2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <trace/events/kmem.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
58 * Array of node states.
60 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
61 [N_POSSIBLE
] = NODE_MASK_ALL
,
62 [N_ONLINE
] = { { [0] = 1UL } },
64 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
66 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
68 [N_CPU
] = { { [0] = 1UL } },
71 EXPORT_SYMBOL(node_states
);
73 unsigned long totalram_pages __read_mostly
;
74 unsigned long totalreserve_pages __read_mostly
;
75 int percpu_pagelist_fraction
;
76 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly
;
82 static void __free_pages_ok(struct page
*page
, unsigned int order
);
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
95 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
96 #ifdef CONFIG_ZONE_DMA
99 #ifdef CONFIG_ZONE_DMA32
102 #ifdef CONFIG_HIGHMEM
108 EXPORT_SYMBOL(totalram_pages
);
110 static char * const zone_names
[MAX_NR_ZONES
] = {
111 #ifdef CONFIG_ZONE_DMA
114 #ifdef CONFIG_ZONE_DMA32
118 #ifdef CONFIG_HIGHMEM
124 int min_free_kbytes
= 1024;
126 static unsigned long __meminitdata nr_kernel_pages
;
127 static unsigned long __meminitdata nr_all_pages
;
128 static unsigned long __meminitdata dma_reserve
;
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
151 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
152 static int __meminitdata nr_nodemap_entries
;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
155 static unsigned long __initdata required_kernelcore
;
156 static unsigned long __initdata required_movablecore
;
157 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 EXPORT_SYMBOL(movable_zone
);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
166 int nr_online_nodes __read_mostly
= 1;
167 EXPORT_SYMBOL(nr_node_ids
);
168 EXPORT_SYMBOL(nr_online_nodes
);
171 int page_group_by_mobility_disabled __read_mostly
;
173 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
176 if (unlikely(page_group_by_mobility_disabled
))
177 migratetype
= MIGRATE_UNMOVABLE
;
179 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
180 PB_migrate
, PB_migrate_end
);
183 bool oom_killer_disabled __read_mostly
;
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
190 unsigned long pfn
= page_to_pfn(page
);
193 seq
= zone_span_seqbegin(zone
);
194 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
196 else if (pfn
< zone
->zone_start_pfn
)
198 } while (zone_span_seqretry(zone
, seq
));
203 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
205 if (!pfn_valid_within(page_to_pfn(page
)))
207 if (zone
!= page_zone(page
))
213 * Temporary debugging check for pages not lying within a given zone.
215 static int bad_range(struct zone
*zone
, struct page
*page
)
217 if (page_outside_zone_boundaries(zone
, page
))
219 if (!page_is_consistent(zone
, page
))
225 static inline int bad_range(struct zone
*zone
, struct page
*page
)
231 static void bad_page(struct page
*page
)
233 static unsigned long resume
;
234 static unsigned long nr_shown
;
235 static unsigned long nr_unshown
;
238 * Allow a burst of 60 reports, then keep quiet for that minute;
239 * or allow a steady drip of one report per second.
241 if (nr_shown
== 60) {
242 if (time_before(jiffies
, resume
)) {
248 "BUG: Bad page state: %lu messages suppressed\n",
255 resume
= jiffies
+ 60 * HZ
;
257 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
258 current
->comm
, page_to_pfn(page
));
260 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261 page
, (void *)page
->flags
, page_count(page
),
262 page_mapcount(page
), page
->mapping
, page
->index
);
266 /* Leave bad fields for debug, except PageBuddy could make trouble */
267 __ClearPageBuddy(page
);
268 add_taint(TAINT_BAD_PAGE
);
272 * Higher-order pages are called "compound pages". They are structured thusly:
274 * The first PAGE_SIZE page is called the "head page".
276 * The remaining PAGE_SIZE pages are called "tail pages".
278 * All pages have PG_compound set. All pages have their ->private pointing at
279 * the head page (even the head page has this).
281 * The first tail page's ->lru.next holds the address of the compound page's
282 * put_page() function. Its ->lru.prev holds the order of allocation.
283 * This usage means that zero-order pages may not be compound.
286 static void free_compound_page(struct page
*page
)
288 __free_pages_ok(page
, compound_order(page
));
291 void prep_compound_page(struct page
*page
, unsigned long order
)
294 int nr_pages
= 1 << order
;
296 set_compound_page_dtor(page
, free_compound_page
);
297 set_compound_order(page
, order
);
299 for (i
= 1; i
< nr_pages
; i
++) {
300 struct page
*p
= page
+ i
;
303 p
->first_page
= page
;
307 static int destroy_compound_page(struct page
*page
, unsigned long order
)
310 int nr_pages
= 1 << order
;
313 if (unlikely(compound_order(page
) != order
) ||
314 unlikely(!PageHead(page
))) {
319 __ClearPageHead(page
);
321 for (i
= 1; i
< nr_pages
; i
++) {
322 struct page
*p
= page
+ i
;
324 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
334 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
339 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340 * and __GFP_HIGHMEM from hard or soft interrupt context.
342 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
343 for (i
= 0; i
< (1 << order
); i
++)
344 clear_highpage(page
+ i
);
347 static inline void set_page_order(struct page
*page
, int order
)
349 set_page_private(page
, order
);
350 __SetPageBuddy(page
);
353 static inline void rmv_page_order(struct page
*page
)
355 __ClearPageBuddy(page
);
356 set_page_private(page
, 0);
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
366 * For example, if the starting buddy (buddy2) is #8 its order
368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
376 static inline struct page
*
377 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
379 unsigned long buddy_idx
= page_idx
^ (1 << order
);
381 return page
+ (buddy_idx
- page_idx
);
384 static inline unsigned long
385 __find_combined_index(unsigned long page_idx
, unsigned int order
)
387 return (page_idx
& ~(1 << order
));
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
393 * (a) the buddy is not in a hole &&
394 * (b) the buddy is in the buddy system &&
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
401 * For recording page's order, we use page_private(page).
403 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
406 if (!pfn_valid_within(page_to_pfn(buddy
)))
409 if (page_zone_id(page
) != page_zone_id(buddy
))
412 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
413 VM_BUG_ON(page_count(buddy
) != 0);
420 * Freeing function for a buddy system allocator.
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
433 * order is recorded in page_private(page) field.
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other. That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
443 static inline void __free_one_page(struct page
*page
,
444 struct zone
*zone
, unsigned int order
,
447 unsigned long page_idx
;
449 if (unlikely(PageCompound(page
)))
450 if (unlikely(destroy_compound_page(page
, order
)))
453 VM_BUG_ON(migratetype
== -1);
455 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
457 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
458 VM_BUG_ON(bad_range(zone
, page
));
460 while (order
< MAX_ORDER
-1) {
461 unsigned long combined_idx
;
464 buddy
= __page_find_buddy(page
, page_idx
, order
);
465 if (!page_is_buddy(page
, buddy
, order
))
468 /* Our buddy is free, merge with it and move up one order. */
469 list_del(&buddy
->lru
);
470 zone
->free_area
[order
].nr_free
--;
471 rmv_page_order(buddy
);
472 combined_idx
= __find_combined_index(page_idx
, order
);
473 page
= page
+ (combined_idx
- page_idx
);
474 page_idx
= combined_idx
;
477 set_page_order(page
, order
);
479 &zone
->free_area
[order
].free_list
[migratetype
]);
480 zone
->free_area
[order
].nr_free
++;
483 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
485 * free_page_mlock() -- clean up attempts to free and mlocked() page.
486 * Page should not be on lru, so no need to fix that up.
487 * free_pages_check() will verify...
489 static inline void free_page_mlock(struct page
*page
)
491 __dec_zone_page_state(page
, NR_MLOCK
);
492 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
495 static void free_page_mlock(struct page
*page
) { }
498 static inline int free_pages_check(struct page
*page
)
500 if (unlikely(page_mapcount(page
) |
501 (page
->mapping
!= NULL
) |
502 (atomic_read(&page
->_count
) != 0) |
503 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
))) {
507 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
508 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
513 * Frees a number of pages from the PCP lists
514 * Assumes all pages on list are in same zone, and of same order.
515 * count is the number of pages to free.
517 * If the zone was previously in an "all pages pinned" state then look to
518 * see if this freeing clears that state.
520 * And clear the zone's pages_scanned counter, to hold off the "all pages are
521 * pinned" detection logic.
523 static void free_pcppages_bulk(struct zone
*zone
, int count
,
524 struct per_cpu_pages
*pcp
)
529 spin_lock(&zone
->lock
);
530 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
531 zone
->pages_scanned
= 0;
533 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
536 struct list_head
*list
;
539 * Remove pages from lists in a round-robin fashion. A
540 * batch_free count is maintained that is incremented when an
541 * empty list is encountered. This is so more pages are freed
542 * off fuller lists instead of spinning excessively around empty
547 if (++migratetype
== MIGRATE_PCPTYPES
)
549 list
= &pcp
->lists
[migratetype
];
550 } while (list_empty(list
));
553 page
= list_entry(list
->prev
, struct page
, lru
);
554 /* must delete as __free_one_page list manipulates */
555 list_del(&page
->lru
);
556 __free_one_page(page
, zone
, 0, migratetype
);
557 trace_mm_page_pcpu_drain(page
, 0, migratetype
);
558 } while (--count
&& --batch_free
&& !list_empty(list
));
560 spin_unlock(&zone
->lock
);
563 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
566 spin_lock(&zone
->lock
);
567 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
568 zone
->pages_scanned
= 0;
570 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
571 __free_one_page(page
, zone
, order
, migratetype
);
572 spin_unlock(&zone
->lock
);
575 static void __free_pages_ok(struct page
*page
, unsigned int order
)
580 int wasMlocked
= __TestClearPageMlocked(page
);
582 kmemcheck_free_shadow(page
, order
);
584 for (i
= 0 ; i
< (1 << order
) ; ++i
)
585 bad
+= free_pages_check(page
+ i
);
589 if (!PageHighMem(page
)) {
590 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
591 debug_check_no_obj_freed(page_address(page
),
594 arch_free_page(page
, order
);
595 kernel_map_pages(page
, 1 << order
, 0);
597 local_irq_save(flags
);
598 if (unlikely(wasMlocked
))
599 free_page_mlock(page
);
600 __count_vm_events(PGFREE
, 1 << order
);
601 free_one_page(page_zone(page
), page
, order
,
602 get_pageblock_migratetype(page
));
603 local_irq_restore(flags
);
607 * permit the bootmem allocator to evade page validation on high-order frees
609 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
612 __ClearPageReserved(page
);
613 set_page_count(page
, 0);
614 set_page_refcounted(page
);
620 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
621 struct page
*p
= &page
[loop
];
623 if (loop
+ 1 < BITS_PER_LONG
)
625 __ClearPageReserved(p
);
626 set_page_count(p
, 0);
629 set_page_refcounted(page
);
630 __free_pages(page
, order
);
636 * The order of subdivision here is critical for the IO subsystem.
637 * Please do not alter this order without good reasons and regression
638 * testing. Specifically, as large blocks of memory are subdivided,
639 * the order in which smaller blocks are delivered depends on the order
640 * they're subdivided in this function. This is the primary factor
641 * influencing the order in which pages are delivered to the IO
642 * subsystem according to empirical testing, and this is also justified
643 * by considering the behavior of a buddy system containing a single
644 * large block of memory acted on by a series of small allocations.
645 * This behavior is a critical factor in sglist merging's success.
649 static inline void expand(struct zone
*zone
, struct page
*page
,
650 int low
, int high
, struct free_area
*area
,
653 unsigned long size
= 1 << high
;
659 VM_BUG_ON(bad_range(zone
, &page
[size
]));
660 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
662 set_page_order(&page
[size
], high
);
667 * This page is about to be returned from the page allocator
669 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
671 if (unlikely(page_mapcount(page
) |
672 (page
->mapping
!= NULL
) |
673 (atomic_read(&page
->_count
) != 0) |
674 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
))) {
679 set_page_private(page
, 0);
680 set_page_refcounted(page
);
682 arch_alloc_page(page
, order
);
683 kernel_map_pages(page
, 1 << order
, 1);
685 if (gfp_flags
& __GFP_ZERO
)
686 prep_zero_page(page
, order
, gfp_flags
);
688 if (order
&& (gfp_flags
& __GFP_COMP
))
689 prep_compound_page(page
, order
);
695 * Go through the free lists for the given migratetype and remove
696 * the smallest available page from the freelists
699 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
702 unsigned int current_order
;
703 struct free_area
* area
;
706 /* Find a page of the appropriate size in the preferred list */
707 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
708 area
= &(zone
->free_area
[current_order
]);
709 if (list_empty(&area
->free_list
[migratetype
]))
712 page
= list_entry(area
->free_list
[migratetype
].next
,
714 list_del(&page
->lru
);
715 rmv_page_order(page
);
717 expand(zone
, page
, order
, current_order
, area
, migratetype
);
726 * This array describes the order lists are fallen back to when
727 * the free lists for the desirable migrate type are depleted
729 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
730 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
731 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
732 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
733 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
737 * Move the free pages in a range to the free lists of the requested type.
738 * Note that start_page and end_pages are not aligned on a pageblock
739 * boundary. If alignment is required, use move_freepages_block()
741 static int move_freepages(struct zone
*zone
,
742 struct page
*start_page
, struct page
*end_page
,
749 #ifndef CONFIG_HOLES_IN_ZONE
751 * page_zone is not safe to call in this context when
752 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
753 * anyway as we check zone boundaries in move_freepages_block().
754 * Remove at a later date when no bug reports exist related to
755 * grouping pages by mobility
757 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
760 for (page
= start_page
; page
<= end_page
;) {
761 /* Make sure we are not inadvertently changing nodes */
762 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
764 if (!pfn_valid_within(page_to_pfn(page
))) {
769 if (!PageBuddy(page
)) {
774 order
= page_order(page
);
775 list_del(&page
->lru
);
777 &zone
->free_area
[order
].free_list
[migratetype
]);
779 pages_moved
+= 1 << order
;
785 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
788 unsigned long start_pfn
, end_pfn
;
789 struct page
*start_page
, *end_page
;
791 start_pfn
= page_to_pfn(page
);
792 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
793 start_page
= pfn_to_page(start_pfn
);
794 end_page
= start_page
+ pageblock_nr_pages
- 1;
795 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
797 /* Do not cross zone boundaries */
798 if (start_pfn
< zone
->zone_start_pfn
)
800 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
803 return move_freepages(zone
, start_page
, end_page
, migratetype
);
806 static void change_pageblock_range(struct page
*pageblock_page
,
807 int start_order
, int migratetype
)
809 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
811 while (nr_pageblocks
--) {
812 set_pageblock_migratetype(pageblock_page
, migratetype
);
813 pageblock_page
+= pageblock_nr_pages
;
817 /* Remove an element from the buddy allocator from the fallback list */
818 static inline struct page
*
819 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
821 struct free_area
* area
;
826 /* Find the largest possible block of pages in the other list */
827 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
829 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
830 migratetype
= fallbacks
[start_migratetype
][i
];
832 /* MIGRATE_RESERVE handled later if necessary */
833 if (migratetype
== MIGRATE_RESERVE
)
836 area
= &(zone
->free_area
[current_order
]);
837 if (list_empty(&area
->free_list
[migratetype
]))
840 page
= list_entry(area
->free_list
[migratetype
].next
,
845 * If breaking a large block of pages, move all free
846 * pages to the preferred allocation list. If falling
847 * back for a reclaimable kernel allocation, be more
848 * agressive about taking ownership of free pages
850 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
851 start_migratetype
== MIGRATE_RECLAIMABLE
||
852 page_group_by_mobility_disabled
) {
854 pages
= move_freepages_block(zone
, page
,
857 /* Claim the whole block if over half of it is free */
858 if (pages
>= (1 << (pageblock_order
-1)) ||
859 page_group_by_mobility_disabled
)
860 set_pageblock_migratetype(page
,
863 migratetype
= start_migratetype
;
866 /* Remove the page from the freelists */
867 list_del(&page
->lru
);
868 rmv_page_order(page
);
870 /* Take ownership for orders >= pageblock_order */
871 if (current_order
>= pageblock_order
)
872 change_pageblock_range(page
, current_order
,
875 expand(zone
, page
, order
, current_order
, area
, migratetype
);
877 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
878 start_migratetype
, migratetype
);
888 * Do the hard work of removing an element from the buddy allocator.
889 * Call me with the zone->lock already held.
891 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
897 page
= __rmqueue_smallest(zone
, order
, migratetype
);
899 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
900 page
= __rmqueue_fallback(zone
, order
, migratetype
);
903 * Use MIGRATE_RESERVE rather than fail an allocation. goto
904 * is used because __rmqueue_smallest is an inline function
905 * and we want just one call site
908 migratetype
= MIGRATE_RESERVE
;
913 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
918 * Obtain a specified number of elements from the buddy allocator, all under
919 * a single hold of the lock, for efficiency. Add them to the supplied list.
920 * Returns the number of new pages which were placed at *list.
922 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
923 unsigned long count
, struct list_head
*list
,
924 int migratetype
, int cold
)
928 spin_lock(&zone
->lock
);
929 for (i
= 0; i
< count
; ++i
) {
930 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
931 if (unlikely(page
== NULL
))
935 * Split buddy pages returned by expand() are received here
936 * in physical page order. The page is added to the callers and
937 * list and the list head then moves forward. From the callers
938 * perspective, the linked list is ordered by page number in
939 * some conditions. This is useful for IO devices that can
940 * merge IO requests if the physical pages are ordered
943 if (likely(cold
== 0))
944 list_add(&page
->lru
, list
);
946 list_add_tail(&page
->lru
, list
);
947 set_page_private(page
, migratetype
);
950 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
951 spin_unlock(&zone
->lock
);
957 * Called from the vmstat counter updater to drain pagesets of this
958 * currently executing processor on remote nodes after they have
961 * Note that this function must be called with the thread pinned to
962 * a single processor.
964 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
969 local_irq_save(flags
);
970 if (pcp
->count
>= pcp
->batch
)
971 to_drain
= pcp
->batch
;
973 to_drain
= pcp
->count
;
974 free_pcppages_bulk(zone
, to_drain
, pcp
);
975 pcp
->count
-= to_drain
;
976 local_irq_restore(flags
);
981 * Drain pages of the indicated processor.
983 * The processor must either be the current processor and the
984 * thread pinned to the current processor or a processor that
987 static void drain_pages(unsigned int cpu
)
992 for_each_populated_zone(zone
) {
993 struct per_cpu_pageset
*pset
;
994 struct per_cpu_pages
*pcp
;
996 pset
= zone_pcp(zone
, cpu
);
999 local_irq_save(flags
);
1000 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1002 local_irq_restore(flags
);
1007 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1009 void drain_local_pages(void *arg
)
1011 drain_pages(smp_processor_id());
1015 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1017 void drain_all_pages(void)
1019 on_each_cpu(drain_local_pages
, NULL
, 1);
1022 #ifdef CONFIG_HIBERNATION
1024 void mark_free_pages(struct zone
*zone
)
1026 unsigned long pfn
, max_zone_pfn
;
1027 unsigned long flags
;
1029 struct list_head
*curr
;
1031 if (!zone
->spanned_pages
)
1034 spin_lock_irqsave(&zone
->lock
, flags
);
1036 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1037 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1038 if (pfn_valid(pfn
)) {
1039 struct page
*page
= pfn_to_page(pfn
);
1041 if (!swsusp_page_is_forbidden(page
))
1042 swsusp_unset_page_free(page
);
1045 for_each_migratetype_order(order
, t
) {
1046 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1049 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1050 for (i
= 0; i
< (1UL << order
); i
++)
1051 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1054 spin_unlock_irqrestore(&zone
->lock
, flags
);
1056 #endif /* CONFIG_PM */
1059 * Free a 0-order page
1061 static void free_hot_cold_page(struct page
*page
, int cold
)
1063 struct zone
*zone
= page_zone(page
);
1064 struct per_cpu_pages
*pcp
;
1065 unsigned long flags
;
1067 int wasMlocked
= __TestClearPageMlocked(page
);
1069 kmemcheck_free_shadow(page
, 0);
1072 page
->mapping
= NULL
;
1073 if (free_pages_check(page
))
1076 if (!PageHighMem(page
)) {
1077 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
1078 debug_check_no_obj_freed(page_address(page
), PAGE_SIZE
);
1080 arch_free_page(page
, 0);
1081 kernel_map_pages(page
, 1, 0);
1083 pcp
= &zone_pcp(zone
, get_cpu())->pcp
;
1084 migratetype
= get_pageblock_migratetype(page
);
1085 set_page_private(page
, migratetype
);
1086 local_irq_save(flags
);
1087 if (unlikely(wasMlocked
))
1088 free_page_mlock(page
);
1089 __count_vm_event(PGFREE
);
1092 * We only track unmovable, reclaimable and movable on pcp lists.
1093 * Free ISOLATE pages back to the allocator because they are being
1094 * offlined but treat RESERVE as movable pages so we can get those
1095 * areas back if necessary. Otherwise, we may have to free
1096 * excessively into the page allocator
1098 if (migratetype
>= MIGRATE_PCPTYPES
) {
1099 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1100 free_one_page(zone
, page
, 0, migratetype
);
1103 migratetype
= MIGRATE_MOVABLE
;
1107 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1109 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1111 if (pcp
->count
>= pcp
->high
) {
1112 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1113 pcp
->count
-= pcp
->batch
;
1117 local_irq_restore(flags
);
1121 void free_hot_page(struct page
*page
)
1123 trace_mm_page_free_direct(page
, 0);
1124 free_hot_cold_page(page
, 0);
1128 * split_page takes a non-compound higher-order page, and splits it into
1129 * n (1<<order) sub-pages: page[0..n]
1130 * Each sub-page must be freed individually.
1132 * Note: this is probably too low level an operation for use in drivers.
1133 * Please consult with lkml before using this in your driver.
1135 void split_page(struct page
*page
, unsigned int order
)
1139 VM_BUG_ON(PageCompound(page
));
1140 VM_BUG_ON(!page_count(page
));
1142 #ifdef CONFIG_KMEMCHECK
1144 * Split shadow pages too, because free(page[0]) would
1145 * otherwise free the whole shadow.
1147 if (kmemcheck_page_is_tracked(page
))
1148 split_page(virt_to_page(page
[0].shadow
), order
);
1151 for (i
= 1; i
< (1 << order
); i
++)
1152 set_page_refcounted(page
+ i
);
1156 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1157 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1161 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1162 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1165 unsigned long flags
;
1167 int cold
= !!(gfp_flags
& __GFP_COLD
);
1172 if (likely(order
== 0)) {
1173 struct per_cpu_pages
*pcp
;
1174 struct list_head
*list
;
1176 pcp
= &zone_pcp(zone
, cpu
)->pcp
;
1177 list
= &pcp
->lists
[migratetype
];
1178 local_irq_save(flags
);
1179 if (list_empty(list
)) {
1180 pcp
->count
+= rmqueue_bulk(zone
, 0,
1183 if (unlikely(list_empty(list
)))
1188 page
= list_entry(list
->prev
, struct page
, lru
);
1190 page
= list_entry(list
->next
, struct page
, lru
);
1192 list_del(&page
->lru
);
1195 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1197 * __GFP_NOFAIL is not to be used in new code.
1199 * All __GFP_NOFAIL callers should be fixed so that they
1200 * properly detect and handle allocation failures.
1202 * We most definitely don't want callers attempting to
1203 * allocate greater than order-1 page units with
1206 WARN_ON_ONCE(order
> 1);
1208 spin_lock_irqsave(&zone
->lock
, flags
);
1209 page
= __rmqueue(zone
, order
, migratetype
);
1210 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1211 spin_unlock(&zone
->lock
);
1216 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1217 zone_statistics(preferred_zone
, zone
);
1218 local_irq_restore(flags
);
1221 VM_BUG_ON(bad_range(zone
, page
));
1222 if (prep_new_page(page
, order
, gfp_flags
))
1227 local_irq_restore(flags
);
1232 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1233 #define ALLOC_WMARK_MIN WMARK_MIN
1234 #define ALLOC_WMARK_LOW WMARK_LOW
1235 #define ALLOC_WMARK_HIGH WMARK_HIGH
1236 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1238 /* Mask to get the watermark bits */
1239 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1241 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1242 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1243 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1245 #ifdef CONFIG_FAIL_PAGE_ALLOC
1247 static struct fail_page_alloc_attr
{
1248 struct fault_attr attr
;
1250 u32 ignore_gfp_highmem
;
1251 u32 ignore_gfp_wait
;
1254 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1256 struct dentry
*ignore_gfp_highmem_file
;
1257 struct dentry
*ignore_gfp_wait_file
;
1258 struct dentry
*min_order_file
;
1260 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1262 } fail_page_alloc
= {
1263 .attr
= FAULT_ATTR_INITIALIZER
,
1264 .ignore_gfp_wait
= 1,
1265 .ignore_gfp_highmem
= 1,
1269 static int __init
setup_fail_page_alloc(char *str
)
1271 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1273 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1275 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1277 if (order
< fail_page_alloc
.min_order
)
1279 if (gfp_mask
& __GFP_NOFAIL
)
1281 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1283 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1286 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1289 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1291 static int __init
fail_page_alloc_debugfs(void)
1293 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1297 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1301 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1303 fail_page_alloc
.ignore_gfp_wait_file
=
1304 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1305 &fail_page_alloc
.ignore_gfp_wait
);
1307 fail_page_alloc
.ignore_gfp_highmem_file
=
1308 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1309 &fail_page_alloc
.ignore_gfp_highmem
);
1310 fail_page_alloc
.min_order_file
=
1311 debugfs_create_u32("min-order", mode
, dir
,
1312 &fail_page_alloc
.min_order
);
1314 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1315 !fail_page_alloc
.ignore_gfp_highmem_file
||
1316 !fail_page_alloc
.min_order_file
) {
1318 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1319 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1320 debugfs_remove(fail_page_alloc
.min_order_file
);
1321 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1327 late_initcall(fail_page_alloc_debugfs
);
1329 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1331 #else /* CONFIG_FAIL_PAGE_ALLOC */
1333 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1338 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1341 * Return 1 if free pages are above 'mark'. This takes into account the order
1342 * of the allocation.
1344 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1345 int classzone_idx
, int alloc_flags
)
1347 /* free_pages my go negative - that's OK */
1349 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1352 if (alloc_flags
& ALLOC_HIGH
)
1354 if (alloc_flags
& ALLOC_HARDER
)
1357 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1359 for (o
= 0; o
< order
; o
++) {
1360 /* At the next order, this order's pages become unavailable */
1361 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1363 /* Require fewer higher order pages to be free */
1366 if (free_pages
<= min
)
1374 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1375 * skip over zones that are not allowed by the cpuset, or that have
1376 * been recently (in last second) found to be nearly full. See further
1377 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1378 * that have to skip over a lot of full or unallowed zones.
1380 * If the zonelist cache is present in the passed in zonelist, then
1381 * returns a pointer to the allowed node mask (either the current
1382 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1384 * If the zonelist cache is not available for this zonelist, does
1385 * nothing and returns NULL.
1387 * If the fullzones BITMAP in the zonelist cache is stale (more than
1388 * a second since last zap'd) then we zap it out (clear its bits.)
1390 * We hold off even calling zlc_setup, until after we've checked the
1391 * first zone in the zonelist, on the theory that most allocations will
1392 * be satisfied from that first zone, so best to examine that zone as
1393 * quickly as we can.
1395 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1397 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1398 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1400 zlc
= zonelist
->zlcache_ptr
;
1404 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1405 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1406 zlc
->last_full_zap
= jiffies
;
1409 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1410 &cpuset_current_mems_allowed
:
1411 &node_states
[N_HIGH_MEMORY
];
1412 return allowednodes
;
1416 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1417 * if it is worth looking at further for free memory:
1418 * 1) Check that the zone isn't thought to be full (doesn't have its
1419 * bit set in the zonelist_cache fullzones BITMAP).
1420 * 2) Check that the zones node (obtained from the zonelist_cache
1421 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1422 * Return true (non-zero) if zone is worth looking at further, or
1423 * else return false (zero) if it is not.
1425 * This check -ignores- the distinction between various watermarks,
1426 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1427 * found to be full for any variation of these watermarks, it will
1428 * be considered full for up to one second by all requests, unless
1429 * we are so low on memory on all allowed nodes that we are forced
1430 * into the second scan of the zonelist.
1432 * In the second scan we ignore this zonelist cache and exactly
1433 * apply the watermarks to all zones, even it is slower to do so.
1434 * We are low on memory in the second scan, and should leave no stone
1435 * unturned looking for a free page.
1437 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1438 nodemask_t
*allowednodes
)
1440 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1441 int i
; /* index of *z in zonelist zones */
1442 int n
; /* node that zone *z is on */
1444 zlc
= zonelist
->zlcache_ptr
;
1448 i
= z
- zonelist
->_zonerefs
;
1451 /* This zone is worth trying if it is allowed but not full */
1452 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1456 * Given 'z' scanning a zonelist, set the corresponding bit in
1457 * zlc->fullzones, so that subsequent attempts to allocate a page
1458 * from that zone don't waste time re-examining it.
1460 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1462 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1463 int i
; /* index of *z in zonelist zones */
1465 zlc
= zonelist
->zlcache_ptr
;
1469 i
= z
- zonelist
->_zonerefs
;
1471 set_bit(i
, zlc
->fullzones
);
1474 #else /* CONFIG_NUMA */
1476 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1481 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1482 nodemask_t
*allowednodes
)
1487 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1490 #endif /* CONFIG_NUMA */
1493 * get_page_from_freelist goes through the zonelist trying to allocate
1496 static struct page
*
1497 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1498 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1499 struct zone
*preferred_zone
, int migratetype
)
1502 struct page
*page
= NULL
;
1505 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1506 int zlc_active
= 0; /* set if using zonelist_cache */
1507 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1509 classzone_idx
= zone_idx(preferred_zone
);
1512 * Scan zonelist, looking for a zone with enough free.
1513 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1515 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1516 high_zoneidx
, nodemask
) {
1517 if (NUMA_BUILD
&& zlc_active
&&
1518 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1520 if ((alloc_flags
& ALLOC_CPUSET
) &&
1521 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1524 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1525 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1529 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1530 if (zone_watermark_ok(zone
, order
, mark
,
1531 classzone_idx
, alloc_flags
))
1534 if (zone_reclaim_mode
== 0)
1535 goto this_zone_full
;
1537 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1539 case ZONE_RECLAIM_NOSCAN
:
1542 case ZONE_RECLAIM_FULL
:
1543 /* scanned but unreclaimable */
1544 goto this_zone_full
;
1546 /* did we reclaim enough */
1547 if (!zone_watermark_ok(zone
, order
, mark
,
1548 classzone_idx
, alloc_flags
))
1549 goto this_zone_full
;
1554 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1555 gfp_mask
, migratetype
);
1560 zlc_mark_zone_full(zonelist
, z
);
1562 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1564 * we do zlc_setup after the first zone is tried but only
1565 * if there are multiple nodes make it worthwhile
1567 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1573 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1574 /* Disable zlc cache for second zonelist scan */
1582 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1583 unsigned long pages_reclaimed
)
1585 /* Do not loop if specifically requested */
1586 if (gfp_mask
& __GFP_NORETRY
)
1590 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1591 * means __GFP_NOFAIL, but that may not be true in other
1594 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1598 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1599 * specified, then we retry until we no longer reclaim any pages
1600 * (above), or we've reclaimed an order of pages at least as
1601 * large as the allocation's order. In both cases, if the
1602 * allocation still fails, we stop retrying.
1604 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1608 * Don't let big-order allocations loop unless the caller
1609 * explicitly requests that.
1611 if (gfp_mask
& __GFP_NOFAIL
)
1617 static inline struct page
*
1618 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1619 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1620 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1625 /* Acquire the OOM killer lock for the zones in zonelist */
1626 if (!try_set_zone_oom(zonelist
, gfp_mask
)) {
1627 schedule_timeout_uninterruptible(1);
1632 * Go through the zonelist yet one more time, keep very high watermark
1633 * here, this is only to catch a parallel oom killing, we must fail if
1634 * we're still under heavy pressure.
1636 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1637 order
, zonelist
, high_zoneidx
,
1638 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1639 preferred_zone
, migratetype
);
1643 /* The OOM killer will not help higher order allocs */
1644 if (order
> PAGE_ALLOC_COSTLY_ORDER
&& !(gfp_mask
& __GFP_NOFAIL
))
1647 /* Exhausted what can be done so it's blamo time */
1648 out_of_memory(zonelist
, gfp_mask
, order
);
1651 clear_zonelist_oom(zonelist
, gfp_mask
);
1655 /* The really slow allocator path where we enter direct reclaim */
1656 static inline struct page
*
1657 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1658 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1659 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1660 int migratetype
, unsigned long *did_some_progress
)
1662 struct page
*page
= NULL
;
1663 struct reclaim_state reclaim_state
;
1664 struct task_struct
*p
= current
;
1668 /* We now go into synchronous reclaim */
1669 cpuset_memory_pressure_bump();
1670 p
->flags
|= PF_MEMALLOC
;
1671 lockdep_set_current_reclaim_state(gfp_mask
);
1672 reclaim_state
.reclaimed_slab
= 0;
1673 p
->reclaim_state
= &reclaim_state
;
1675 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1677 p
->reclaim_state
= NULL
;
1678 lockdep_clear_current_reclaim_state();
1679 p
->flags
&= ~PF_MEMALLOC
;
1686 if (likely(*did_some_progress
))
1687 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1688 zonelist
, high_zoneidx
,
1689 alloc_flags
, preferred_zone
,
1695 * This is called in the allocator slow-path if the allocation request is of
1696 * sufficient urgency to ignore watermarks and take other desperate measures
1698 static inline struct page
*
1699 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
1700 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1701 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1707 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1708 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
1709 preferred_zone
, migratetype
);
1711 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
1712 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
1713 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
1719 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
1720 enum zone_type high_zoneidx
)
1725 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1726 wakeup_kswapd(zone
, order
);
1730 gfp_to_alloc_flags(gfp_t gfp_mask
)
1732 struct task_struct
*p
= current
;
1733 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
1734 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1736 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1737 BUILD_BUG_ON(__GFP_HIGH
!= ALLOC_HIGH
);
1740 * The caller may dip into page reserves a bit more if the caller
1741 * cannot run direct reclaim, or if the caller has realtime scheduling
1742 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1743 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1745 alloc_flags
|= (gfp_mask
& __GFP_HIGH
);
1748 alloc_flags
|= ALLOC_HARDER
;
1750 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1751 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1753 alloc_flags
&= ~ALLOC_CPUSET
;
1754 } else if (unlikely(rt_task(p
)))
1755 alloc_flags
|= ALLOC_HARDER
;
1757 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
1758 if (!in_interrupt() &&
1759 ((p
->flags
& PF_MEMALLOC
) ||
1760 unlikely(test_thread_flag(TIF_MEMDIE
))))
1761 alloc_flags
|= ALLOC_NO_WATERMARKS
;
1767 static inline struct page
*
1768 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
1769 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1770 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1773 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1774 struct page
*page
= NULL
;
1776 unsigned long pages_reclaimed
= 0;
1777 unsigned long did_some_progress
;
1778 struct task_struct
*p
= current
;
1781 * In the slowpath, we sanity check order to avoid ever trying to
1782 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1783 * be using allocators in order of preference for an area that is
1786 if (order
>= MAX_ORDER
) {
1787 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
1792 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1793 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1794 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1795 * using a larger set of nodes after it has established that the
1796 * allowed per node queues are empty and that nodes are
1799 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1802 wake_all_kswapd(order
, zonelist
, high_zoneidx
);
1806 * OK, we're below the kswapd watermark and have kicked background
1807 * reclaim. Now things get more complex, so set up alloc_flags according
1808 * to how we want to proceed.
1810 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
1812 /* This is the last chance, in general, before the goto nopage. */
1813 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
1814 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
1815 preferred_zone
, migratetype
);
1820 /* Allocate without watermarks if the context allows */
1821 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
1822 page
= __alloc_pages_high_priority(gfp_mask
, order
,
1823 zonelist
, high_zoneidx
, nodemask
,
1824 preferred_zone
, migratetype
);
1829 /* Atomic allocations - we can't balance anything */
1833 /* Avoid recursion of direct reclaim */
1834 if (p
->flags
& PF_MEMALLOC
)
1837 /* Avoid allocations with no watermarks from looping endlessly */
1838 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
1841 /* Try direct reclaim and then allocating */
1842 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
1843 zonelist
, high_zoneidx
,
1845 alloc_flags
, preferred_zone
,
1846 migratetype
, &did_some_progress
);
1851 * If we failed to make any progress reclaiming, then we are
1852 * running out of options and have to consider going OOM
1854 if (!did_some_progress
) {
1855 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1856 if (oom_killer_disabled
)
1858 page
= __alloc_pages_may_oom(gfp_mask
, order
,
1859 zonelist
, high_zoneidx
,
1860 nodemask
, preferred_zone
,
1866 * The OOM killer does not trigger for high-order
1867 * ~__GFP_NOFAIL allocations so if no progress is being
1868 * made, there are no other options and retrying is
1871 if (order
> PAGE_ALLOC_COSTLY_ORDER
&&
1872 !(gfp_mask
& __GFP_NOFAIL
))
1879 /* Check if we should retry the allocation */
1880 pages_reclaimed
+= did_some_progress
;
1881 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
1882 /* Wait for some write requests to complete then retry */
1883 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
1888 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1889 printk(KERN_WARNING
"%s: page allocation failure."
1890 " order:%d, mode:0x%x\n",
1891 p
->comm
, order
, gfp_mask
);
1897 if (kmemcheck_enabled
)
1898 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
1904 * This is the 'heart' of the zoned buddy allocator.
1907 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
1908 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1910 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
1911 struct zone
*preferred_zone
;
1913 int migratetype
= allocflags_to_migratetype(gfp_mask
);
1915 gfp_mask
&= gfp_allowed_mask
;
1917 lockdep_trace_alloc(gfp_mask
);
1919 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1921 if (should_fail_alloc_page(gfp_mask
, order
))
1925 * Check the zones suitable for the gfp_mask contain at least one
1926 * valid zone. It's possible to have an empty zonelist as a result
1927 * of GFP_THISNODE and a memoryless node
1929 if (unlikely(!zonelist
->_zonerefs
->zone
))
1932 /* The preferred zone is used for statistics later */
1933 first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
, &preferred_zone
);
1934 if (!preferred_zone
)
1937 /* First allocation attempt */
1938 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
1939 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
1940 preferred_zone
, migratetype
);
1941 if (unlikely(!page
))
1942 page
= __alloc_pages_slowpath(gfp_mask
, order
,
1943 zonelist
, high_zoneidx
, nodemask
,
1944 preferred_zone
, migratetype
);
1946 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
1949 EXPORT_SYMBOL(__alloc_pages_nodemask
);
1952 * Common helper functions.
1954 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1959 * __get_free_pages() returns a 32-bit address, which cannot represent
1962 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1964 page
= alloc_pages(gfp_mask
, order
);
1967 return (unsigned long) page_address(page
);
1969 EXPORT_SYMBOL(__get_free_pages
);
1971 unsigned long get_zeroed_page(gfp_t gfp_mask
)
1973 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
1975 EXPORT_SYMBOL(get_zeroed_page
);
1977 void __pagevec_free(struct pagevec
*pvec
)
1979 int i
= pagevec_count(pvec
);
1982 trace_mm_pagevec_free(pvec
->pages
[i
], pvec
->cold
);
1983 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1987 void __free_pages(struct page
*page
, unsigned int order
)
1989 if (put_page_testzero(page
)) {
1990 trace_mm_page_free_direct(page
, order
);
1992 free_hot_page(page
);
1994 __free_pages_ok(page
, order
);
1998 EXPORT_SYMBOL(__free_pages
);
2000 void free_pages(unsigned long addr
, unsigned int order
)
2003 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2004 __free_pages(virt_to_page((void *)addr
), order
);
2008 EXPORT_SYMBOL(free_pages
);
2011 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2012 * @size: the number of bytes to allocate
2013 * @gfp_mask: GFP flags for the allocation
2015 * This function is similar to alloc_pages(), except that it allocates the
2016 * minimum number of pages to satisfy the request. alloc_pages() can only
2017 * allocate memory in power-of-two pages.
2019 * This function is also limited by MAX_ORDER.
2021 * Memory allocated by this function must be released by free_pages_exact().
2023 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2025 unsigned int order
= get_order(size
);
2028 addr
= __get_free_pages(gfp_mask
, order
);
2030 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2031 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2033 split_page(virt_to_page((void *)addr
), order
);
2034 while (used
< alloc_end
) {
2040 return (void *)addr
;
2042 EXPORT_SYMBOL(alloc_pages_exact
);
2045 * free_pages_exact - release memory allocated via alloc_pages_exact()
2046 * @virt: the value returned by alloc_pages_exact.
2047 * @size: size of allocation, same value as passed to alloc_pages_exact().
2049 * Release the memory allocated by a previous call to alloc_pages_exact.
2051 void free_pages_exact(void *virt
, size_t size
)
2053 unsigned long addr
= (unsigned long)virt
;
2054 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2056 while (addr
< end
) {
2061 EXPORT_SYMBOL(free_pages_exact
);
2063 static unsigned int nr_free_zone_pages(int offset
)
2068 /* Just pick one node, since fallback list is circular */
2069 unsigned int sum
= 0;
2071 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2073 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2074 unsigned long size
= zone
->present_pages
;
2075 unsigned long high
= high_wmark_pages(zone
);
2084 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2086 unsigned int nr_free_buffer_pages(void)
2088 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2090 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2093 * Amount of free RAM allocatable within all zones
2095 unsigned int nr_free_pagecache_pages(void)
2097 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2100 static inline void show_node(struct zone
*zone
)
2103 printk("Node %d ", zone_to_nid(zone
));
2106 void si_meminfo(struct sysinfo
*val
)
2108 val
->totalram
= totalram_pages
;
2110 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2111 val
->bufferram
= nr_blockdev_pages();
2112 val
->totalhigh
= totalhigh_pages
;
2113 val
->freehigh
= nr_free_highpages();
2114 val
->mem_unit
= PAGE_SIZE
;
2117 EXPORT_SYMBOL(si_meminfo
);
2120 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2122 pg_data_t
*pgdat
= NODE_DATA(nid
);
2124 val
->totalram
= pgdat
->node_present_pages
;
2125 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2126 #ifdef CONFIG_HIGHMEM
2127 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2128 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2134 val
->mem_unit
= PAGE_SIZE
;
2138 #define K(x) ((x) << (PAGE_SHIFT-10))
2141 * Show free area list (used inside shift_scroll-lock stuff)
2142 * We also calculate the percentage fragmentation. We do this by counting the
2143 * memory on each free list with the exception of the first item on the list.
2145 void show_free_areas(void)
2150 for_each_populated_zone(zone
) {
2152 printk("%s per-cpu:\n", zone
->name
);
2154 for_each_online_cpu(cpu
) {
2155 struct per_cpu_pageset
*pageset
;
2157 pageset
= zone_pcp(zone
, cpu
);
2159 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2160 cpu
, pageset
->pcp
.high
,
2161 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2165 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2166 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2168 " dirty:%lu writeback:%lu unstable:%lu buffer:%lu\n"
2169 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2170 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2171 global_page_state(NR_ACTIVE_ANON
),
2172 global_page_state(NR_INACTIVE_ANON
),
2173 global_page_state(NR_ISOLATED_ANON
),
2174 global_page_state(NR_ACTIVE_FILE
),
2175 global_page_state(NR_INACTIVE_FILE
),
2176 global_page_state(NR_ISOLATED_FILE
),
2177 global_page_state(NR_UNEVICTABLE
),
2178 global_page_state(NR_FILE_DIRTY
),
2179 global_page_state(NR_WRITEBACK
),
2180 global_page_state(NR_UNSTABLE_NFS
),
2181 nr_blockdev_pages(),
2182 global_page_state(NR_FREE_PAGES
),
2183 global_page_state(NR_SLAB_RECLAIMABLE
),
2184 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2185 global_page_state(NR_FILE_MAPPED
),
2186 global_page_state(NR_SHMEM
),
2187 global_page_state(NR_PAGETABLE
),
2188 global_page_state(NR_BOUNCE
));
2190 for_each_populated_zone(zone
) {
2199 " active_anon:%lukB"
2200 " inactive_anon:%lukB"
2201 " active_file:%lukB"
2202 " inactive_file:%lukB"
2203 " unevictable:%lukB"
2204 " isolated(anon):%lukB"
2205 " isolated(file):%lukB"
2212 " slab_reclaimable:%lukB"
2213 " slab_unreclaimable:%lukB"
2214 " kernel_stack:%lukB"
2218 " writeback_tmp:%lukB"
2219 " pages_scanned:%lu"
2220 " all_unreclaimable? %s"
2223 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2224 K(min_wmark_pages(zone
)),
2225 K(low_wmark_pages(zone
)),
2226 K(high_wmark_pages(zone
)),
2227 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2228 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2229 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2230 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2231 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2232 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2233 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2234 K(zone
->present_pages
),
2235 K(zone_page_state(zone
, NR_MLOCK
)),
2236 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2237 K(zone_page_state(zone
, NR_WRITEBACK
)),
2238 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2239 K(zone_page_state(zone
, NR_SHMEM
)),
2240 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2241 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2242 zone_page_state(zone
, NR_KERNEL_STACK
) *
2244 K(zone_page_state(zone
, NR_PAGETABLE
)),
2245 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2246 K(zone_page_state(zone
, NR_BOUNCE
)),
2247 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2248 zone
->pages_scanned
,
2249 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
2251 printk("lowmem_reserve[]:");
2252 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2253 printk(" %lu", zone
->lowmem_reserve
[i
]);
2257 for_each_populated_zone(zone
) {
2258 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2261 printk("%s: ", zone
->name
);
2263 spin_lock_irqsave(&zone
->lock
, flags
);
2264 for (order
= 0; order
< MAX_ORDER
; order
++) {
2265 nr
[order
] = zone
->free_area
[order
].nr_free
;
2266 total
+= nr
[order
] << order
;
2268 spin_unlock_irqrestore(&zone
->lock
, flags
);
2269 for (order
= 0; order
< MAX_ORDER
; order
++)
2270 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2271 printk("= %lukB\n", K(total
));
2274 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2276 show_swap_cache_info();
2279 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2281 zoneref
->zone
= zone
;
2282 zoneref
->zone_idx
= zone_idx(zone
);
2286 * Builds allocation fallback zone lists.
2288 * Add all populated zones of a node to the zonelist.
2290 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2291 int nr_zones
, enum zone_type zone_type
)
2295 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2300 zone
= pgdat
->node_zones
+ zone_type
;
2301 if (populated_zone(zone
)) {
2302 zoneref_set_zone(zone
,
2303 &zonelist
->_zonerefs
[nr_zones
++]);
2304 check_highest_zone(zone_type
);
2307 } while (zone_type
);
2314 * 0 = automatic detection of better ordering.
2315 * 1 = order by ([node] distance, -zonetype)
2316 * 2 = order by (-zonetype, [node] distance)
2318 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2319 * the same zonelist. So only NUMA can configure this param.
2321 #define ZONELIST_ORDER_DEFAULT 0
2322 #define ZONELIST_ORDER_NODE 1
2323 #define ZONELIST_ORDER_ZONE 2
2325 /* zonelist order in the kernel.
2326 * set_zonelist_order() will set this to NODE or ZONE.
2328 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2329 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2333 /* The value user specified ....changed by config */
2334 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2335 /* string for sysctl */
2336 #define NUMA_ZONELIST_ORDER_LEN 16
2337 char numa_zonelist_order
[16] = "default";
2340 * interface for configure zonelist ordering.
2341 * command line option "numa_zonelist_order"
2342 * = "[dD]efault - default, automatic configuration.
2343 * = "[nN]ode - order by node locality, then by zone within node
2344 * = "[zZ]one - order by zone, then by locality within zone
2347 static int __parse_numa_zonelist_order(char *s
)
2349 if (*s
== 'd' || *s
== 'D') {
2350 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2351 } else if (*s
== 'n' || *s
== 'N') {
2352 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2353 } else if (*s
== 'z' || *s
== 'Z') {
2354 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2357 "Ignoring invalid numa_zonelist_order value: "
2364 static __init
int setup_numa_zonelist_order(char *s
)
2367 return __parse_numa_zonelist_order(s
);
2370 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2373 * sysctl handler for numa_zonelist_order
2375 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2376 struct file
*file
, void __user
*buffer
, size_t *length
,
2379 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2383 strncpy(saved_string
, (char*)table
->data
,
2384 NUMA_ZONELIST_ORDER_LEN
);
2385 ret
= proc_dostring(table
, write
, file
, buffer
, length
, ppos
);
2389 int oldval
= user_zonelist_order
;
2390 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2392 * bogus value. restore saved string
2394 strncpy((char*)table
->data
, saved_string
,
2395 NUMA_ZONELIST_ORDER_LEN
);
2396 user_zonelist_order
= oldval
;
2397 } else if (oldval
!= user_zonelist_order
)
2398 build_all_zonelists();
2404 #define MAX_NODE_LOAD (nr_online_nodes)
2405 static int node_load
[MAX_NUMNODES
];
2408 * find_next_best_node - find the next node that should appear in a given node's fallback list
2409 * @node: node whose fallback list we're appending
2410 * @used_node_mask: nodemask_t of already used nodes
2412 * We use a number of factors to determine which is the next node that should
2413 * appear on a given node's fallback list. The node should not have appeared
2414 * already in @node's fallback list, and it should be the next closest node
2415 * according to the distance array (which contains arbitrary distance values
2416 * from each node to each node in the system), and should also prefer nodes
2417 * with no CPUs, since presumably they'll have very little allocation pressure
2418 * on them otherwise.
2419 * It returns -1 if no node is found.
2421 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2424 int min_val
= INT_MAX
;
2426 const struct cpumask
*tmp
= cpumask_of_node(0);
2428 /* Use the local node if we haven't already */
2429 if (!node_isset(node
, *used_node_mask
)) {
2430 node_set(node
, *used_node_mask
);
2434 for_each_node_state(n
, N_HIGH_MEMORY
) {
2436 /* Don't want a node to appear more than once */
2437 if (node_isset(n
, *used_node_mask
))
2440 /* Use the distance array to find the distance */
2441 val
= node_distance(node
, n
);
2443 /* Penalize nodes under us ("prefer the next node") */
2446 /* Give preference to headless and unused nodes */
2447 tmp
= cpumask_of_node(n
);
2448 if (!cpumask_empty(tmp
))
2449 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2451 /* Slight preference for less loaded node */
2452 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2453 val
+= node_load
[n
];
2455 if (val
< min_val
) {
2462 node_set(best_node
, *used_node_mask
);
2469 * Build zonelists ordered by node and zones within node.
2470 * This results in maximum locality--normal zone overflows into local
2471 * DMA zone, if any--but risks exhausting DMA zone.
2473 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2476 struct zonelist
*zonelist
;
2478 zonelist
= &pgdat
->node_zonelists
[0];
2479 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2481 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2483 zonelist
->_zonerefs
[j
].zone
= NULL
;
2484 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2488 * Build gfp_thisnode zonelists
2490 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2493 struct zonelist
*zonelist
;
2495 zonelist
= &pgdat
->node_zonelists
[1];
2496 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2497 zonelist
->_zonerefs
[j
].zone
= NULL
;
2498 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2502 * Build zonelists ordered by zone and nodes within zones.
2503 * This results in conserving DMA zone[s] until all Normal memory is
2504 * exhausted, but results in overflowing to remote node while memory
2505 * may still exist in local DMA zone.
2507 static int node_order
[MAX_NUMNODES
];
2509 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2512 int zone_type
; /* needs to be signed */
2514 struct zonelist
*zonelist
;
2516 zonelist
= &pgdat
->node_zonelists
[0];
2518 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2519 for (j
= 0; j
< nr_nodes
; j
++) {
2520 node
= node_order
[j
];
2521 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2522 if (populated_zone(z
)) {
2524 &zonelist
->_zonerefs
[pos
++]);
2525 check_highest_zone(zone_type
);
2529 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2530 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2533 static int default_zonelist_order(void)
2536 unsigned long low_kmem_size
,total_size
;
2540 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2541 * If they are really small and used heavily, the system can fall
2542 * into OOM very easily.
2543 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2545 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2548 for_each_online_node(nid
) {
2549 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2550 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2551 if (populated_zone(z
)) {
2552 if (zone_type
< ZONE_NORMAL
)
2553 low_kmem_size
+= z
->present_pages
;
2554 total_size
+= z
->present_pages
;
2558 if (!low_kmem_size
|| /* there are no DMA area. */
2559 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2560 return ZONELIST_ORDER_NODE
;
2562 * look into each node's config.
2563 * If there is a node whose DMA/DMA32 memory is very big area on
2564 * local memory, NODE_ORDER may be suitable.
2566 average_size
= total_size
/
2567 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2568 for_each_online_node(nid
) {
2571 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2572 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2573 if (populated_zone(z
)) {
2574 if (zone_type
< ZONE_NORMAL
)
2575 low_kmem_size
+= z
->present_pages
;
2576 total_size
+= z
->present_pages
;
2579 if (low_kmem_size
&&
2580 total_size
> average_size
&& /* ignore small node */
2581 low_kmem_size
> total_size
* 70/100)
2582 return ZONELIST_ORDER_NODE
;
2584 return ZONELIST_ORDER_ZONE
;
2587 static void set_zonelist_order(void)
2589 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2590 current_zonelist_order
= default_zonelist_order();
2592 current_zonelist_order
= user_zonelist_order
;
2595 static void build_zonelists(pg_data_t
*pgdat
)
2599 nodemask_t used_mask
;
2600 int local_node
, prev_node
;
2601 struct zonelist
*zonelist
;
2602 int order
= current_zonelist_order
;
2604 /* initialize zonelists */
2605 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2606 zonelist
= pgdat
->node_zonelists
+ i
;
2607 zonelist
->_zonerefs
[0].zone
= NULL
;
2608 zonelist
->_zonerefs
[0].zone_idx
= 0;
2611 /* NUMA-aware ordering of nodes */
2612 local_node
= pgdat
->node_id
;
2613 load
= nr_online_nodes
;
2614 prev_node
= local_node
;
2615 nodes_clear(used_mask
);
2617 memset(node_order
, 0, sizeof(node_order
));
2620 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2621 int distance
= node_distance(local_node
, node
);
2624 * If another node is sufficiently far away then it is better
2625 * to reclaim pages in a zone before going off node.
2627 if (distance
> RECLAIM_DISTANCE
)
2628 zone_reclaim_mode
= 1;
2631 * We don't want to pressure a particular node.
2632 * So adding penalty to the first node in same
2633 * distance group to make it round-robin.
2635 if (distance
!= node_distance(local_node
, prev_node
))
2636 node_load
[node
] = load
;
2640 if (order
== ZONELIST_ORDER_NODE
)
2641 build_zonelists_in_node_order(pgdat
, node
);
2643 node_order
[j
++] = node
; /* remember order */
2646 if (order
== ZONELIST_ORDER_ZONE
) {
2647 /* calculate node order -- i.e., DMA last! */
2648 build_zonelists_in_zone_order(pgdat
, j
);
2651 build_thisnode_zonelists(pgdat
);
2654 /* Construct the zonelist performance cache - see further mmzone.h */
2655 static void build_zonelist_cache(pg_data_t
*pgdat
)
2657 struct zonelist
*zonelist
;
2658 struct zonelist_cache
*zlc
;
2661 zonelist
= &pgdat
->node_zonelists
[0];
2662 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2663 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2664 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2665 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2669 #else /* CONFIG_NUMA */
2671 static void set_zonelist_order(void)
2673 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2676 static void build_zonelists(pg_data_t
*pgdat
)
2678 int node
, local_node
;
2680 struct zonelist
*zonelist
;
2682 local_node
= pgdat
->node_id
;
2684 zonelist
= &pgdat
->node_zonelists
[0];
2685 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2688 * Now we build the zonelist so that it contains the zones
2689 * of all the other nodes.
2690 * We don't want to pressure a particular node, so when
2691 * building the zones for node N, we make sure that the
2692 * zones coming right after the local ones are those from
2693 * node N+1 (modulo N)
2695 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2696 if (!node_online(node
))
2698 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2701 for (node
= 0; node
< local_node
; node
++) {
2702 if (!node_online(node
))
2704 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2708 zonelist
->_zonerefs
[j
].zone
= NULL
;
2709 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2712 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2713 static void build_zonelist_cache(pg_data_t
*pgdat
)
2715 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2718 #endif /* CONFIG_NUMA */
2720 /* return values int ....just for stop_machine() */
2721 static int __build_all_zonelists(void *dummy
)
2726 memset(node_load
, 0, sizeof(node_load
));
2728 for_each_online_node(nid
) {
2729 pg_data_t
*pgdat
= NODE_DATA(nid
);
2731 build_zonelists(pgdat
);
2732 build_zonelist_cache(pgdat
);
2737 void build_all_zonelists(void)
2739 set_zonelist_order();
2741 if (system_state
== SYSTEM_BOOTING
) {
2742 __build_all_zonelists(NULL
);
2743 mminit_verify_zonelist();
2744 cpuset_init_current_mems_allowed();
2746 /* we have to stop all cpus to guarantee there is no user
2748 stop_machine(__build_all_zonelists
, NULL
, NULL
);
2749 /* cpuset refresh routine should be here */
2751 vm_total_pages
= nr_free_pagecache_pages();
2753 * Disable grouping by mobility if the number of pages in the
2754 * system is too low to allow the mechanism to work. It would be
2755 * more accurate, but expensive to check per-zone. This check is
2756 * made on memory-hotadd so a system can start with mobility
2757 * disabled and enable it later
2759 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2760 page_group_by_mobility_disabled
= 1;
2762 page_group_by_mobility_disabled
= 0;
2764 printk("Built %i zonelists in %s order, mobility grouping %s. "
2765 "Total pages: %ld\n",
2767 zonelist_order_name
[current_zonelist_order
],
2768 page_group_by_mobility_disabled
? "off" : "on",
2771 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2776 * Helper functions to size the waitqueue hash table.
2777 * Essentially these want to choose hash table sizes sufficiently
2778 * large so that collisions trying to wait on pages are rare.
2779 * But in fact, the number of active page waitqueues on typical
2780 * systems is ridiculously low, less than 200. So this is even
2781 * conservative, even though it seems large.
2783 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2784 * waitqueues, i.e. the size of the waitq table given the number of pages.
2786 #define PAGES_PER_WAITQUEUE 256
2788 #ifndef CONFIG_MEMORY_HOTPLUG
2789 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2791 unsigned long size
= 1;
2793 pages
/= PAGES_PER_WAITQUEUE
;
2795 while (size
< pages
)
2799 * Once we have dozens or even hundreds of threads sleeping
2800 * on IO we've got bigger problems than wait queue collision.
2801 * Limit the size of the wait table to a reasonable size.
2803 size
= min(size
, 4096UL);
2805 return max(size
, 4UL);
2809 * A zone's size might be changed by hot-add, so it is not possible to determine
2810 * a suitable size for its wait_table. So we use the maximum size now.
2812 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2814 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2815 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2816 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2818 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2819 * or more by the traditional way. (See above). It equals:
2821 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2822 * ia64(16K page size) : = ( 8G + 4M)byte.
2823 * powerpc (64K page size) : = (32G +16M)byte.
2825 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2832 * This is an integer logarithm so that shifts can be used later
2833 * to extract the more random high bits from the multiplicative
2834 * hash function before the remainder is taken.
2836 static inline unsigned long wait_table_bits(unsigned long size
)
2841 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2844 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2845 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2846 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2847 * higher will lead to a bigger reserve which will get freed as contiguous
2848 * blocks as reclaim kicks in
2850 static void setup_zone_migrate_reserve(struct zone
*zone
)
2852 unsigned long start_pfn
, pfn
, end_pfn
;
2854 unsigned long block_migratetype
;
2857 /* Get the start pfn, end pfn and the number of blocks to reserve */
2858 start_pfn
= zone
->zone_start_pfn
;
2859 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2860 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
2864 * Reserve blocks are generally in place to help high-order atomic
2865 * allocations that are short-lived. A min_free_kbytes value that
2866 * would result in more than 2 reserve blocks for atomic allocations
2867 * is assumed to be in place to help anti-fragmentation for the
2868 * future allocation of hugepages at runtime.
2870 reserve
= min(2, reserve
);
2872 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2873 if (!pfn_valid(pfn
))
2875 page
= pfn_to_page(pfn
);
2877 /* Watch out for overlapping nodes */
2878 if (page_to_nid(page
) != zone_to_nid(zone
))
2881 /* Blocks with reserved pages will never free, skip them. */
2882 if (PageReserved(page
))
2885 block_migratetype
= get_pageblock_migratetype(page
);
2887 /* If this block is reserved, account for it */
2888 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2893 /* Suitable for reserving if this block is movable */
2894 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2895 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2896 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2902 * If the reserve is met and this is a previous reserved block,
2905 if (block_migratetype
== MIGRATE_RESERVE
) {
2906 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2907 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2913 * Initially all pages are reserved - free ones are freed
2914 * up by free_all_bootmem() once the early boot process is
2915 * done. Non-atomic initialization, single-pass.
2917 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2918 unsigned long start_pfn
, enum memmap_context context
)
2921 unsigned long end_pfn
= start_pfn
+ size
;
2925 if (highest_memmap_pfn
< end_pfn
- 1)
2926 highest_memmap_pfn
= end_pfn
- 1;
2928 z
= &NODE_DATA(nid
)->node_zones
[zone
];
2929 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2931 * There can be holes in boot-time mem_map[]s
2932 * handed to this function. They do not
2933 * exist on hotplugged memory.
2935 if (context
== MEMMAP_EARLY
) {
2936 if (!early_pfn_valid(pfn
))
2938 if (!early_pfn_in_nid(pfn
, nid
))
2941 page
= pfn_to_page(pfn
);
2942 set_page_links(page
, zone
, nid
, pfn
);
2943 mminit_verify_page_links(page
, zone
, nid
, pfn
);
2944 init_page_count(page
);
2945 reset_page_mapcount(page
);
2946 SetPageReserved(page
);
2948 * Mark the block movable so that blocks are reserved for
2949 * movable at startup. This will force kernel allocations
2950 * to reserve their blocks rather than leaking throughout
2951 * the address space during boot when many long-lived
2952 * kernel allocations are made. Later some blocks near
2953 * the start are marked MIGRATE_RESERVE by
2954 * setup_zone_migrate_reserve()
2956 * bitmap is created for zone's valid pfn range. but memmap
2957 * can be created for invalid pages (for alignment)
2958 * check here not to call set_pageblock_migratetype() against
2961 if ((z
->zone_start_pfn
<= pfn
)
2962 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
2963 && !(pfn
& (pageblock_nr_pages
- 1)))
2964 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2966 INIT_LIST_HEAD(&page
->lru
);
2967 #ifdef WANT_PAGE_VIRTUAL
2968 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2969 if (!is_highmem_idx(zone
))
2970 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2975 static void __meminit
zone_init_free_lists(struct zone
*zone
)
2978 for_each_migratetype_order(order
, t
) {
2979 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
2980 zone
->free_area
[order
].nr_free
= 0;
2984 #ifndef __HAVE_ARCH_MEMMAP_INIT
2985 #define memmap_init(size, nid, zone, start_pfn) \
2986 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2989 static int zone_batchsize(struct zone
*zone
)
2995 * The per-cpu-pages pools are set to around 1000th of the
2996 * size of the zone. But no more than 1/2 of a meg.
2998 * OK, so we don't know how big the cache is. So guess.
3000 batch
= zone
->present_pages
/ 1024;
3001 if (batch
* PAGE_SIZE
> 512 * 1024)
3002 batch
= (512 * 1024) / PAGE_SIZE
;
3003 batch
/= 4; /* We effectively *= 4 below */
3008 * Clamp the batch to a 2^n - 1 value. Having a power
3009 * of 2 value was found to be more likely to have
3010 * suboptimal cache aliasing properties in some cases.
3012 * For example if 2 tasks are alternately allocating
3013 * batches of pages, one task can end up with a lot
3014 * of pages of one half of the possible page colors
3015 * and the other with pages of the other colors.
3017 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3022 /* The deferral and batching of frees should be suppressed under NOMMU
3025 * The problem is that NOMMU needs to be able to allocate large chunks
3026 * of contiguous memory as there's no hardware page translation to
3027 * assemble apparent contiguous memory from discontiguous pages.
3029 * Queueing large contiguous runs of pages for batching, however,
3030 * causes the pages to actually be freed in smaller chunks. As there
3031 * can be a significant delay between the individual batches being
3032 * recycled, this leads to the once large chunks of space being
3033 * fragmented and becoming unavailable for high-order allocations.
3039 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3041 struct per_cpu_pages
*pcp
;
3044 memset(p
, 0, sizeof(*p
));
3048 pcp
->high
= 6 * batch
;
3049 pcp
->batch
= max(1UL, 1 * batch
);
3050 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3051 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3055 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3056 * to the value high for the pageset p.
3059 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3062 struct per_cpu_pages
*pcp
;
3066 pcp
->batch
= max(1UL, high
/4);
3067 if ((high
/4) > (PAGE_SHIFT
* 8))
3068 pcp
->batch
= PAGE_SHIFT
* 8;
3074 * Boot pageset table. One per cpu which is going to be used for all
3075 * zones and all nodes. The parameters will be set in such a way
3076 * that an item put on a list will immediately be handed over to
3077 * the buddy list. This is safe since pageset manipulation is done
3078 * with interrupts disabled.
3080 * Some NUMA counter updates may also be caught by the boot pagesets.
3082 * The boot_pagesets must be kept even after bootup is complete for
3083 * unused processors and/or zones. They do play a role for bootstrapping
3084 * hotplugged processors.
3086 * zoneinfo_show() and maybe other functions do
3087 * not check if the processor is online before following the pageset pointer.
3088 * Other parts of the kernel may not check if the zone is available.
3090 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
3093 * Dynamically allocate memory for the
3094 * per cpu pageset array in struct zone.
3096 static int __cpuinit
process_zones(int cpu
)
3098 struct zone
*zone
, *dzone
;
3099 int node
= cpu_to_node(cpu
);
3101 node_set_state(node
, N_CPU
); /* this node has a cpu */
3103 for_each_populated_zone(zone
) {
3104 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
3106 if (!zone_pcp(zone
, cpu
))
3109 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
3111 if (percpu_pagelist_fraction
)
3112 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
3113 (zone
->present_pages
/ percpu_pagelist_fraction
));
3118 for_each_zone(dzone
) {
3119 if (!populated_zone(dzone
))
3123 kfree(zone_pcp(dzone
, cpu
));
3124 zone_pcp(dzone
, cpu
) = &boot_pageset
[cpu
];
3129 static inline void free_zone_pagesets(int cpu
)
3133 for_each_zone(zone
) {
3134 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
3136 /* Free per_cpu_pageset if it is slab allocated */
3137 if (pset
!= &boot_pageset
[cpu
])
3139 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
3143 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
3144 unsigned long action
,
3147 int cpu
= (long)hcpu
;
3148 int ret
= NOTIFY_OK
;
3151 case CPU_UP_PREPARE
:
3152 case CPU_UP_PREPARE_FROZEN
:
3153 if (process_zones(cpu
))
3156 case CPU_UP_CANCELED
:
3157 case CPU_UP_CANCELED_FROZEN
:
3159 case CPU_DEAD_FROZEN
:
3160 free_zone_pagesets(cpu
);
3168 static struct notifier_block __cpuinitdata pageset_notifier
=
3169 { &pageset_cpuup_callback
, NULL
, 0 };
3171 void __init
setup_per_cpu_pageset(void)
3175 /* Initialize per_cpu_pageset for cpu 0.
3176 * A cpuup callback will do this for every cpu
3177 * as it comes online
3179 err
= process_zones(smp_processor_id());
3181 register_cpu_notifier(&pageset_notifier
);
3186 static noinline __init_refok
3187 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3190 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3194 * The per-page waitqueue mechanism uses hashed waitqueues
3197 zone
->wait_table_hash_nr_entries
=
3198 wait_table_hash_nr_entries(zone_size_pages
);
3199 zone
->wait_table_bits
=
3200 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3201 alloc_size
= zone
->wait_table_hash_nr_entries
3202 * sizeof(wait_queue_head_t
);
3204 if (!slab_is_available()) {
3205 zone
->wait_table
= (wait_queue_head_t
*)
3206 alloc_bootmem_node(pgdat
, alloc_size
);
3209 * This case means that a zone whose size was 0 gets new memory
3210 * via memory hot-add.
3211 * But it may be the case that a new node was hot-added. In
3212 * this case vmalloc() will not be able to use this new node's
3213 * memory - this wait_table must be initialized to use this new
3214 * node itself as well.
3215 * To use this new node's memory, further consideration will be
3218 zone
->wait_table
= vmalloc(alloc_size
);
3220 if (!zone
->wait_table
)
3223 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3224 init_waitqueue_head(zone
->wait_table
+ i
);
3229 static int __zone_pcp_update(void *data
)
3231 struct zone
*zone
= data
;
3233 unsigned long batch
= zone_batchsize(zone
), flags
;
3235 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
3236 struct per_cpu_pageset
*pset
;
3237 struct per_cpu_pages
*pcp
;
3239 pset
= zone_pcp(zone
, cpu
);
3242 local_irq_save(flags
);
3243 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3244 setup_pageset(pset
, batch
);
3245 local_irq_restore(flags
);
3250 void zone_pcp_update(struct zone
*zone
)
3252 stop_machine(__zone_pcp_update
, zone
, NULL
);
3255 static __meminit
void zone_pcp_init(struct zone
*zone
)
3258 unsigned long batch
= zone_batchsize(zone
);
3260 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
3262 /* Early boot. Slab allocator not functional yet */
3263 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
3264 setup_pageset(&boot_pageset
[cpu
],0);
3266 setup_pageset(zone_pcp(zone
,cpu
), batch
);
3269 if (zone
->present_pages
)
3270 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
3271 zone
->name
, zone
->present_pages
, batch
);
3274 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3275 unsigned long zone_start_pfn
,
3277 enum memmap_context context
)
3279 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3281 ret
= zone_wait_table_init(zone
, size
);
3284 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3286 zone
->zone_start_pfn
= zone_start_pfn
;
3288 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3289 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3291 (unsigned long)zone_idx(zone
),
3292 zone_start_pfn
, (zone_start_pfn
+ size
));
3294 zone_init_free_lists(zone
);
3299 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3301 * Basic iterator support. Return the first range of PFNs for a node
3302 * Note: nid == MAX_NUMNODES returns first region regardless of node
3304 static int __meminit
first_active_region_index_in_nid(int nid
)
3308 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3309 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3316 * Basic iterator support. Return the next active range of PFNs for a node
3317 * Note: nid == MAX_NUMNODES returns next region regardless of node
3319 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3321 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3322 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3328 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3330 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3331 * Architectures may implement their own version but if add_active_range()
3332 * was used and there are no special requirements, this is a convenient
3335 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3339 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3340 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3341 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3343 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3344 return early_node_map
[i
].nid
;
3346 /* This is a memory hole */
3349 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3351 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3355 nid
= __early_pfn_to_nid(pfn
);
3358 /* just returns 0 */
3362 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3363 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3367 nid
= __early_pfn_to_nid(pfn
);
3368 if (nid
>= 0 && nid
!= node
)
3374 /* Basic iterator support to walk early_node_map[] */
3375 #define for_each_active_range_index_in_nid(i, nid) \
3376 for (i = first_active_region_index_in_nid(nid); i != -1; \
3377 i = next_active_region_index_in_nid(i, nid))
3380 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3381 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3382 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3384 * If an architecture guarantees that all ranges registered with
3385 * add_active_ranges() contain no holes and may be freed, this
3386 * this function may be used instead of calling free_bootmem() manually.
3388 void __init
free_bootmem_with_active_regions(int nid
,
3389 unsigned long max_low_pfn
)
3393 for_each_active_range_index_in_nid(i
, nid
) {
3394 unsigned long size_pages
= 0;
3395 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3397 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3400 if (end_pfn
> max_low_pfn
)
3401 end_pfn
= max_low_pfn
;
3403 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3404 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3405 PFN_PHYS(early_node_map
[i
].start_pfn
),
3406 size_pages
<< PAGE_SHIFT
);
3410 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3415 for_each_active_range_index_in_nid(i
, nid
) {
3416 ret
= work_fn(early_node_map
[i
].start_pfn
,
3417 early_node_map
[i
].end_pfn
, data
);
3423 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3424 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3426 * If an architecture guarantees that all ranges registered with
3427 * add_active_ranges() contain no holes and may be freed, this
3428 * function may be used instead of calling memory_present() manually.
3430 void __init
sparse_memory_present_with_active_regions(int nid
)
3434 for_each_active_range_index_in_nid(i
, nid
)
3435 memory_present(early_node_map
[i
].nid
,
3436 early_node_map
[i
].start_pfn
,
3437 early_node_map
[i
].end_pfn
);
3441 * get_pfn_range_for_nid - Return the start and end page frames for a node
3442 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3443 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3444 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3446 * It returns the start and end page frame of a node based on information
3447 * provided by an arch calling add_active_range(). If called for a node
3448 * with no available memory, a warning is printed and the start and end
3451 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3452 unsigned long *start_pfn
, unsigned long *end_pfn
)
3458 for_each_active_range_index_in_nid(i
, nid
) {
3459 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3460 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3463 if (*start_pfn
== -1UL)
3468 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3469 * assumption is made that zones within a node are ordered in monotonic
3470 * increasing memory addresses so that the "highest" populated zone is used
3472 static void __init
find_usable_zone_for_movable(void)
3475 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3476 if (zone_index
== ZONE_MOVABLE
)
3479 if (arch_zone_highest_possible_pfn
[zone_index
] >
3480 arch_zone_lowest_possible_pfn
[zone_index
])
3484 VM_BUG_ON(zone_index
== -1);
3485 movable_zone
= zone_index
;
3489 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3490 * because it is sized independant of architecture. Unlike the other zones,
3491 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3492 * in each node depending on the size of each node and how evenly kernelcore
3493 * is distributed. This helper function adjusts the zone ranges
3494 * provided by the architecture for a given node by using the end of the
3495 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3496 * zones within a node are in order of monotonic increases memory addresses
3498 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3499 unsigned long zone_type
,
3500 unsigned long node_start_pfn
,
3501 unsigned long node_end_pfn
,
3502 unsigned long *zone_start_pfn
,
3503 unsigned long *zone_end_pfn
)
3505 /* Only adjust if ZONE_MOVABLE is on this node */
3506 if (zone_movable_pfn
[nid
]) {
3507 /* Size ZONE_MOVABLE */
3508 if (zone_type
== ZONE_MOVABLE
) {
3509 *zone_start_pfn
= zone_movable_pfn
[nid
];
3510 *zone_end_pfn
= min(node_end_pfn
,
3511 arch_zone_highest_possible_pfn
[movable_zone
]);
3513 /* Adjust for ZONE_MOVABLE starting within this range */
3514 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3515 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3516 *zone_end_pfn
= zone_movable_pfn
[nid
];
3518 /* Check if this whole range is within ZONE_MOVABLE */
3519 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3520 *zone_start_pfn
= *zone_end_pfn
;
3525 * Return the number of pages a zone spans in a node, including holes
3526 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3528 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3529 unsigned long zone_type
,
3530 unsigned long *ignored
)
3532 unsigned long node_start_pfn
, node_end_pfn
;
3533 unsigned long zone_start_pfn
, zone_end_pfn
;
3535 /* Get the start and end of the node and zone */
3536 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3537 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3538 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3539 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3540 node_start_pfn
, node_end_pfn
,
3541 &zone_start_pfn
, &zone_end_pfn
);
3543 /* Check that this node has pages within the zone's required range */
3544 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3547 /* Move the zone boundaries inside the node if necessary */
3548 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3549 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3551 /* Return the spanned pages */
3552 return zone_end_pfn
- zone_start_pfn
;
3556 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3557 * then all holes in the requested range will be accounted for.
3559 static unsigned long __meminit
__absent_pages_in_range(int nid
,
3560 unsigned long range_start_pfn
,
3561 unsigned long range_end_pfn
)
3564 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3565 unsigned long start_pfn
;
3567 /* Find the end_pfn of the first active range of pfns in the node */
3568 i
= first_active_region_index_in_nid(nid
);
3572 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3574 /* Account for ranges before physical memory on this node */
3575 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3576 hole_pages
= prev_end_pfn
- range_start_pfn
;
3578 /* Find all holes for the zone within the node */
3579 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3581 /* No need to continue if prev_end_pfn is outside the zone */
3582 if (prev_end_pfn
>= range_end_pfn
)
3585 /* Make sure the end of the zone is not within the hole */
3586 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3587 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3589 /* Update the hole size cound and move on */
3590 if (start_pfn
> range_start_pfn
) {
3591 BUG_ON(prev_end_pfn
> start_pfn
);
3592 hole_pages
+= start_pfn
- prev_end_pfn
;
3594 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3597 /* Account for ranges past physical memory on this node */
3598 if (range_end_pfn
> prev_end_pfn
)
3599 hole_pages
+= range_end_pfn
-
3600 max(range_start_pfn
, prev_end_pfn
);
3606 * absent_pages_in_range - Return number of page frames in holes within a range
3607 * @start_pfn: The start PFN to start searching for holes
3608 * @end_pfn: The end PFN to stop searching for holes
3610 * It returns the number of pages frames in memory holes within a range.
3612 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3613 unsigned long end_pfn
)
3615 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3618 /* Return the number of page frames in holes in a zone on a node */
3619 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3620 unsigned long zone_type
,
3621 unsigned long *ignored
)
3623 unsigned long node_start_pfn
, node_end_pfn
;
3624 unsigned long zone_start_pfn
, zone_end_pfn
;
3626 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3627 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3629 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3632 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3633 node_start_pfn
, node_end_pfn
,
3634 &zone_start_pfn
, &zone_end_pfn
);
3635 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3639 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3640 unsigned long zone_type
,
3641 unsigned long *zones_size
)
3643 return zones_size
[zone_type
];
3646 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3647 unsigned long zone_type
,
3648 unsigned long *zholes_size
)
3653 return zholes_size
[zone_type
];
3658 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3659 unsigned long *zones_size
, unsigned long *zholes_size
)
3661 unsigned long realtotalpages
, totalpages
= 0;
3664 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3665 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3667 pgdat
->node_spanned_pages
= totalpages
;
3669 realtotalpages
= totalpages
;
3670 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3672 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3674 pgdat
->node_present_pages
= realtotalpages
;
3675 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3679 #ifndef CONFIG_SPARSEMEM
3681 * Calculate the size of the zone->blockflags rounded to an unsigned long
3682 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3683 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3684 * round what is now in bits to nearest long in bits, then return it in
3687 static unsigned long __init
usemap_size(unsigned long zonesize
)
3689 unsigned long usemapsize
;
3691 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3692 usemapsize
= usemapsize
>> pageblock_order
;
3693 usemapsize
*= NR_PAGEBLOCK_BITS
;
3694 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3696 return usemapsize
/ 8;
3699 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3700 struct zone
*zone
, unsigned long zonesize
)
3702 unsigned long usemapsize
= usemap_size(zonesize
);
3703 zone
->pageblock_flags
= NULL
;
3705 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3708 static void inline setup_usemap(struct pglist_data
*pgdat
,
3709 struct zone
*zone
, unsigned long zonesize
) {}
3710 #endif /* CONFIG_SPARSEMEM */
3712 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3714 /* Return a sensible default order for the pageblock size. */
3715 static inline int pageblock_default_order(void)
3717 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3718 return HUGETLB_PAGE_ORDER
;
3723 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3724 static inline void __init
set_pageblock_order(unsigned int order
)
3726 /* Check that pageblock_nr_pages has not already been setup */
3727 if (pageblock_order
)
3731 * Assume the largest contiguous order of interest is a huge page.
3732 * This value may be variable depending on boot parameters on IA64
3734 pageblock_order
= order
;
3736 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3739 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3740 * and pageblock_default_order() are unused as pageblock_order is set
3741 * at compile-time. See include/linux/pageblock-flags.h for the values of
3742 * pageblock_order based on the kernel config
3744 static inline int pageblock_default_order(unsigned int order
)
3748 #define set_pageblock_order(x) do {} while (0)
3750 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3753 * Set up the zone data structures:
3754 * - mark all pages reserved
3755 * - mark all memory queues empty
3756 * - clear the memory bitmaps
3758 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
3759 unsigned long *zones_size
, unsigned long *zholes_size
)
3762 int nid
= pgdat
->node_id
;
3763 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3766 pgdat_resize_init(pgdat
);
3767 pgdat
->nr_zones
= 0;
3768 init_waitqueue_head(&pgdat
->kswapd_wait
);
3769 pgdat
->kswapd_max_order
= 0;
3770 pgdat_page_cgroup_init(pgdat
);
3772 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3773 struct zone
*zone
= pgdat
->node_zones
+ j
;
3774 unsigned long size
, realsize
, memmap_pages
;
3777 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3778 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3782 * Adjust realsize so that it accounts for how much memory
3783 * is used by this zone for memmap. This affects the watermark
3784 * and per-cpu initialisations
3787 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3788 if (realsize
>= memmap_pages
) {
3789 realsize
-= memmap_pages
;
3792 " %s zone: %lu pages used for memmap\n",
3793 zone_names
[j
], memmap_pages
);
3796 " %s zone: %lu pages exceeds realsize %lu\n",
3797 zone_names
[j
], memmap_pages
, realsize
);
3799 /* Account for reserved pages */
3800 if (j
== 0 && realsize
> dma_reserve
) {
3801 realsize
-= dma_reserve
;
3802 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
3803 zone_names
[0], dma_reserve
);
3806 if (!is_highmem_idx(j
))
3807 nr_kernel_pages
+= realsize
;
3808 nr_all_pages
+= realsize
;
3810 zone
->spanned_pages
= size
;
3811 zone
->present_pages
= realsize
;
3814 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3816 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3818 zone
->name
= zone_names
[j
];
3819 spin_lock_init(&zone
->lock
);
3820 spin_lock_init(&zone
->lru_lock
);
3821 zone_seqlock_init(zone
);
3822 zone
->zone_pgdat
= pgdat
;
3824 zone
->prev_priority
= DEF_PRIORITY
;
3826 zone_pcp_init(zone
);
3828 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
3829 zone
->reclaim_stat
.nr_saved_scan
[l
] = 0;
3831 zone
->reclaim_stat
.recent_rotated
[0] = 0;
3832 zone
->reclaim_stat
.recent_rotated
[1] = 0;
3833 zone
->reclaim_stat
.recent_scanned
[0] = 0;
3834 zone
->reclaim_stat
.recent_scanned
[1] = 0;
3835 zap_zone_vm_stats(zone
);
3840 set_pageblock_order(pageblock_default_order());
3841 setup_usemap(pgdat
, zone
, size
);
3842 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3843 size
, MEMMAP_EARLY
);
3845 memmap_init(size
, nid
, j
, zone_start_pfn
);
3846 zone_start_pfn
+= size
;
3850 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3852 /* Skip empty nodes */
3853 if (!pgdat
->node_spanned_pages
)
3856 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3857 /* ia64 gets its own node_mem_map, before this, without bootmem */
3858 if (!pgdat
->node_mem_map
) {
3859 unsigned long size
, start
, end
;
3863 * The zone's endpoints aren't required to be MAX_ORDER
3864 * aligned but the node_mem_map endpoints must be in order
3865 * for the buddy allocator to function correctly.
3867 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3868 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3869 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3870 size
= (end
- start
) * sizeof(struct page
);
3871 map
= alloc_remap(pgdat
->node_id
, size
);
3873 map
= alloc_bootmem_node(pgdat
, size
);
3874 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3876 #ifndef CONFIG_NEED_MULTIPLE_NODES
3878 * With no DISCONTIG, the global mem_map is just set as node 0's
3880 if (pgdat
== NODE_DATA(0)) {
3881 mem_map
= NODE_DATA(0)->node_mem_map
;
3882 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3883 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3884 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
3885 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3888 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3891 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
3892 unsigned long node_start_pfn
, unsigned long *zholes_size
)
3894 pg_data_t
*pgdat
= NODE_DATA(nid
);
3896 pgdat
->node_id
= nid
;
3897 pgdat
->node_start_pfn
= node_start_pfn
;
3898 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3900 alloc_node_mem_map(pgdat
);
3901 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3902 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3903 nid
, (unsigned long)pgdat
,
3904 (unsigned long)pgdat
->node_mem_map
);
3907 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3910 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3912 #if MAX_NUMNODES > 1
3914 * Figure out the number of possible node ids.
3916 static void __init
setup_nr_node_ids(void)
3919 unsigned int highest
= 0;
3921 for_each_node_mask(node
, node_possible_map
)
3923 nr_node_ids
= highest
+ 1;
3926 static inline void setup_nr_node_ids(void)
3932 * add_active_range - Register a range of PFNs backed by physical memory
3933 * @nid: The node ID the range resides on
3934 * @start_pfn: The start PFN of the available physical memory
3935 * @end_pfn: The end PFN of the available physical memory
3937 * These ranges are stored in an early_node_map[] and later used by
3938 * free_area_init_nodes() to calculate zone sizes and holes. If the
3939 * range spans a memory hole, it is up to the architecture to ensure
3940 * the memory is not freed by the bootmem allocator. If possible
3941 * the range being registered will be merged with existing ranges.
3943 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3944 unsigned long end_pfn
)
3948 mminit_dprintk(MMINIT_TRACE
, "memory_register",
3949 "Entering add_active_range(%d, %#lx, %#lx) "
3950 "%d entries of %d used\n",
3951 nid
, start_pfn
, end_pfn
,
3952 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3954 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
3956 /* Merge with existing active regions if possible */
3957 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3958 if (early_node_map
[i
].nid
!= nid
)
3961 /* Skip if an existing region covers this new one */
3962 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3963 end_pfn
<= early_node_map
[i
].end_pfn
)
3966 /* Merge forward if suitable */
3967 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3968 end_pfn
> early_node_map
[i
].end_pfn
) {
3969 early_node_map
[i
].end_pfn
= end_pfn
;
3973 /* Merge backward if suitable */
3974 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3975 end_pfn
>= early_node_map
[i
].start_pfn
) {
3976 early_node_map
[i
].start_pfn
= start_pfn
;
3981 /* Check that early_node_map is large enough */
3982 if (i
>= MAX_ACTIVE_REGIONS
) {
3983 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
3984 MAX_ACTIVE_REGIONS
);
3988 early_node_map
[i
].nid
= nid
;
3989 early_node_map
[i
].start_pfn
= start_pfn
;
3990 early_node_map
[i
].end_pfn
= end_pfn
;
3991 nr_nodemap_entries
= i
+ 1;
3995 * remove_active_range - Shrink an existing registered range of PFNs
3996 * @nid: The node id the range is on that should be shrunk
3997 * @start_pfn: The new PFN of the range
3998 * @end_pfn: The new PFN of the range
4000 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4001 * The map is kept near the end physical page range that has already been
4002 * registered. This function allows an arch to shrink an existing registered
4005 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
4006 unsigned long end_pfn
)
4011 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
4012 nid
, start_pfn
, end_pfn
);
4014 /* Find the old active region end and shrink */
4015 for_each_active_range_index_in_nid(i
, nid
) {
4016 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4017 early_node_map
[i
].end_pfn
<= end_pfn
) {
4019 early_node_map
[i
].start_pfn
= 0;
4020 early_node_map
[i
].end_pfn
= 0;
4024 if (early_node_map
[i
].start_pfn
< start_pfn
&&
4025 early_node_map
[i
].end_pfn
> start_pfn
) {
4026 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
4027 early_node_map
[i
].end_pfn
= start_pfn
;
4028 if (temp_end_pfn
> end_pfn
)
4029 add_active_range(nid
, end_pfn
, temp_end_pfn
);
4032 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4033 early_node_map
[i
].end_pfn
> end_pfn
&&
4034 early_node_map
[i
].start_pfn
< end_pfn
) {
4035 early_node_map
[i
].start_pfn
= end_pfn
;
4043 /* remove the blank ones */
4044 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
4045 if (early_node_map
[i
].nid
!= nid
)
4047 if (early_node_map
[i
].end_pfn
)
4049 /* we found it, get rid of it */
4050 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
4051 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
4052 sizeof(early_node_map
[j
]));
4053 j
= nr_nodemap_entries
- 1;
4054 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
4055 nr_nodemap_entries
--;
4060 * remove_all_active_ranges - Remove all currently registered regions
4062 * During discovery, it may be found that a table like SRAT is invalid
4063 * and an alternative discovery method must be used. This function removes
4064 * all currently registered regions.
4066 void __init
remove_all_active_ranges(void)
4068 memset(early_node_map
, 0, sizeof(early_node_map
));
4069 nr_nodemap_entries
= 0;
4072 /* Compare two active node_active_regions */
4073 static int __init
cmp_node_active_region(const void *a
, const void *b
)
4075 struct node_active_region
*arange
= (struct node_active_region
*)a
;
4076 struct node_active_region
*brange
= (struct node_active_region
*)b
;
4078 /* Done this way to avoid overflows */
4079 if (arange
->start_pfn
> brange
->start_pfn
)
4081 if (arange
->start_pfn
< brange
->start_pfn
)
4087 /* sort the node_map by start_pfn */
4088 static void __init
sort_node_map(void)
4090 sort(early_node_map
, (size_t)nr_nodemap_entries
,
4091 sizeof(struct node_active_region
),
4092 cmp_node_active_region
, NULL
);
4095 /* Find the lowest pfn for a node */
4096 static unsigned long __init
find_min_pfn_for_node(int nid
)
4099 unsigned long min_pfn
= ULONG_MAX
;
4101 /* Assuming a sorted map, the first range found has the starting pfn */
4102 for_each_active_range_index_in_nid(i
, nid
)
4103 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
4105 if (min_pfn
== ULONG_MAX
) {
4107 "Could not find start_pfn for node %d\n", nid
);
4115 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4117 * It returns the minimum PFN based on information provided via
4118 * add_active_range().
4120 unsigned long __init
find_min_pfn_with_active_regions(void)
4122 return find_min_pfn_for_node(MAX_NUMNODES
);
4126 * early_calculate_totalpages()
4127 * Sum pages in active regions for movable zone.
4128 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4130 static unsigned long __init
early_calculate_totalpages(void)
4133 unsigned long totalpages
= 0;
4135 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4136 unsigned long pages
= early_node_map
[i
].end_pfn
-
4137 early_node_map
[i
].start_pfn
;
4138 totalpages
+= pages
;
4140 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4146 * Find the PFN the Movable zone begins in each node. Kernel memory
4147 * is spread evenly between nodes as long as the nodes have enough
4148 * memory. When they don't, some nodes will have more kernelcore than
4151 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4154 unsigned long usable_startpfn
;
4155 unsigned long kernelcore_node
, kernelcore_remaining
;
4156 /* save the state before borrow the nodemask */
4157 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4158 unsigned long totalpages
= early_calculate_totalpages();
4159 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4162 * If movablecore was specified, calculate what size of
4163 * kernelcore that corresponds so that memory usable for
4164 * any allocation type is evenly spread. If both kernelcore
4165 * and movablecore are specified, then the value of kernelcore
4166 * will be used for required_kernelcore if it's greater than
4167 * what movablecore would have allowed.
4169 if (required_movablecore
) {
4170 unsigned long corepages
;
4173 * Round-up so that ZONE_MOVABLE is at least as large as what
4174 * was requested by the user
4176 required_movablecore
=
4177 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4178 corepages
= totalpages
- required_movablecore
;
4180 required_kernelcore
= max(required_kernelcore
, corepages
);
4183 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4184 if (!required_kernelcore
)
4187 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4188 find_usable_zone_for_movable();
4189 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4192 /* Spread kernelcore memory as evenly as possible throughout nodes */
4193 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4194 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4196 * Recalculate kernelcore_node if the division per node
4197 * now exceeds what is necessary to satisfy the requested
4198 * amount of memory for the kernel
4200 if (required_kernelcore
< kernelcore_node
)
4201 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4204 * As the map is walked, we track how much memory is usable
4205 * by the kernel using kernelcore_remaining. When it is
4206 * 0, the rest of the node is usable by ZONE_MOVABLE
4208 kernelcore_remaining
= kernelcore_node
;
4210 /* Go through each range of PFNs within this node */
4211 for_each_active_range_index_in_nid(i
, nid
) {
4212 unsigned long start_pfn
, end_pfn
;
4213 unsigned long size_pages
;
4215 start_pfn
= max(early_node_map
[i
].start_pfn
,
4216 zone_movable_pfn
[nid
]);
4217 end_pfn
= early_node_map
[i
].end_pfn
;
4218 if (start_pfn
>= end_pfn
)
4221 /* Account for what is only usable for kernelcore */
4222 if (start_pfn
< usable_startpfn
) {
4223 unsigned long kernel_pages
;
4224 kernel_pages
= min(end_pfn
, usable_startpfn
)
4227 kernelcore_remaining
-= min(kernel_pages
,
4228 kernelcore_remaining
);
4229 required_kernelcore
-= min(kernel_pages
,
4230 required_kernelcore
);
4232 /* Continue if range is now fully accounted */
4233 if (end_pfn
<= usable_startpfn
) {
4236 * Push zone_movable_pfn to the end so
4237 * that if we have to rebalance
4238 * kernelcore across nodes, we will
4239 * not double account here
4241 zone_movable_pfn
[nid
] = end_pfn
;
4244 start_pfn
= usable_startpfn
;
4248 * The usable PFN range for ZONE_MOVABLE is from
4249 * start_pfn->end_pfn. Calculate size_pages as the
4250 * number of pages used as kernelcore
4252 size_pages
= end_pfn
- start_pfn
;
4253 if (size_pages
> kernelcore_remaining
)
4254 size_pages
= kernelcore_remaining
;
4255 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4258 * Some kernelcore has been met, update counts and
4259 * break if the kernelcore for this node has been
4262 required_kernelcore
-= min(required_kernelcore
,
4264 kernelcore_remaining
-= size_pages
;
4265 if (!kernelcore_remaining
)
4271 * If there is still required_kernelcore, we do another pass with one
4272 * less node in the count. This will push zone_movable_pfn[nid] further
4273 * along on the nodes that still have memory until kernelcore is
4277 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4280 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4281 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4282 zone_movable_pfn
[nid
] =
4283 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4286 /* restore the node_state */
4287 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4290 /* Any regular memory on that node ? */
4291 static void check_for_regular_memory(pg_data_t
*pgdat
)
4293 #ifdef CONFIG_HIGHMEM
4294 enum zone_type zone_type
;
4296 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4297 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4298 if (zone
->present_pages
)
4299 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4305 * free_area_init_nodes - Initialise all pg_data_t and zone data
4306 * @max_zone_pfn: an array of max PFNs for each zone
4308 * This will call free_area_init_node() for each active node in the system.
4309 * Using the page ranges provided by add_active_range(), the size of each
4310 * zone in each node and their holes is calculated. If the maximum PFN
4311 * between two adjacent zones match, it is assumed that the zone is empty.
4312 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4313 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4314 * starts where the previous one ended. For example, ZONE_DMA32 starts
4315 * at arch_max_dma_pfn.
4317 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4322 /* Sort early_node_map as initialisation assumes it is sorted */
4325 /* Record where the zone boundaries are */
4326 memset(arch_zone_lowest_possible_pfn
, 0,
4327 sizeof(arch_zone_lowest_possible_pfn
));
4328 memset(arch_zone_highest_possible_pfn
, 0,
4329 sizeof(arch_zone_highest_possible_pfn
));
4330 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4331 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4332 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4333 if (i
== ZONE_MOVABLE
)
4335 arch_zone_lowest_possible_pfn
[i
] =
4336 arch_zone_highest_possible_pfn
[i
-1];
4337 arch_zone_highest_possible_pfn
[i
] =
4338 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4340 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4341 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4343 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4344 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4345 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4347 /* Print out the zone ranges */
4348 printk("Zone PFN ranges:\n");
4349 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4350 if (i
== ZONE_MOVABLE
)
4352 printk(" %-8s %0#10lx -> %0#10lx\n",
4354 arch_zone_lowest_possible_pfn
[i
],
4355 arch_zone_highest_possible_pfn
[i
]);
4358 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4359 printk("Movable zone start PFN for each node\n");
4360 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4361 if (zone_movable_pfn
[i
])
4362 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4365 /* Print out the early_node_map[] */
4366 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4367 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4368 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4369 early_node_map
[i
].start_pfn
,
4370 early_node_map
[i
].end_pfn
);
4372 /* Initialise every node */
4373 mminit_verify_pageflags_layout();
4374 setup_nr_node_ids();
4375 for_each_online_node(nid
) {
4376 pg_data_t
*pgdat
= NODE_DATA(nid
);
4377 free_area_init_node(nid
, NULL
,
4378 find_min_pfn_for_node(nid
), NULL
);
4380 /* Any memory on that node */
4381 if (pgdat
->node_present_pages
)
4382 node_set_state(nid
, N_HIGH_MEMORY
);
4383 check_for_regular_memory(pgdat
);
4387 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4389 unsigned long long coremem
;
4393 coremem
= memparse(p
, &p
);
4394 *core
= coremem
>> PAGE_SHIFT
;
4396 /* Paranoid check that UL is enough for the coremem value */
4397 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4403 * kernelcore=size sets the amount of memory for use for allocations that
4404 * cannot be reclaimed or migrated.
4406 static int __init
cmdline_parse_kernelcore(char *p
)
4408 return cmdline_parse_core(p
, &required_kernelcore
);
4412 * movablecore=size sets the amount of memory for use for allocations that
4413 * can be reclaimed or migrated.
4415 static int __init
cmdline_parse_movablecore(char *p
)
4417 return cmdline_parse_core(p
, &required_movablecore
);
4420 early_param("kernelcore", cmdline_parse_kernelcore
);
4421 early_param("movablecore", cmdline_parse_movablecore
);
4423 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4426 * set_dma_reserve - set the specified number of pages reserved in the first zone
4427 * @new_dma_reserve: The number of pages to mark reserved
4429 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4430 * In the DMA zone, a significant percentage may be consumed by kernel image
4431 * and other unfreeable allocations which can skew the watermarks badly. This
4432 * function may optionally be used to account for unfreeable pages in the
4433 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4434 * smaller per-cpu batchsize.
4436 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4438 dma_reserve
= new_dma_reserve
;
4441 #ifndef CONFIG_NEED_MULTIPLE_NODES
4442 struct pglist_data __refdata contig_page_data
= { .bdata
= &bootmem_node_data
[0] };
4443 EXPORT_SYMBOL(contig_page_data
);
4446 void __init
free_area_init(unsigned long *zones_size
)
4448 free_area_init_node(0, zones_size
,
4449 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4452 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4453 unsigned long action
, void *hcpu
)
4455 int cpu
= (unsigned long)hcpu
;
4457 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4461 * Spill the event counters of the dead processor
4462 * into the current processors event counters.
4463 * This artificially elevates the count of the current
4466 vm_events_fold_cpu(cpu
);
4469 * Zero the differential counters of the dead processor
4470 * so that the vm statistics are consistent.
4472 * This is only okay since the processor is dead and cannot
4473 * race with what we are doing.
4475 refresh_cpu_vm_stats(cpu
);
4480 void __init
page_alloc_init(void)
4482 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4486 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4487 * or min_free_kbytes changes.
4489 static void calculate_totalreserve_pages(void)
4491 struct pglist_data
*pgdat
;
4492 unsigned long reserve_pages
= 0;
4493 enum zone_type i
, j
;
4495 for_each_online_pgdat(pgdat
) {
4496 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4497 struct zone
*zone
= pgdat
->node_zones
+ i
;
4498 unsigned long max
= 0;
4500 /* Find valid and maximum lowmem_reserve in the zone */
4501 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4502 if (zone
->lowmem_reserve
[j
] > max
)
4503 max
= zone
->lowmem_reserve
[j
];
4506 /* we treat the high watermark as reserved pages. */
4507 max
+= high_wmark_pages(zone
);
4509 if (max
> zone
->present_pages
)
4510 max
= zone
->present_pages
;
4511 reserve_pages
+= max
;
4514 totalreserve_pages
= reserve_pages
;
4518 * setup_per_zone_lowmem_reserve - called whenever
4519 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4520 * has a correct pages reserved value, so an adequate number of
4521 * pages are left in the zone after a successful __alloc_pages().
4523 static void setup_per_zone_lowmem_reserve(void)
4525 struct pglist_data
*pgdat
;
4526 enum zone_type j
, idx
;
4528 for_each_online_pgdat(pgdat
) {
4529 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4530 struct zone
*zone
= pgdat
->node_zones
+ j
;
4531 unsigned long present_pages
= zone
->present_pages
;
4533 zone
->lowmem_reserve
[j
] = 0;
4537 struct zone
*lower_zone
;
4541 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4542 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4544 lower_zone
= pgdat
->node_zones
+ idx
;
4545 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4546 sysctl_lowmem_reserve_ratio
[idx
];
4547 present_pages
+= lower_zone
->present_pages
;
4552 /* update totalreserve_pages */
4553 calculate_totalreserve_pages();
4557 * setup_per_zone_wmarks - called when min_free_kbytes changes
4558 * or when memory is hot-{added|removed}
4560 * Ensures that the watermark[min,low,high] values for each zone are set
4561 * correctly with respect to min_free_kbytes.
4563 void setup_per_zone_wmarks(void)
4565 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4566 unsigned long lowmem_pages
= 0;
4568 unsigned long flags
;
4570 /* Calculate total number of !ZONE_HIGHMEM pages */
4571 for_each_zone(zone
) {
4572 if (!is_highmem(zone
))
4573 lowmem_pages
+= zone
->present_pages
;
4576 for_each_zone(zone
) {
4579 spin_lock_irqsave(&zone
->lock
, flags
);
4580 tmp
= (u64
)pages_min
* zone
->present_pages
;
4581 do_div(tmp
, lowmem_pages
);
4582 if (is_highmem(zone
)) {
4584 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4585 * need highmem pages, so cap pages_min to a small
4588 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4589 * deltas controls asynch page reclaim, and so should
4590 * not be capped for highmem.
4594 min_pages
= zone
->present_pages
/ 1024;
4595 if (min_pages
< SWAP_CLUSTER_MAX
)
4596 min_pages
= SWAP_CLUSTER_MAX
;
4597 if (min_pages
> 128)
4599 zone
->watermark
[WMARK_MIN
] = min_pages
;
4602 * If it's a lowmem zone, reserve a number of pages
4603 * proportionate to the zone's size.
4605 zone
->watermark
[WMARK_MIN
] = tmp
;
4608 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
4609 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
4610 setup_zone_migrate_reserve(zone
);
4611 spin_unlock_irqrestore(&zone
->lock
, flags
);
4614 /* update totalreserve_pages */
4615 calculate_totalreserve_pages();
4619 * The inactive anon list should be small enough that the VM never has to
4620 * do too much work, but large enough that each inactive page has a chance
4621 * to be referenced again before it is swapped out.
4623 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4624 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4625 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4626 * the anonymous pages are kept on the inactive list.
4629 * memory ratio inactive anon
4630 * -------------------------------------
4639 void calculate_zone_inactive_ratio(struct zone
*zone
)
4641 unsigned int gb
, ratio
;
4643 /* Zone size in gigabytes */
4644 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
4646 ratio
= int_sqrt(10 * gb
);
4650 zone
->inactive_ratio
= ratio
;
4653 static void __init
setup_per_zone_inactive_ratio(void)
4658 calculate_zone_inactive_ratio(zone
);
4662 * Initialise min_free_kbytes.
4664 * For small machines we want it small (128k min). For large machines
4665 * we want it large (64MB max). But it is not linear, because network
4666 * bandwidth does not increase linearly with machine size. We use
4668 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4669 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4685 static int __init
init_per_zone_wmark_min(void)
4687 unsigned long lowmem_kbytes
;
4689 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4691 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4692 if (min_free_kbytes
< 128)
4693 min_free_kbytes
= 128;
4694 if (min_free_kbytes
> 65536)
4695 min_free_kbytes
= 65536;
4696 setup_per_zone_wmarks();
4697 setup_per_zone_lowmem_reserve();
4698 setup_per_zone_inactive_ratio();
4701 module_init(init_per_zone_wmark_min
)
4704 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4705 * that we can call two helper functions whenever min_free_kbytes
4708 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4709 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4711 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
4713 setup_per_zone_wmarks();
4718 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4719 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4724 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4729 zone
->min_unmapped_pages
= (zone
->present_pages
*
4730 sysctl_min_unmapped_ratio
) / 100;
4734 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4735 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4740 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4745 zone
->min_slab_pages
= (zone
->present_pages
*
4746 sysctl_min_slab_ratio
) / 100;
4752 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4753 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4754 * whenever sysctl_lowmem_reserve_ratio changes.
4756 * The reserve ratio obviously has absolutely no relation with the
4757 * minimum watermarks. The lowmem reserve ratio can only make sense
4758 * if in function of the boot time zone sizes.
4760 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4761 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4763 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4764 setup_per_zone_lowmem_reserve();
4769 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4770 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4771 * can have before it gets flushed back to buddy allocator.
4774 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4775 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4781 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4782 if (!write
|| (ret
== -EINVAL
))
4784 for_each_populated_zone(zone
) {
4785 for_each_online_cpu(cpu
) {
4787 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4788 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4794 int hashdist
= HASHDIST_DEFAULT
;
4797 static int __init
set_hashdist(char *str
)
4801 hashdist
= simple_strtoul(str
, &str
, 0);
4804 __setup("hashdist=", set_hashdist
);
4808 * allocate a large system hash table from bootmem
4809 * - it is assumed that the hash table must contain an exact power-of-2
4810 * quantity of entries
4811 * - limit is the number of hash buckets, not the total allocation size
4813 void *__init
alloc_large_system_hash(const char *tablename
,
4814 unsigned long bucketsize
,
4815 unsigned long numentries
,
4818 unsigned int *_hash_shift
,
4819 unsigned int *_hash_mask
,
4820 unsigned long limit
)
4822 unsigned long long max
= limit
;
4823 unsigned long log2qty
, size
;
4826 /* allow the kernel cmdline to have a say */
4828 /* round applicable memory size up to nearest megabyte */
4829 numentries
= nr_kernel_pages
;
4830 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4831 numentries
>>= 20 - PAGE_SHIFT
;
4832 numentries
<<= 20 - PAGE_SHIFT
;
4834 /* limit to 1 bucket per 2^scale bytes of low memory */
4835 if (scale
> PAGE_SHIFT
)
4836 numentries
>>= (scale
- PAGE_SHIFT
);
4838 numentries
<<= (PAGE_SHIFT
- scale
);
4840 /* Make sure we've got at least a 0-order allocation.. */
4841 if (unlikely(flags
& HASH_SMALL
)) {
4842 /* Makes no sense without HASH_EARLY */
4843 WARN_ON(!(flags
& HASH_EARLY
));
4844 if (!(numentries
>> *_hash_shift
)) {
4845 numentries
= 1UL << *_hash_shift
;
4846 BUG_ON(!numentries
);
4848 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4849 numentries
= PAGE_SIZE
/ bucketsize
;
4851 numentries
= roundup_pow_of_two(numentries
);
4853 /* limit allocation size to 1/16 total memory by default */
4855 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4856 do_div(max
, bucketsize
);
4859 if (numentries
> max
)
4862 log2qty
= ilog2(numentries
);
4865 size
= bucketsize
<< log2qty
;
4866 if (flags
& HASH_EARLY
)
4867 table
= alloc_bootmem_nopanic(size
);
4869 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4872 * If bucketsize is not a power-of-two, we may free
4873 * some pages at the end of hash table which
4874 * alloc_pages_exact() automatically does
4876 if (get_order(size
) < MAX_ORDER
) {
4877 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
4878 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
4881 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4884 panic("Failed to allocate %s hash table\n", tablename
);
4886 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4889 ilog2(size
) - PAGE_SHIFT
,
4893 *_hash_shift
= log2qty
;
4895 *_hash_mask
= (1 << log2qty
) - 1;
4900 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4901 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4904 #ifdef CONFIG_SPARSEMEM
4905 return __pfn_to_section(pfn
)->pageblock_flags
;
4907 return zone
->pageblock_flags
;
4908 #endif /* CONFIG_SPARSEMEM */
4911 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4913 #ifdef CONFIG_SPARSEMEM
4914 pfn
&= (PAGES_PER_SECTION
-1);
4915 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4917 pfn
= pfn
- zone
->zone_start_pfn
;
4918 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4919 #endif /* CONFIG_SPARSEMEM */
4923 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4924 * @page: The page within the block of interest
4925 * @start_bitidx: The first bit of interest to retrieve
4926 * @end_bitidx: The last bit of interest
4927 * returns pageblock_bits flags
4929 unsigned long get_pageblock_flags_group(struct page
*page
,
4930 int start_bitidx
, int end_bitidx
)
4933 unsigned long *bitmap
;
4934 unsigned long pfn
, bitidx
;
4935 unsigned long flags
= 0;
4936 unsigned long value
= 1;
4938 zone
= page_zone(page
);
4939 pfn
= page_to_pfn(page
);
4940 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4941 bitidx
= pfn_to_bitidx(zone
, pfn
);
4943 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4944 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4951 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4952 * @page: The page within the block of interest
4953 * @start_bitidx: The first bit of interest
4954 * @end_bitidx: The last bit of interest
4955 * @flags: The flags to set
4957 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4958 int start_bitidx
, int end_bitidx
)
4961 unsigned long *bitmap
;
4962 unsigned long pfn
, bitidx
;
4963 unsigned long value
= 1;
4965 zone
= page_zone(page
);
4966 pfn
= page_to_pfn(page
);
4967 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4968 bitidx
= pfn_to_bitidx(zone
, pfn
);
4969 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
4970 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
4972 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4974 __set_bit(bitidx
+ start_bitidx
, bitmap
);
4976 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
4980 * This is designed as sub function...plz see page_isolation.c also.
4981 * set/clear page block's type to be ISOLATE.
4982 * page allocater never alloc memory from ISOLATE block.
4985 int set_migratetype_isolate(struct page
*page
)
4988 unsigned long flags
;
4992 zone
= page_zone(page
);
4993 zone_idx
= zone_idx(zone
);
4994 spin_lock_irqsave(&zone
->lock
, flags
);
4996 * In future, more migrate types will be able to be isolation target.
4998 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
&&
4999 zone_idx
!= ZONE_MOVABLE
)
5001 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5002 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5005 spin_unlock_irqrestore(&zone
->lock
, flags
);
5011 void unset_migratetype_isolate(struct page
*page
)
5014 unsigned long flags
;
5015 zone
= page_zone(page
);
5016 spin_lock_irqsave(&zone
->lock
, flags
);
5017 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5019 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5020 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5022 spin_unlock_irqrestore(&zone
->lock
, flags
);
5025 #ifdef CONFIG_MEMORY_HOTREMOVE
5027 * All pages in the range must be isolated before calling this.
5030 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5036 unsigned long flags
;
5037 /* find the first valid pfn */
5038 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5043 zone
= page_zone(pfn_to_page(pfn
));
5044 spin_lock_irqsave(&zone
->lock
, flags
);
5046 while (pfn
< end_pfn
) {
5047 if (!pfn_valid(pfn
)) {
5051 page
= pfn_to_page(pfn
);
5052 BUG_ON(page_count(page
));
5053 BUG_ON(!PageBuddy(page
));
5054 order
= page_order(page
);
5055 #ifdef CONFIG_DEBUG_VM
5056 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5057 pfn
, 1 << order
, end_pfn
);
5059 list_del(&page
->lru
);
5060 rmv_page_order(page
);
5061 zone
->free_area
[order
].nr_free
--;
5062 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5064 for (i
= 0; i
< (1 << order
); i
++)
5065 SetPageReserved((page
+i
));
5066 pfn
+= (1 << order
);
5068 spin_unlock_irqrestore(&zone
->lock
, flags
);