; for leaves includes item that
1505 will be partially shifted; for internal
1506 nodes, it is the number of child pointers
1507 rather than items. It includes the new item
1508 being created. The code sometimes subtracts
1509 one to get the number of wholly shifted
1510 items for other purposes. */
1511 int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */
1512 int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and
1513 S[h] to its item number within the node CFL[h] */
1514 int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */
1515 int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from
1516 S[h]. A negative value means removing. */
1517 int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after
1518 balancing on the level h of the tree. If 0 then S is
1519 being deleted, if 1 then S is remaining and no new nodes
1520 are being created, if 2 or 3 then 1 or 2 new nodes is
1521 being created */
1523 /* fields that are used only for balancing leaves of the tree */
1524 int cur_blknum; /* number of empty blocks having been already allocated */
1525 int s0num; /* number of items that fall into left most node when S[0] splits */
1526 int s1num; /* number of items that fall into first new node when S[0] splits */
1527 int s2num; /* number of items that fall into second new node when S[0] splits */
1528 int lbytes; /* number of bytes which can flow to the left neighbor from the left */
1529 /* most liquid item that cannot be shifted from S[0] entirely */
1530 /* if -1 then nothing will be partially shifted */
1531 int rbytes; /* number of bytes which will flow to the right neighbor from the right */
1532 /* most liquid item that cannot be shifted from S[0] entirely */
1533 /* if -1 then nothing will be partially shifted */
1534 int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */
1535 /* note: if S[0] splits into 3 nodes, then items do not need to be cut */
1536 int s2bytes;
1537 struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1538 char *vn_buf; /* kmalloced memory. Used to create
1539 virtual node and keep map of
1540 dirtied bitmap blocks */
1541 int vn_buf_size; /* size of the vn_buf */
1542 struct virtual_node *tb_vn; /* VN starts after bitmap of bitmap blocks */
1544 int fs_gen; /* saved value of `reiserfs_generation' counter
1545 see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1546 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1547 struct in_core_key key; /* key pointer, to pass to block allocator or
1548 another low-level subsystem */
1549 #endif
1552 /* These are modes of balancing */
1554 /* When inserting an item. */
1555 #define M_INSERT 'i'
1556 /* When inserting into (directories only) or appending onto an already
1557 existant item. */
1558 #define M_PASTE 'p'
1559 /* When deleting an item. */
1560 #define M_DELETE 'd'
1561 /* When truncating an item or removing an entry from a (directory) item. */
1562 #define M_CUT 'c'
1564 /* used when balancing on leaf level skipped (in reiserfsck) */
1565 #define M_INTERNAL 'n'
1567 /* When further balancing is not needed, then do_balance does not need
1568 to be called. */
1569 #define M_SKIP_BALANCING 's'
1570 #define M_CONVERT 'v'
1572 /* modes of leaf_move_items */
1573 #define LEAF_FROM_S_TO_L 0
1574 #define LEAF_FROM_S_TO_R 1
1575 #define LEAF_FROM_R_TO_L 2
1576 #define LEAF_FROM_L_TO_R 3
1577 #define LEAF_FROM_S_TO_SNEW 4
1579 #define FIRST_TO_LAST 0
1580 #define LAST_TO_FIRST 1
1582 /* used in do_balance for passing parent of node information that has
1583 been gotten from tb struct */
1584 struct buffer_info {
1585 struct tree_balance *tb;
1586 struct buffer_head *bi_bh;
1587 struct buffer_head *bi_parent;
1588 int bi_position;
1591 static inline struct super_block *sb_from_tb(struct tree_balance *tb)
1593 return tb ? tb->tb_sb : NULL;
1596 static inline struct super_block *sb_from_bi(struct buffer_info *bi)
1598 return bi ? sb_from_tb(bi->tb) : NULL;
1601 /* there are 4 types of items: stat data, directory item, indirect, direct.
1602 +-------------------+------------+--------------+------------+
1603 | | k_offset | k_uniqueness | mergeable? |
1604 +-------------------+------------+--------------+------------+
1605 | stat data | 0 | 0 | no |
1606 +-------------------+------------+--------------+------------+
1607 | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no |
1608 | non 1st directory | hash value | | yes |
1609 | item | | | |
1610 +-------------------+------------+--------------+------------+
1611 | indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object
1612 +-------------------+------------+--------------+------------+
1613 | direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object
1614 +-------------------+------------+--------------+------------+
1617 struct item_operations {
1618 int (*bytes_number) (struct item_head * ih, int block_size);
1619 void (*decrement_key) (struct cpu_key *);
1620 int (*is_left_mergeable) (struct reiserfs_key * ih,
1621 unsigned long bsize);
1622 void (*print_item) (struct item_head *, char *item);
1623 void (*check_item) (struct item_head *, char *item);
1625 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1626 int is_affected, int insert_size);
1627 int (*check_left) (struct virtual_item * vi, int free,
1628 int start_skip, int end_skip);
1629 int (*check_right) (struct virtual_item * vi, int free);
1630 int (*part_size) (struct virtual_item * vi, int from, int to);
1631 int (*unit_num) (struct virtual_item * vi);
1632 void (*print_vi) (struct virtual_item * vi);
1635 extern struct item_operations *item_ops[TYPE_ANY + 1];
1637 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1638 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1639 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1640 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1641 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1642 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1643 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
1644 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
1645 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
1646 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
1648 #define COMP_SHORT_KEYS comp_short_keys
1650 /* number of blocks pointed to by the indirect item */
1651 #define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE)
1653 /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1654 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1656 /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1658 /* get the item header */
1659 #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1661 /* get key */
1662 #define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1664 /* get the key */
1665 #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1667 /* get item body */
1668 #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1670 /* get the stat data by the buffer header and the item order */
1671 #define B_N_STAT_DATA(bh,nr) \
1672 ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1674 /* following defines use reiserfs buffer header and item header */
1676 /* get stat-data */
1677 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1679 // this is 3976 for size==4096
1680 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1682 /* indirect items consist of entries which contain blocknrs, pos
1683 indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1684 blocknr contained by the entry pos points to */
1685 #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1686 #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1688 struct reiserfs_iget_args {
1689 __u32 objectid;
1690 __u32 dirid;
1693 /***************************************************************************/
1694 /* FUNCTION DECLARATIONS */
1695 /***************************************************************************/
1697 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1699 #define journal_trans_half(blocksize) \
1700 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1702 /* journal.c see journal.c for all the comments here */
1704 /* first block written in a commit. */
1705 struct reiserfs_journal_desc {
1706 __le32 j_trans_id; /* id of commit */
1707 __le32 j_len; /* length of commit. len +1 is the commit block */
1708 __le32 j_mount_id; /* mount id of this trans */
1709 __le32 j_realblock[1]; /* real locations for each block */
1712 #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
1713 #define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
1714 #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
1716 #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1717 #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
1718 #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1720 /* last block written in a commit */
1721 struct reiserfs_journal_commit {
1722 __le32 j_trans_id; /* must match j_trans_id from the desc block */
1723 __le32 j_len; /* ditto */
1724 __le32 j_realblock[1]; /* real locations for each block */
1727 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1728 #define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
1729 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1731 #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1732 #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
1734 /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1735 ** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk,
1736 ** and this transaction does not need to be replayed.
1738 struct reiserfs_journal_header {
1739 __le32 j_last_flush_trans_id; /* id of last fully flushed transaction */
1740 __le32 j_first_unflushed_offset; /* offset in the log of where to start replay after a crash */
1741 __le32 j_mount_id;
1742 /* 12 */ struct journal_params jh_journal;
1745 /* biggest tunable defines are right here */
1746 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
1747 #define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */
1748 #define JOURNAL_TRANS_MIN_DEFAULT 256
1749 #define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1750 #define JOURNAL_MIN_RATIO 2
1751 #define JOURNAL_MAX_COMMIT_AGE 30
1752 #define JOURNAL_MAX_TRANS_AGE 30
1753 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1754 #define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \
1755 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
1756 REISERFS_QUOTA_TRANS_BLOCKS(sb)))
1758 #ifdef CONFIG_QUOTA
1759 /* We need to update data and inode (atime) */
1760 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? 2 : 0)
1761 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
1762 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1763 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
1764 /* same as with INIT */
1765 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1766 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
1767 #else
1768 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
1769 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0
1770 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0
1771 #endif
1773 /* both of these can be as low as 1, or as high as you want. The min is the
1774 ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1775 ** as needed, and released when transactions are committed. On release, if
1776 ** the current number of nodes is > max, the node is freed, otherwise,
1777 ** it is put on a free list for faster use later.
1779 #define REISERFS_MIN_BITMAP_NODES 10
1780 #define REISERFS_MAX_BITMAP_NODES 100
1782 #define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
1783 #define JBH_HASH_MASK 8191
1785 #define _jhashfn(sb,block) \
1786 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1787 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1788 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1790 // We need these to make journal.c code more readable
1791 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1792 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1793 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1795 enum reiserfs_bh_state_bits {
1796 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */
1797 BH_JDirty_wait,
1798 BH_JNew, /* disk block was taken off free list before
1799 * being in a finished transaction, or
1800 * written to disk. Can be reused immed. */
1801 BH_JPrepared,
1802 BH_JRestore_dirty,
1803 BH_JTest, // debugging only will go away
1806 BUFFER_FNS(JDirty, journaled);
1807 TAS_BUFFER_FNS(JDirty, journaled);
1808 BUFFER_FNS(JDirty_wait, journal_dirty);
1809 TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
1810 BUFFER_FNS(JNew, journal_new);
1811 TAS_BUFFER_FNS(JNew, journal_new);
1812 BUFFER_FNS(JPrepared, journal_prepared);
1813 TAS_BUFFER_FNS(JPrepared, journal_prepared);
1814 BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1815 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1816 BUFFER_FNS(JTest, journal_test);
1817 TAS_BUFFER_FNS(JTest, journal_test);
1820 ** transaction handle which is passed around for all journal calls
1822 struct reiserfs_transaction_handle {
1823 struct super_block *t_super; /* super for this FS when journal_begin was
1824 called. saves calls to reiserfs_get_super
1825 also used by nested transactions to make
1826 sure they are nesting on the right FS
1827 _must_ be first in the handle
1829 int t_refcount;
1830 int t_blocks_logged; /* number of blocks this writer has logged */
1831 int t_blocks_allocated; /* number of blocks this writer allocated */
1832 unsigned int t_trans_id; /* sanity check, equals the current trans id */
1833 void *t_handle_save; /* save existing current->journal_info */
1834 unsigned displace_new_blocks:1; /* if new block allocation occurres, that block
1835 should be displaced from others */
1836 struct list_head t_list;
1839 /* used to keep track of ordered and tail writes, attached to the buffer
1840 * head through b_journal_head.
1842 struct reiserfs_jh {
1843 struct reiserfs_journal_list *jl;
1844 struct buffer_head *bh;
1845 struct list_head list;
1848 void reiserfs_free_jh(struct buffer_head *bh);
1849 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
1850 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
1851 int journal_mark_dirty(struct reiserfs_transaction_handle *,
1852 struct super_block *, struct buffer_head *bh);
1854 static inline int reiserfs_file_data_log(struct inode *inode)
1856 if (reiserfs_data_log(inode->i_sb) ||
1857 (REISERFS_I(inode)->i_flags & i_data_log))
1858 return 1;
1859 return 0;
1862 static inline int reiserfs_transaction_running(struct super_block *s)
1864 struct reiserfs_transaction_handle *th = current->journal_info;
1865 if (th && th->t_super == s)
1866 return 1;
1867 if (th && th->t_super == NULL)
1868 BUG();
1869 return 0;
1872 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
1874 return th->t_blocks_allocated - th->t_blocks_logged;
1877 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
1878 super_block
1880 int count);
1881 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
1882 int reiserfs_commit_page(struct inode *inode, struct page *page,
1883 unsigned from, unsigned to);
1884 int reiserfs_flush_old_commits(struct super_block *);
1885 int reiserfs_commit_for_inode(struct inode *);
1886 int reiserfs_inode_needs_commit(struct inode *);
1887 void reiserfs_update_inode_transaction(struct inode *);
1888 void reiserfs_wait_on_write_block(struct super_block *s);
1889 void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
1890 void reiserfs_allow_writes(struct super_block *s);
1891 void reiserfs_check_lock_depth(struct super_block *s, char *caller);
1892 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
1893 int wait);
1894 void reiserfs_restore_prepared_buffer(struct super_block *,
1895 struct buffer_head *bh);
1896 int journal_init(struct super_block *, const char *j_dev_name, int old_format,
1897 unsigned int);
1898 int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
1899 int journal_release_error(struct reiserfs_transaction_handle *,
1900 struct super_block *);
1901 int journal_end(struct reiserfs_transaction_handle *, struct super_block *,
1902 unsigned long);
1903 int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *,
1904 unsigned long);
1905 int journal_mark_freed(struct reiserfs_transaction_handle *,
1906 struct super_block *, b_blocknr_t blocknr);
1907 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
1908 int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
1909 int bit_nr, int searchall, b_blocknr_t *next);
1910 int journal_begin(struct reiserfs_transaction_handle *,
1911 struct super_block *sb, unsigned long);
1912 int journal_join_abort(struct reiserfs_transaction_handle *,
1913 struct super_block *sb, unsigned long);
1914 void reiserfs_abort_journal(struct super_block *sb, int errno);
1915 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
1916 int reiserfs_allocate_list_bitmaps(struct super_block *s,
1917 struct reiserfs_list_bitmap *, unsigned int);
1919 void add_save_link(struct reiserfs_transaction_handle *th,
1920 struct inode *inode, int truncate);
1921 int remove_save_link(struct inode *inode, int truncate);
1923 /* objectid.c */
1924 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
1925 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
1926 __u32 objectid_to_release);
1927 int reiserfs_convert_objectid_map_v1(struct super_block *);
1929 /* stree.c */
1930 int B_IS_IN_TREE(const struct buffer_head *);
1931 extern void copy_item_head(struct item_head *to,
1932 const struct item_head *from);
1934 // first key is in cpu form, second - le
1935 extern int comp_short_keys(const struct reiserfs_key *le_key,
1936 const struct cpu_key *cpu_key);
1937 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
1939 // both are in le form
1940 extern int comp_le_keys(const struct reiserfs_key *,
1941 const struct reiserfs_key *);
1942 extern int comp_short_le_keys(const struct reiserfs_key *,
1943 const struct reiserfs_key *);
1946 // get key version from on disk key - kludge
1948 static inline int le_key_version(const struct reiserfs_key *key)
1950 int type;
1952 type = offset_v2_k_type(&(key->u.k_offset_v2));
1953 if (type != TYPE_DIRECT && type != TYPE_INDIRECT
1954 && type != TYPE_DIRENTRY)
1955 return KEY_FORMAT_3_5;
1957 return KEY_FORMAT_3_6;
1961 static inline void copy_key(struct reiserfs_key *to,
1962 const struct reiserfs_key *from)
1964 memcpy(to, from, KEY_SIZE);
1967 int comp_items(const struct item_head *stored_ih, const struct treepath *path);
1968 const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
1969 const struct super_block *sb);
1970 int search_by_key(struct super_block *, const struct cpu_key *,
1971 struct treepath *, int);
1972 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1973 int search_for_position_by_key(struct super_block *sb,
1974 const struct cpu_key *cpu_key,
1975 struct treepath *search_path);
1976 extern void decrement_bcount(struct buffer_head *bh);
1977 void decrement_counters_in_path(struct treepath *search_path);
1978 void pathrelse(struct treepath *search_path);
1979 int reiserfs_check_path(struct treepath *p);
1980 void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
1982 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
1983 struct treepath *path,
1984 const struct cpu_key *key,
1985 struct item_head *ih,
1986 struct inode *inode, const char *body);
1988 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
1989 struct treepath *path,
1990 const struct cpu_key *key,
1991 struct inode *inode,
1992 const char *body, int paste_size);
1994 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1995 struct treepath *path,
1996 struct cpu_key *key,
1997 struct inode *inode,
1998 struct page *page, loff_t new_file_size);
2000 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
2001 struct treepath *path,
2002 const struct cpu_key *key,
2003 struct inode *inode, struct buffer_head *un_bh);
2005 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
2006 struct inode *inode, struct reiserfs_key *key);
2007 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
2008 struct inode *inode);
2009 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
2010 struct inode *inode, struct page *,
2011 int update_timestamps);
2013 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
2014 #define file_size(inode) ((inode)->i_size)
2015 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
2017 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
2018 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
2020 void padd_item(char *item, int total_length, int length);
2022 /* inode.c */
2023 /* args for the create parameter of reiserfs_get_block */
2024 #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
2025 #define GET_BLOCK_CREATE 1 /* add anything you need to find block */
2026 #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */
2027 #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
2028 #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */
2029 #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */
2031 void reiserfs_read_locked_inode(struct inode *inode,
2032 struct reiserfs_iget_args *args);
2033 int reiserfs_find_actor(struct inode *inode, void *p);
2034 int reiserfs_init_locked_inode(struct inode *inode, void *p);
2035 void reiserfs_evict_inode(struct inode *inode);
2036 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
2037 int reiserfs_get_block(struct inode *inode, sector_t block,
2038 struct buffer_head *bh_result, int create);
2039 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2040 int fh_len, int fh_type);
2041 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
2042 int fh_len, int fh_type);
2043 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
2044 int connectable);
2046 int reiserfs_truncate_file(struct inode *, int update_timestamps);
2047 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
2048 int type, int key_length);
2049 void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
2050 int version,
2051 loff_t offset, int type, int length, int entry_count);
2052 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
2054 struct reiserfs_security_handle;
2055 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
2056 struct inode *dir, int mode,
2057 const char *symname, loff_t i_size,
2058 struct dentry *dentry, struct inode *inode,
2059 struct reiserfs_security_handle *security);
2061 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
2062 struct inode *inode, loff_t size);
2064 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
2065 struct inode *inode)
2067 reiserfs_update_sd_size(th, inode, inode->i_size);
2070 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
2071 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
2072 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
2074 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);
2076 /* namei.c */
2077 void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
2078 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
2079 struct treepath *path, struct reiserfs_dir_entry *de);
2080 struct dentry *reiserfs_get_parent(struct dentry *);
2082 #ifdef CONFIG_REISERFS_PROC_INFO
2083 int reiserfs_proc_info_init(struct super_block *sb);
2084 int reiserfs_proc_info_done(struct super_block *sb);
2085 int reiserfs_proc_info_global_init(void);
2086 int reiserfs_proc_info_global_done(void);
2088 #define PROC_EXP( e ) e
2090 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
2091 #define PROC_INFO_MAX( sb, field, value ) \
2092 __PINFO( sb ).field = \
2093 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
2094 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
2095 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
2096 #define PROC_INFO_BH_STAT( sb, bh, level ) \
2097 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \
2098 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \
2099 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
2100 #else
2101 static inline int reiserfs_proc_info_init(struct super_block *sb)
2103 return 0;
2106 static inline int reiserfs_proc_info_done(struct super_block *sb)
2108 return 0;
2111 static inline int reiserfs_proc_info_global_init(void)
2113 return 0;
2116 static inline int reiserfs_proc_info_global_done(void)
2118 return 0;
2121 #define PROC_EXP( e )
2122 #define VOID_V ( ( void ) 0 )
2123 #define PROC_INFO_MAX( sb, field, value ) VOID_V
2124 #define PROC_INFO_INC( sb, field ) VOID_V
2125 #define PROC_INFO_ADD( sb, field, val ) VOID_V
2126 #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
2127 #endif
2129 /* dir.c */
2130 extern const struct inode_operations reiserfs_dir_inode_operations;
2131 extern const struct inode_operations reiserfs_symlink_inode_operations;
2132 extern const struct inode_operations reiserfs_special_inode_operations;
2133 extern const struct file_operations reiserfs_dir_operations;
2134 int reiserfs_readdir_dentry(struct dentry *, void *, filldir_t, loff_t *);
2136 /* tail_conversion.c */
2137 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
2138 struct treepath *, struct buffer_head *, loff_t);
2139 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
2140 struct page *, struct treepath *, const struct cpu_key *,
2141 loff_t, char *);
2142 void reiserfs_unmap_buffer(struct buffer_head *);
2144 /* file.c */
2145 extern const struct inode_operations reiserfs_file_inode_operations;
2146 extern const struct file_operations reiserfs_file_operations;
2147 extern const struct address_space_operations reiserfs_address_space_operations;
2149 /* fix_nodes.c */
2151 int fix_nodes(int n_op_mode, struct tree_balance *tb,
2152 struct item_head *ins_ih, const void *);
2153 void unfix_nodes(struct tree_balance *);
2155 /* prints.c */
2156 void __reiserfs_panic(struct super_block *s, const char *id,
2157 const char *function, const char *fmt, ...)
2158 __attribute__ ((noreturn));
2159 #define reiserfs_panic(s, id, fmt, args...) \
2160 __reiserfs_panic(s, id, __func__, fmt, ##args)
2161 void __reiserfs_error(struct super_block *s, const char *id,
2162 const char *function, const char *fmt, ...);
2163 #define reiserfs_error(s, id, fmt, args...) \
2164 __reiserfs_error(s, id, __func__, fmt, ##args)
2165 void reiserfs_info(struct super_block *s, const char *fmt, ...);
2166 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
2167 void print_indirect_item(struct buffer_head *bh, int item_num);
2168 void store_print_tb(struct tree_balance *tb);
2169 void print_cur_tb(char *mes);
2170 void print_de(struct reiserfs_dir_entry *de);
2171 void print_bi(struct buffer_info *bi, char *mes);
2172 #define PRINT_LEAF_ITEMS 1 /* print all items */
2173 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
2174 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
2175 void print_block(struct buffer_head *bh, ...);
2176 void print_bmap(struct super_block *s, int silent);
2177 void print_bmap_block(int i, char *data, int size, int silent);
2178 /*void print_super_block (struct super_block * s, char * mes);*/
2179 void print_objectid_map(struct super_block *s);
2180 void print_block_head(struct buffer_head *bh, char *mes);
2181 void check_leaf(struct buffer_head *bh);
2182 void check_internal(struct buffer_head *bh);
2183 void print_statistics(struct super_block *s);
2184 char *reiserfs_hashname(int code);
2186 /* lbalance.c */
2187 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
2188 int mov_bytes, struct buffer_head *Snew);
2189 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
2190 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
2191 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
2192 int del_num, int del_bytes);
2193 void leaf_insert_into_buf(struct buffer_info *bi, int before,
2194 struct item_head *inserted_item_ih,
2195 const char *inserted_item_body, int zeros_number);
2196 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
2197 int pos_in_item, int paste_size, const char *body,
2198 int zeros_number);
2199 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
2200 int pos_in_item, int cut_size);
2201 void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
2202 int new_entry_count, struct reiserfs_de_head *new_dehs,
2203 const char *records, int paste_size);
2204 /* ibalance.c */
2205 int balance_internal(struct tree_balance *, int, int, struct item_head *,
2206 struct buffer_head **);
2208 /* do_balance.c */
2209 void do_balance_mark_leaf_dirty(struct tree_balance *tb,
2210 struct buffer_head *bh, int flag);
2211 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2212 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2214 void do_balance(struct tree_balance *tb, struct item_head *ih,
2215 const char *body, int flag);
2216 void reiserfs_invalidate_buffer(struct tree_balance *tb,
2217 struct buffer_head *bh);
2219 int get_left_neighbor_position(struct tree_balance *tb, int h);
2220 int get_right_neighbor_position(struct tree_balance *tb, int h);
2221 void replace_key(struct tree_balance *tb, struct buffer_head *, int,
2222 struct buffer_head *, int);
2223 void make_empty_node(struct buffer_info *);
2224 struct buffer_head *get_FEB(struct tree_balance *);
2226 /* bitmap.c */
2228 /* structure contains hints for block allocator, and it is a container for
2229 * arguments, such as node, search path, transaction_handle, etc. */
2230 struct __reiserfs_blocknr_hint {
2231 struct inode *inode; /* inode passed to allocator, if we allocate unf. nodes */
2232 sector_t block; /* file offset, in blocks */
2233 struct in_core_key key;
2234 struct treepath *path; /* search path, used by allocator to deternine search_start by
2235 * various ways */
2236 struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and
2237 * bitmap blocks changes */
2238 b_blocknr_t beg, end;
2239 b_blocknr_t search_start; /* a field used to transfer search start value (block number)
2240 * between different block allocator procedures
2241 * (determine_search_start() and others) */
2242 int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed
2243 * function that do actual allocation */
2245 unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for
2246 * formatted/unformatted blocks with/without preallocation */
2247 unsigned preallocate:1;
2250 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2252 int reiserfs_parse_alloc_options(struct super_block *, char *);
2253 void reiserfs_init_alloc_options(struct super_block *s);
2256 * given a directory, this will tell you what packing locality
2257 * to use for a new object underneat it. The locality is returned
2258 * in disk byte order (le).
2260 __le32 reiserfs_choose_packing(struct inode *dir);
2262 int reiserfs_init_bitmap_cache(struct super_block *sb);
2263 void reiserfs_free_bitmap_cache(struct super_block *sb);
2264 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
2265 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
2266 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
2267 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
2268 b_blocknr_t, int for_unformatted);
2269 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
2270 int);
2271 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
2272 b_blocknr_t * new_blocknrs,
2273 int amount_needed)
2275 reiserfs_blocknr_hint_t hint = {
2276 .th = tb->transaction_handle,
2277 .path = tb->tb_path,
2278 .inode = NULL,
2279 .key = tb->key,
2280 .block = 0,
2281 .formatted_node = 1
2283 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
2287 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
2288 *th, struct inode *inode,
2289 b_blocknr_t * new_blocknrs,
2290 struct treepath *path,
2291 sector_t block)
2293 reiserfs_blocknr_hint_t hint = {
2294 .th = th,
2295 .path = path,
2296 .inode = inode,
2297 .block = block,
2298 .formatted_node = 0,
2299 .preallocate = 0
2301 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2304 #ifdef REISERFS_PREALLOCATE
2305 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
2306 *th, struct inode *inode,
2307 b_blocknr_t * new_blocknrs,
2308 struct treepath *path,
2309 sector_t block)
2311 reiserfs_blocknr_hint_t hint = {
2312 .th = th,
2313 .path = path,
2314 .inode = inode,
2315 .block = block,
2316 .formatted_node = 0,
2317 .preallocate = 1
2319 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2322 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
2323 struct inode *inode);
2324 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
2325 #endif
2327 /* hashes.c */
2328 __u32 keyed_hash(const signed char *msg, int len);
2329 __u32 yura_hash(const signed char *msg, int len);
2330 __u32 r5_hash(const signed char *msg, int len);
2332 /* the ext2 bit routines adjust for big or little endian as
2333 ** appropriate for the arch, so in our laziness we use them rather
2334 ** than using the bit routines they call more directly. These
2335 ** routines must be used when changing on disk bitmaps. */
2336 #define reiserfs_test_and_set_le_bit ext2_set_bit
2337 #define reiserfs_test_and_clear_le_bit ext2_clear_bit
2338 #define reiserfs_test_le_bit ext2_test_bit
2339 #define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2341 /* sometimes reiserfs_truncate may require to allocate few new blocks
2342 to perform indirect2direct conversion. People probably used to
2343 think, that truncate should work without problems on a filesystem
2344 without free disk space. They may complain that they can not
2345 truncate due to lack of free disk space. This spare space allows us
2346 to not worry about it. 500 is probably too much, but it should be
2347 absolutely safe */
2348 #define SPARE_SPACE 500
2350 /* prototypes from ioctl.c */
2351 long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2352 long reiserfs_compat_ioctl(struct file *filp,
2353 unsigned int cmd, unsigned long arg);
2354 int reiserfs_unpack(struct inode *inode, struct file *filp);
2356 #endif /* __KERNEL__ */
2358 #endif /* _LINUX_REISER_FS_H */