1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
34 #define MLOG_MASK_PREFIX ML_JOURNAL
35 #include <cluster/masklog.h>
40 #include "blockcheck.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
47 #include "localalloc.h"
54 #include "buffer_head_io.h"
56 DEFINE_SPINLOCK(trans_inc_lock
);
58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
60 static int ocfs2_force_read_journal(struct inode
*inode
);
61 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
62 int node_num
, int slot_num
);
63 static int __ocfs2_recovery_thread(void *arg
);
64 static int ocfs2_commit_cache(struct ocfs2_super
*osb
);
65 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
);
66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
67 int dirty
, int replayed
);
68 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
70 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
72 static int ocfs2_commit_thread(void *arg
);
73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
75 struct ocfs2_dinode
*la_dinode
,
76 struct ocfs2_dinode
*tl_dinode
,
77 struct ocfs2_quota_recovery
*qrec
);
79 static inline int ocfs2_wait_on_mount(struct ocfs2_super
*osb
)
81 return __ocfs2_wait_on_mount(osb
, 0);
84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super
*osb
)
86 return __ocfs2_wait_on_mount(osb
, 1);
90 * This replay_map is to track online/offline slots, so we could recover
91 * offline slots during recovery and mount
94 enum ocfs2_replay_state
{
95 REPLAY_UNNEEDED
= 0, /* Replay is not needed, so ignore this map */
96 REPLAY_NEEDED
, /* Replay slots marked in rm_replay_slots */
97 REPLAY_DONE
/* Replay was already queued */
100 struct ocfs2_replay_map
{
101 unsigned int rm_slots
;
102 enum ocfs2_replay_state rm_state
;
103 unsigned char rm_replay_slots
[0];
106 void ocfs2_replay_map_set_state(struct ocfs2_super
*osb
, int state
)
108 if (!osb
->replay_map
)
111 /* If we've already queued the replay, we don't have any more to do */
112 if (osb
->replay_map
->rm_state
== REPLAY_DONE
)
115 osb
->replay_map
->rm_state
= state
;
118 int ocfs2_compute_replay_slots(struct ocfs2_super
*osb
)
120 struct ocfs2_replay_map
*replay_map
;
123 /* If replay map is already set, we don't do it again */
127 replay_map
= kzalloc(sizeof(struct ocfs2_replay_map
) +
128 (osb
->max_slots
* sizeof(char)), GFP_KERNEL
);
135 spin_lock(&osb
->osb_lock
);
137 replay_map
->rm_slots
= osb
->max_slots
;
138 replay_map
->rm_state
= REPLAY_UNNEEDED
;
140 /* set rm_replay_slots for offline slot(s) */
141 for (i
= 0; i
< replay_map
->rm_slots
; i
++) {
142 if (ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
) == -ENOENT
)
143 replay_map
->rm_replay_slots
[i
] = 1;
146 osb
->replay_map
= replay_map
;
147 spin_unlock(&osb
->osb_lock
);
151 void ocfs2_queue_replay_slots(struct ocfs2_super
*osb
)
153 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
159 if (replay_map
->rm_state
!= REPLAY_NEEDED
)
162 for (i
= 0; i
< replay_map
->rm_slots
; i
++)
163 if (replay_map
->rm_replay_slots
[i
])
164 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
,
166 replay_map
->rm_state
= REPLAY_DONE
;
169 void ocfs2_free_replay_slots(struct ocfs2_super
*osb
)
171 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
173 if (!osb
->replay_map
)
177 osb
->replay_map
= NULL
;
180 int ocfs2_recovery_init(struct ocfs2_super
*osb
)
182 struct ocfs2_recovery_map
*rm
;
184 mutex_init(&osb
->recovery_lock
);
185 osb
->disable_recovery
= 0;
186 osb
->recovery_thread_task
= NULL
;
187 init_waitqueue_head(&osb
->recovery_event
);
189 rm
= kzalloc(sizeof(struct ocfs2_recovery_map
) +
190 osb
->max_slots
* sizeof(unsigned int),
197 rm
->rm_entries
= (unsigned int *)((char *)rm
+
198 sizeof(struct ocfs2_recovery_map
));
199 osb
->recovery_map
= rm
;
204 /* we can't grab the goofy sem lock from inside wait_event, so we use
205 * memory barriers to make sure that we'll see the null task before
207 static int ocfs2_recovery_thread_running(struct ocfs2_super
*osb
)
210 return osb
->recovery_thread_task
!= NULL
;
213 void ocfs2_recovery_exit(struct ocfs2_super
*osb
)
215 struct ocfs2_recovery_map
*rm
;
217 /* disable any new recovery threads and wait for any currently
218 * running ones to exit. Do this before setting the vol_state. */
219 mutex_lock(&osb
->recovery_lock
);
220 osb
->disable_recovery
= 1;
221 mutex_unlock(&osb
->recovery_lock
);
222 wait_event(osb
->recovery_event
, !ocfs2_recovery_thread_running(osb
));
224 /* At this point, we know that no more recovery threads can be
225 * launched, so wait for any recovery completion work to
227 flush_workqueue(ocfs2_wq
);
230 * Now that recovery is shut down, and the osb is about to be
231 * freed, the osb_lock is not taken here.
233 rm
= osb
->recovery_map
;
234 /* XXX: Should we bug if there are dirty entries? */
239 static int __ocfs2_recovery_map_test(struct ocfs2_super
*osb
,
240 unsigned int node_num
)
243 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
245 assert_spin_locked(&osb
->osb_lock
);
247 for (i
= 0; i
< rm
->rm_used
; i
++) {
248 if (rm
->rm_entries
[i
] == node_num
)
255 /* Behaves like test-and-set. Returns the previous value */
256 static int ocfs2_recovery_map_set(struct ocfs2_super
*osb
,
257 unsigned int node_num
)
259 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
261 spin_lock(&osb
->osb_lock
);
262 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
263 spin_unlock(&osb
->osb_lock
);
267 /* XXX: Can this be exploited? Not from o2dlm... */
268 BUG_ON(rm
->rm_used
>= osb
->max_slots
);
270 rm
->rm_entries
[rm
->rm_used
] = node_num
;
272 spin_unlock(&osb
->osb_lock
);
277 static void ocfs2_recovery_map_clear(struct ocfs2_super
*osb
,
278 unsigned int node_num
)
281 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
283 spin_lock(&osb
->osb_lock
);
285 for (i
= 0; i
< rm
->rm_used
; i
++) {
286 if (rm
->rm_entries
[i
] == node_num
)
290 if (i
< rm
->rm_used
) {
291 /* XXX: be careful with the pointer math */
292 memmove(&(rm
->rm_entries
[i
]), &(rm
->rm_entries
[i
+ 1]),
293 (rm
->rm_used
- i
- 1) * sizeof(unsigned int));
297 spin_unlock(&osb
->osb_lock
);
300 static int ocfs2_commit_cache(struct ocfs2_super
*osb
)
303 unsigned int flushed
;
304 unsigned long old_id
;
305 struct ocfs2_journal
*journal
= NULL
;
309 journal
= osb
->journal
;
311 /* Flush all pending commits and checkpoint the journal. */
312 down_write(&journal
->j_trans_barrier
);
314 if (atomic_read(&journal
->j_num_trans
) == 0) {
315 up_write(&journal
->j_trans_barrier
);
316 mlog(0, "No transactions for me to flush!\n");
320 jbd2_journal_lock_updates(journal
->j_journal
);
321 status
= jbd2_journal_flush(journal
->j_journal
);
322 jbd2_journal_unlock_updates(journal
->j_journal
);
324 up_write(&journal
->j_trans_barrier
);
329 old_id
= ocfs2_inc_trans_id(journal
);
331 flushed
= atomic_read(&journal
->j_num_trans
);
332 atomic_set(&journal
->j_num_trans
, 0);
333 up_write(&journal
->j_trans_barrier
);
335 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
336 journal
->j_trans_id
, flushed
);
338 ocfs2_wake_downconvert_thread(osb
);
339 wake_up(&journal
->j_checkpointed
);
345 /* pass it NULL and it will allocate a new handle object for you. If
346 * you pass it a handle however, it may still return error, in which
347 * case it has free'd the passed handle for you. */
348 handle_t
*ocfs2_start_trans(struct ocfs2_super
*osb
, int max_buffs
)
350 journal_t
*journal
= osb
->journal
->j_journal
;
353 BUG_ON(!osb
|| !osb
->journal
->j_journal
);
355 if (ocfs2_is_hard_readonly(osb
))
356 return ERR_PTR(-EROFS
);
358 BUG_ON(osb
->journal
->j_state
== OCFS2_JOURNAL_FREE
);
359 BUG_ON(max_buffs
<= 0);
361 /* Nested transaction? Just return the handle... */
362 if (journal_current_handle())
363 return jbd2_journal_start(journal
, max_buffs
);
365 down_read(&osb
->journal
->j_trans_barrier
);
367 handle
= jbd2_journal_start(journal
, max_buffs
);
368 if (IS_ERR(handle
)) {
369 up_read(&osb
->journal
->j_trans_barrier
);
371 mlog_errno(PTR_ERR(handle
));
373 if (is_journal_aborted(journal
)) {
374 ocfs2_abort(osb
->sb
, "Detected aborted journal");
375 handle
= ERR_PTR(-EROFS
);
378 if (!ocfs2_mount_local(osb
))
379 atomic_inc(&(osb
->journal
->j_num_trans
));
385 int ocfs2_commit_trans(struct ocfs2_super
*osb
,
389 struct ocfs2_journal
*journal
= osb
->journal
;
393 nested
= handle
->h_ref
> 1;
394 ret
= jbd2_journal_stop(handle
);
399 up_read(&journal
->j_trans_barrier
);
405 * 'nblocks' is what you want to add to the current
406 * transaction. extend_trans will either extend the current handle by
407 * nblocks, or commit it and start a new one with nblocks credits.
409 * This might call jbd2_journal_restart() which will commit dirty buffers
410 * and then restart the transaction. Before calling
411 * ocfs2_extend_trans(), any changed blocks should have been
412 * dirtied. After calling it, all blocks which need to be changed must
413 * go through another set of journal_access/journal_dirty calls.
415 * WARNING: This will not release any semaphores or disk locks taken
416 * during the transaction, so make sure they were taken *before*
417 * start_trans or we'll have ordering deadlocks.
419 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
420 * good because transaction ids haven't yet been recorded on the
421 * cluster locks associated with this handle.
423 int ocfs2_extend_trans(handle_t
*handle
, int nblocks
)
432 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks
);
434 #ifdef CONFIG_OCFS2_DEBUG_FS
437 status
= jbd2_journal_extend(handle
, nblocks
);
446 "jbd2_journal_extend failed, trying "
447 "jbd2_journal_restart\n");
448 status
= jbd2_journal_restart(handle
, nblocks
);
462 struct ocfs2_triggers
{
463 struct jbd2_buffer_trigger_type ot_triggers
;
467 static inline struct ocfs2_triggers
*to_ocfs2_trigger(struct jbd2_buffer_trigger_type
*triggers
)
469 return container_of(triggers
, struct ocfs2_triggers
, ot_triggers
);
472 static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type
*triggers
,
473 struct buffer_head
*bh
,
474 void *data
, size_t size
)
476 struct ocfs2_triggers
*ot
= to_ocfs2_trigger(triggers
);
479 * We aren't guaranteed to have the superblock here, so we
480 * must unconditionally compute the ecc data.
481 * __ocfs2_journal_access() will only set the triggers if
482 * metaecc is enabled.
484 ocfs2_block_check_compute(data
, size
, data
+ ot
->ot_offset
);
488 * Quota blocks have their own trigger because the struct ocfs2_block_check
489 * offset depends on the blocksize.
491 static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type
*triggers
,
492 struct buffer_head
*bh
,
493 void *data
, size_t size
)
495 struct ocfs2_disk_dqtrailer
*dqt
=
496 ocfs2_block_dqtrailer(size
, data
);
499 * We aren't guaranteed to have the superblock here, so we
500 * must unconditionally compute the ecc data.
501 * __ocfs2_journal_access() will only set the triggers if
502 * metaecc is enabled.
504 ocfs2_block_check_compute(data
, size
, &dqt
->dq_check
);
508 * Directory blocks also have their own trigger because the
509 * struct ocfs2_block_check offset depends on the blocksize.
511 static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type
*triggers
,
512 struct buffer_head
*bh
,
513 void *data
, size_t size
)
515 struct ocfs2_dir_block_trailer
*trailer
=
516 ocfs2_dir_trailer_from_size(size
, data
);
519 * We aren't guaranteed to have the superblock here, so we
520 * must unconditionally compute the ecc data.
521 * __ocfs2_journal_access() will only set the triggers if
522 * metaecc is enabled.
524 ocfs2_block_check_compute(data
, size
, &trailer
->db_check
);
527 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type
*triggers
,
528 struct buffer_head
*bh
)
531 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
532 "bh->b_blocknr = %llu\n",
534 (unsigned long long)bh
->b_blocknr
);
536 /* We aren't guaranteed to have the superblock here - but if we
537 * don't, it'll just crash. */
538 ocfs2_error(bh
->b_assoc_map
->host
->i_sb
,
539 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
542 static struct ocfs2_triggers di_triggers
= {
544 .t_commit
= ocfs2_commit_trigger
,
545 .t_abort
= ocfs2_abort_trigger
,
547 .ot_offset
= offsetof(struct ocfs2_dinode
, i_check
),
550 static struct ocfs2_triggers eb_triggers
= {
552 .t_commit
= ocfs2_commit_trigger
,
553 .t_abort
= ocfs2_abort_trigger
,
555 .ot_offset
= offsetof(struct ocfs2_extent_block
, h_check
),
558 static struct ocfs2_triggers rb_triggers
= {
560 .t_commit
= ocfs2_commit_trigger
,
561 .t_abort
= ocfs2_abort_trigger
,
563 .ot_offset
= offsetof(struct ocfs2_refcount_block
, rf_check
),
566 static struct ocfs2_triggers gd_triggers
= {
568 .t_commit
= ocfs2_commit_trigger
,
569 .t_abort
= ocfs2_abort_trigger
,
571 .ot_offset
= offsetof(struct ocfs2_group_desc
, bg_check
),
574 static struct ocfs2_triggers db_triggers
= {
576 .t_commit
= ocfs2_db_commit_trigger
,
577 .t_abort
= ocfs2_abort_trigger
,
581 static struct ocfs2_triggers xb_triggers
= {
583 .t_commit
= ocfs2_commit_trigger
,
584 .t_abort
= ocfs2_abort_trigger
,
586 .ot_offset
= offsetof(struct ocfs2_xattr_block
, xb_check
),
589 static struct ocfs2_triggers dq_triggers
= {
591 .t_commit
= ocfs2_dq_commit_trigger
,
592 .t_abort
= ocfs2_abort_trigger
,
596 static struct ocfs2_triggers dr_triggers
= {
598 .t_commit
= ocfs2_commit_trigger
,
599 .t_abort
= ocfs2_abort_trigger
,
601 .ot_offset
= offsetof(struct ocfs2_dx_root_block
, dr_check
),
604 static struct ocfs2_triggers dl_triggers
= {
606 .t_commit
= ocfs2_commit_trigger
,
607 .t_abort
= ocfs2_abort_trigger
,
609 .ot_offset
= offsetof(struct ocfs2_dx_leaf
, dl_check
),
612 static int __ocfs2_journal_access(handle_t
*handle
,
613 struct ocfs2_caching_info
*ci
,
614 struct buffer_head
*bh
,
615 struct ocfs2_triggers
*triggers
,
619 struct ocfs2_super
*osb
=
620 OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
622 BUG_ON(!ci
|| !ci
->ci_ops
);
626 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
627 (unsigned long long)bh
->b_blocknr
, type
,
628 (type
== OCFS2_JOURNAL_ACCESS_CREATE
) ?
629 "OCFS2_JOURNAL_ACCESS_CREATE" :
630 "OCFS2_JOURNAL_ACCESS_WRITE",
633 /* we can safely remove this assertion after testing. */
634 if (!buffer_uptodate(bh
)) {
635 mlog(ML_ERROR
, "giving me a buffer that's not uptodate!\n");
636 mlog(ML_ERROR
, "b_blocknr=%llu\n",
637 (unsigned long long)bh
->b_blocknr
);
641 /* Set the current transaction information on the ci so
642 * that the locking code knows whether it can drop it's locks
643 * on this ci or not. We're protected from the commit
644 * thread updating the current transaction id until
645 * ocfs2_commit_trans() because ocfs2_start_trans() took
646 * j_trans_barrier for us. */
647 ocfs2_set_ci_lock_trans(osb
->journal
, ci
);
649 ocfs2_metadata_cache_io_lock(ci
);
651 case OCFS2_JOURNAL_ACCESS_CREATE
:
652 case OCFS2_JOURNAL_ACCESS_WRITE
:
653 status
= jbd2_journal_get_write_access(handle
, bh
);
656 case OCFS2_JOURNAL_ACCESS_UNDO
:
657 status
= jbd2_journal_get_undo_access(handle
, bh
);
662 mlog(ML_ERROR
, "Uknown access type!\n");
664 if (!status
&& ocfs2_meta_ecc(osb
) && triggers
)
665 jbd2_journal_set_triggers(bh
, &triggers
->ot_triggers
);
666 ocfs2_metadata_cache_io_unlock(ci
);
669 mlog(ML_ERROR
, "Error %d getting %d access to buffer!\n",
676 int ocfs2_journal_access_di(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
677 struct buffer_head
*bh
, int type
)
679 return __ocfs2_journal_access(handle
, ci
, bh
, &di_triggers
, type
);
682 int ocfs2_journal_access_eb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
683 struct buffer_head
*bh
, int type
)
685 return __ocfs2_journal_access(handle
, ci
, bh
, &eb_triggers
, type
);
688 int ocfs2_journal_access_rb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
689 struct buffer_head
*bh
, int type
)
691 return __ocfs2_journal_access(handle
, ci
, bh
, &rb_triggers
,
695 int ocfs2_journal_access_gd(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
696 struct buffer_head
*bh
, int type
)
698 return __ocfs2_journal_access(handle
, ci
, bh
, &gd_triggers
, type
);
701 int ocfs2_journal_access_db(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
702 struct buffer_head
*bh
, int type
)
704 return __ocfs2_journal_access(handle
, ci
, bh
, &db_triggers
, type
);
707 int ocfs2_journal_access_xb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
708 struct buffer_head
*bh
, int type
)
710 return __ocfs2_journal_access(handle
, ci
, bh
, &xb_triggers
, type
);
713 int ocfs2_journal_access_dq(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
714 struct buffer_head
*bh
, int type
)
716 return __ocfs2_journal_access(handle
, ci
, bh
, &dq_triggers
, type
);
719 int ocfs2_journal_access_dr(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
720 struct buffer_head
*bh
, int type
)
722 return __ocfs2_journal_access(handle
, ci
, bh
, &dr_triggers
, type
);
725 int ocfs2_journal_access_dl(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
726 struct buffer_head
*bh
, int type
)
728 return __ocfs2_journal_access(handle
, ci
, bh
, &dl_triggers
, type
);
731 int ocfs2_journal_access(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
732 struct buffer_head
*bh
, int type
)
734 return __ocfs2_journal_access(handle
, ci
, bh
, NULL
, type
);
737 int ocfs2_journal_dirty(handle_t
*handle
,
738 struct buffer_head
*bh
)
742 mlog_entry("(bh->b_blocknr=%llu)\n",
743 (unsigned long long)bh
->b_blocknr
);
745 status
= jbd2_journal_dirty_metadata(handle
, bh
);
747 mlog(ML_ERROR
, "Could not dirty metadata buffer. "
748 "(bh->b_blocknr=%llu)\n",
749 (unsigned long long)bh
->b_blocknr
);
755 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
757 void ocfs2_set_journal_params(struct ocfs2_super
*osb
)
759 journal_t
*journal
= osb
->journal
->j_journal
;
760 unsigned long commit_interval
= OCFS2_DEFAULT_COMMIT_INTERVAL
;
762 if (osb
->osb_commit_interval
)
763 commit_interval
= osb
->osb_commit_interval
;
765 spin_lock(&journal
->j_state_lock
);
766 journal
->j_commit_interval
= commit_interval
;
767 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
768 journal
->j_flags
|= JBD2_BARRIER
;
770 journal
->j_flags
&= ~JBD2_BARRIER
;
771 spin_unlock(&journal
->j_state_lock
);
774 int ocfs2_journal_init(struct ocfs2_journal
*journal
, int *dirty
)
777 struct inode
*inode
= NULL
; /* the journal inode */
778 journal_t
*j_journal
= NULL
;
779 struct ocfs2_dinode
*di
= NULL
;
780 struct buffer_head
*bh
= NULL
;
781 struct ocfs2_super
*osb
;
788 osb
= journal
->j_osb
;
790 /* already have the inode for our journal */
791 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
798 if (is_bad_inode(inode
)) {
799 mlog(ML_ERROR
, "access error (bad inode)\n");
806 SET_INODE_JOURNAL(inode
);
807 OCFS2_I(inode
)->ip_open_count
++;
809 /* Skip recovery waits here - journal inode metadata never
810 * changes in a live cluster so it can be considered an
811 * exception to the rule. */
812 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
814 if (status
!= -ERESTARTSYS
)
815 mlog(ML_ERROR
, "Could not get lock on journal!\n");
820 di
= (struct ocfs2_dinode
*)bh
->b_data
;
822 if (inode
->i_size
< OCFS2_MIN_JOURNAL_SIZE
) {
823 mlog(ML_ERROR
, "Journal file size (%lld) is too small!\n",
829 mlog(0, "inode->i_size = %lld\n", inode
->i_size
);
830 mlog(0, "inode->i_blocks = %llu\n",
831 (unsigned long long)inode
->i_blocks
);
832 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode
)->ip_clusters
);
834 /* call the kernels journal init function now */
835 j_journal
= jbd2_journal_init_inode(inode
);
836 if (j_journal
== NULL
) {
837 mlog(ML_ERROR
, "Linux journal layer error\n");
842 mlog(0, "Returned from jbd2_journal_init_inode\n");
843 mlog(0, "j_journal->j_maxlen = %u\n", j_journal
->j_maxlen
);
845 *dirty
= (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
846 OCFS2_JOURNAL_DIRTY_FL
);
848 journal
->j_journal
= j_journal
;
849 journal
->j_inode
= inode
;
852 ocfs2_set_journal_params(osb
);
854 journal
->j_state
= OCFS2_JOURNAL_LOADED
;
860 ocfs2_inode_unlock(inode
, 1);
863 OCFS2_I(inode
)->ip_open_count
--;
872 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode
*di
)
874 le32_add_cpu(&(di
->id1
.journal1
.ij_recovery_generation
), 1);
877 static u32
ocfs2_get_recovery_generation(struct ocfs2_dinode
*di
)
879 return le32_to_cpu(di
->id1
.journal1
.ij_recovery_generation
);
882 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
883 int dirty
, int replayed
)
887 struct ocfs2_journal
*journal
= osb
->journal
;
888 struct buffer_head
*bh
= journal
->j_bh
;
889 struct ocfs2_dinode
*fe
;
893 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
895 /* The journal bh on the osb always comes from ocfs2_journal_init()
896 * and was validated there inside ocfs2_inode_lock_full(). It's a
897 * code bug if we mess it up. */
898 BUG_ON(!OCFS2_IS_VALID_DINODE(fe
));
900 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
902 flags
|= OCFS2_JOURNAL_DIRTY_FL
;
904 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
905 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
908 ocfs2_bump_recovery_generation(fe
);
910 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
911 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(journal
->j_inode
));
920 * If the journal has been kmalloc'd it needs to be freed after this
923 void ocfs2_journal_shutdown(struct ocfs2_super
*osb
)
925 struct ocfs2_journal
*journal
= NULL
;
927 struct inode
*inode
= NULL
;
928 int num_running_trans
= 0;
934 journal
= osb
->journal
;
938 inode
= journal
->j_inode
;
940 if (journal
->j_state
!= OCFS2_JOURNAL_LOADED
)
943 /* need to inc inode use count - jbd2_journal_destroy will iput. */
947 num_running_trans
= atomic_read(&(osb
->journal
->j_num_trans
));
948 if (num_running_trans
> 0)
949 mlog(0, "Shutting down journal: must wait on %d "
950 "running transactions!\n",
953 /* Do a commit_cache here. It will flush our journal, *and*
954 * release any locks that are still held.
955 * set the SHUTDOWN flag and release the trans lock.
956 * the commit thread will take the trans lock for us below. */
957 journal
->j_state
= OCFS2_JOURNAL_IN_SHUTDOWN
;
959 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
960 * drop the trans_lock (which we want to hold until we
961 * completely destroy the journal. */
962 if (osb
->commit_task
) {
963 /* Wait for the commit thread */
964 mlog(0, "Waiting for ocfs2commit to exit....\n");
965 kthread_stop(osb
->commit_task
);
966 osb
->commit_task
= NULL
;
969 BUG_ON(atomic_read(&(osb
->journal
->j_num_trans
)) != 0);
971 if (ocfs2_mount_local(osb
)) {
972 jbd2_journal_lock_updates(journal
->j_journal
);
973 status
= jbd2_journal_flush(journal
->j_journal
);
974 jbd2_journal_unlock_updates(journal
->j_journal
);
981 * Do not toggle if flush was unsuccessful otherwise
982 * will leave dirty metadata in a "clean" journal
984 status
= ocfs2_journal_toggle_dirty(osb
, 0, 0);
989 /* Shutdown the kernel journal system */
990 jbd2_journal_destroy(journal
->j_journal
);
991 journal
->j_journal
= NULL
;
993 OCFS2_I(inode
)->ip_open_count
--;
995 /* unlock our journal */
996 ocfs2_inode_unlock(inode
, 1);
998 brelse(journal
->j_bh
);
999 journal
->j_bh
= NULL
;
1001 journal
->j_state
= OCFS2_JOURNAL_FREE
;
1003 // up_write(&journal->j_trans_barrier);
1010 static void ocfs2_clear_journal_error(struct super_block
*sb
,
1016 olderr
= jbd2_journal_errno(journal
);
1018 mlog(ML_ERROR
, "File system error %d recorded in "
1019 "journal %u.\n", olderr
, slot
);
1020 mlog(ML_ERROR
, "File system on device %s needs checking.\n",
1023 jbd2_journal_ack_err(journal
);
1024 jbd2_journal_clear_err(journal
);
1028 int ocfs2_journal_load(struct ocfs2_journal
*journal
, int local
, int replayed
)
1031 struct ocfs2_super
*osb
;
1037 osb
= journal
->j_osb
;
1039 status
= jbd2_journal_load(journal
->j_journal
);
1041 mlog(ML_ERROR
, "Failed to load journal!\n");
1045 ocfs2_clear_journal_error(osb
->sb
, journal
->j_journal
, osb
->slot_num
);
1047 status
= ocfs2_journal_toggle_dirty(osb
, 1, replayed
);
1053 /* Launch the commit thread */
1055 osb
->commit_task
= kthread_run(ocfs2_commit_thread
, osb
,
1057 if (IS_ERR(osb
->commit_task
)) {
1058 status
= PTR_ERR(osb
->commit_task
);
1059 osb
->commit_task
= NULL
;
1060 mlog(ML_ERROR
, "unable to launch ocfs2commit thread, "
1061 "error=%d", status
);
1065 osb
->commit_task
= NULL
;
1073 /* 'full' flag tells us whether we clear out all blocks or if we just
1074 * mark the journal clean */
1075 int ocfs2_journal_wipe(struct ocfs2_journal
*journal
, int full
)
1083 status
= jbd2_journal_wipe(journal
->j_journal
, full
);
1089 status
= ocfs2_journal_toggle_dirty(journal
->j_osb
, 0, 0);
1098 static int ocfs2_recovery_completed(struct ocfs2_super
*osb
)
1101 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1103 spin_lock(&osb
->osb_lock
);
1104 empty
= (rm
->rm_used
== 0);
1105 spin_unlock(&osb
->osb_lock
);
1110 void ocfs2_wait_for_recovery(struct ocfs2_super
*osb
)
1112 wait_event(osb
->recovery_event
, ocfs2_recovery_completed(osb
));
1116 * JBD Might read a cached version of another nodes journal file. We
1117 * don't want this as this file changes often and we get no
1118 * notification on those changes. The only way to be sure that we've
1119 * got the most up to date version of those blocks then is to force
1120 * read them off disk. Just searching through the buffer cache won't
1121 * work as there may be pages backing this file which are still marked
1122 * up to date. We know things can't change on this file underneath us
1123 * as we have the lock by now :)
1125 static int ocfs2_force_read_journal(struct inode
*inode
)
1129 u64 v_blkno
, p_blkno
, p_blocks
, num_blocks
;
1130 #define CONCURRENT_JOURNAL_FILL 32ULL
1131 struct buffer_head
*bhs
[CONCURRENT_JOURNAL_FILL
];
1135 memset(bhs
, 0, sizeof(struct buffer_head
*) * CONCURRENT_JOURNAL_FILL
);
1137 num_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, inode
->i_size
);
1139 while (v_blkno
< num_blocks
) {
1140 status
= ocfs2_extent_map_get_blocks(inode
, v_blkno
,
1141 &p_blkno
, &p_blocks
, NULL
);
1147 if (p_blocks
> CONCURRENT_JOURNAL_FILL
)
1148 p_blocks
= CONCURRENT_JOURNAL_FILL
;
1150 /* We are reading journal data which should not
1151 * be put in the uptodate cache */
1152 status
= ocfs2_read_blocks_sync(OCFS2_SB(inode
->i_sb
),
1153 p_blkno
, p_blocks
, bhs
);
1159 for(i
= 0; i
< p_blocks
; i
++) {
1164 v_blkno
+= p_blocks
;
1168 for(i
= 0; i
< CONCURRENT_JOURNAL_FILL
; i
++)
1174 struct ocfs2_la_recovery_item
{
1175 struct list_head lri_list
;
1177 struct ocfs2_dinode
*lri_la_dinode
;
1178 struct ocfs2_dinode
*lri_tl_dinode
;
1179 struct ocfs2_quota_recovery
*lri_qrec
;
1182 /* Does the second half of the recovery process. By this point, the
1183 * node is marked clean and can actually be considered recovered,
1184 * hence it's no longer in the recovery map, but there's still some
1185 * cleanup we can do which shouldn't happen within the recovery thread
1186 * as locking in that context becomes very difficult if we are to take
1187 * recovering nodes into account.
1189 * NOTE: This function can and will sleep on recovery of other nodes
1190 * during cluster locking, just like any other ocfs2 process.
1192 void ocfs2_complete_recovery(struct work_struct
*work
)
1195 struct ocfs2_journal
*journal
=
1196 container_of(work
, struct ocfs2_journal
, j_recovery_work
);
1197 struct ocfs2_super
*osb
= journal
->j_osb
;
1198 struct ocfs2_dinode
*la_dinode
, *tl_dinode
;
1199 struct ocfs2_la_recovery_item
*item
, *n
;
1200 struct ocfs2_quota_recovery
*qrec
;
1201 LIST_HEAD(tmp_la_list
);
1205 mlog(0, "completing recovery from keventd\n");
1207 spin_lock(&journal
->j_lock
);
1208 list_splice_init(&journal
->j_la_cleanups
, &tmp_la_list
);
1209 spin_unlock(&journal
->j_lock
);
1211 list_for_each_entry_safe(item
, n
, &tmp_la_list
, lri_list
) {
1212 list_del_init(&item
->lri_list
);
1214 mlog(0, "Complete recovery for slot %d\n", item
->lri_slot
);
1216 ocfs2_wait_on_quotas(osb
);
1218 la_dinode
= item
->lri_la_dinode
;
1220 mlog(0, "Clean up local alloc %llu\n",
1221 (unsigned long long)le64_to_cpu(la_dinode
->i_blkno
));
1223 ret
= ocfs2_complete_local_alloc_recovery(osb
,
1231 tl_dinode
= item
->lri_tl_dinode
;
1233 mlog(0, "Clean up truncate log %llu\n",
1234 (unsigned long long)le64_to_cpu(tl_dinode
->i_blkno
));
1236 ret
= ocfs2_complete_truncate_log_recovery(osb
,
1244 ret
= ocfs2_recover_orphans(osb
, item
->lri_slot
);
1248 qrec
= item
->lri_qrec
;
1250 mlog(0, "Recovering quota files");
1251 ret
= ocfs2_finish_quota_recovery(osb
, qrec
,
1255 /* Recovery info is already freed now */
1261 mlog(0, "Recovery completion\n");
1265 /* NOTE: This function always eats your references to la_dinode and
1266 * tl_dinode, either manually on error, or by passing them to
1267 * ocfs2_complete_recovery */
1268 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
1270 struct ocfs2_dinode
*la_dinode
,
1271 struct ocfs2_dinode
*tl_dinode
,
1272 struct ocfs2_quota_recovery
*qrec
)
1274 struct ocfs2_la_recovery_item
*item
;
1276 item
= kmalloc(sizeof(struct ocfs2_la_recovery_item
), GFP_NOFS
);
1278 /* Though we wish to avoid it, we are in fact safe in
1279 * skipping local alloc cleanup as fsck.ocfs2 is more
1280 * than capable of reclaiming unused space. */
1288 ocfs2_free_quota_recovery(qrec
);
1290 mlog_errno(-ENOMEM
);
1294 INIT_LIST_HEAD(&item
->lri_list
);
1295 item
->lri_la_dinode
= la_dinode
;
1296 item
->lri_slot
= slot_num
;
1297 item
->lri_tl_dinode
= tl_dinode
;
1298 item
->lri_qrec
= qrec
;
1300 spin_lock(&journal
->j_lock
);
1301 list_add_tail(&item
->lri_list
, &journal
->j_la_cleanups
);
1302 queue_work(ocfs2_wq
, &journal
->j_recovery_work
);
1303 spin_unlock(&journal
->j_lock
);
1306 /* Called by the mount code to queue recovery the last part of
1307 * recovery for it's own and offline slot(s). */
1308 void ocfs2_complete_mount_recovery(struct ocfs2_super
*osb
)
1310 struct ocfs2_journal
*journal
= osb
->journal
;
1312 /* No need to queue up our truncate_log as regular cleanup will catch
1314 ocfs2_queue_recovery_completion(journal
, osb
->slot_num
,
1315 osb
->local_alloc_copy
, NULL
, NULL
);
1316 ocfs2_schedule_truncate_log_flush(osb
, 0);
1318 osb
->local_alloc_copy
= NULL
;
1321 /* queue to recover orphan slots for all offline slots */
1322 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1323 ocfs2_queue_replay_slots(osb
);
1324 ocfs2_free_replay_slots(osb
);
1327 void ocfs2_complete_quota_recovery(struct ocfs2_super
*osb
)
1329 if (osb
->quota_rec
) {
1330 ocfs2_queue_recovery_completion(osb
->journal
,
1335 osb
->quota_rec
= NULL
;
1339 static int __ocfs2_recovery_thread(void *arg
)
1341 int status
, node_num
, slot_num
;
1342 struct ocfs2_super
*osb
= arg
;
1343 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1344 int *rm_quota
= NULL
;
1345 int rm_quota_used
= 0, i
;
1346 struct ocfs2_quota_recovery
*qrec
;
1350 status
= ocfs2_wait_on_mount(osb
);
1355 rm_quota
= kzalloc(osb
->max_slots
* sizeof(int), GFP_NOFS
);
1361 status
= ocfs2_super_lock(osb
, 1);
1367 status
= ocfs2_compute_replay_slots(osb
);
1371 /* queue recovery for our own slot */
1372 ocfs2_queue_recovery_completion(osb
->journal
, osb
->slot_num
, NULL
,
1375 spin_lock(&osb
->osb_lock
);
1376 while (rm
->rm_used
) {
1377 /* It's always safe to remove entry zero, as we won't
1378 * clear it until ocfs2_recover_node() has succeeded. */
1379 node_num
= rm
->rm_entries
[0];
1380 spin_unlock(&osb
->osb_lock
);
1381 mlog(0, "checking node %d\n", node_num
);
1382 slot_num
= ocfs2_node_num_to_slot(osb
, node_num
);
1383 if (slot_num
== -ENOENT
) {
1385 mlog(0, "no slot for this node, so no recovery"
1389 mlog(0, "node %d was using slot %d\n", node_num
, slot_num
);
1391 /* It is a bit subtle with quota recovery. We cannot do it
1392 * immediately because we have to obtain cluster locks from
1393 * quota files and we also don't want to just skip it because
1394 * then quota usage would be out of sync until some node takes
1395 * the slot. So we remember which nodes need quota recovery
1396 * and when everything else is done, we recover quotas. */
1397 for (i
= 0; i
< rm_quota_used
&& rm_quota
[i
] != slot_num
; i
++);
1398 if (i
== rm_quota_used
)
1399 rm_quota
[rm_quota_used
++] = slot_num
;
1401 status
= ocfs2_recover_node(osb
, node_num
, slot_num
);
1404 ocfs2_recovery_map_clear(osb
, node_num
);
1407 "Error %d recovering node %d on device (%u,%u)!\n",
1409 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1410 mlog(ML_ERROR
, "Volume requires unmount.\n");
1413 spin_lock(&osb
->osb_lock
);
1415 spin_unlock(&osb
->osb_lock
);
1416 mlog(0, "All nodes recovered\n");
1418 /* Refresh all journal recovery generations from disk */
1419 status
= ocfs2_check_journals_nolocks(osb
);
1420 status
= (status
== -EROFS
) ? 0 : status
;
1424 /* Now it is right time to recover quotas... We have to do this under
1425 * superblock lock so that noone can start using the slot (and crash)
1426 * before we recover it */
1427 for (i
= 0; i
< rm_quota_used
; i
++) {
1428 qrec
= ocfs2_begin_quota_recovery(osb
, rm_quota
[i
]);
1430 status
= PTR_ERR(qrec
);
1434 ocfs2_queue_recovery_completion(osb
->journal
, rm_quota
[i
],
1438 ocfs2_super_unlock(osb
, 1);
1440 /* queue recovery for offline slots */
1441 ocfs2_queue_replay_slots(osb
);
1444 mutex_lock(&osb
->recovery_lock
);
1445 if (!status
&& !ocfs2_recovery_completed(osb
)) {
1446 mutex_unlock(&osb
->recovery_lock
);
1450 ocfs2_free_replay_slots(osb
);
1451 osb
->recovery_thread_task
= NULL
;
1452 mb(); /* sync with ocfs2_recovery_thread_running */
1453 wake_up(&osb
->recovery_event
);
1455 mutex_unlock(&osb
->recovery_lock
);
1461 /* no one is callint kthread_stop() for us so the kthread() api
1462 * requires that we call do_exit(). And it isn't exported, but
1463 * complete_and_exit() seems to be a minimal wrapper around it. */
1464 complete_and_exit(NULL
, status
);
1468 void ocfs2_recovery_thread(struct ocfs2_super
*osb
, int node_num
)
1470 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1471 node_num
, osb
->node_num
);
1473 mutex_lock(&osb
->recovery_lock
);
1474 if (osb
->disable_recovery
)
1477 /* People waiting on recovery will wait on
1478 * the recovery map to empty. */
1479 if (ocfs2_recovery_map_set(osb
, node_num
))
1480 mlog(0, "node %d already in recovery map.\n", node_num
);
1482 mlog(0, "starting recovery thread...\n");
1484 if (osb
->recovery_thread_task
)
1487 osb
->recovery_thread_task
= kthread_run(__ocfs2_recovery_thread
, osb
,
1489 if (IS_ERR(osb
->recovery_thread_task
)) {
1490 mlog_errno((int)PTR_ERR(osb
->recovery_thread_task
));
1491 osb
->recovery_thread_task
= NULL
;
1495 mutex_unlock(&osb
->recovery_lock
);
1496 wake_up(&osb
->recovery_event
);
1501 static int ocfs2_read_journal_inode(struct ocfs2_super
*osb
,
1503 struct buffer_head
**bh
,
1504 struct inode
**ret_inode
)
1506 int status
= -EACCES
;
1507 struct inode
*inode
= NULL
;
1509 BUG_ON(slot_num
>= osb
->max_slots
);
1511 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1513 if (!inode
|| is_bad_inode(inode
)) {
1517 SET_INODE_JOURNAL(inode
);
1519 status
= ocfs2_read_inode_block_full(inode
, bh
, OCFS2_BH_IGNORE_CACHE
);
1529 if (status
|| !ret_inode
)
1537 /* Does the actual journal replay and marks the journal inode as
1538 * clean. Will only replay if the journal inode is marked dirty. */
1539 static int ocfs2_replay_journal(struct ocfs2_super
*osb
,
1546 struct inode
*inode
= NULL
;
1547 struct ocfs2_dinode
*fe
;
1548 journal_t
*journal
= NULL
;
1549 struct buffer_head
*bh
= NULL
;
1552 status
= ocfs2_read_journal_inode(osb
, slot_num
, &bh
, &inode
);
1558 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
1559 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1564 * As the fs recovery is asynchronous, there is a small chance that
1565 * another node mounted (and recovered) the slot before the recovery
1566 * thread could get the lock. To handle that, we dirty read the journal
1567 * inode for that slot to get the recovery generation. If it is
1568 * different than what we expected, the slot has been recovered.
1569 * If not, it needs recovery.
1571 if (osb
->slot_recovery_generations
[slot_num
] != slot_reco_gen
) {
1572 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num
,
1573 osb
->slot_recovery_generations
[slot_num
], slot_reco_gen
);
1574 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1579 /* Continue with recovery as the journal has not yet been recovered */
1581 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
1583 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status
);
1584 if (status
!= -ERESTARTSYS
)
1585 mlog(ML_ERROR
, "Could not lock journal!\n");
1590 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
1592 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1593 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1595 if (!(flags
& OCFS2_JOURNAL_DIRTY_FL
)) {
1596 mlog(0, "No recovery required for node %d\n", node_num
);
1597 /* Refresh recovery generation for the slot */
1598 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1602 /* we need to run complete recovery for offline orphan slots */
1603 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1605 mlog(ML_NOTICE
, "Recovering node %d from slot %d on device (%u,%u)\n",
1607 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1609 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
);
1611 status
= ocfs2_force_read_journal(inode
);
1617 mlog(0, "calling journal_init_inode\n");
1618 journal
= jbd2_journal_init_inode(inode
);
1619 if (journal
== NULL
) {
1620 mlog(ML_ERROR
, "Linux journal layer error\n");
1625 status
= jbd2_journal_load(journal
);
1630 jbd2_journal_destroy(journal
);
1634 ocfs2_clear_journal_error(osb
->sb
, journal
, slot_num
);
1636 /* wipe the journal */
1637 mlog(0, "flushing the journal.\n");
1638 jbd2_journal_lock_updates(journal
);
1639 status
= jbd2_journal_flush(journal
);
1640 jbd2_journal_unlock_updates(journal
);
1644 /* This will mark the node clean */
1645 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1646 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
1647 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
1649 /* Increment recovery generation to indicate successful recovery */
1650 ocfs2_bump_recovery_generation(fe
);
1651 osb
->slot_recovery_generations
[slot_num
] =
1652 ocfs2_get_recovery_generation(fe
);
1654 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
1655 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(inode
));
1662 jbd2_journal_destroy(journal
);
1665 /* drop the lock on this nodes journal */
1667 ocfs2_inode_unlock(inode
, 1);
1679 * Do the most important parts of node recovery:
1680 * - Replay it's journal
1681 * - Stamp a clean local allocator file
1682 * - Stamp a clean truncate log
1683 * - Mark the node clean
1685 * If this function completes without error, a node in OCFS2 can be
1686 * said to have been safely recovered. As a result, failure during the
1687 * second part of a nodes recovery process (local alloc recovery) is
1688 * far less concerning.
1690 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
1691 int node_num
, int slot_num
)
1694 struct ocfs2_dinode
*la_copy
= NULL
;
1695 struct ocfs2_dinode
*tl_copy
= NULL
;
1697 mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1698 node_num
, slot_num
, osb
->node_num
);
1700 /* Should not ever be called to recover ourselves -- in that
1701 * case we should've called ocfs2_journal_load instead. */
1702 BUG_ON(osb
->node_num
== node_num
);
1704 status
= ocfs2_replay_journal(osb
, node_num
, slot_num
);
1706 if (status
== -EBUSY
) {
1707 mlog(0, "Skipping recovery for slot %u (node %u) "
1708 "as another node has recovered it\n", slot_num
,
1717 /* Stamp a clean local alloc file AFTER recovering the journal... */
1718 status
= ocfs2_begin_local_alloc_recovery(osb
, slot_num
, &la_copy
);
1724 /* An error from begin_truncate_log_recovery is not
1725 * serious enough to warrant halting the rest of
1727 status
= ocfs2_begin_truncate_log_recovery(osb
, slot_num
, &tl_copy
);
1731 /* Likewise, this would be a strange but ultimately not so
1732 * harmful place to get an error... */
1733 status
= ocfs2_clear_slot(osb
, slot_num
);
1737 /* This will kfree the memory pointed to by la_copy and tl_copy */
1738 ocfs2_queue_recovery_completion(osb
->journal
, slot_num
, la_copy
,
1748 /* Test node liveness by trylocking his journal. If we get the lock,
1749 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1750 * still alive (we couldn't get the lock) and < 0 on error. */
1751 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
1755 struct inode
*inode
= NULL
;
1757 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1759 if (inode
== NULL
) {
1760 mlog(ML_ERROR
, "access error\n");
1764 if (is_bad_inode(inode
)) {
1765 mlog(ML_ERROR
, "access error (bad inode)\n");
1771 SET_INODE_JOURNAL(inode
);
1773 flags
= OCFS2_META_LOCK_RECOVERY
| OCFS2_META_LOCK_NOQUEUE
;
1774 status
= ocfs2_inode_lock_full(inode
, NULL
, 1, flags
);
1776 if (status
!= -EAGAIN
)
1781 ocfs2_inode_unlock(inode
, 1);
1789 /* Call this underneath ocfs2_super_lock. It also assumes that the
1790 * slot info struct has been updated from disk. */
1791 int ocfs2_mark_dead_nodes(struct ocfs2_super
*osb
)
1793 unsigned int node_num
;
1796 struct buffer_head
*bh
= NULL
;
1797 struct ocfs2_dinode
*di
;
1799 /* This is called with the super block cluster lock, so we
1800 * know that the slot map can't change underneath us. */
1802 for (i
= 0; i
< osb
->max_slots
; i
++) {
1803 /* Read journal inode to get the recovery generation */
1804 status
= ocfs2_read_journal_inode(osb
, i
, &bh
, NULL
);
1809 di
= (struct ocfs2_dinode
*)bh
->b_data
;
1810 gen
= ocfs2_get_recovery_generation(di
);
1814 spin_lock(&osb
->osb_lock
);
1815 osb
->slot_recovery_generations
[i
] = gen
;
1817 mlog(0, "Slot %u recovery generation is %u\n", i
,
1818 osb
->slot_recovery_generations
[i
]);
1820 if (i
== osb
->slot_num
) {
1821 spin_unlock(&osb
->osb_lock
);
1825 status
= ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
);
1826 if (status
== -ENOENT
) {
1827 spin_unlock(&osb
->osb_lock
);
1831 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
1832 spin_unlock(&osb
->osb_lock
);
1835 spin_unlock(&osb
->osb_lock
);
1837 /* Ok, we have a slot occupied by another node which
1838 * is not in the recovery map. We trylock his journal
1839 * file here to test if he's alive. */
1840 status
= ocfs2_trylock_journal(osb
, i
);
1842 /* Since we're called from mount, we know that
1843 * the recovery thread can't race us on
1844 * setting / checking the recovery bits. */
1845 ocfs2_recovery_thread(osb
, node_num
);
1846 } else if ((status
< 0) && (status
!= -EAGAIN
)) {
1859 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1860 * randomness to the timeout to minimize multple nodes firing the timer at the
1863 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1867 get_random_bytes(&time
, sizeof(time
));
1868 time
= ORPHAN_SCAN_SCHEDULE_TIMEOUT
+ (time
% 5000);
1869 return msecs_to_jiffies(time
);
1873 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1874 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1875 * is done to catch any orphans that are left over in orphan directories.
1877 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1878 * seconds. It gets an EX lock on os_lockres and checks sequence number
1879 * stored in LVB. If the sequence number has changed, it means some other
1880 * node has done the scan. This node skips the scan and tracks the
1881 * sequence number. If the sequence number didn't change, it means a scan
1882 * hasn't happened. The node queues a scan and increments the
1883 * sequence number in the LVB.
1885 void ocfs2_queue_orphan_scan(struct ocfs2_super
*osb
)
1887 struct ocfs2_orphan_scan
*os
;
1891 os
= &osb
->osb_orphan_scan
;
1893 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1896 status
= ocfs2_orphan_scan_lock(osb
, &seqno
);
1898 if (status
!= -EAGAIN
)
1903 /* Do no queue the tasks if the volume is being umounted */
1904 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1907 if (os
->os_seqno
!= seqno
) {
1908 os
->os_seqno
= seqno
;
1912 for (i
= 0; i
< osb
->max_slots
; i
++)
1913 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
, NULL
,
1916 * We queued a recovery on orphan slots, increment the sequence
1917 * number and update LVB so other node will skip the scan for a while
1921 os
->os_scantime
= CURRENT_TIME
;
1923 ocfs2_orphan_scan_unlock(osb
, seqno
);
1928 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1929 void ocfs2_orphan_scan_work(struct work_struct
*work
)
1931 struct ocfs2_orphan_scan
*os
;
1932 struct ocfs2_super
*osb
;
1934 os
= container_of(work
, struct ocfs2_orphan_scan
,
1935 os_orphan_scan_work
.work
);
1938 mutex_lock(&os
->os_lock
);
1939 ocfs2_queue_orphan_scan(osb
);
1940 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
)
1941 schedule_delayed_work(&os
->os_orphan_scan_work
,
1942 ocfs2_orphan_scan_timeout());
1943 mutex_unlock(&os
->os_lock
);
1946 void ocfs2_orphan_scan_stop(struct ocfs2_super
*osb
)
1948 struct ocfs2_orphan_scan
*os
;
1950 os
= &osb
->osb_orphan_scan
;
1951 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
) {
1952 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
1953 mutex_lock(&os
->os_lock
);
1954 cancel_delayed_work(&os
->os_orphan_scan_work
);
1955 mutex_unlock(&os
->os_lock
);
1959 void ocfs2_orphan_scan_init(struct ocfs2_super
*osb
)
1961 struct ocfs2_orphan_scan
*os
;
1963 os
= &osb
->osb_orphan_scan
;
1967 mutex_init(&os
->os_lock
);
1968 INIT_DELAYED_WORK(&os
->os_orphan_scan_work
, ocfs2_orphan_scan_work
);
1971 void ocfs2_orphan_scan_start(struct ocfs2_super
*osb
)
1973 struct ocfs2_orphan_scan
*os
;
1975 os
= &osb
->osb_orphan_scan
;
1976 os
->os_scantime
= CURRENT_TIME
;
1977 if (ocfs2_is_hard_readonly(osb
) || ocfs2_mount_local(osb
))
1978 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
1980 atomic_set(&os
->os_state
, ORPHAN_SCAN_ACTIVE
);
1981 schedule_delayed_work(&os
->os_orphan_scan_work
,
1982 ocfs2_orphan_scan_timeout());
1986 struct ocfs2_orphan_filldir_priv
{
1988 struct ocfs2_super
*osb
;
1991 static int ocfs2_orphan_filldir(void *priv
, const char *name
, int name_len
,
1992 loff_t pos
, u64 ino
, unsigned type
)
1994 struct ocfs2_orphan_filldir_priv
*p
= priv
;
1997 if (name_len
== 1 && !strncmp(".", name
, 1))
1999 if (name_len
== 2 && !strncmp("..", name
, 2))
2002 /* Skip bad inodes so that recovery can continue */
2003 iter
= ocfs2_iget(p
->osb
, ino
,
2004 OCFS2_FI_FLAG_ORPHAN_RECOVERY
, 0);
2008 mlog(0, "queue orphan %llu\n",
2009 (unsigned long long)OCFS2_I(iter
)->ip_blkno
);
2010 /* No locking is required for the next_orphan queue as there
2011 * is only ever a single process doing orphan recovery. */
2012 OCFS2_I(iter
)->ip_next_orphan
= p
->head
;
2018 static int ocfs2_queue_orphans(struct ocfs2_super
*osb
,
2020 struct inode
**head
)
2023 struct inode
*orphan_dir_inode
= NULL
;
2024 struct ocfs2_orphan_filldir_priv priv
;
2030 orphan_dir_inode
= ocfs2_get_system_file_inode(osb
,
2031 ORPHAN_DIR_SYSTEM_INODE
,
2033 if (!orphan_dir_inode
) {
2039 mutex_lock(&orphan_dir_inode
->i_mutex
);
2040 status
= ocfs2_inode_lock(orphan_dir_inode
, NULL
, 0);
2046 status
= ocfs2_dir_foreach(orphan_dir_inode
, &pos
, &priv
,
2047 ocfs2_orphan_filldir
);
2056 ocfs2_inode_unlock(orphan_dir_inode
, 0);
2058 mutex_unlock(&orphan_dir_inode
->i_mutex
);
2059 iput(orphan_dir_inode
);
2063 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super
*osb
,
2068 spin_lock(&osb
->osb_lock
);
2069 ret
= !osb
->osb_orphan_wipes
[slot
];
2070 spin_unlock(&osb
->osb_lock
);
2074 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super
*osb
,
2077 spin_lock(&osb
->osb_lock
);
2078 /* Mark ourselves such that new processes in delete_inode()
2079 * know to quit early. */
2080 ocfs2_node_map_set_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2081 while (osb
->osb_orphan_wipes
[slot
]) {
2082 /* If any processes are already in the middle of an
2083 * orphan wipe on this dir, then we need to wait for
2085 spin_unlock(&osb
->osb_lock
);
2086 wait_event_interruptible(osb
->osb_wipe_event
,
2087 ocfs2_orphan_recovery_can_continue(osb
, slot
));
2088 spin_lock(&osb
->osb_lock
);
2090 spin_unlock(&osb
->osb_lock
);
2093 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super
*osb
,
2096 ocfs2_node_map_clear_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2100 * Orphan recovery. Each mounted node has it's own orphan dir which we
2101 * must run during recovery. Our strategy here is to build a list of
2102 * the inodes in the orphan dir and iget/iput them. The VFS does
2103 * (most) of the rest of the work.
2105 * Orphan recovery can happen at any time, not just mount so we have a
2106 * couple of extra considerations.
2108 * - We grab as many inodes as we can under the orphan dir lock -
2109 * doing iget() outside the orphan dir risks getting a reference on
2111 * - We must be sure not to deadlock with other processes on the
2112 * system wanting to run delete_inode(). This can happen when they go
2113 * to lock the orphan dir and the orphan recovery process attempts to
2114 * iget() inside the orphan dir lock. This can be avoided by
2115 * advertising our state to ocfs2_delete_inode().
2117 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
2121 struct inode
*inode
= NULL
;
2123 struct ocfs2_inode_info
*oi
;
2125 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot
);
2127 ocfs2_mark_recovering_orphan_dir(osb
, slot
);
2128 ret
= ocfs2_queue_orphans(osb
, slot
, &inode
);
2129 ocfs2_clear_recovering_orphan_dir(osb
, slot
);
2131 /* Error here should be noted, but we want to continue with as
2132 * many queued inodes as we've got. */
2137 oi
= OCFS2_I(inode
);
2138 mlog(0, "iput orphan %llu\n", (unsigned long long)oi
->ip_blkno
);
2140 iter
= oi
->ip_next_orphan
;
2142 spin_lock(&oi
->ip_lock
);
2143 /* The remote delete code may have set these on the
2144 * assumption that the other node would wipe them
2145 * successfully. If they are still in the node's
2146 * orphan dir, we need to reset that state. */
2147 oi
->ip_flags
&= ~(OCFS2_INODE_DELETED
|OCFS2_INODE_SKIP_DELETE
);
2149 /* Set the proper information to get us going into
2150 * ocfs2_delete_inode. */
2151 oi
->ip_flags
|= OCFS2_INODE_MAYBE_ORPHANED
;
2152 spin_unlock(&oi
->ip_lock
);
2162 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
)
2164 /* This check is good because ocfs2 will wait on our recovery
2165 * thread before changing it to something other than MOUNTED
2167 wait_event(osb
->osb_mount_event
,
2168 (!quota
&& atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED
) ||
2169 atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED_QUOTAS
||
2170 atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
);
2172 /* If there's an error on mount, then we may never get to the
2173 * MOUNTED flag, but this is set right before
2174 * dismount_volume() so we can trust it. */
2175 if (atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
) {
2176 mlog(0, "mount error, exiting!\n");
2183 static int ocfs2_commit_thread(void *arg
)
2186 struct ocfs2_super
*osb
= arg
;
2187 struct ocfs2_journal
*journal
= osb
->journal
;
2189 /* we can trust j_num_trans here because _should_stop() is only set in
2190 * shutdown and nobody other than ourselves should be able to start
2191 * transactions. committing on shutdown might take a few iterations
2192 * as final transactions put deleted inodes on the list */
2193 while (!(kthread_should_stop() &&
2194 atomic_read(&journal
->j_num_trans
) == 0)) {
2196 wait_event_interruptible(osb
->checkpoint_event
,
2197 atomic_read(&journal
->j_num_trans
)
2198 || kthread_should_stop());
2200 status
= ocfs2_commit_cache(osb
);
2204 if (kthread_should_stop() && atomic_read(&journal
->j_num_trans
)){
2206 "commit_thread: %u transactions pending on "
2208 atomic_read(&journal
->j_num_trans
));
2215 /* Reads all the journal inodes without taking any cluster locks. Used
2216 * for hard readonly access to determine whether any journal requires
2217 * recovery. Also used to refresh the recovery generation numbers after
2218 * a journal has been recovered by another node.
2220 int ocfs2_check_journals_nolocks(struct ocfs2_super
*osb
)
2224 struct buffer_head
*di_bh
= NULL
;
2225 struct ocfs2_dinode
*di
;
2226 int journal_dirty
= 0;
2228 for(slot
= 0; slot
< osb
->max_slots
; slot
++) {
2229 ret
= ocfs2_read_journal_inode(osb
, slot
, &di_bh
, NULL
);
2235 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
2237 osb
->slot_recovery_generations
[slot
] =
2238 ocfs2_get_recovery_generation(di
);
2240 if (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
2241 OCFS2_JOURNAL_DIRTY_FL
)