intel-gtt: generic (insert|remove)_entries for g33/i965
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / nfs / dir.c
blobe257172d438c08afe374c99fe0e7c80af51efe6c
1 /*
2 * linux/fs/nfs/dir.c
4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
37 #include "nfs4_fs.h"
38 #include "delegation.h"
39 #include "iostat.h"
40 #include "internal.h"
42 /* #define NFS_DEBUG_VERBOSE 1 */
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59 const struct file_operations nfs_dir_operations = {
60 .llseek = nfs_llseek_dir,
61 .read = generic_read_dir,
62 .readdir = nfs_readdir,
63 .open = nfs_opendir,
64 .release = nfs_release,
65 .fsync = nfs_fsync_dir,
68 const struct inode_operations nfs_dir_inode_operations = {
69 .create = nfs_create,
70 .lookup = nfs_lookup,
71 .link = nfs_link,
72 .unlink = nfs_unlink,
73 .symlink = nfs_symlink,
74 .mkdir = nfs_mkdir,
75 .rmdir = nfs_rmdir,
76 .mknod = nfs_mknod,
77 .rename = nfs_rename,
78 .permission = nfs_permission,
79 .getattr = nfs_getattr,
80 .setattr = nfs_setattr,
83 #ifdef CONFIG_NFS_V3
84 const struct inode_operations nfs3_dir_inode_operations = {
85 .create = nfs_create,
86 .lookup = nfs_lookup,
87 .link = nfs_link,
88 .unlink = nfs_unlink,
89 .symlink = nfs_symlink,
90 .mkdir = nfs_mkdir,
91 .rmdir = nfs_rmdir,
92 .mknod = nfs_mknod,
93 .rename = nfs_rename,
94 .permission = nfs_permission,
95 .getattr = nfs_getattr,
96 .setattr = nfs_setattr,
97 .listxattr = nfs3_listxattr,
98 .getxattr = nfs3_getxattr,
99 .setxattr = nfs3_setxattr,
100 .removexattr = nfs3_removexattr,
102 #endif /* CONFIG_NFS_V3 */
104 #ifdef CONFIG_NFS_V4
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 .create = nfs_create,
109 .lookup = nfs_atomic_lookup,
110 .link = nfs_link,
111 .unlink = nfs_unlink,
112 .symlink = nfs_symlink,
113 .mkdir = nfs_mkdir,
114 .rmdir = nfs_rmdir,
115 .mknod = nfs_mknod,
116 .rename = nfs_rename,
117 .permission = nfs_permission,
118 .getattr = nfs_getattr,
119 .setattr = nfs_setattr,
120 .getxattr = nfs4_getxattr,
121 .setxattr = nfs4_setxattr,
122 .listxattr = nfs4_listxattr,
125 #endif /* CONFIG_NFS_V4 */
128 * Open file
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
133 int res;
135 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
136 filp->f_path.dentry->d_parent->d_name.name,
137 filp->f_path.dentry->d_name.name);
139 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
141 /* Call generic open code in order to cache credentials */
142 res = nfs_open(inode, filp);
143 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
144 /* This is a mountpoint, so d_revalidate will never
145 * have been called, so we need to refresh the
146 * inode (for close-open consistency) ourselves.
148 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
150 return res;
153 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
154 typedef struct {
155 struct file *file;
156 struct page *page;
157 unsigned long page_index;
158 __be32 *ptr;
159 u64 *dir_cookie;
160 loff_t current_index;
161 struct nfs_entry *entry;
162 decode_dirent_t decode;
163 int plus;
164 unsigned long timestamp;
165 unsigned long gencount;
166 int timestamp_valid;
167 } nfs_readdir_descriptor_t;
169 /* Now we cache directories properly, by stuffing the dirent
170 * data directly in the page cache.
172 * Inode invalidation due to refresh etc. takes care of
173 * _everything_, no sloppy entry flushing logic, no extraneous
174 * copying, network direct to page cache, the way it was meant
175 * to be.
177 * NOTE: Dirent information verification is done always by the
178 * page-in of the RPC reply, nowhere else, this simplies
179 * things substantially.
181 static
182 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
184 struct file *file = desc->file;
185 struct inode *inode = file->f_path.dentry->d_inode;
186 struct rpc_cred *cred = nfs_file_cred(file);
187 unsigned long timestamp, gencount;
188 int error;
190 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
191 __func__, (long long)desc->entry->cookie,
192 page->index);
194 again:
195 timestamp = jiffies;
196 gencount = nfs_inc_attr_generation_counter();
197 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
198 NFS_SERVER(inode)->dtsize, desc->plus);
199 if (error < 0) {
200 /* We requested READDIRPLUS, but the server doesn't grok it */
201 if (error == -ENOTSUPP && desc->plus) {
202 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
203 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
204 desc->plus = 0;
205 goto again;
207 goto error;
209 desc->timestamp = timestamp;
210 desc->gencount = gencount;
211 desc->timestamp_valid = 1;
212 SetPageUptodate(page);
213 /* Ensure consistent page alignment of the data.
214 * Note: assumes we have exclusive access to this mapping either
215 * through inode->i_mutex or some other mechanism.
217 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
218 /* Should never happen */
219 nfs_zap_mapping(inode, inode->i_mapping);
221 unlock_page(page);
222 return 0;
223 error:
224 unlock_page(page);
225 return -EIO;
228 static inline
229 int dir_decode(nfs_readdir_descriptor_t *desc)
231 __be32 *p = desc->ptr;
232 p = desc->decode(p, desc->entry, desc->plus);
233 if (IS_ERR(p))
234 return PTR_ERR(p);
235 desc->ptr = p;
236 if (desc->timestamp_valid) {
237 desc->entry->fattr->time_start = desc->timestamp;
238 desc->entry->fattr->gencount = desc->gencount;
239 } else
240 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
241 return 0;
244 static inline
245 void dir_page_release(nfs_readdir_descriptor_t *desc)
247 kunmap(desc->page);
248 page_cache_release(desc->page);
249 desc->page = NULL;
250 desc->ptr = NULL;
254 * Given a pointer to a buffer that has already been filled by a call
255 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
257 * If the end of the buffer has been reached, return -EAGAIN, if not,
258 * return the offset within the buffer of the next entry to be
259 * read.
261 static inline
262 int find_dirent(nfs_readdir_descriptor_t *desc)
264 struct nfs_entry *entry = desc->entry;
265 int loop_count = 0,
266 status;
268 while((status = dir_decode(desc)) == 0) {
269 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
270 __func__, (unsigned long long)entry->cookie);
271 if (entry->prev_cookie == *desc->dir_cookie)
272 break;
273 if (loop_count++ > 200) {
274 loop_count = 0;
275 schedule();
278 return status;
282 * Given a pointer to a buffer that has already been filled by a call
283 * to readdir, find the entry at offset 'desc->file->f_pos'.
285 * If the end of the buffer has been reached, return -EAGAIN, if not,
286 * return the offset within the buffer of the next entry to be
287 * read.
289 static inline
290 int find_dirent_index(nfs_readdir_descriptor_t *desc)
292 struct nfs_entry *entry = desc->entry;
293 int loop_count = 0,
294 status;
296 for(;;) {
297 status = dir_decode(desc);
298 if (status)
299 break;
301 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
302 (unsigned long long)entry->cookie, desc->current_index);
304 if (desc->file->f_pos == desc->current_index) {
305 *desc->dir_cookie = entry->cookie;
306 break;
308 desc->current_index++;
309 if (loop_count++ > 200) {
310 loop_count = 0;
311 schedule();
314 return status;
318 * Find the given page, and call find_dirent() or find_dirent_index in
319 * order to try to return the next entry.
321 static inline
322 int find_dirent_page(nfs_readdir_descriptor_t *desc)
324 struct inode *inode = desc->file->f_path.dentry->d_inode;
325 struct page *page;
326 int status;
328 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
329 __func__, desc->page_index,
330 (long long) *desc->dir_cookie);
332 /* If we find the page in the page_cache, we cannot be sure
333 * how fresh the data is, so we will ignore readdir_plus attributes.
335 desc->timestamp_valid = 0;
336 page = read_cache_page(inode->i_mapping, desc->page_index,
337 (filler_t *)nfs_readdir_filler, desc);
338 if (IS_ERR(page)) {
339 status = PTR_ERR(page);
340 goto out;
343 /* NOTE: Someone else may have changed the READDIRPLUS flag */
344 desc->page = page;
345 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
346 if (*desc->dir_cookie != 0)
347 status = find_dirent(desc);
348 else
349 status = find_dirent_index(desc);
350 if (status < 0)
351 dir_page_release(desc);
352 out:
353 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
354 return status;
358 * Recurse through the page cache pages, and return a
359 * filled nfs_entry structure of the next directory entry if possible.
361 * The target for the search is '*desc->dir_cookie' if non-0,
362 * 'desc->file->f_pos' otherwise
364 static inline
365 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
367 int loop_count = 0;
368 int res;
370 /* Always search-by-index from the beginning of the cache */
371 if (*desc->dir_cookie == 0) {
372 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
373 (long long)desc->file->f_pos);
374 desc->page_index = 0;
375 desc->entry->cookie = desc->entry->prev_cookie = 0;
376 desc->entry->eof = 0;
377 desc->current_index = 0;
378 } else
379 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
380 (unsigned long long)*desc->dir_cookie);
382 for (;;) {
383 res = find_dirent_page(desc);
384 if (res != -EAGAIN)
385 break;
386 /* Align to beginning of next page */
387 desc->page_index ++;
388 if (loop_count++ > 200) {
389 loop_count = 0;
390 schedule();
394 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res);
395 return res;
398 static inline unsigned int dt_type(struct inode *inode)
400 return (inode->i_mode >> 12) & 15;
403 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
406 * Once we've found the start of the dirent within a page: fill 'er up...
408 static
409 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
410 filldir_t filldir)
412 struct file *file = desc->file;
413 struct nfs_entry *entry = desc->entry;
414 struct dentry *dentry = NULL;
415 u64 fileid;
416 int loop_count = 0,
417 res;
419 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
420 (unsigned long long)entry->cookie);
422 for(;;) {
423 unsigned d_type = DT_UNKNOWN;
424 /* Note: entry->prev_cookie contains the cookie for
425 * retrieving the current dirent on the server */
426 fileid = entry->ino;
428 /* Get a dentry if we have one */
429 if (dentry != NULL)
430 dput(dentry);
431 dentry = nfs_readdir_lookup(desc);
433 /* Use readdirplus info */
434 if (dentry != NULL && dentry->d_inode != NULL) {
435 d_type = dt_type(dentry->d_inode);
436 fileid = NFS_FILEID(dentry->d_inode);
439 res = filldir(dirent, entry->name, entry->len,
440 file->f_pos, nfs_compat_user_ino64(fileid),
441 d_type);
442 if (res < 0)
443 break;
444 file->f_pos++;
445 *desc->dir_cookie = entry->cookie;
446 if (dir_decode(desc) != 0) {
447 desc->page_index ++;
448 break;
450 if (loop_count++ > 200) {
451 loop_count = 0;
452 schedule();
455 dir_page_release(desc);
456 if (dentry != NULL)
457 dput(dentry);
458 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
459 (unsigned long long)*desc->dir_cookie, res);
460 return res;
464 * If we cannot find a cookie in our cache, we suspect that this is
465 * because it points to a deleted file, so we ask the server to return
466 * whatever it thinks is the next entry. We then feed this to filldir.
467 * If all goes well, we should then be able to find our way round the
468 * cache on the next call to readdir_search_pagecache();
470 * NOTE: we cannot add the anonymous page to the pagecache because
471 * the data it contains might not be page aligned. Besides,
472 * we should already have a complete representation of the
473 * directory in the page cache by the time we get here.
475 static inline
476 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
477 filldir_t filldir)
479 struct file *file = desc->file;
480 struct inode *inode = file->f_path.dentry->d_inode;
481 struct rpc_cred *cred = nfs_file_cred(file);
482 struct page *page = NULL;
483 int status;
484 unsigned long timestamp, gencount;
486 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
487 (unsigned long long)*desc->dir_cookie);
489 page = alloc_page(GFP_HIGHUSER);
490 if (!page) {
491 status = -ENOMEM;
492 goto out;
494 timestamp = jiffies;
495 gencount = nfs_inc_attr_generation_counter();
496 status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
497 *desc->dir_cookie, page,
498 NFS_SERVER(inode)->dtsize,
499 desc->plus);
500 desc->page = page;
501 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
502 if (status >= 0) {
503 desc->timestamp = timestamp;
504 desc->gencount = gencount;
505 desc->timestamp_valid = 1;
506 if ((status = dir_decode(desc)) == 0)
507 desc->entry->prev_cookie = *desc->dir_cookie;
508 } else
509 status = -EIO;
510 if (status < 0)
511 goto out_release;
513 status = nfs_do_filldir(desc, dirent, filldir);
515 /* Reset read descriptor so it searches the page cache from
516 * the start upon the next call to readdir_search_pagecache() */
517 desc->page_index = 0;
518 desc->entry->cookie = desc->entry->prev_cookie = 0;
519 desc->entry->eof = 0;
520 out:
521 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
522 __func__, status);
523 return status;
524 out_release:
525 dir_page_release(desc);
526 goto out;
529 /* The file offset position represents the dirent entry number. A
530 last cookie cache takes care of the common case of reading the
531 whole directory.
533 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
535 struct dentry *dentry = filp->f_path.dentry;
536 struct inode *inode = dentry->d_inode;
537 nfs_readdir_descriptor_t my_desc,
538 *desc = &my_desc;
539 struct nfs_entry my_entry;
540 int res = -ENOMEM;
542 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
543 dentry->d_parent->d_name.name, dentry->d_name.name,
544 (long long)filp->f_pos);
545 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
548 * filp->f_pos points to the dirent entry number.
549 * *desc->dir_cookie has the cookie for the next entry. We have
550 * to either find the entry with the appropriate number or
551 * revalidate the cookie.
553 memset(desc, 0, sizeof(*desc));
555 desc->file = filp;
556 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
557 desc->decode = NFS_PROTO(inode)->decode_dirent;
558 desc->plus = NFS_USE_READDIRPLUS(inode);
560 my_entry.cookie = my_entry.prev_cookie = 0;
561 my_entry.eof = 0;
562 my_entry.fh = nfs_alloc_fhandle();
563 my_entry.fattr = nfs_alloc_fattr();
564 if (my_entry.fh == NULL || my_entry.fattr == NULL)
565 goto out_alloc_failed;
567 desc->entry = &my_entry;
569 nfs_block_sillyrename(dentry);
570 res = nfs_revalidate_mapping(inode, filp->f_mapping);
571 if (res < 0)
572 goto out;
574 while(!desc->entry->eof) {
575 res = readdir_search_pagecache(desc);
577 if (res == -EBADCOOKIE) {
578 /* This means either end of directory */
579 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
580 /* Or that the server has 'lost' a cookie */
581 res = uncached_readdir(desc, dirent, filldir);
582 if (res >= 0)
583 continue;
585 res = 0;
586 break;
588 if (res == -ETOOSMALL && desc->plus) {
589 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
590 nfs_zap_caches(inode);
591 desc->plus = 0;
592 desc->entry->eof = 0;
593 continue;
595 if (res < 0)
596 break;
598 res = nfs_do_filldir(desc, dirent, filldir);
599 if (res < 0) {
600 res = 0;
601 break;
604 out:
605 nfs_unblock_sillyrename(dentry);
606 if (res > 0)
607 res = 0;
608 out_alloc_failed:
609 nfs_free_fattr(my_entry.fattr);
610 nfs_free_fhandle(my_entry.fh);
611 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
612 dentry->d_parent->d_name.name, dentry->d_name.name,
613 res);
614 return res;
617 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
619 struct dentry *dentry = filp->f_path.dentry;
620 struct inode *inode = dentry->d_inode;
622 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
623 dentry->d_parent->d_name.name,
624 dentry->d_name.name,
625 offset, origin);
627 mutex_lock(&inode->i_mutex);
628 switch (origin) {
629 case 1:
630 offset += filp->f_pos;
631 case 0:
632 if (offset >= 0)
633 break;
634 default:
635 offset = -EINVAL;
636 goto out;
638 if (offset != filp->f_pos) {
639 filp->f_pos = offset;
640 nfs_file_open_context(filp)->dir_cookie = 0;
642 out:
643 mutex_unlock(&inode->i_mutex);
644 return offset;
648 * All directory operations under NFS are synchronous, so fsync()
649 * is a dummy operation.
651 static int nfs_fsync_dir(struct file *filp, int datasync)
653 struct dentry *dentry = filp->f_path.dentry;
655 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
656 dentry->d_parent->d_name.name, dentry->d_name.name,
657 datasync);
659 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
660 return 0;
664 * nfs_force_lookup_revalidate - Mark the directory as having changed
665 * @dir - pointer to directory inode
667 * This forces the revalidation code in nfs_lookup_revalidate() to do a
668 * full lookup on all child dentries of 'dir' whenever a change occurs
669 * on the server that might have invalidated our dcache.
671 * The caller should be holding dir->i_lock
673 void nfs_force_lookup_revalidate(struct inode *dir)
675 NFS_I(dir)->cache_change_attribute++;
679 * A check for whether or not the parent directory has changed.
680 * In the case it has, we assume that the dentries are untrustworthy
681 * and may need to be looked up again.
683 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
685 if (IS_ROOT(dentry))
686 return 1;
687 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
688 return 0;
689 if (!nfs_verify_change_attribute(dir, dentry->d_time))
690 return 0;
691 /* Revalidate nfsi->cache_change_attribute before we declare a match */
692 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
693 return 0;
694 if (!nfs_verify_change_attribute(dir, dentry->d_time))
695 return 0;
696 return 1;
700 * Return the intent data that applies to this particular path component
702 * Note that the current set of intents only apply to the very last
703 * component of the path.
704 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
706 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
708 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
709 return 0;
710 return nd->flags & mask;
714 * Use intent information to check whether or not we're going to do
715 * an O_EXCL create using this path component.
717 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
719 if (NFS_PROTO(dir)->version == 2)
720 return 0;
721 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
725 * Inode and filehandle revalidation for lookups.
727 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
728 * or if the intent information indicates that we're about to open this
729 * particular file and the "nocto" mount flag is not set.
732 static inline
733 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
735 struct nfs_server *server = NFS_SERVER(inode);
737 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
738 return 0;
739 if (nd != NULL) {
740 /* VFS wants an on-the-wire revalidation */
741 if (nd->flags & LOOKUP_REVAL)
742 goto out_force;
743 /* This is an open(2) */
744 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
745 !(server->flags & NFS_MOUNT_NOCTO) &&
746 (S_ISREG(inode->i_mode) ||
747 S_ISDIR(inode->i_mode)))
748 goto out_force;
749 return 0;
751 return nfs_revalidate_inode(server, inode);
752 out_force:
753 return __nfs_revalidate_inode(server, inode);
757 * We judge how long we want to trust negative
758 * dentries by looking at the parent inode mtime.
760 * If parent mtime has changed, we revalidate, else we wait for a
761 * period corresponding to the parent's attribute cache timeout value.
763 static inline
764 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
765 struct nameidata *nd)
767 /* Don't revalidate a negative dentry if we're creating a new file */
768 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
769 return 0;
770 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
771 return 1;
772 return !nfs_check_verifier(dir, dentry);
776 * This is called every time the dcache has a lookup hit,
777 * and we should check whether we can really trust that
778 * lookup.
780 * NOTE! The hit can be a negative hit too, don't assume
781 * we have an inode!
783 * If the parent directory is seen to have changed, we throw out the
784 * cached dentry and do a new lookup.
786 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
788 struct inode *dir;
789 struct inode *inode;
790 struct dentry *parent;
791 struct nfs_fh *fhandle = NULL;
792 struct nfs_fattr *fattr = NULL;
793 int error;
795 parent = dget_parent(dentry);
796 dir = parent->d_inode;
797 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
798 inode = dentry->d_inode;
800 if (!inode) {
801 if (nfs_neg_need_reval(dir, dentry, nd))
802 goto out_bad;
803 goto out_valid;
806 if (is_bad_inode(inode)) {
807 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
808 __func__, dentry->d_parent->d_name.name,
809 dentry->d_name.name);
810 goto out_bad;
813 if (nfs_have_delegation(inode, FMODE_READ))
814 goto out_set_verifier;
816 /* Force a full look up iff the parent directory has changed */
817 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
818 if (nfs_lookup_verify_inode(inode, nd))
819 goto out_zap_parent;
820 goto out_valid;
823 if (NFS_STALE(inode))
824 goto out_bad;
826 error = -ENOMEM;
827 fhandle = nfs_alloc_fhandle();
828 fattr = nfs_alloc_fattr();
829 if (fhandle == NULL || fattr == NULL)
830 goto out_error;
832 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
833 if (error)
834 goto out_bad;
835 if (nfs_compare_fh(NFS_FH(inode), fhandle))
836 goto out_bad;
837 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
838 goto out_bad;
840 nfs_free_fattr(fattr);
841 nfs_free_fhandle(fhandle);
842 out_set_verifier:
843 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
844 out_valid:
845 dput(parent);
846 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
847 __func__, dentry->d_parent->d_name.name,
848 dentry->d_name.name);
849 return 1;
850 out_zap_parent:
851 nfs_zap_caches(dir);
852 out_bad:
853 nfs_mark_for_revalidate(dir);
854 if (inode && S_ISDIR(inode->i_mode)) {
855 /* Purge readdir caches. */
856 nfs_zap_caches(inode);
857 /* If we have submounts, don't unhash ! */
858 if (have_submounts(dentry))
859 goto out_valid;
860 if (dentry->d_flags & DCACHE_DISCONNECTED)
861 goto out_valid;
862 shrink_dcache_parent(dentry);
864 d_drop(dentry);
865 nfs_free_fattr(fattr);
866 nfs_free_fhandle(fhandle);
867 dput(parent);
868 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
869 __func__, dentry->d_parent->d_name.name,
870 dentry->d_name.name);
871 return 0;
872 out_error:
873 nfs_free_fattr(fattr);
874 nfs_free_fhandle(fhandle);
875 dput(parent);
876 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
877 __func__, dentry->d_parent->d_name.name,
878 dentry->d_name.name, error);
879 return error;
883 * This is called from dput() when d_count is going to 0.
885 static int nfs_dentry_delete(struct dentry *dentry)
887 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
888 dentry->d_parent->d_name.name, dentry->d_name.name,
889 dentry->d_flags);
891 /* Unhash any dentry with a stale inode */
892 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
893 return 1;
895 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
896 /* Unhash it, so that ->d_iput() would be called */
897 return 1;
899 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
900 /* Unhash it, so that ancestors of killed async unlink
901 * files will be cleaned up during umount */
902 return 1;
904 return 0;
908 static void nfs_drop_nlink(struct inode *inode)
910 spin_lock(&inode->i_lock);
911 if (inode->i_nlink > 0)
912 drop_nlink(inode);
913 spin_unlock(&inode->i_lock);
917 * Called when the dentry loses inode.
918 * We use it to clean up silly-renamed files.
920 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
922 if (S_ISDIR(inode->i_mode))
923 /* drop any readdir cache as it could easily be old */
924 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
926 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
927 drop_nlink(inode);
928 nfs_complete_unlink(dentry, inode);
930 iput(inode);
933 const struct dentry_operations nfs_dentry_operations = {
934 .d_revalidate = nfs_lookup_revalidate,
935 .d_delete = nfs_dentry_delete,
936 .d_iput = nfs_dentry_iput,
939 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
941 struct dentry *res;
942 struct dentry *parent;
943 struct inode *inode = NULL;
944 struct nfs_fh *fhandle = NULL;
945 struct nfs_fattr *fattr = NULL;
946 int error;
948 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
949 dentry->d_parent->d_name.name, dentry->d_name.name);
950 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
952 res = ERR_PTR(-ENAMETOOLONG);
953 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
954 goto out;
956 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
959 * If we're doing an exclusive create, optimize away the lookup
960 * but don't hash the dentry.
962 if (nfs_is_exclusive_create(dir, nd)) {
963 d_instantiate(dentry, NULL);
964 res = NULL;
965 goto out;
968 res = ERR_PTR(-ENOMEM);
969 fhandle = nfs_alloc_fhandle();
970 fattr = nfs_alloc_fattr();
971 if (fhandle == NULL || fattr == NULL)
972 goto out;
974 parent = dentry->d_parent;
975 /* Protect against concurrent sillydeletes */
976 nfs_block_sillyrename(parent);
977 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
978 if (error == -ENOENT)
979 goto no_entry;
980 if (error < 0) {
981 res = ERR_PTR(error);
982 goto out_unblock_sillyrename;
984 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
985 res = (struct dentry *)inode;
986 if (IS_ERR(res))
987 goto out_unblock_sillyrename;
989 no_entry:
990 res = d_materialise_unique(dentry, inode);
991 if (res != NULL) {
992 if (IS_ERR(res))
993 goto out_unblock_sillyrename;
994 dentry = res;
996 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
997 out_unblock_sillyrename:
998 nfs_unblock_sillyrename(parent);
999 out:
1000 nfs_free_fattr(fattr);
1001 nfs_free_fhandle(fhandle);
1002 return res;
1005 #ifdef CONFIG_NFS_V4
1006 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1008 const struct dentry_operations nfs4_dentry_operations = {
1009 .d_revalidate = nfs_open_revalidate,
1010 .d_delete = nfs_dentry_delete,
1011 .d_iput = nfs_dentry_iput,
1015 * Use intent information to determine whether we need to substitute
1016 * the NFSv4-style stateful OPEN for the LOOKUP call
1018 static int is_atomic_open(struct nameidata *nd)
1020 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1021 return 0;
1022 /* NFS does not (yet) have a stateful open for directories */
1023 if (nd->flags & LOOKUP_DIRECTORY)
1024 return 0;
1025 /* Are we trying to write to a read only partition? */
1026 if (__mnt_is_readonly(nd->path.mnt) &&
1027 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1028 return 0;
1029 return 1;
1032 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1034 struct dentry *res = NULL;
1035 int error;
1037 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1038 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1040 /* Check that we are indeed trying to open this file */
1041 if (!is_atomic_open(nd))
1042 goto no_open;
1044 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1045 res = ERR_PTR(-ENAMETOOLONG);
1046 goto out;
1048 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1050 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1051 * the dentry. */
1052 if (nd->flags & LOOKUP_EXCL) {
1053 d_instantiate(dentry, NULL);
1054 goto out;
1057 /* Open the file on the server */
1058 res = nfs4_atomic_open(dir, dentry, nd);
1059 if (IS_ERR(res)) {
1060 error = PTR_ERR(res);
1061 switch (error) {
1062 /* Make a negative dentry */
1063 case -ENOENT:
1064 res = NULL;
1065 goto out;
1066 /* This turned out not to be a regular file */
1067 case -EISDIR:
1068 case -ENOTDIR:
1069 goto no_open;
1070 case -ELOOP:
1071 if (!(nd->intent.open.flags & O_NOFOLLOW))
1072 goto no_open;
1073 /* case -EINVAL: */
1074 default:
1075 goto out;
1077 } else if (res != NULL)
1078 dentry = res;
1079 out:
1080 return res;
1081 no_open:
1082 return nfs_lookup(dir, dentry, nd);
1085 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1087 struct dentry *parent = NULL;
1088 struct inode *inode = dentry->d_inode;
1089 struct inode *dir;
1090 int openflags, ret = 0;
1092 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1093 goto no_open;
1094 parent = dget_parent(dentry);
1095 dir = parent->d_inode;
1096 /* We can't create new files in nfs_open_revalidate(), so we
1097 * optimize away revalidation of negative dentries.
1099 if (inode == NULL) {
1100 if (!nfs_neg_need_reval(dir, dentry, nd))
1101 ret = 1;
1102 goto out;
1105 /* NFS only supports OPEN on regular files */
1106 if (!S_ISREG(inode->i_mode))
1107 goto no_open_dput;
1108 openflags = nd->intent.open.flags;
1109 /* We cannot do exclusive creation on a positive dentry */
1110 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1111 goto no_open_dput;
1112 /* We can't create new files, or truncate existing ones here */
1113 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1116 * Note: we're not holding inode->i_mutex and so may be racing with
1117 * operations that change the directory. We therefore save the
1118 * change attribute *before* we do the RPC call.
1120 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1121 out:
1122 dput(parent);
1123 if (!ret)
1124 d_drop(dentry);
1125 return ret;
1126 no_open_dput:
1127 dput(parent);
1128 no_open:
1129 return nfs_lookup_revalidate(dentry, nd);
1131 #endif /* CONFIG_NFSV4 */
1133 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1135 struct dentry *parent = desc->file->f_path.dentry;
1136 struct inode *dir = parent->d_inode;
1137 struct nfs_entry *entry = desc->entry;
1138 struct dentry *dentry, *alias;
1139 struct qstr name = {
1140 .name = entry->name,
1141 .len = entry->len,
1143 struct inode *inode;
1144 unsigned long verf = nfs_save_change_attribute(dir);
1146 switch (name.len) {
1147 case 2:
1148 if (name.name[0] == '.' && name.name[1] == '.')
1149 return dget_parent(parent);
1150 break;
1151 case 1:
1152 if (name.name[0] == '.')
1153 return dget(parent);
1156 spin_lock(&dir->i_lock);
1157 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1158 spin_unlock(&dir->i_lock);
1159 return NULL;
1161 spin_unlock(&dir->i_lock);
1163 name.hash = full_name_hash(name.name, name.len);
1164 dentry = d_lookup(parent, &name);
1165 if (dentry != NULL) {
1166 /* Is this a positive dentry that matches the readdir info? */
1167 if (dentry->d_inode != NULL &&
1168 (NFS_FILEID(dentry->d_inode) == entry->ino ||
1169 d_mountpoint(dentry))) {
1170 if (!desc->plus || entry->fh->size == 0)
1171 return dentry;
1172 if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1173 entry->fh) == 0)
1174 goto out_renew;
1176 /* No, so d_drop to allow one to be created */
1177 d_drop(dentry);
1178 dput(dentry);
1180 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1181 return NULL;
1182 if (name.len > NFS_SERVER(dir)->namelen)
1183 return NULL;
1184 /* Note: caller is already holding the dir->i_mutex! */
1185 dentry = d_alloc(parent, &name);
1186 if (dentry == NULL)
1187 return NULL;
1188 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1189 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1190 if (IS_ERR(inode)) {
1191 dput(dentry);
1192 return NULL;
1195 alias = d_materialise_unique(dentry, inode);
1196 if (alias != NULL) {
1197 dput(dentry);
1198 if (IS_ERR(alias))
1199 return NULL;
1200 dentry = alias;
1203 out_renew:
1204 nfs_set_verifier(dentry, verf);
1205 return dentry;
1209 * Code common to create, mkdir, and mknod.
1211 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1212 struct nfs_fattr *fattr)
1214 struct dentry *parent = dget_parent(dentry);
1215 struct inode *dir = parent->d_inode;
1216 struct inode *inode;
1217 int error = -EACCES;
1219 d_drop(dentry);
1221 /* We may have been initialized further down */
1222 if (dentry->d_inode)
1223 goto out;
1224 if (fhandle->size == 0) {
1225 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1226 if (error)
1227 goto out_error;
1229 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1230 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1231 struct nfs_server *server = NFS_SB(dentry->d_sb);
1232 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1233 if (error < 0)
1234 goto out_error;
1236 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1237 error = PTR_ERR(inode);
1238 if (IS_ERR(inode))
1239 goto out_error;
1240 d_add(dentry, inode);
1241 out:
1242 dput(parent);
1243 return 0;
1244 out_error:
1245 nfs_mark_for_revalidate(dir);
1246 dput(parent);
1247 return error;
1251 * Following a failed create operation, we drop the dentry rather
1252 * than retain a negative dentry. This avoids a problem in the event
1253 * that the operation succeeded on the server, but an error in the
1254 * reply path made it appear to have failed.
1256 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1257 struct nameidata *nd)
1259 struct iattr attr;
1260 int error;
1261 int open_flags = 0;
1263 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1264 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1266 attr.ia_mode = mode;
1267 attr.ia_valid = ATTR_MODE;
1269 if ((nd->flags & LOOKUP_CREATE) != 0)
1270 open_flags = nd->intent.open.flags;
1272 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1273 if (error != 0)
1274 goto out_err;
1275 return 0;
1276 out_err:
1277 d_drop(dentry);
1278 return error;
1282 * See comments for nfs_proc_create regarding failed operations.
1284 static int
1285 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1287 struct iattr attr;
1288 int status;
1290 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1291 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1293 if (!new_valid_dev(rdev))
1294 return -EINVAL;
1296 attr.ia_mode = mode;
1297 attr.ia_valid = ATTR_MODE;
1299 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1300 if (status != 0)
1301 goto out_err;
1302 return 0;
1303 out_err:
1304 d_drop(dentry);
1305 return status;
1309 * See comments for nfs_proc_create regarding failed operations.
1311 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1313 struct iattr attr;
1314 int error;
1316 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1317 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1319 attr.ia_valid = ATTR_MODE;
1320 attr.ia_mode = mode | S_IFDIR;
1322 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1323 if (error != 0)
1324 goto out_err;
1325 return 0;
1326 out_err:
1327 d_drop(dentry);
1328 return error;
1331 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1333 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1334 d_delete(dentry);
1337 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1339 int error;
1341 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1342 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1344 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1345 /* Ensure the VFS deletes this inode */
1346 if (error == 0 && dentry->d_inode != NULL)
1347 clear_nlink(dentry->d_inode);
1348 else if (error == -ENOENT)
1349 nfs_dentry_handle_enoent(dentry);
1351 return error;
1354 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1356 static unsigned int sillycounter;
1357 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2;
1358 const int countersize = sizeof(sillycounter)*2;
1359 const int slen = sizeof(".nfs")+fileidsize+countersize-1;
1360 char silly[slen+1];
1361 struct qstr qsilly;
1362 struct dentry *sdentry;
1363 int error = -EIO;
1365 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1366 dentry->d_parent->d_name.name, dentry->d_name.name,
1367 atomic_read(&dentry->d_count));
1368 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1371 * We don't allow a dentry to be silly-renamed twice.
1373 error = -EBUSY;
1374 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1375 goto out;
1377 sprintf(silly, ".nfs%*.*Lx",
1378 fileidsize, fileidsize,
1379 (unsigned long long)NFS_FILEID(dentry->d_inode));
1381 /* Return delegation in anticipation of the rename */
1382 nfs_inode_return_delegation(dentry->d_inode);
1384 sdentry = NULL;
1385 do {
1386 char *suffix = silly + slen - countersize;
1388 dput(sdentry);
1389 sillycounter++;
1390 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1392 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1393 dentry->d_name.name, silly);
1395 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1397 * N.B. Better to return EBUSY here ... it could be
1398 * dangerous to delete the file while it's in use.
1400 if (IS_ERR(sdentry))
1401 goto out;
1402 } while(sdentry->d_inode != NULL); /* need negative lookup */
1404 qsilly.name = silly;
1405 qsilly.len = strlen(silly);
1406 if (dentry->d_inode) {
1407 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1408 dir, &qsilly);
1409 nfs_mark_for_revalidate(dentry->d_inode);
1410 } else
1411 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1412 dir, &qsilly);
1413 if (!error) {
1414 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1415 d_move(dentry, sdentry);
1416 error = nfs_async_unlink(dir, dentry);
1417 /* If we return 0 we don't unlink */
1419 dput(sdentry);
1420 out:
1421 return error;
1425 * Remove a file after making sure there are no pending writes,
1426 * and after checking that the file has only one user.
1428 * We invalidate the attribute cache and free the inode prior to the operation
1429 * to avoid possible races if the server reuses the inode.
1431 static int nfs_safe_remove(struct dentry *dentry)
1433 struct inode *dir = dentry->d_parent->d_inode;
1434 struct inode *inode = dentry->d_inode;
1435 int error = -EBUSY;
1437 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1438 dentry->d_parent->d_name.name, dentry->d_name.name);
1440 /* If the dentry was sillyrenamed, we simply call d_delete() */
1441 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1442 error = 0;
1443 goto out;
1446 if (inode != NULL) {
1447 nfs_inode_return_delegation(inode);
1448 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1449 /* The VFS may want to delete this inode */
1450 if (error == 0)
1451 nfs_drop_nlink(inode);
1452 nfs_mark_for_revalidate(inode);
1453 } else
1454 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1455 if (error == -ENOENT)
1456 nfs_dentry_handle_enoent(dentry);
1457 out:
1458 return error;
1461 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1462 * belongs to an active ".nfs..." file and we return -EBUSY.
1464 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1466 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1468 int error;
1469 int need_rehash = 0;
1471 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1472 dir->i_ino, dentry->d_name.name);
1474 spin_lock(&dcache_lock);
1475 spin_lock(&dentry->d_lock);
1476 if (atomic_read(&dentry->d_count) > 1) {
1477 spin_unlock(&dentry->d_lock);
1478 spin_unlock(&dcache_lock);
1479 /* Start asynchronous writeout of the inode */
1480 write_inode_now(dentry->d_inode, 0);
1481 error = nfs_sillyrename(dir, dentry);
1482 return error;
1484 if (!d_unhashed(dentry)) {
1485 __d_drop(dentry);
1486 need_rehash = 1;
1488 spin_unlock(&dentry->d_lock);
1489 spin_unlock(&dcache_lock);
1490 error = nfs_safe_remove(dentry);
1491 if (!error || error == -ENOENT) {
1492 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1493 } else if (need_rehash)
1494 d_rehash(dentry);
1495 return error;
1499 * To create a symbolic link, most file systems instantiate a new inode,
1500 * add a page to it containing the path, then write it out to the disk
1501 * using prepare_write/commit_write.
1503 * Unfortunately the NFS client can't create the in-core inode first
1504 * because it needs a file handle to create an in-core inode (see
1505 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1506 * symlink request has completed on the server.
1508 * So instead we allocate a raw page, copy the symname into it, then do
1509 * the SYMLINK request with the page as the buffer. If it succeeds, we
1510 * now have a new file handle and can instantiate an in-core NFS inode
1511 * and move the raw page into its mapping.
1513 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1515 struct pagevec lru_pvec;
1516 struct page *page;
1517 char *kaddr;
1518 struct iattr attr;
1519 unsigned int pathlen = strlen(symname);
1520 int error;
1522 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1523 dir->i_ino, dentry->d_name.name, symname);
1525 if (pathlen > PAGE_SIZE)
1526 return -ENAMETOOLONG;
1528 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1529 attr.ia_valid = ATTR_MODE;
1531 page = alloc_page(GFP_HIGHUSER);
1532 if (!page)
1533 return -ENOMEM;
1535 kaddr = kmap_atomic(page, KM_USER0);
1536 memcpy(kaddr, symname, pathlen);
1537 if (pathlen < PAGE_SIZE)
1538 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1539 kunmap_atomic(kaddr, KM_USER0);
1541 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1542 if (error != 0) {
1543 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1544 dir->i_sb->s_id, dir->i_ino,
1545 dentry->d_name.name, symname, error);
1546 d_drop(dentry);
1547 __free_page(page);
1548 return error;
1552 * No big deal if we can't add this page to the page cache here.
1553 * READLINK will get the missing page from the server if needed.
1555 pagevec_init(&lru_pvec, 0);
1556 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1557 GFP_KERNEL)) {
1558 pagevec_add(&lru_pvec, page);
1559 pagevec_lru_add_file(&lru_pvec);
1560 SetPageUptodate(page);
1561 unlock_page(page);
1562 } else
1563 __free_page(page);
1565 return 0;
1568 static int
1569 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1571 struct inode *inode = old_dentry->d_inode;
1572 int error;
1574 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1575 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1576 dentry->d_parent->d_name.name, dentry->d_name.name);
1578 nfs_inode_return_delegation(inode);
1580 d_drop(dentry);
1581 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1582 if (error == 0) {
1583 atomic_inc(&inode->i_count);
1584 d_add(dentry, inode);
1586 return error;
1590 * RENAME
1591 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1592 * different file handle for the same inode after a rename (e.g. when
1593 * moving to a different directory). A fail-safe method to do so would
1594 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1595 * rename the old file using the sillyrename stuff. This way, the original
1596 * file in old_dir will go away when the last process iput()s the inode.
1598 * FIXED.
1600 * It actually works quite well. One needs to have the possibility for
1601 * at least one ".nfs..." file in each directory the file ever gets
1602 * moved or linked to which happens automagically with the new
1603 * implementation that only depends on the dcache stuff instead of
1604 * using the inode layer
1606 * Unfortunately, things are a little more complicated than indicated
1607 * above. For a cross-directory move, we want to make sure we can get
1608 * rid of the old inode after the operation. This means there must be
1609 * no pending writes (if it's a file), and the use count must be 1.
1610 * If these conditions are met, we can drop the dentries before doing
1611 * the rename.
1613 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1614 struct inode *new_dir, struct dentry *new_dentry)
1616 struct inode *old_inode = old_dentry->d_inode;
1617 struct inode *new_inode = new_dentry->d_inode;
1618 struct dentry *dentry = NULL, *rehash = NULL;
1619 int error = -EBUSY;
1621 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1622 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1623 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1624 atomic_read(&new_dentry->d_count));
1627 * For non-directories, check whether the target is busy and if so,
1628 * make a copy of the dentry and then do a silly-rename. If the
1629 * silly-rename succeeds, the copied dentry is hashed and becomes
1630 * the new target.
1632 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1634 * To prevent any new references to the target during the
1635 * rename, we unhash the dentry in advance.
1637 if (!d_unhashed(new_dentry)) {
1638 d_drop(new_dentry);
1639 rehash = new_dentry;
1642 if (atomic_read(&new_dentry->d_count) > 2) {
1643 int err;
1645 /* copy the target dentry's name */
1646 dentry = d_alloc(new_dentry->d_parent,
1647 &new_dentry->d_name);
1648 if (!dentry)
1649 goto out;
1651 /* silly-rename the existing target ... */
1652 err = nfs_sillyrename(new_dir, new_dentry);
1653 if (err)
1654 goto out;
1656 new_dentry = dentry;
1657 rehash = NULL;
1658 new_inode = NULL;
1662 nfs_inode_return_delegation(old_inode);
1663 if (new_inode != NULL)
1664 nfs_inode_return_delegation(new_inode);
1666 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1667 new_dir, &new_dentry->d_name);
1668 nfs_mark_for_revalidate(old_inode);
1669 out:
1670 if (rehash)
1671 d_rehash(rehash);
1672 if (!error) {
1673 if (new_inode != NULL)
1674 nfs_drop_nlink(new_inode);
1675 d_move(old_dentry, new_dentry);
1676 nfs_set_verifier(new_dentry,
1677 nfs_save_change_attribute(new_dir));
1678 } else if (error == -ENOENT)
1679 nfs_dentry_handle_enoent(old_dentry);
1681 /* new dentry created? */
1682 if (dentry)
1683 dput(dentry);
1684 return error;
1687 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1688 static LIST_HEAD(nfs_access_lru_list);
1689 static atomic_long_t nfs_access_nr_entries;
1691 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1693 put_rpccred(entry->cred);
1694 kfree(entry);
1695 smp_mb__before_atomic_dec();
1696 atomic_long_dec(&nfs_access_nr_entries);
1697 smp_mb__after_atomic_dec();
1700 static void nfs_access_free_list(struct list_head *head)
1702 struct nfs_access_entry *cache;
1704 while (!list_empty(head)) {
1705 cache = list_entry(head->next, struct nfs_access_entry, lru);
1706 list_del(&cache->lru);
1707 nfs_access_free_entry(cache);
1711 int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
1713 LIST_HEAD(head);
1714 struct nfs_inode *nfsi;
1715 struct nfs_access_entry *cache;
1717 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1718 return (nr_to_scan == 0) ? 0 : -1;
1720 spin_lock(&nfs_access_lru_lock);
1721 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1722 struct inode *inode;
1724 if (nr_to_scan-- == 0)
1725 break;
1726 inode = &nfsi->vfs_inode;
1727 spin_lock(&inode->i_lock);
1728 if (list_empty(&nfsi->access_cache_entry_lru))
1729 goto remove_lru_entry;
1730 cache = list_entry(nfsi->access_cache_entry_lru.next,
1731 struct nfs_access_entry, lru);
1732 list_move(&cache->lru, &head);
1733 rb_erase(&cache->rb_node, &nfsi->access_cache);
1734 if (!list_empty(&nfsi->access_cache_entry_lru))
1735 list_move_tail(&nfsi->access_cache_inode_lru,
1736 &nfs_access_lru_list);
1737 else {
1738 remove_lru_entry:
1739 list_del_init(&nfsi->access_cache_inode_lru);
1740 smp_mb__before_clear_bit();
1741 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1742 smp_mb__after_clear_bit();
1744 spin_unlock(&inode->i_lock);
1746 spin_unlock(&nfs_access_lru_lock);
1747 nfs_access_free_list(&head);
1748 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1751 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1753 struct rb_root *root_node = &nfsi->access_cache;
1754 struct rb_node *n;
1755 struct nfs_access_entry *entry;
1757 /* Unhook entries from the cache */
1758 while ((n = rb_first(root_node)) != NULL) {
1759 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1760 rb_erase(n, root_node);
1761 list_move(&entry->lru, head);
1763 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1766 void nfs_access_zap_cache(struct inode *inode)
1768 LIST_HEAD(head);
1770 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
1771 return;
1772 /* Remove from global LRU init */
1773 spin_lock(&nfs_access_lru_lock);
1774 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1775 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1777 spin_lock(&inode->i_lock);
1778 __nfs_access_zap_cache(NFS_I(inode), &head);
1779 spin_unlock(&inode->i_lock);
1780 spin_unlock(&nfs_access_lru_lock);
1781 nfs_access_free_list(&head);
1784 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1786 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1787 struct nfs_access_entry *entry;
1789 while (n != NULL) {
1790 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1792 if (cred < entry->cred)
1793 n = n->rb_left;
1794 else if (cred > entry->cred)
1795 n = n->rb_right;
1796 else
1797 return entry;
1799 return NULL;
1802 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1804 struct nfs_inode *nfsi = NFS_I(inode);
1805 struct nfs_access_entry *cache;
1806 int err = -ENOENT;
1808 spin_lock(&inode->i_lock);
1809 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1810 goto out_zap;
1811 cache = nfs_access_search_rbtree(inode, cred);
1812 if (cache == NULL)
1813 goto out;
1814 if (!nfs_have_delegated_attributes(inode) &&
1815 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1816 goto out_stale;
1817 res->jiffies = cache->jiffies;
1818 res->cred = cache->cred;
1819 res->mask = cache->mask;
1820 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1821 err = 0;
1822 out:
1823 spin_unlock(&inode->i_lock);
1824 return err;
1825 out_stale:
1826 rb_erase(&cache->rb_node, &nfsi->access_cache);
1827 list_del(&cache->lru);
1828 spin_unlock(&inode->i_lock);
1829 nfs_access_free_entry(cache);
1830 return -ENOENT;
1831 out_zap:
1832 spin_unlock(&inode->i_lock);
1833 nfs_access_zap_cache(inode);
1834 return -ENOENT;
1837 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1839 struct nfs_inode *nfsi = NFS_I(inode);
1840 struct rb_root *root_node = &nfsi->access_cache;
1841 struct rb_node **p = &root_node->rb_node;
1842 struct rb_node *parent = NULL;
1843 struct nfs_access_entry *entry;
1845 spin_lock(&inode->i_lock);
1846 while (*p != NULL) {
1847 parent = *p;
1848 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1850 if (set->cred < entry->cred)
1851 p = &parent->rb_left;
1852 else if (set->cred > entry->cred)
1853 p = &parent->rb_right;
1854 else
1855 goto found;
1857 rb_link_node(&set->rb_node, parent, p);
1858 rb_insert_color(&set->rb_node, root_node);
1859 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1860 spin_unlock(&inode->i_lock);
1861 return;
1862 found:
1863 rb_replace_node(parent, &set->rb_node, root_node);
1864 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1865 list_del(&entry->lru);
1866 spin_unlock(&inode->i_lock);
1867 nfs_access_free_entry(entry);
1870 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1872 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1873 if (cache == NULL)
1874 return;
1875 RB_CLEAR_NODE(&cache->rb_node);
1876 cache->jiffies = set->jiffies;
1877 cache->cred = get_rpccred(set->cred);
1878 cache->mask = set->mask;
1880 nfs_access_add_rbtree(inode, cache);
1882 /* Update accounting */
1883 smp_mb__before_atomic_inc();
1884 atomic_long_inc(&nfs_access_nr_entries);
1885 smp_mb__after_atomic_inc();
1887 /* Add inode to global LRU list */
1888 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1889 spin_lock(&nfs_access_lru_lock);
1890 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1891 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
1892 &nfs_access_lru_list);
1893 spin_unlock(&nfs_access_lru_lock);
1897 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1899 struct nfs_access_entry cache;
1900 int status;
1902 status = nfs_access_get_cached(inode, cred, &cache);
1903 if (status == 0)
1904 goto out;
1906 /* Be clever: ask server to check for all possible rights */
1907 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1908 cache.cred = cred;
1909 cache.jiffies = jiffies;
1910 status = NFS_PROTO(inode)->access(inode, &cache);
1911 if (status != 0) {
1912 if (status == -ESTALE) {
1913 nfs_zap_caches(inode);
1914 if (!S_ISDIR(inode->i_mode))
1915 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
1917 return status;
1919 nfs_access_add_cache(inode, &cache);
1920 out:
1921 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1922 return 0;
1923 return -EACCES;
1926 static int nfs_open_permission_mask(int openflags)
1928 int mask = 0;
1930 if (openflags & FMODE_READ)
1931 mask |= MAY_READ;
1932 if (openflags & FMODE_WRITE)
1933 mask |= MAY_WRITE;
1934 if (openflags & FMODE_EXEC)
1935 mask |= MAY_EXEC;
1936 return mask;
1939 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1941 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1944 int nfs_permission(struct inode *inode, int mask)
1946 struct rpc_cred *cred;
1947 int res = 0;
1949 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1951 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1952 goto out;
1953 /* Is this sys_access() ? */
1954 if (mask & (MAY_ACCESS | MAY_CHDIR))
1955 goto force_lookup;
1957 switch (inode->i_mode & S_IFMT) {
1958 case S_IFLNK:
1959 goto out;
1960 case S_IFREG:
1961 /* NFSv4 has atomic_open... */
1962 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1963 && (mask & MAY_OPEN)
1964 && !(mask & MAY_EXEC))
1965 goto out;
1966 break;
1967 case S_IFDIR:
1969 * Optimize away all write operations, since the server
1970 * will check permissions when we perform the op.
1972 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1973 goto out;
1976 force_lookup:
1977 if (!NFS_PROTO(inode)->access)
1978 goto out_notsup;
1980 cred = rpc_lookup_cred();
1981 if (!IS_ERR(cred)) {
1982 res = nfs_do_access(inode, cred, mask);
1983 put_rpccred(cred);
1984 } else
1985 res = PTR_ERR(cred);
1986 out:
1987 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
1988 res = -EACCES;
1990 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1991 inode->i_sb->s_id, inode->i_ino, mask, res);
1992 return res;
1993 out_notsup:
1994 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1995 if (res == 0)
1996 res = generic_permission(inode, mask, NULL);
1997 goto out;
2001 * Local variables:
2002 * version-control: t
2003 * kept-new-versions: 5
2004 * End: