ACPI: ibm-acpi: update copyright notice
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / hwmon / lm90.c
blob6882ce75feee99b5c2ab9f4f94b5f3a78820728a
1 /*
2 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
3 * monitoring
4 * Copyright (C) 2003-2006 Jean Delvare <khali@linux-fr.org>
6 * Based on the lm83 driver. The LM90 is a sensor chip made by National
7 * Semiconductor. It reports up to two temperatures (its own plus up to
8 * one external one) with a 0.125 deg resolution (1 deg for local
9 * temperature) and a 3-4 deg accuracy. Complete datasheet can be
10 * obtained from National's website at:
11 * http://www.national.com/pf/LM/LM90.html
13 * This driver also supports the LM89 and LM99, two other sensor chips
14 * made by National Semiconductor. Both have an increased remote
15 * temperature measurement accuracy (1 degree), and the LM99
16 * additionally shifts remote temperatures (measured and limits) by 16
17 * degrees, which allows for higher temperatures measurement. The
18 * driver doesn't handle it since it can be done easily in user-space.
19 * Complete datasheets can be obtained from National's website at:
20 * http://www.national.com/pf/LM/LM89.html
21 * http://www.national.com/pf/LM/LM99.html
22 * Note that there is no way to differentiate between both chips.
24 * This driver also supports the LM86, another sensor chip made by
25 * National Semiconductor. It is exactly similar to the LM90 except it
26 * has a higher accuracy.
27 * Complete datasheet can be obtained from National's website at:
28 * http://www.national.com/pf/LM/LM86.html
30 * This driver also supports the ADM1032, a sensor chip made by Analog
31 * Devices. That chip is similar to the LM90, with a few differences
32 * that are not handled by this driver. Complete datasheet can be
33 * obtained from Analog's website at:
34 * http://www.analog.com/en/prod/0,2877,ADM1032,00.html
35 * Among others, it has a higher accuracy than the LM90, much like the
36 * LM86 does.
38 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
39 * chips made by Maxim. These chips are similar to the LM86. Complete
40 * datasheet can be obtained at Maxim's website at:
41 * http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2578
42 * Note that there is no easy way to differentiate between the three
43 * variants. The extra address and features of the MAX6659 are not
44 * supported by this driver.
46 * This driver also supports the ADT7461 chip from Analog Devices but
47 * only in its "compatability mode". If an ADT7461 chip is found but
48 * is configured in non-compatible mode (where its temperature
49 * register values are decoded differently) it is ignored by this
50 * driver. Complete datasheet can be obtained from Analog's website
51 * at:
52 * http://www.analog.com/en/prod/0,2877,ADT7461,00.html
54 * Since the LM90 was the first chipset supported by this driver, most
55 * comments will refer to this chipset, but are actually general and
56 * concern all supported chipsets, unless mentioned otherwise.
58 * This program is free software; you can redistribute it and/or modify
59 * it under the terms of the GNU General Public License as published by
60 * the Free Software Foundation; either version 2 of the License, or
61 * (at your option) any later version.
63 * This program is distributed in the hope that it will be useful,
64 * but WITHOUT ANY WARRANTY; without even the implied warranty of
65 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
66 * GNU General Public License for more details.
68 * You should have received a copy of the GNU General Public License
69 * along with this program; if not, write to the Free Software
70 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
73 #include <linux/module.h>
74 #include <linux/init.h>
75 #include <linux/slab.h>
76 #include <linux/jiffies.h>
77 #include <linux/i2c.h>
78 #include <linux/hwmon-sysfs.h>
79 #include <linux/hwmon.h>
80 #include <linux/err.h>
81 #include <linux/mutex.h>
82 #include <linux/sysfs.h>
85 * Addresses to scan
86 * Address is fully defined internally and cannot be changed except for
87 * MAX6659.
88 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, MAX6657 and MAX6658
89 * have address 0x4c.
90 * ADM1032-2, ADT7461-2, LM89-1, and LM99-1 have address 0x4d.
91 * MAX6659 can have address 0x4c, 0x4d or 0x4e (unsupported).
94 static unsigned short normal_i2c[] = { 0x4c, 0x4d, I2C_CLIENT_END };
97 * Insmod parameters
100 I2C_CLIENT_INSMOD_6(lm90, adm1032, lm99, lm86, max6657, adt7461);
103 * The LM90 registers
106 #define LM90_REG_R_MAN_ID 0xFE
107 #define LM90_REG_R_CHIP_ID 0xFF
108 #define LM90_REG_R_CONFIG1 0x03
109 #define LM90_REG_W_CONFIG1 0x09
110 #define LM90_REG_R_CONFIG2 0xBF
111 #define LM90_REG_W_CONFIG2 0xBF
112 #define LM90_REG_R_CONVRATE 0x04
113 #define LM90_REG_W_CONVRATE 0x0A
114 #define LM90_REG_R_STATUS 0x02
115 #define LM90_REG_R_LOCAL_TEMP 0x00
116 #define LM90_REG_R_LOCAL_HIGH 0x05
117 #define LM90_REG_W_LOCAL_HIGH 0x0B
118 #define LM90_REG_R_LOCAL_LOW 0x06
119 #define LM90_REG_W_LOCAL_LOW 0x0C
120 #define LM90_REG_R_LOCAL_CRIT 0x20
121 #define LM90_REG_W_LOCAL_CRIT 0x20
122 #define LM90_REG_R_REMOTE_TEMPH 0x01
123 #define LM90_REG_R_REMOTE_TEMPL 0x10
124 #define LM90_REG_R_REMOTE_OFFSH 0x11
125 #define LM90_REG_W_REMOTE_OFFSH 0x11
126 #define LM90_REG_R_REMOTE_OFFSL 0x12
127 #define LM90_REG_W_REMOTE_OFFSL 0x12
128 #define LM90_REG_R_REMOTE_HIGHH 0x07
129 #define LM90_REG_W_REMOTE_HIGHH 0x0D
130 #define LM90_REG_R_REMOTE_HIGHL 0x13
131 #define LM90_REG_W_REMOTE_HIGHL 0x13
132 #define LM90_REG_R_REMOTE_LOWH 0x08
133 #define LM90_REG_W_REMOTE_LOWH 0x0E
134 #define LM90_REG_R_REMOTE_LOWL 0x14
135 #define LM90_REG_W_REMOTE_LOWL 0x14
136 #define LM90_REG_R_REMOTE_CRIT 0x19
137 #define LM90_REG_W_REMOTE_CRIT 0x19
138 #define LM90_REG_R_TCRIT_HYST 0x21
139 #define LM90_REG_W_TCRIT_HYST 0x21
142 * Conversions and various macros
143 * For local temperatures and limits, critical limits and the hysteresis
144 * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius.
145 * For remote temperatures and limits, it uses signed 11-bit values with
146 * LSB = 0.125 degree Celsius, left-justified in 16-bit registers.
149 #define TEMP1_FROM_REG(val) ((val) * 1000)
150 #define TEMP1_TO_REG(val) ((val) <= -128000 ? -128 : \
151 (val) >= 127000 ? 127 : \
152 (val) < 0 ? ((val) - 500) / 1000 : \
153 ((val) + 500) / 1000)
154 #define TEMP2_FROM_REG(val) ((val) / 32 * 125)
155 #define TEMP2_TO_REG(val) ((val) <= -128000 ? 0x8000 : \
156 (val) >= 127875 ? 0x7FE0 : \
157 (val) < 0 ? ((val) - 62) / 125 * 32 : \
158 ((val) + 62) / 125 * 32)
159 #define HYST_TO_REG(val) ((val) <= 0 ? 0 : (val) >= 30500 ? 31 : \
160 ((val) + 500) / 1000)
163 * ADT7461 is almost identical to LM90 except that attempts to write
164 * values that are outside the range 0 < temp < 127 are treated as
165 * the boundary value.
168 #define TEMP1_TO_REG_ADT7461(val) ((val) <= 0 ? 0 : \
169 (val) >= 127000 ? 127 : \
170 ((val) + 500) / 1000)
171 #define TEMP2_TO_REG_ADT7461(val) ((val) <= 0 ? 0 : \
172 (val) >= 127750 ? 0x7FC0 : \
173 ((val) + 125) / 250 * 64)
176 * Functions declaration
179 static int lm90_attach_adapter(struct i2c_adapter *adapter);
180 static int lm90_detect(struct i2c_adapter *adapter, int address,
181 int kind);
182 static void lm90_init_client(struct i2c_client *client);
183 static int lm90_detach_client(struct i2c_client *client);
184 static struct lm90_data *lm90_update_device(struct device *dev);
187 * Driver data (common to all clients)
190 static struct i2c_driver lm90_driver = {
191 .driver = {
192 .name = "lm90",
194 .id = I2C_DRIVERID_LM90,
195 .attach_adapter = lm90_attach_adapter,
196 .detach_client = lm90_detach_client,
200 * Client data (each client gets its own)
203 struct lm90_data {
204 struct i2c_client client;
205 struct class_device *class_dev;
206 struct mutex update_lock;
207 char valid; /* zero until following fields are valid */
208 unsigned long last_updated; /* in jiffies */
209 int kind;
211 /* registers values */
212 s8 temp8[5]; /* 0: local input
213 1: local low limit
214 2: local high limit
215 3: local critical limit
216 4: remote critical limit */
217 s16 temp11[3]; /* 0: remote input
218 1: remote low limit
219 2: remote high limit */
220 u8 temp_hyst;
221 u8 alarms; /* bitvector */
225 * Sysfs stuff
228 static ssize_t show_temp8(struct device *dev, struct device_attribute *devattr,
229 char *buf)
231 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
232 struct lm90_data *data = lm90_update_device(dev);
233 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp8[attr->index]));
236 static ssize_t set_temp8(struct device *dev, struct device_attribute *devattr,
237 const char *buf, size_t count)
239 static const u8 reg[4] = {
240 LM90_REG_W_LOCAL_LOW,
241 LM90_REG_W_LOCAL_HIGH,
242 LM90_REG_W_LOCAL_CRIT,
243 LM90_REG_W_REMOTE_CRIT,
246 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
247 struct i2c_client *client = to_i2c_client(dev);
248 struct lm90_data *data = i2c_get_clientdata(client);
249 long val = simple_strtol(buf, NULL, 10);
250 int nr = attr->index;
252 mutex_lock(&data->update_lock);
253 if (data->kind == adt7461)
254 data->temp8[nr] = TEMP1_TO_REG_ADT7461(val);
255 else
256 data->temp8[nr] = TEMP1_TO_REG(val);
257 i2c_smbus_write_byte_data(client, reg[nr - 1], data->temp8[nr]);
258 mutex_unlock(&data->update_lock);
259 return count;
262 static ssize_t show_temp11(struct device *dev, struct device_attribute *devattr,
263 char *buf)
265 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
266 struct lm90_data *data = lm90_update_device(dev);
267 return sprintf(buf, "%d\n", TEMP2_FROM_REG(data->temp11[attr->index]));
270 static ssize_t set_temp11(struct device *dev, struct device_attribute *devattr,
271 const char *buf, size_t count)
273 static const u8 reg[4] = {
274 LM90_REG_W_REMOTE_LOWH,
275 LM90_REG_W_REMOTE_LOWL,
276 LM90_REG_W_REMOTE_HIGHH,
277 LM90_REG_W_REMOTE_HIGHL,
280 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
281 struct i2c_client *client = to_i2c_client(dev);
282 struct lm90_data *data = i2c_get_clientdata(client);
283 long val = simple_strtol(buf, NULL, 10);
284 int nr = attr->index;
286 mutex_lock(&data->update_lock);
287 if (data->kind == adt7461)
288 data->temp11[nr] = TEMP2_TO_REG_ADT7461(val);
289 else
290 data->temp11[nr] = TEMP2_TO_REG(val);
291 i2c_smbus_write_byte_data(client, reg[(nr - 1) * 2],
292 data->temp11[nr] >> 8);
293 i2c_smbus_write_byte_data(client, reg[(nr - 1) * 2 + 1],
294 data->temp11[nr] & 0xff);
295 mutex_unlock(&data->update_lock);
296 return count;
299 static ssize_t show_temphyst(struct device *dev, struct device_attribute *devattr,
300 char *buf)
302 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
303 struct lm90_data *data = lm90_update_device(dev);
304 return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp8[attr->index])
305 - TEMP1_FROM_REG(data->temp_hyst));
308 static ssize_t set_temphyst(struct device *dev, struct device_attribute *dummy,
309 const char *buf, size_t count)
311 struct i2c_client *client = to_i2c_client(dev);
312 struct lm90_data *data = i2c_get_clientdata(client);
313 long val = simple_strtol(buf, NULL, 10);
314 long hyst;
316 mutex_lock(&data->update_lock);
317 hyst = TEMP1_FROM_REG(data->temp8[3]) - val;
318 i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST,
319 HYST_TO_REG(hyst));
320 mutex_unlock(&data->update_lock);
321 return count;
324 static ssize_t show_alarms(struct device *dev, struct device_attribute *dummy,
325 char *buf)
327 struct lm90_data *data = lm90_update_device(dev);
328 return sprintf(buf, "%d\n", data->alarms);
331 static ssize_t show_alarm(struct device *dev, struct device_attribute
332 *devattr, char *buf)
334 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
335 struct lm90_data *data = lm90_update_device(dev);
336 int bitnr = attr->index;
338 return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
341 static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp8, NULL, 0);
342 static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp11, NULL, 0);
343 static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp8,
344 set_temp8, 1);
345 static SENSOR_DEVICE_ATTR(temp2_min, S_IWUSR | S_IRUGO, show_temp11,
346 set_temp11, 1);
347 static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp8,
348 set_temp8, 2);
349 static SENSOR_DEVICE_ATTR(temp2_max, S_IWUSR | S_IRUGO, show_temp11,
350 set_temp11, 2);
351 static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp8,
352 set_temp8, 3);
353 static SENSOR_DEVICE_ATTR(temp2_crit, S_IWUSR | S_IRUGO, show_temp8,
354 set_temp8, 4);
355 static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temphyst,
356 set_temphyst, 3);
357 static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_temphyst, NULL, 4);
359 /* Individual alarm files */
360 static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 0);
361 static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 1);
362 static SENSOR_DEVICE_ATTR(temp2_input_fault, S_IRUGO, show_alarm, NULL, 2);
363 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
364 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 4);
365 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 5);
366 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
367 /* Raw alarm file for compatibility */
368 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
370 static struct attribute *lm90_attributes[] = {
371 &sensor_dev_attr_temp1_input.dev_attr.attr,
372 &sensor_dev_attr_temp2_input.dev_attr.attr,
373 &sensor_dev_attr_temp1_min.dev_attr.attr,
374 &sensor_dev_attr_temp2_min.dev_attr.attr,
375 &sensor_dev_attr_temp1_max.dev_attr.attr,
376 &sensor_dev_attr_temp2_max.dev_attr.attr,
377 &sensor_dev_attr_temp1_crit.dev_attr.attr,
378 &sensor_dev_attr_temp2_crit.dev_attr.attr,
379 &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
380 &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
382 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
383 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
384 &sensor_dev_attr_temp2_input_fault.dev_attr.attr,
385 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
386 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
387 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
388 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
389 &dev_attr_alarms.attr,
390 NULL
393 static const struct attribute_group lm90_group = {
394 .attrs = lm90_attributes,
397 /* pec used for ADM1032 only */
398 static ssize_t show_pec(struct device *dev, struct device_attribute *dummy,
399 char *buf)
401 struct i2c_client *client = to_i2c_client(dev);
402 return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
405 static ssize_t set_pec(struct device *dev, struct device_attribute *dummy,
406 const char *buf, size_t count)
408 struct i2c_client *client = to_i2c_client(dev);
409 long val = simple_strtol(buf, NULL, 10);
411 switch (val) {
412 case 0:
413 client->flags &= ~I2C_CLIENT_PEC;
414 break;
415 case 1:
416 client->flags |= I2C_CLIENT_PEC;
417 break;
418 default:
419 return -EINVAL;
422 return count;
425 static DEVICE_ATTR(pec, S_IWUSR | S_IRUGO, show_pec, set_pec);
428 * Real code
431 /* The ADM1032 supports PEC but not on write byte transactions, so we need
432 to explicitely ask for a transaction without PEC. */
433 static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value)
435 return i2c_smbus_xfer(client->adapter, client->addr,
436 client->flags & ~I2C_CLIENT_PEC,
437 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
440 /* It is assumed that client->update_lock is held (unless we are in
441 detection or initialization steps). This matters when PEC is enabled,
442 because we don't want the address pointer to change between the write
443 byte and the read byte transactions. */
444 static int lm90_read_reg(struct i2c_client* client, u8 reg, u8 *value)
446 int err;
448 if (client->flags & I2C_CLIENT_PEC) {
449 err = adm1032_write_byte(client, reg);
450 if (err >= 0)
451 err = i2c_smbus_read_byte(client);
452 } else
453 err = i2c_smbus_read_byte_data(client, reg);
455 if (err < 0) {
456 dev_warn(&client->dev, "Register %#02x read failed (%d)\n",
457 reg, err);
458 return err;
460 *value = err;
462 return 0;
465 static int lm90_attach_adapter(struct i2c_adapter *adapter)
467 if (!(adapter->class & I2C_CLASS_HWMON))
468 return 0;
469 return i2c_probe(adapter, &addr_data, lm90_detect);
473 * The following function does more than just detection. If detection
474 * succeeds, it also registers the new chip.
476 static int lm90_detect(struct i2c_adapter *adapter, int address, int kind)
478 struct i2c_client *new_client;
479 struct lm90_data *data;
480 int err = 0;
481 const char *name = "";
483 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
484 goto exit;
486 if (!(data = kzalloc(sizeof(struct lm90_data), GFP_KERNEL))) {
487 err = -ENOMEM;
488 goto exit;
491 /* The common I2C client data is placed right before the
492 LM90-specific data. */
493 new_client = &data->client;
494 i2c_set_clientdata(new_client, data);
495 new_client->addr = address;
496 new_client->adapter = adapter;
497 new_client->driver = &lm90_driver;
498 new_client->flags = 0;
501 * Now we do the remaining detection. A negative kind means that
502 * the driver was loaded with no force parameter (default), so we
503 * must both detect and identify the chip. A zero kind means that
504 * the driver was loaded with the force parameter, the detection
505 * step shall be skipped. A positive kind means that the driver
506 * was loaded with the force parameter and a given kind of chip is
507 * requested, so both the detection and the identification steps
508 * are skipped.
511 /* Default to an LM90 if forced */
512 if (kind == 0)
513 kind = lm90;
515 if (kind < 0) { /* detection and identification */
516 u8 man_id, chip_id, reg_config1, reg_convrate;
518 if (lm90_read_reg(new_client, LM90_REG_R_MAN_ID,
519 &man_id) < 0
520 || lm90_read_reg(new_client, LM90_REG_R_CHIP_ID,
521 &chip_id) < 0
522 || lm90_read_reg(new_client, LM90_REG_R_CONFIG1,
523 &reg_config1) < 0
524 || lm90_read_reg(new_client, LM90_REG_R_CONVRATE,
525 &reg_convrate) < 0)
526 goto exit_free;
528 if (man_id == 0x01) { /* National Semiconductor */
529 u8 reg_config2;
531 if (lm90_read_reg(new_client, LM90_REG_R_CONFIG2,
532 &reg_config2) < 0)
533 goto exit_free;
535 if ((reg_config1 & 0x2A) == 0x00
536 && (reg_config2 & 0xF8) == 0x00
537 && reg_convrate <= 0x09) {
538 if (address == 0x4C
539 && (chip_id & 0xF0) == 0x20) { /* LM90 */
540 kind = lm90;
541 } else
542 if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */
543 kind = lm99;
544 } else
545 if (address == 0x4C
546 && (chip_id & 0xF0) == 0x10) { /* LM86 */
547 kind = lm86;
550 } else
551 if (man_id == 0x41) { /* Analog Devices */
552 if ((chip_id & 0xF0) == 0x40 /* ADM1032 */
553 && (reg_config1 & 0x3F) == 0x00
554 && reg_convrate <= 0x0A) {
555 kind = adm1032;
556 } else
557 if (chip_id == 0x51 /* ADT7461 */
558 && (reg_config1 & 0x1F) == 0x00 /* check compat mode */
559 && reg_convrate <= 0x0A) {
560 kind = adt7461;
562 } else
563 if (man_id == 0x4D) { /* Maxim */
565 * The Maxim variants do NOT have a chip_id register.
566 * Reading from that address will return the last read
567 * value, which in our case is those of the man_id
568 * register. Likewise, the config1 register seems to
569 * lack a low nibble, so the value will be those of the
570 * previous read, so in our case those of the man_id
571 * register.
573 if (chip_id == man_id
574 && (reg_config1 & 0x1F) == (man_id & 0x0F)
575 && reg_convrate <= 0x09) {
576 kind = max6657;
580 if (kind <= 0) { /* identification failed */
581 dev_info(&adapter->dev,
582 "Unsupported chip (man_id=0x%02X, "
583 "chip_id=0x%02X).\n", man_id, chip_id);
584 goto exit_free;
588 if (kind == lm90) {
589 name = "lm90";
590 } else if (kind == adm1032) {
591 name = "adm1032";
592 /* The ADM1032 supports PEC, but only if combined
593 transactions are not used. */
594 if (i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
595 new_client->flags |= I2C_CLIENT_PEC;
596 } else if (kind == lm99) {
597 name = "lm99";
598 } else if (kind == lm86) {
599 name = "lm86";
600 } else if (kind == max6657) {
601 name = "max6657";
602 } else if (kind == adt7461) {
603 name = "adt7461";
606 /* We can fill in the remaining client fields */
607 strlcpy(new_client->name, name, I2C_NAME_SIZE);
608 data->valid = 0;
609 data->kind = kind;
610 mutex_init(&data->update_lock);
612 /* Tell the I2C layer a new client has arrived */
613 if ((err = i2c_attach_client(new_client)))
614 goto exit_free;
616 /* Initialize the LM90 chip */
617 lm90_init_client(new_client);
619 /* Register sysfs hooks */
620 if ((err = sysfs_create_group(&new_client->dev.kobj, &lm90_group)))
621 goto exit_detach;
622 if (new_client->flags & I2C_CLIENT_PEC) {
623 if ((err = device_create_file(&new_client->dev,
624 &dev_attr_pec)))
625 goto exit_remove_files;
628 data->class_dev = hwmon_device_register(&new_client->dev);
629 if (IS_ERR(data->class_dev)) {
630 err = PTR_ERR(data->class_dev);
631 goto exit_remove_files;
634 return 0;
636 exit_remove_files:
637 sysfs_remove_group(&new_client->dev.kobj, &lm90_group);
638 device_remove_file(&new_client->dev, &dev_attr_pec);
639 exit_detach:
640 i2c_detach_client(new_client);
641 exit_free:
642 kfree(data);
643 exit:
644 return err;
647 static void lm90_init_client(struct i2c_client *client)
649 u8 config;
652 * Start the conversions.
654 i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE,
655 5); /* 2 Hz */
656 if (lm90_read_reg(client, LM90_REG_R_CONFIG1, &config) < 0) {
657 dev_warn(&client->dev, "Initialization failed!\n");
658 return;
660 if (config & 0x40)
661 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
662 config & 0xBF); /* run */
665 static int lm90_detach_client(struct i2c_client *client)
667 struct lm90_data *data = i2c_get_clientdata(client);
668 int err;
670 hwmon_device_unregister(data->class_dev);
671 sysfs_remove_group(&client->dev.kobj, &lm90_group);
672 device_remove_file(&client->dev, &dev_attr_pec);
674 if ((err = i2c_detach_client(client)))
675 return err;
677 kfree(data);
678 return 0;
681 static struct lm90_data *lm90_update_device(struct device *dev)
683 struct i2c_client *client = to_i2c_client(dev);
684 struct lm90_data *data = i2c_get_clientdata(client);
686 mutex_lock(&data->update_lock);
688 if (time_after(jiffies, data->last_updated + HZ * 2) || !data->valid) {
689 u8 oldh, newh, l;
691 dev_dbg(&client->dev, "Updating lm90 data.\n");
692 lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP, &data->temp8[0]);
693 lm90_read_reg(client, LM90_REG_R_LOCAL_LOW, &data->temp8[1]);
694 lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH, &data->temp8[2]);
695 lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT, &data->temp8[3]);
696 lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT, &data->temp8[4]);
697 lm90_read_reg(client, LM90_REG_R_TCRIT_HYST, &data->temp_hyst);
700 * There is a trick here. We have to read two registers to
701 * have the remote sensor temperature, but we have to beware
702 * a conversion could occur inbetween the readings. The
703 * datasheet says we should either use the one-shot
704 * conversion register, which we don't want to do (disables
705 * hardware monitoring) or monitor the busy bit, which is
706 * impossible (we can't read the values and monitor that bit
707 * at the exact same time). So the solution used here is to
708 * read the high byte once, then the low byte, then the high
709 * byte again. If the new high byte matches the old one,
710 * then we have a valid reading. Else we have to read the low
711 * byte again, and now we believe we have a correct reading.
713 if (lm90_read_reg(client, LM90_REG_R_REMOTE_TEMPH, &oldh) == 0
714 && lm90_read_reg(client, LM90_REG_R_REMOTE_TEMPL, &l) == 0
715 && lm90_read_reg(client, LM90_REG_R_REMOTE_TEMPH, &newh) == 0
716 && (newh == oldh
717 || lm90_read_reg(client, LM90_REG_R_REMOTE_TEMPL, &l) == 0))
718 data->temp11[0] = (newh << 8) | l;
720 if (lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &newh) == 0
721 && lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL, &l) == 0)
722 data->temp11[1] = (newh << 8) | l;
723 if (lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &newh) == 0
724 && lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL, &l) == 0)
725 data->temp11[2] = (newh << 8) | l;
726 lm90_read_reg(client, LM90_REG_R_STATUS, &data->alarms);
728 data->last_updated = jiffies;
729 data->valid = 1;
732 mutex_unlock(&data->update_lock);
734 return data;
737 static int __init sensors_lm90_init(void)
739 return i2c_add_driver(&lm90_driver);
742 static void __exit sensors_lm90_exit(void)
744 i2c_del_driver(&lm90_driver);
747 MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
748 MODULE_DESCRIPTION("LM90/ADM1032 driver");
749 MODULE_LICENSE("GPL");
751 module_init(sensors_lm90_init);
752 module_exit(sensors_lm90_exit);