2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright (C) 2001-2003 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
10 * $Id: scan.c,v 1.115 2004/11/17 12:59:08 dedekind Exp $
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/pagemap.h>
18 #include <linux/crc32.h>
19 #include <linux/compiler.h>
22 #define EMPTY_SCAN_SIZE 1024
24 #define DIRTY_SPACE(x) do { typeof(x) _x = (x); \
25 c->free_size -= _x; c->dirty_size += _x; \
26 jeb->free_size -= _x ; jeb->dirty_size += _x; \
28 #define USED_SPACE(x) do { typeof(x) _x = (x); \
29 c->free_size -= _x; c->used_size += _x; \
30 jeb->free_size -= _x ; jeb->used_size += _x; \
32 #define UNCHECKED_SPACE(x) do { typeof(x) _x = (x); \
33 c->free_size -= _x; c->unchecked_size += _x; \
34 jeb->free_size -= _x ; jeb->unchecked_size += _x; \
37 #define noisy_printk(noise, args...) do { \
39 printk(KERN_NOTICE args); \
42 printk(KERN_NOTICE "Further such events for this erase block will not be printed\n"); \
47 static uint32_t pseudo_random
;
49 static int jffs2_scan_eraseblock (struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
,
50 unsigned char *buf
, uint32_t buf_size
);
52 /* These helper functions _must_ increase ofs and also do the dirty/used space accounting.
53 * Returning an error will abort the mount - bad checksums etc. should just mark the space
56 static int jffs2_scan_inode_node(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
,
57 struct jffs2_raw_inode
*ri
, uint32_t ofs
);
58 static int jffs2_scan_dirent_node(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
,
59 struct jffs2_raw_dirent
*rd
, uint32_t ofs
);
61 #define BLK_STATE_ALLFF 0
62 #define BLK_STATE_CLEAN 1
63 #define BLK_STATE_PARTDIRTY 2
64 #define BLK_STATE_CLEANMARKER 3
65 #define BLK_STATE_ALLDIRTY 4
66 #define BLK_STATE_BADBLOCK 5
68 static inline int min_free(struct jffs2_sb_info
*c
)
70 uint32_t min
= 2 * sizeof(struct jffs2_raw_inode
);
71 #if defined CONFIG_JFFS2_FS_NAND || defined CONFIG_JFFS2_FS_NOR_ECC
72 if (!jffs2_can_mark_obsolete(c
) && min
< c
->wbuf_pagesize
)
73 return c
->wbuf_pagesize
;
78 int jffs2_scan_medium(struct jffs2_sb_info
*c
)
81 uint32_t empty_blocks
= 0, bad_blocks
= 0;
82 unsigned char *flashbuf
= NULL
;
83 uint32_t buf_size
= 0;
88 ret
= c
->mtd
->point (c
->mtd
, 0, c
->mtd
->size
, &pointlen
, &flashbuf
);
89 if (!ret
&& pointlen
< c
->mtd
->size
) {
90 /* Don't muck about if it won't let us point to the whole flash */
91 D1(printk(KERN_DEBUG
"MTD point returned len too short: 0x%zx\n", pointlen
));
92 c
->mtd
->unpoint(c
->mtd
, flashbuf
, 0, c
->mtd
->size
);
96 D1(printk(KERN_DEBUG
"MTD point failed %d\n", ret
));
100 /* For NAND it's quicker to read a whole eraseblock at a time,
102 if (jffs2_cleanmarker_oob(c
))
103 buf_size
= c
->sector_size
;
105 buf_size
= PAGE_SIZE
;
107 /* Respect kmalloc limitations */
108 if (buf_size
> 128*1024)
111 D1(printk(KERN_DEBUG
"Allocating readbuf of %d bytes\n", buf_size
));
112 flashbuf
= kmalloc(buf_size
, GFP_KERNEL
);
117 for (i
=0; i
<c
->nr_blocks
; i
++) {
118 struct jffs2_eraseblock
*jeb
= &c
->blocks
[i
];
120 ret
= jffs2_scan_eraseblock(c
, jeb
, buf_size
?flashbuf
:(flashbuf
+jeb
->offset
), buf_size
);
125 ACCT_PARANOIA_CHECK(jeb
);
127 /* Now decide which list to put it on */
129 case BLK_STATE_ALLFF
:
131 * Empty block. Since we can't be sure it
132 * was entirely erased, we just queue it for erase
133 * again. It will be marked as such when the erase
134 * is complete. Meanwhile we still count it as empty
138 list_add(&jeb
->list
, &c
->erase_pending_list
);
139 c
->nr_erasing_blocks
++;
142 case BLK_STATE_CLEANMARKER
:
143 /* Only a CLEANMARKER node is valid */
144 if (!jeb
->dirty_size
) {
145 /* It's actually free */
146 list_add(&jeb
->list
, &c
->free_list
);
150 D1(printk(KERN_DEBUG
"Adding all-dirty block at 0x%08x to erase_pending_list\n", jeb
->offset
));
151 list_add(&jeb
->list
, &c
->erase_pending_list
);
152 c
->nr_erasing_blocks
++;
156 case BLK_STATE_CLEAN
:
157 /* Full (or almost full) of clean data. Clean list */
158 list_add(&jeb
->list
, &c
->clean_list
);
161 case BLK_STATE_PARTDIRTY
:
162 /* Some data, but not full. Dirty list. */
163 /* We want to remember the block with most free space
164 and stick it in the 'nextblock' position to start writing to it. */
165 if (jeb
->free_size
> min_free(c
) &&
166 (!c
->nextblock
|| c
->nextblock
->free_size
< jeb
->free_size
)) {
167 /* Better candidate for the next writes to go to */
169 c
->nextblock
->dirty_size
+= c
->nextblock
->free_size
+ c
->nextblock
->wasted_size
;
170 c
->dirty_size
+= c
->nextblock
->free_size
+ c
->nextblock
->wasted_size
;
171 c
->free_size
-= c
->nextblock
->free_size
;
172 c
->wasted_size
-= c
->nextblock
->wasted_size
;
173 c
->nextblock
->free_size
= c
->nextblock
->wasted_size
= 0;
174 if (VERYDIRTY(c
, c
->nextblock
->dirty_size
)) {
175 list_add(&c
->nextblock
->list
, &c
->very_dirty_list
);
177 list_add(&c
->nextblock
->list
, &c
->dirty_list
);
182 jeb
->dirty_size
+= jeb
->free_size
+ jeb
->wasted_size
;
183 c
->dirty_size
+= jeb
->free_size
+ jeb
->wasted_size
;
184 c
->free_size
-= jeb
->free_size
;
185 c
->wasted_size
-= jeb
->wasted_size
;
186 jeb
->free_size
= jeb
->wasted_size
= 0;
187 if (VERYDIRTY(c
, jeb
->dirty_size
)) {
188 list_add(&jeb
->list
, &c
->very_dirty_list
);
190 list_add(&jeb
->list
, &c
->dirty_list
);
195 case BLK_STATE_ALLDIRTY
:
196 /* Nothing valid - not even a clean marker. Needs erasing. */
197 /* For now we just put it on the erasing list. We'll start the erases later */
198 D1(printk(KERN_NOTICE
"JFFS2: Erase block at 0x%08x is not formatted. It will be erased\n", jeb
->offset
));
199 list_add(&jeb
->list
, &c
->erase_pending_list
);
200 c
->nr_erasing_blocks
++;
203 case BLK_STATE_BADBLOCK
:
204 D1(printk(KERN_NOTICE
"JFFS2: Block at 0x%08x is bad\n", jeb
->offset
));
205 list_add(&jeb
->list
, &c
->bad_list
);
206 c
->bad_size
+= c
->sector_size
;
207 c
->free_size
-= c
->sector_size
;
211 printk(KERN_WARNING
"jffs2_scan_medium(): unknown block state\n");
216 /* Nextblock dirty is always seen as wasted, because we cannot recycle it now */
217 if (c
->nextblock
&& (c
->nextblock
->dirty_size
)) {
218 c
->nextblock
->wasted_size
+= c
->nextblock
->dirty_size
;
219 c
->wasted_size
+= c
->nextblock
->dirty_size
;
220 c
->dirty_size
-= c
->nextblock
->dirty_size
;
221 c
->nextblock
->dirty_size
= 0;
223 #if defined CONFIG_JFFS2_FS_NAND || defined CONFIG_JFFS2_FS_NOR_ECC
224 if (!jffs2_can_mark_obsolete(c
) && c
->nextblock
&& (c
->nextblock
->free_size
& (c
->wbuf_pagesize
-1))) {
225 /* If we're going to start writing into a block which already
226 contains data, and the end of the data isn't page-aligned,
227 skip a little and align it. */
229 uint32_t skip
= c
->nextblock
->free_size
& (c
->wbuf_pagesize
-1);
231 D1(printk(KERN_DEBUG
"jffs2_scan_medium(): Skipping %d bytes in nextblock to ensure page alignment\n",
233 c
->nextblock
->wasted_size
+= skip
;
234 c
->wasted_size
+= skip
;
236 c
->nextblock
->free_size
-= skip
;
237 c
->free_size
-= skip
;
240 if (c
->nr_erasing_blocks
) {
241 if ( !c
->used_size
&& ((c
->nr_free_blocks
+empty_blocks
+bad_blocks
)!= c
->nr_blocks
|| bad_blocks
== c
->nr_blocks
) ) {
242 printk(KERN_NOTICE
"Cowardly refusing to erase blocks on filesystem with no valid JFFS2 nodes\n");
243 printk(KERN_NOTICE
"empty_blocks %d, bad_blocks %d, c->nr_blocks %d\n",empty_blocks
,bad_blocks
,c
->nr_blocks
);
247 jffs2_erase_pending_trigger(c
);
255 c
->mtd
->unpoint(c
->mtd
, flashbuf
, 0, c
->mtd
->size
);
260 static int jffs2_fill_scan_buf (struct jffs2_sb_info
*c
, unsigned char *buf
,
261 uint32_t ofs
, uint32_t len
)
266 ret
= jffs2_flash_read(c
, ofs
, len
, &retlen
, buf
);
268 D1(printk(KERN_WARNING
"mtd->read(0x%x bytes from 0x%x) returned %d\n", len
, ofs
, ret
));
272 D1(printk(KERN_WARNING
"Read at 0x%x gave only 0x%zx bytes\n", ofs
, retlen
));
275 D2(printk(KERN_DEBUG
"Read 0x%x bytes from 0x%08x into buf\n", len
, ofs
));
276 D2(printk(KERN_DEBUG
"000: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
277 buf
[0], buf
[1], buf
[2], buf
[3], buf
[4], buf
[5], buf
[6], buf
[7], buf
[8], buf
[9], buf
[10], buf
[11], buf
[12], buf
[13], buf
[14], buf
[15]));
281 static int jffs2_scan_eraseblock (struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
,
282 unsigned char *buf
, uint32_t buf_size
) {
283 struct jffs2_unknown_node
*node
;
284 struct jffs2_unknown_node crcnode
;
285 uint32_t ofs
, prevofs
;
286 uint32_t hdr_crc
, buf_ofs
, buf_len
;
289 #ifdef CONFIG_JFFS2_FS_NAND
290 int cleanmarkerfound
= 0;
294 prevofs
= jeb
->offset
- 1;
296 D1(printk(KERN_DEBUG
"jffs2_scan_eraseblock(): Scanning block at 0x%x\n", ofs
));
298 #ifdef CONFIG_JFFS2_FS_NAND
299 if (jffs2_cleanmarker_oob(c
)) {
300 int ret
= jffs2_check_nand_cleanmarker(c
, jeb
);
301 D2(printk(KERN_NOTICE
"jffs_check_nand_cleanmarker returned %d\n",ret
));
302 /* Even if it's not found, we still scan to see
303 if the block is empty. We use this information
304 to decide whether to erase it or not. */
306 case 0: cleanmarkerfound
= 1; break;
308 case 2: return BLK_STATE_BADBLOCK
;
309 case 3: return BLK_STATE_ALLDIRTY
; /* Block has failed to erase min. once */
314 buf_ofs
= jeb
->offset
;
317 buf_len
= c
->sector_size
;
319 buf_len
= EMPTY_SCAN_SIZE
;
320 err
= jffs2_fill_scan_buf(c
, buf
, buf_ofs
, buf_len
);
325 /* We temporarily use 'ofs' as a pointer into the buffer/jeb */
328 /* Scan only 4KiB of 0xFF before declaring it's empty */
329 while(ofs
< EMPTY_SCAN_SIZE
&& *(uint32_t *)(&buf
[ofs
]) == 0xFFFFFFFF)
332 if (ofs
== EMPTY_SCAN_SIZE
) {
333 #ifdef CONFIG_JFFS2_FS_NAND
334 if (jffs2_cleanmarker_oob(c
)) {
335 /* scan oob, take care of cleanmarker */
336 int ret
= jffs2_check_oob_empty(c
, jeb
, cleanmarkerfound
);
337 D2(printk(KERN_NOTICE
"jffs2_check_oob_empty returned %d\n",ret
));
339 case 0: return cleanmarkerfound
? BLK_STATE_CLEANMARKER
: BLK_STATE_ALLFF
;
340 case 1: return BLK_STATE_ALLDIRTY
;
345 D1(printk(KERN_DEBUG
"Block at 0x%08x is empty (erased)\n", jeb
->offset
));
346 return BLK_STATE_ALLFF
; /* OK to erase if all blocks are like this */
349 D1(printk(KERN_DEBUG
"Free space at %08x ends at %08x\n", jeb
->offset
,
354 /* Now ofs is a complete physical flash offset as it always was... */
360 while(ofs
< jeb
->offset
+ c
->sector_size
) {
362 D1(ACCT_PARANOIA_CHECK(jeb
));
367 printk(KERN_WARNING
"Eep. ofs 0x%08x not word-aligned!\n", ofs
);
371 if (ofs
== prevofs
) {
372 printk(KERN_WARNING
"ofs 0x%08x has already been seen. Skipping\n", ofs
);
379 if (jeb
->offset
+ c
->sector_size
< ofs
+ sizeof(*node
)) {
380 D1(printk(KERN_DEBUG
"Fewer than %zd bytes left to end of block. (%x+%x<%x+%zx) Not reading\n", sizeof(struct jffs2_unknown_node
),
381 jeb
->offset
, c
->sector_size
, ofs
, sizeof(*node
)));
382 DIRTY_SPACE((jeb
->offset
+ c
->sector_size
)-ofs
);
386 if (buf_ofs
+ buf_len
< ofs
+ sizeof(*node
)) {
387 buf_len
= min_t(uint32_t, buf_size
, jeb
->offset
+ c
->sector_size
- ofs
);
388 D1(printk(KERN_DEBUG
"Fewer than %zd bytes (node header) left to end of buf. Reading 0x%x at 0x%08x\n",
389 sizeof(struct jffs2_unknown_node
), buf_len
, ofs
));
390 err
= jffs2_fill_scan_buf(c
, buf
, ofs
, buf_len
);
396 node
= (struct jffs2_unknown_node
*)&buf
[ofs
-buf_ofs
];
398 if (*(uint32_t *)(&buf
[ofs
-buf_ofs
]) == 0xffffffff) {
400 uint32_t empty_start
;
405 D1(printk(KERN_DEBUG
"Found empty flash at 0x%08x\n", ofs
));
407 inbuf_ofs
= ofs
- buf_ofs
;
408 while (inbuf_ofs
< buf_len
) {
409 if (*(uint32_t *)(&buf
[inbuf_ofs
]) != 0xffffffff) {
410 printk(KERN_WARNING
"Empty flash at 0x%08x ends at 0x%08x\n",
412 DIRTY_SPACE(ofs
-empty_start
);
420 D1(printk(KERN_DEBUG
"Empty flash to end of buffer at 0x%08x\n", ofs
));
422 /* If we're only checking the beginning of a block with a cleanmarker,
424 if (buf_ofs
== jeb
->offset
&& jeb
->used_size
== PAD(c
->cleanmarker_size
) &&
425 c
->cleanmarker_size
&& !jeb
->dirty_size
&& !jeb
->first_node
->next_in_ino
) {
426 D1(printk(KERN_DEBUG
"%d bytes at start of block seems clean... assuming all clean\n", EMPTY_SCAN_SIZE
));
427 return BLK_STATE_CLEANMARKER
;
430 /* See how much more there is to read in this eraseblock... */
431 buf_len
= min_t(uint32_t, buf_size
, jeb
->offset
+ c
->sector_size
- ofs
);
433 /* No more to read. Break out of main loop without marking
434 this range of empty space as dirty (because it's not) */
435 D1(printk(KERN_DEBUG
"Empty flash at %08x runs to end of block. Treating as free_space\n",
439 D1(printk(KERN_DEBUG
"Reading another 0x%x at 0x%08x\n", buf_len
, ofs
));
440 err
= jffs2_fill_scan_buf(c
, buf
, ofs
, buf_len
);
447 if (ofs
== jeb
->offset
&& je16_to_cpu(node
->magic
) == KSAMTIB_CIGAM_2SFFJ
) {
448 printk(KERN_WARNING
"Magic bitmask is backwards at offset 0x%08x. Wrong endian filesystem?\n", ofs
);
453 if (je16_to_cpu(node
->magic
) == JFFS2_DIRTY_BITMASK
) {
454 D1(printk(KERN_DEBUG
"Dirty bitmask at 0x%08x\n", ofs
));
459 if (je16_to_cpu(node
->magic
) == JFFS2_OLD_MAGIC_BITMASK
) {
460 printk(KERN_WARNING
"Old JFFS2 bitmask found at 0x%08x\n", ofs
);
461 printk(KERN_WARNING
"You cannot use older JFFS2 filesystems with newer kernels\n");
466 if (je16_to_cpu(node
->magic
) != JFFS2_MAGIC_BITMASK
) {
467 /* OK. We're out of possibilities. Whinge and move on */
468 noisy_printk(&noise
, "jffs2_scan_eraseblock(): Magic bitmask 0x%04x not found at 0x%08x: 0x%04x instead\n",
469 JFFS2_MAGIC_BITMASK
, ofs
,
470 je16_to_cpu(node
->magic
));
475 /* We seem to have a node of sorts. Check the CRC */
476 crcnode
.magic
= node
->magic
;
477 crcnode
.nodetype
= cpu_to_je16( je16_to_cpu(node
->nodetype
) | JFFS2_NODE_ACCURATE
);
478 crcnode
.totlen
= node
->totlen
;
479 hdr_crc
= crc32(0, &crcnode
, sizeof(crcnode
)-4);
481 if (hdr_crc
!= je32_to_cpu(node
->hdr_crc
)) {
482 noisy_printk(&noise
, "jffs2_scan_eraseblock(): Node at 0x%08x {0x%04x, 0x%04x, 0x%08x) has invalid CRC 0x%08x (calculated 0x%08x)\n",
483 ofs
, je16_to_cpu(node
->magic
),
484 je16_to_cpu(node
->nodetype
),
485 je32_to_cpu(node
->totlen
),
486 je32_to_cpu(node
->hdr_crc
),
493 if (ofs
+ je32_to_cpu(node
->totlen
) >
494 jeb
->offset
+ c
->sector_size
) {
495 /* Eep. Node goes over the end of the erase block. */
496 printk(KERN_WARNING
"Node at 0x%08x with length 0x%08x would run over the end of the erase block\n",
497 ofs
, je32_to_cpu(node
->totlen
));
498 printk(KERN_WARNING
"Perhaps the file system was created with the wrong erase size?\n");
504 if (!(je16_to_cpu(node
->nodetype
) & JFFS2_NODE_ACCURATE
)) {
505 /* Wheee. This is an obsoleted node */
506 D2(printk(KERN_DEBUG
"Node at 0x%08x is obsolete. Skipping\n", ofs
));
507 DIRTY_SPACE(PAD(je32_to_cpu(node
->totlen
)));
508 ofs
+= PAD(je32_to_cpu(node
->totlen
));
512 switch(je16_to_cpu(node
->nodetype
)) {
513 case JFFS2_NODETYPE_INODE
:
514 if (buf_ofs
+ buf_len
< ofs
+ sizeof(struct jffs2_raw_inode
)) {
515 buf_len
= min_t(uint32_t, buf_size
, jeb
->offset
+ c
->sector_size
- ofs
);
516 D1(printk(KERN_DEBUG
"Fewer than %zd bytes (inode node) left to end of buf. Reading 0x%x at 0x%08x\n",
517 sizeof(struct jffs2_raw_inode
), buf_len
, ofs
));
518 err
= jffs2_fill_scan_buf(c
, buf
, ofs
, buf_len
);
524 err
= jffs2_scan_inode_node(c
, jeb
, (void *)node
, ofs
);
526 ofs
+= PAD(je32_to_cpu(node
->totlen
));
529 case JFFS2_NODETYPE_DIRENT
:
530 if (buf_ofs
+ buf_len
< ofs
+ je32_to_cpu(node
->totlen
)) {
531 buf_len
= min_t(uint32_t, buf_size
, jeb
->offset
+ c
->sector_size
- ofs
);
532 D1(printk(KERN_DEBUG
"Fewer than %d bytes (dirent node) left to end of buf. Reading 0x%x at 0x%08x\n",
533 je32_to_cpu(node
->totlen
), buf_len
, ofs
));
534 err
= jffs2_fill_scan_buf(c
, buf
, ofs
, buf_len
);
540 err
= jffs2_scan_dirent_node(c
, jeb
, (void *)node
, ofs
);
542 ofs
+= PAD(je32_to_cpu(node
->totlen
));
545 case JFFS2_NODETYPE_CLEANMARKER
:
546 D1(printk(KERN_DEBUG
"CLEANMARKER node found at 0x%08x\n", ofs
));
547 if (je32_to_cpu(node
->totlen
) != c
->cleanmarker_size
) {
548 printk(KERN_NOTICE
"CLEANMARKER node found at 0x%08x has totlen 0x%x != normal 0x%x\n",
549 ofs
, je32_to_cpu(node
->totlen
), c
->cleanmarker_size
);
550 DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node
)));
551 ofs
+= PAD(sizeof(struct jffs2_unknown_node
));
552 } else if (jeb
->first_node
) {
553 printk(KERN_NOTICE
"CLEANMARKER node found at 0x%08x, not first node in block (0x%08x)\n", ofs
, jeb
->offset
);
554 DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node
)));
555 ofs
+= PAD(sizeof(struct jffs2_unknown_node
));
557 struct jffs2_raw_node_ref
*marker_ref
= jffs2_alloc_raw_node_ref();
559 printk(KERN_NOTICE
"Failed to allocate node ref for clean marker\n");
562 marker_ref
->next_in_ino
= NULL
;
563 marker_ref
->next_phys
= NULL
;
564 marker_ref
->flash_offset
= ofs
| REF_NORMAL
;
565 marker_ref
->__totlen
= c
->cleanmarker_size
;
566 jeb
->first_node
= jeb
->last_node
= marker_ref
;
568 USED_SPACE(PAD(c
->cleanmarker_size
));
569 ofs
+= PAD(c
->cleanmarker_size
);
573 case JFFS2_NODETYPE_PADDING
:
574 DIRTY_SPACE(PAD(je32_to_cpu(node
->totlen
)));
575 ofs
+= PAD(je32_to_cpu(node
->totlen
));
579 switch (je16_to_cpu(node
->nodetype
) & JFFS2_COMPAT_MASK
) {
580 case JFFS2_FEATURE_ROCOMPAT
:
581 printk(KERN_NOTICE
"Read-only compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node
->nodetype
), ofs
);
582 c
->flags
|= JFFS2_SB_FLAG_RO
;
583 if (!(jffs2_is_readonly(c
)))
585 DIRTY_SPACE(PAD(je32_to_cpu(node
->totlen
)));
586 ofs
+= PAD(je32_to_cpu(node
->totlen
));
589 case JFFS2_FEATURE_INCOMPAT
:
590 printk(KERN_NOTICE
"Incompatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node
->nodetype
), ofs
);
593 case JFFS2_FEATURE_RWCOMPAT_DELETE
:
594 D1(printk(KERN_NOTICE
"Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node
->nodetype
), ofs
));
595 DIRTY_SPACE(PAD(je32_to_cpu(node
->totlen
)));
596 ofs
+= PAD(je32_to_cpu(node
->totlen
));
599 case JFFS2_FEATURE_RWCOMPAT_COPY
:
600 D1(printk(KERN_NOTICE
"Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node
->nodetype
), ofs
));
601 USED_SPACE(PAD(je32_to_cpu(node
->totlen
)));
602 ofs
+= PAD(je32_to_cpu(node
->totlen
));
609 D1(printk(KERN_DEBUG
"Block at 0x%08x: free 0x%08x, dirty 0x%08x, unchecked 0x%08x, used 0x%08x\n", jeb
->offset
,
610 jeb
->free_size
, jeb
->dirty_size
, jeb
->unchecked_size
, jeb
->used_size
));
612 /* mark_node_obsolete can add to wasted !! */
613 if (jeb
->wasted_size
) {
614 jeb
->dirty_size
+= jeb
->wasted_size
;
615 c
->dirty_size
+= jeb
->wasted_size
;
616 c
->wasted_size
-= jeb
->wasted_size
;
617 jeb
->wasted_size
= 0;
620 if ((jeb
->used_size
+ jeb
->unchecked_size
) == PAD(c
->cleanmarker_size
) && !jeb
->dirty_size
621 && (!jeb
->first_node
|| !jeb
->first_node
->next_in_ino
) )
622 return BLK_STATE_CLEANMARKER
;
624 /* move blocks with max 4 byte dirty space to cleanlist */
625 else if (!ISDIRTY(c
->sector_size
- (jeb
->used_size
+ jeb
->unchecked_size
))) {
626 c
->dirty_size
-= jeb
->dirty_size
;
627 c
->wasted_size
+= jeb
->dirty_size
;
628 jeb
->wasted_size
+= jeb
->dirty_size
;
630 return BLK_STATE_CLEAN
;
631 } else if (jeb
->used_size
|| jeb
->unchecked_size
)
632 return BLK_STATE_PARTDIRTY
;
634 return BLK_STATE_ALLDIRTY
;
637 static struct jffs2_inode_cache
*jffs2_scan_make_ino_cache(struct jffs2_sb_info
*c
, uint32_t ino
)
639 struct jffs2_inode_cache
*ic
;
641 ic
= jffs2_get_ino_cache(c
, ino
);
645 if (ino
> c
->highest_ino
)
646 c
->highest_ino
= ino
;
648 ic
= jffs2_alloc_inode_cache();
650 printk(KERN_NOTICE
"jffs2_scan_make_inode_cache(): allocation of inode cache failed\n");
653 memset(ic
, 0, sizeof(*ic
));
656 ic
->nodes
= (void *)ic
;
657 jffs2_add_ino_cache(c
, ic
);
663 static int jffs2_scan_inode_node(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
,
664 struct jffs2_raw_inode
*ri
, uint32_t ofs
)
666 struct jffs2_raw_node_ref
*raw
;
667 struct jffs2_inode_cache
*ic
;
668 uint32_t ino
= je32_to_cpu(ri
->ino
);
670 D1(printk(KERN_DEBUG
"jffs2_scan_inode_node(): Node at 0x%08x\n", ofs
));
672 /* We do very little here now. Just check the ino# to which we should attribute
673 this node; we can do all the CRC checking etc. later. There's a tradeoff here --
674 we used to scan the flash once only, reading everything we want from it into
675 memory, then building all our in-core data structures and freeing the extra
676 information. Now we allow the first part of the mount to complete a lot quicker,
677 but we have to go _back_ to the flash in order to finish the CRC checking, etc.
678 Which means that the _full_ amount of time to get to proper write mode with GC
679 operational may actually be _longer_ than before. Sucks to be me. */
681 raw
= jffs2_alloc_raw_node_ref();
683 printk(KERN_NOTICE
"jffs2_scan_inode_node(): allocation of node reference failed\n");
687 ic
= jffs2_get_ino_cache(c
, ino
);
689 /* Inocache get failed. Either we read a bogus ino# or it's just genuinely the
690 first node we found for this inode. Do a CRC check to protect against the former
692 uint32_t crc
= crc32(0, ri
, sizeof(*ri
)-8);
694 if (crc
!= je32_to_cpu(ri
->node_crc
)) {
695 printk(KERN_NOTICE
"jffs2_scan_inode_node(): CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
696 ofs
, je32_to_cpu(ri
->node_crc
), crc
);
697 /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
698 DIRTY_SPACE(PAD(je32_to_cpu(ri
->totlen
)));
699 jffs2_free_raw_node_ref(raw
);
702 ic
= jffs2_scan_make_ino_cache(c
, ino
);
704 jffs2_free_raw_node_ref(raw
);
709 /* Wheee. It worked */
711 raw
->flash_offset
= ofs
| REF_UNCHECKED
;
712 raw
->__totlen
= PAD(je32_to_cpu(ri
->totlen
));
713 raw
->next_phys
= NULL
;
714 raw
->next_in_ino
= ic
->nodes
;
717 if (!jeb
->first_node
)
718 jeb
->first_node
= raw
;
720 jeb
->last_node
->next_phys
= raw
;
721 jeb
->last_node
= raw
;
723 D1(printk(KERN_DEBUG
"Node is ino #%u, version %d. Range 0x%x-0x%x\n",
724 je32_to_cpu(ri
->ino
), je32_to_cpu(ri
->version
),
725 je32_to_cpu(ri
->offset
),
726 je32_to_cpu(ri
->offset
)+je32_to_cpu(ri
->dsize
)));
728 pseudo_random
+= je32_to_cpu(ri
->version
);
730 UNCHECKED_SPACE(PAD(je32_to_cpu(ri
->totlen
)));
734 static int jffs2_scan_dirent_node(struct jffs2_sb_info
*c
, struct jffs2_eraseblock
*jeb
,
735 struct jffs2_raw_dirent
*rd
, uint32_t ofs
)
737 struct jffs2_raw_node_ref
*raw
;
738 struct jffs2_full_dirent
*fd
;
739 struct jffs2_inode_cache
*ic
;
742 D1(printk(KERN_DEBUG
"jffs2_scan_dirent_node(): Node at 0x%08x\n", ofs
));
744 /* We don't get here unless the node is still valid, so we don't have to
745 mask in the ACCURATE bit any more. */
746 crc
= crc32(0, rd
, sizeof(*rd
)-8);
748 if (crc
!= je32_to_cpu(rd
->node_crc
)) {
749 printk(KERN_NOTICE
"jffs2_scan_dirent_node(): Node CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
750 ofs
, je32_to_cpu(rd
->node_crc
), crc
);
751 /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
752 DIRTY_SPACE(PAD(je32_to_cpu(rd
->totlen
)));
756 pseudo_random
+= je32_to_cpu(rd
->version
);
758 fd
= jffs2_alloc_full_dirent(rd
->nsize
+1);
762 memcpy(&fd
->name
, rd
->name
, rd
->nsize
);
763 fd
->name
[rd
->nsize
] = 0;
765 crc
= crc32(0, fd
->name
, rd
->nsize
);
766 if (crc
!= je32_to_cpu(rd
->name_crc
)) {
767 printk(KERN_NOTICE
"jffs2_scan_dirent_node(): Name CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
768 ofs
, je32_to_cpu(rd
->name_crc
), crc
);
769 D1(printk(KERN_NOTICE
"Name for which CRC failed is (now) '%s', ino #%d\n", fd
->name
, je32_to_cpu(rd
->ino
)));
770 jffs2_free_full_dirent(fd
);
771 /* FIXME: Why do we believe totlen? */
772 /* We believe totlen because the CRC on the node _header_ was OK, just the name failed. */
773 DIRTY_SPACE(PAD(je32_to_cpu(rd
->totlen
)));
776 raw
= jffs2_alloc_raw_node_ref();
778 jffs2_free_full_dirent(fd
);
779 printk(KERN_NOTICE
"jffs2_scan_dirent_node(): allocation of node reference failed\n");
782 ic
= jffs2_scan_make_ino_cache(c
, je32_to_cpu(rd
->pino
));
784 jffs2_free_full_dirent(fd
);
785 jffs2_free_raw_node_ref(raw
);
789 raw
->__totlen
= PAD(je32_to_cpu(rd
->totlen
));
790 raw
->flash_offset
= ofs
| REF_PRISTINE
;
791 raw
->next_phys
= NULL
;
792 raw
->next_in_ino
= ic
->nodes
;
794 if (!jeb
->first_node
)
795 jeb
->first_node
= raw
;
797 jeb
->last_node
->next_phys
= raw
;
798 jeb
->last_node
= raw
;
802 fd
->version
= je32_to_cpu(rd
->version
);
803 fd
->ino
= je32_to_cpu(rd
->ino
);
804 fd
->nhash
= full_name_hash(fd
->name
, rd
->nsize
);
806 USED_SPACE(PAD(je32_to_cpu(rd
->totlen
)));
807 jffs2_add_fd_to_list(c
, fd
, &ic
->scan_dents
);
812 static int count_list(struct list_head
*l
)
815 struct list_head
*tmp
;
817 list_for_each(tmp
, l
) {
823 /* Note: This breaks if list_empty(head). I don't care. You
824 might, if you copy this code and use it elsewhere :) */
825 static void rotate_list(struct list_head
*head
, uint32_t count
)
827 struct list_head
*n
= head
->next
;
836 void jffs2_rotate_lists(struct jffs2_sb_info
*c
)
841 x
= count_list(&c
->clean_list
);
843 rotateby
= pseudo_random
% x
;
844 D1(printk(KERN_DEBUG
"Rotating clean_list by %d\n", rotateby
));
846 rotate_list((&c
->clean_list
), rotateby
);
848 D1(printk(KERN_DEBUG
"Erase block at front of clean_list is at %08x\n",
849 list_entry(c
->clean_list
.next
, struct jffs2_eraseblock
, list
)->offset
));
851 D1(printk(KERN_DEBUG
"Not rotating empty clean_list\n"));
854 x
= count_list(&c
->very_dirty_list
);
856 rotateby
= pseudo_random
% x
;
857 D1(printk(KERN_DEBUG
"Rotating very_dirty_list by %d\n", rotateby
));
859 rotate_list((&c
->very_dirty_list
), rotateby
);
861 D1(printk(KERN_DEBUG
"Erase block at front of very_dirty_list is at %08x\n",
862 list_entry(c
->very_dirty_list
.next
, struct jffs2_eraseblock
, list
)->offset
));
864 D1(printk(KERN_DEBUG
"Not rotating empty very_dirty_list\n"));
867 x
= count_list(&c
->dirty_list
);
869 rotateby
= pseudo_random
% x
;
870 D1(printk(KERN_DEBUG
"Rotating dirty_list by %d\n", rotateby
));
872 rotate_list((&c
->dirty_list
), rotateby
);
874 D1(printk(KERN_DEBUG
"Erase block at front of dirty_list is at %08x\n",
875 list_entry(c
->dirty_list
.next
, struct jffs2_eraseblock
, list
)->offset
));
877 D1(printk(KERN_DEBUG
"Not rotating empty dirty_list\n"));
880 x
= count_list(&c
->erasable_list
);
882 rotateby
= pseudo_random
% x
;
883 D1(printk(KERN_DEBUG
"Rotating erasable_list by %d\n", rotateby
));
885 rotate_list((&c
->erasable_list
), rotateby
);
887 D1(printk(KERN_DEBUG
"Erase block at front of erasable_list is at %08x\n",
888 list_entry(c
->erasable_list
.next
, struct jffs2_eraseblock
, list
)->offset
));
890 D1(printk(KERN_DEBUG
"Not rotating empty erasable_list\n"));
893 if (c
->nr_erasing_blocks
) {
894 rotateby
= pseudo_random
% c
->nr_erasing_blocks
;
895 D1(printk(KERN_DEBUG
"Rotating erase_pending_list by %d\n", rotateby
));
897 rotate_list((&c
->erase_pending_list
), rotateby
);
899 D1(printk(KERN_DEBUG
"Erase block at front of erase_pending_list is at %08x\n",
900 list_entry(c
->erase_pending_list
.next
, struct jffs2_eraseblock
, list
)->offset
));
902 D1(printk(KERN_DEBUG
"Not rotating empty erase_pending_list\n"));
905 if (c
->nr_free_blocks
) {
906 rotateby
= pseudo_random
% c
->nr_free_blocks
;
907 D1(printk(KERN_DEBUG
"Rotating free_list by %d\n", rotateby
));
909 rotate_list((&c
->free_list
), rotateby
);
911 D1(printk(KERN_DEBUG
"Erase block at front of free_list is at %08x\n",
912 list_entry(c
->free_list
.next
, struct jffs2_eraseblock
, list
)->offset
));
914 D1(printk(KERN_DEBUG
"Not rotating empty free_list\n"));