2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
24 #include <trace/events/block.h>
26 #define DM_MSG_PREFIX "core"
30 * ratelimit state to be used in DMXXX_LIMIT().
32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state
,
33 DEFAULT_RATELIMIT_INTERVAL
,
34 DEFAULT_RATELIMIT_BURST
);
35 EXPORT_SYMBOL(dm_ratelimit_state
);
39 * Cookies are numeric values sent with CHANGE and REMOVE
40 * uevents while resuming, removing or renaming the device.
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
45 static const char *_name
= DM_NAME
;
47 static unsigned int major
= 0;
48 static unsigned int _major
= 0;
50 static DEFINE_IDR(_minor_idr
);
52 static DEFINE_SPINLOCK(_minor_lock
);
55 * One of these is allocated per bio.
58 struct mapped_device
*md
;
62 unsigned long start_time
;
63 spinlock_t endio_lock
;
68 * One of these is allocated per target within a bio. Hopefully
69 * this will be simplified out one day.
78 * For request-based dm.
79 * One of these is allocated per request.
81 struct dm_rq_target_io
{
82 struct mapped_device
*md
;
84 struct request
*orig
, clone
;
90 * For request-based dm.
91 * One of these is allocated per bio.
93 struct dm_rq_clone_bio_info
{
95 struct dm_rq_target_io
*tio
;
98 union map_info
*dm_get_mapinfo(struct bio
*bio
)
100 if (bio
&& bio
->bi_private
)
101 return &((struct dm_target_io
*)bio
->bi_private
)->info
;
105 union map_info
*dm_get_rq_mapinfo(struct request
*rq
)
107 if (rq
&& rq
->end_io_data
)
108 return &((struct dm_rq_target_io
*)rq
->end_io_data
)->info
;
111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo
);
113 #define MINOR_ALLOCED ((void *)-1)
116 * Bits for the md->flags field.
118 #define DMF_BLOCK_IO_FOR_SUSPEND 0
119 #define DMF_SUSPENDED 1
121 #define DMF_FREEING 3
122 #define DMF_DELETING 4
123 #define DMF_NOFLUSH_SUSPENDING 5
124 #define DMF_MERGE_IS_OPTIONAL 6
127 * Work processed by per-device workqueue.
129 struct mapped_device
{
130 struct rw_semaphore io_lock
;
131 struct mutex suspend_lock
;
138 struct request_queue
*queue
;
140 /* Protect queue and type against concurrent access. */
141 struct mutex type_lock
;
143 struct target_type
*immutable_target_type
;
145 struct gendisk
*disk
;
151 * A list of ios that arrived while we were suspended.
154 wait_queue_head_t wait
;
155 struct work_struct work
;
156 struct bio_list deferred
;
157 spinlock_t deferred_lock
;
160 * Processing queue (flush)
162 struct workqueue_struct
*wq
;
165 * The current mapping.
167 struct dm_table
*map
;
170 * io objects are allocated from here.
181 wait_queue_head_t eventq
;
183 struct list_head uevent_list
;
184 spinlock_t uevent_lock
; /* Protect access to uevent_list */
187 * freeze/thaw support require holding onto a super block
189 struct super_block
*frozen_sb
;
190 struct block_device
*bdev
;
192 /* forced geometry settings */
193 struct hd_geometry geometry
;
198 /* zero-length flush that will be cloned and submitted to targets */
199 struct bio flush_bio
;
203 * For mempools pre-allocation at the table loading time.
205 struct dm_md_mempools
{
212 static struct kmem_cache
*_io_cache
;
213 static struct kmem_cache
*_tio_cache
;
214 static struct kmem_cache
*_rq_tio_cache
;
215 static struct kmem_cache
*_rq_bio_info_cache
;
217 static int __init
local_init(void)
221 /* allocate a slab for the dm_ios */
222 _io_cache
= KMEM_CACHE(dm_io
, 0);
226 /* allocate a slab for the target ios */
227 _tio_cache
= KMEM_CACHE(dm_target_io
, 0);
229 goto out_free_io_cache
;
231 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
233 goto out_free_tio_cache
;
235 _rq_bio_info_cache
= KMEM_CACHE(dm_rq_clone_bio_info
, 0);
236 if (!_rq_bio_info_cache
)
237 goto out_free_rq_tio_cache
;
239 r
= dm_uevent_init();
241 goto out_free_rq_bio_info_cache
;
244 r
= register_blkdev(_major
, _name
);
246 goto out_uevent_exit
;
255 out_free_rq_bio_info_cache
:
256 kmem_cache_destroy(_rq_bio_info_cache
);
257 out_free_rq_tio_cache
:
258 kmem_cache_destroy(_rq_tio_cache
);
260 kmem_cache_destroy(_tio_cache
);
262 kmem_cache_destroy(_io_cache
);
267 static void local_exit(void)
269 kmem_cache_destroy(_rq_bio_info_cache
);
270 kmem_cache_destroy(_rq_tio_cache
);
271 kmem_cache_destroy(_tio_cache
);
272 kmem_cache_destroy(_io_cache
);
273 unregister_blkdev(_major
, _name
);
278 DMINFO("cleaned up");
281 static int (*_inits
[])(void) __initdata
= {
291 static void (*_exits
[])(void) = {
301 static int __init
dm_init(void)
303 const int count
= ARRAY_SIZE(_inits
);
307 for (i
= 0; i
< count
; i
++) {
322 static void __exit
dm_exit(void)
324 int i
= ARRAY_SIZE(_exits
);
330 * Should be empty by this point.
332 idr_remove_all(&_minor_idr
);
333 idr_destroy(&_minor_idr
);
337 * Block device functions
339 int dm_deleting_md(struct mapped_device
*md
)
341 return test_bit(DMF_DELETING
, &md
->flags
);
344 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
346 struct mapped_device
*md
;
348 spin_lock(&_minor_lock
);
350 md
= bdev
->bd_disk
->private_data
;
354 if (test_bit(DMF_FREEING
, &md
->flags
) ||
355 dm_deleting_md(md
)) {
361 atomic_inc(&md
->open_count
);
364 spin_unlock(&_minor_lock
);
366 return md
? 0 : -ENXIO
;
369 static int dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
371 struct mapped_device
*md
= disk
->private_data
;
373 spin_lock(&_minor_lock
);
375 atomic_dec(&md
->open_count
);
378 spin_unlock(&_minor_lock
);
383 int dm_open_count(struct mapped_device
*md
)
385 return atomic_read(&md
->open_count
);
389 * Guarantees nothing is using the device before it's deleted.
391 int dm_lock_for_deletion(struct mapped_device
*md
)
395 spin_lock(&_minor_lock
);
397 if (dm_open_count(md
))
400 set_bit(DMF_DELETING
, &md
->flags
);
402 spin_unlock(&_minor_lock
);
407 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
409 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
411 return dm_get_geometry(md
, geo
);
414 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
415 unsigned int cmd
, unsigned long arg
)
417 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
418 struct dm_table
*map
= dm_get_live_table(md
);
419 struct dm_target
*tgt
;
422 if (!map
|| !dm_table_get_size(map
))
425 /* We only support devices that have a single target */
426 if (dm_table_get_num_targets(map
) != 1)
429 tgt
= dm_table_get_target(map
, 0);
431 if (dm_suspended_md(md
)) {
436 if (tgt
->type
->ioctl
)
437 r
= tgt
->type
->ioctl(tgt
, cmd
, arg
);
445 static struct dm_io
*alloc_io(struct mapped_device
*md
)
447 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
450 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
452 mempool_free(io
, md
->io_pool
);
455 static void free_tio(struct mapped_device
*md
, struct dm_target_io
*tio
)
457 mempool_free(tio
, md
->tio_pool
);
460 static struct dm_rq_target_io
*alloc_rq_tio(struct mapped_device
*md
,
463 return mempool_alloc(md
->tio_pool
, gfp_mask
);
466 static void free_rq_tio(struct dm_rq_target_io
*tio
)
468 mempool_free(tio
, tio
->md
->tio_pool
);
471 static struct dm_rq_clone_bio_info
*alloc_bio_info(struct mapped_device
*md
)
473 return mempool_alloc(md
->io_pool
, GFP_ATOMIC
);
476 static void free_bio_info(struct dm_rq_clone_bio_info
*info
)
478 mempool_free(info
, info
->tio
->md
->io_pool
);
481 static int md_in_flight(struct mapped_device
*md
)
483 return atomic_read(&md
->pending
[READ
]) +
484 atomic_read(&md
->pending
[WRITE
]);
487 static void start_io_acct(struct dm_io
*io
)
489 struct mapped_device
*md
= io
->md
;
491 int rw
= bio_data_dir(io
->bio
);
493 io
->start_time
= jiffies
;
495 cpu
= part_stat_lock();
496 part_round_stats(cpu
, &dm_disk(md
)->part0
);
498 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
],
499 atomic_inc_return(&md
->pending
[rw
]));
502 static void end_io_acct(struct dm_io
*io
)
504 struct mapped_device
*md
= io
->md
;
505 struct bio
*bio
= io
->bio
;
506 unsigned long duration
= jiffies
- io
->start_time
;
508 int rw
= bio_data_dir(bio
);
510 cpu
= part_stat_lock();
511 part_round_stats(cpu
, &dm_disk(md
)->part0
);
512 part_stat_add(cpu
, &dm_disk(md
)->part0
, ticks
[rw
], duration
);
516 * After this is decremented the bio must not be touched if it is
519 pending
= atomic_dec_return(&md
->pending
[rw
]);
520 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
], pending
);
521 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
523 /* nudge anyone waiting on suspend queue */
529 * Add the bio to the list of deferred io.
531 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
535 spin_lock_irqsave(&md
->deferred_lock
, flags
);
536 bio_list_add(&md
->deferred
, bio
);
537 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
538 queue_work(md
->wq
, &md
->work
);
542 * Everyone (including functions in this file), should use this
543 * function to access the md->map field, and make sure they call
544 * dm_table_put() when finished.
546 struct dm_table
*dm_get_live_table(struct mapped_device
*md
)
551 read_lock_irqsave(&md
->map_lock
, flags
);
555 read_unlock_irqrestore(&md
->map_lock
, flags
);
561 * Get the geometry associated with a dm device
563 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
571 * Set the geometry of a device.
573 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
575 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
577 if (geo
->start
> sz
) {
578 DMWARN("Start sector is beyond the geometry limits.");
587 /*-----------------------------------------------------------------
589 * A more elegant soln is in the works that uses the queue
590 * merge fn, unfortunately there are a couple of changes to
591 * the block layer that I want to make for this. So in the
592 * interests of getting something for people to use I give
593 * you this clearly demarcated crap.
594 *---------------------------------------------------------------*/
596 static int __noflush_suspending(struct mapped_device
*md
)
598 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
602 * Decrements the number of outstanding ios that a bio has been
603 * cloned into, completing the original io if necc.
605 static void dec_pending(struct dm_io
*io
, int error
)
610 struct mapped_device
*md
= io
->md
;
612 /* Push-back supersedes any I/O errors */
613 if (unlikely(error
)) {
614 spin_lock_irqsave(&io
->endio_lock
, flags
);
615 if (!(io
->error
> 0 && __noflush_suspending(md
)))
617 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
620 if (atomic_dec_and_test(&io
->io_count
)) {
621 if (io
->error
== DM_ENDIO_REQUEUE
) {
623 * Target requested pushing back the I/O.
625 spin_lock_irqsave(&md
->deferred_lock
, flags
);
626 if (__noflush_suspending(md
))
627 bio_list_add_head(&md
->deferred
, io
->bio
);
629 /* noflush suspend was interrupted. */
631 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
634 io_error
= io
->error
;
639 if (io_error
== DM_ENDIO_REQUEUE
)
642 if ((bio
->bi_rw
& REQ_FLUSH
) && bio
->bi_size
) {
644 * Preflush done for flush with data, reissue
647 bio
->bi_rw
&= ~REQ_FLUSH
;
650 /* done with normal IO or empty flush */
651 trace_block_bio_complete(md
->queue
, bio
, io_error
);
652 bio_endio(bio
, io_error
);
657 static void clone_endio(struct bio
*bio
, int error
)
660 struct dm_target_io
*tio
= bio
->bi_private
;
661 struct dm_io
*io
= tio
->io
;
662 struct mapped_device
*md
= tio
->io
->md
;
663 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
665 if (!bio_flagged(bio
, BIO_UPTODATE
) && !error
)
669 r
= endio(tio
->ti
, bio
, error
, &tio
->info
);
670 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
672 * error and requeue request are handled
676 else if (r
== DM_ENDIO_INCOMPLETE
)
677 /* The target will handle the io */
680 DMWARN("unimplemented target endio return value: %d", r
);
686 * Store md for cleanup instead of tio which is about to get freed.
688 bio
->bi_private
= md
->bs
;
692 dec_pending(io
, error
);
696 * Partial completion handling for request-based dm
698 static void end_clone_bio(struct bio
*clone
, int error
)
700 struct dm_rq_clone_bio_info
*info
= clone
->bi_private
;
701 struct dm_rq_target_io
*tio
= info
->tio
;
702 struct bio
*bio
= info
->orig
;
703 unsigned int nr_bytes
= info
->orig
->bi_size
;
709 * An error has already been detected on the request.
710 * Once error occurred, just let clone->end_io() handle
716 * Don't notice the error to the upper layer yet.
717 * The error handling decision is made by the target driver,
718 * when the request is completed.
725 * I/O for the bio successfully completed.
726 * Notice the data completion to the upper layer.
730 * bios are processed from the head of the list.
731 * So the completing bio should always be rq->bio.
732 * If it's not, something wrong is happening.
734 if (tio
->orig
->bio
!= bio
)
735 DMERR("bio completion is going in the middle of the request");
738 * Update the original request.
739 * Do not use blk_end_request() here, because it may complete
740 * the original request before the clone, and break the ordering.
742 blk_update_request(tio
->orig
, 0, nr_bytes
);
746 * Don't touch any member of the md after calling this function because
747 * the md may be freed in dm_put() at the end of this function.
748 * Or do dm_get() before calling this function and dm_put() later.
750 static void rq_completed(struct mapped_device
*md
, int rw
, int run_queue
)
752 atomic_dec(&md
->pending
[rw
]);
754 /* nudge anyone waiting on suspend queue */
755 if (!md_in_flight(md
))
759 blk_run_queue(md
->queue
);
762 * dm_put() must be at the end of this function. See the comment above
767 static void free_rq_clone(struct request
*clone
)
769 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
771 blk_rq_unprep_clone(clone
);
776 * Complete the clone and the original request.
777 * Must be called without queue lock.
779 static void dm_end_request(struct request
*clone
, int error
)
781 int rw
= rq_data_dir(clone
);
782 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
783 struct mapped_device
*md
= tio
->md
;
784 struct request
*rq
= tio
->orig
;
786 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
787 rq
->errors
= clone
->errors
;
788 rq
->resid_len
= clone
->resid_len
;
792 * We are using the sense buffer of the original
794 * So setting the length of the sense data is enough.
796 rq
->sense_len
= clone
->sense_len
;
799 free_rq_clone(clone
);
800 blk_end_request_all(rq
, error
);
801 rq_completed(md
, rw
, true);
804 static void dm_unprep_request(struct request
*rq
)
806 struct request
*clone
= rq
->special
;
809 rq
->cmd_flags
&= ~REQ_DONTPREP
;
811 free_rq_clone(clone
);
815 * Requeue the original request of a clone.
817 void dm_requeue_unmapped_request(struct request
*clone
)
819 int rw
= rq_data_dir(clone
);
820 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
821 struct mapped_device
*md
= tio
->md
;
822 struct request
*rq
= tio
->orig
;
823 struct request_queue
*q
= rq
->q
;
826 dm_unprep_request(rq
);
828 spin_lock_irqsave(q
->queue_lock
, flags
);
829 blk_requeue_request(q
, rq
);
830 spin_unlock_irqrestore(q
->queue_lock
, flags
);
832 rq_completed(md
, rw
, 0);
834 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request
);
836 static void __stop_queue(struct request_queue
*q
)
841 static void stop_queue(struct request_queue
*q
)
845 spin_lock_irqsave(q
->queue_lock
, flags
);
847 spin_unlock_irqrestore(q
->queue_lock
, flags
);
850 static void __start_queue(struct request_queue
*q
)
852 if (blk_queue_stopped(q
))
856 static void start_queue(struct request_queue
*q
)
860 spin_lock_irqsave(q
->queue_lock
, flags
);
862 spin_unlock_irqrestore(q
->queue_lock
, flags
);
865 static void dm_done(struct request
*clone
, int error
, bool mapped
)
868 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
869 dm_request_endio_fn rq_end_io
= tio
->ti
->type
->rq_end_io
;
871 if (mapped
&& rq_end_io
)
872 r
= rq_end_io(tio
->ti
, clone
, error
, &tio
->info
);
875 /* The target wants to complete the I/O */
876 dm_end_request(clone
, r
);
877 else if (r
== DM_ENDIO_INCOMPLETE
)
878 /* The target will handle the I/O */
880 else if (r
== DM_ENDIO_REQUEUE
)
881 /* The target wants to requeue the I/O */
882 dm_requeue_unmapped_request(clone
);
884 DMWARN("unimplemented target endio return value: %d", r
);
890 * Request completion handler for request-based dm
892 static void dm_softirq_done(struct request
*rq
)
895 struct request
*clone
= rq
->completion_data
;
896 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
898 if (rq
->cmd_flags
& REQ_FAILED
)
901 dm_done(clone
, tio
->error
, mapped
);
905 * Complete the clone and the original request with the error status
906 * through softirq context.
908 static void dm_complete_request(struct request
*clone
, int error
)
910 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
911 struct request
*rq
= tio
->orig
;
914 rq
->completion_data
= clone
;
915 blk_complete_request(rq
);
919 * Complete the not-mapped clone and the original request with the error status
920 * through softirq context.
921 * Target's rq_end_io() function isn't called.
922 * This may be used when the target's map_rq() function fails.
924 void dm_kill_unmapped_request(struct request
*clone
, int error
)
926 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
927 struct request
*rq
= tio
->orig
;
929 rq
->cmd_flags
|= REQ_FAILED
;
930 dm_complete_request(clone
, error
);
932 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request
);
935 * Called with the queue lock held
937 static void end_clone_request(struct request
*clone
, int error
)
940 * For just cleaning up the information of the queue in which
941 * the clone was dispatched.
942 * The clone is *NOT* freed actually here because it is alloced from
943 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
945 __blk_put_request(clone
->q
, clone
);
948 * Actual request completion is done in a softirq context which doesn't
949 * hold the queue lock. Otherwise, deadlock could occur because:
950 * - another request may be submitted by the upper level driver
951 * of the stacking during the completion
952 * - the submission which requires queue lock may be done
955 dm_complete_request(clone
, error
);
959 * Return maximum size of I/O possible at the supplied sector up to the current
962 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
964 sector_t target_offset
= dm_target_offset(ti
, sector
);
966 return ti
->len
- target_offset
;
969 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
971 sector_t len
= max_io_len_target_boundary(sector
, ti
);
974 * Does the target need to split even further ?
978 sector_t offset
= dm_target_offset(ti
, sector
);
979 boundary
= ((offset
+ ti
->split_io
) & ~(ti
->split_io
- 1))
988 static void __map_bio(struct dm_target
*ti
, struct bio
*clone
,
989 struct dm_target_io
*tio
)
993 struct mapped_device
*md
;
995 clone
->bi_end_io
= clone_endio
;
996 clone
->bi_private
= tio
;
999 * Map the clone. If r == 0 we don't need to do
1000 * anything, the target has assumed ownership of
1003 atomic_inc(&tio
->io
->io_count
);
1004 sector
= clone
->bi_sector
;
1005 r
= ti
->type
->map(ti
, clone
, &tio
->info
);
1006 if (r
== DM_MAPIO_REMAPPED
) {
1007 /* the bio has been remapped so dispatch it */
1009 trace_block_bio_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
1010 tio
->io
->bio
->bi_bdev
->bd_dev
, sector
);
1012 generic_make_request(clone
);
1013 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
1014 /* error the io and bail out, or requeue it if needed */
1016 dec_pending(tio
->io
, r
);
1018 * Store bio_set for cleanup.
1020 clone
->bi_private
= md
->bs
;
1024 DMWARN("unimplemented target map return value: %d", r
);
1030 struct mapped_device
*md
;
1031 struct dm_table
*map
;
1035 sector_t sector_count
;
1039 static void dm_bio_destructor(struct bio
*bio
)
1041 struct bio_set
*bs
= bio
->bi_private
;
1047 * Creates a little bio that just does part of a bvec.
1049 static struct bio
*split_bvec(struct bio
*bio
, sector_t sector
,
1050 unsigned short idx
, unsigned int offset
,
1051 unsigned int len
, struct bio_set
*bs
)
1054 struct bio_vec
*bv
= bio
->bi_io_vec
+ idx
;
1056 clone
= bio_alloc_bioset(GFP_NOIO
, 1, bs
);
1057 clone
->bi_destructor
= dm_bio_destructor
;
1058 *clone
->bi_io_vec
= *bv
;
1060 clone
->bi_sector
= sector
;
1061 clone
->bi_bdev
= bio
->bi_bdev
;
1062 clone
->bi_rw
= bio
->bi_rw
;
1064 clone
->bi_size
= to_bytes(len
);
1065 clone
->bi_io_vec
->bv_offset
= offset
;
1066 clone
->bi_io_vec
->bv_len
= clone
->bi_size
;
1067 clone
->bi_flags
|= 1 << BIO_CLONED
;
1069 if (bio_integrity(bio
)) {
1070 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1071 bio_integrity_trim(clone
,
1072 bio_sector_offset(bio
, idx
, offset
), len
);
1079 * Creates a bio that consists of range of complete bvecs.
1081 static struct bio
*clone_bio(struct bio
*bio
, sector_t sector
,
1082 unsigned short idx
, unsigned short bv_count
,
1083 unsigned int len
, struct bio_set
*bs
)
1087 clone
= bio_alloc_bioset(GFP_NOIO
, bio
->bi_max_vecs
, bs
);
1088 __bio_clone(clone
, bio
);
1089 clone
->bi_destructor
= dm_bio_destructor
;
1090 clone
->bi_sector
= sector
;
1091 clone
->bi_idx
= idx
;
1092 clone
->bi_vcnt
= idx
+ bv_count
;
1093 clone
->bi_size
= to_bytes(len
);
1094 clone
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
1096 if (bio_integrity(bio
)) {
1097 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1099 if (idx
!= bio
->bi_idx
|| clone
->bi_size
< bio
->bi_size
)
1100 bio_integrity_trim(clone
,
1101 bio_sector_offset(bio
, idx
, 0), len
);
1107 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
,
1108 struct dm_target
*ti
)
1110 struct dm_target_io
*tio
= mempool_alloc(ci
->md
->tio_pool
, GFP_NOIO
);
1114 memset(&tio
->info
, 0, sizeof(tio
->info
));
1119 static void __issue_target_request(struct clone_info
*ci
, struct dm_target
*ti
,
1120 unsigned request_nr
, sector_t len
)
1122 struct dm_target_io
*tio
= alloc_tio(ci
, ti
);
1125 tio
->info
.target_request_nr
= request_nr
;
1128 * Discard requests require the bio's inline iovecs be initialized.
1129 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1130 * and discard, so no need for concern about wasted bvec allocations.
1132 clone
= bio_alloc_bioset(GFP_NOIO
, ci
->bio
->bi_max_vecs
, ci
->md
->bs
);
1133 __bio_clone(clone
, ci
->bio
);
1134 clone
->bi_destructor
= dm_bio_destructor
;
1136 clone
->bi_sector
= ci
->sector
;
1137 clone
->bi_size
= to_bytes(len
);
1140 __map_bio(ti
, clone
, tio
);
1143 static void __issue_target_requests(struct clone_info
*ci
, struct dm_target
*ti
,
1144 unsigned num_requests
, sector_t len
)
1146 unsigned request_nr
;
1148 for (request_nr
= 0; request_nr
< num_requests
; request_nr
++)
1149 __issue_target_request(ci
, ti
, request_nr
, len
);
1152 static int __clone_and_map_empty_flush(struct clone_info
*ci
)
1154 unsigned target_nr
= 0;
1155 struct dm_target
*ti
;
1157 BUG_ON(bio_has_data(ci
->bio
));
1158 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1159 __issue_target_requests(ci
, ti
, ti
->num_flush_requests
, 0);
1165 * Perform all io with a single clone.
1167 static void __clone_and_map_simple(struct clone_info
*ci
, struct dm_target
*ti
)
1169 struct bio
*clone
, *bio
= ci
->bio
;
1170 struct dm_target_io
*tio
;
1172 tio
= alloc_tio(ci
, ti
);
1173 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
,
1174 bio
->bi_vcnt
- ci
->idx
, ci
->sector_count
,
1176 __map_bio(ti
, clone
, tio
);
1177 ci
->sector_count
= 0;
1180 static int __clone_and_map_discard(struct clone_info
*ci
)
1182 struct dm_target
*ti
;
1186 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1187 if (!dm_target_is_valid(ti
))
1191 * Even though the device advertised discard support,
1192 * that does not mean every target supports it, and
1193 * reconfiguration might also have changed that since the
1194 * check was performed.
1196 if (!ti
->num_discard_requests
)
1199 len
= min(ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1201 __issue_target_requests(ci
, ti
, ti
->num_discard_requests
, len
);
1204 } while (ci
->sector_count
-= len
);
1209 static int __clone_and_map(struct clone_info
*ci
)
1211 struct bio
*clone
, *bio
= ci
->bio
;
1212 struct dm_target
*ti
;
1213 sector_t len
= 0, max
;
1214 struct dm_target_io
*tio
;
1216 if (unlikely(bio
->bi_rw
& REQ_DISCARD
))
1217 return __clone_and_map_discard(ci
);
1219 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1220 if (!dm_target_is_valid(ti
))
1223 max
= max_io_len(ci
->sector
, ti
);
1225 if (ci
->sector_count
<= max
) {
1227 * Optimise for the simple case where we can do all of
1228 * the remaining io with a single clone.
1230 __clone_and_map_simple(ci
, ti
);
1232 } else if (to_sector(bio
->bi_io_vec
[ci
->idx
].bv_len
) <= max
) {
1234 * There are some bvecs that don't span targets.
1235 * Do as many of these as possible.
1238 sector_t remaining
= max
;
1241 for (i
= ci
->idx
; remaining
&& (i
< bio
->bi_vcnt
); i
++) {
1242 bv_len
= to_sector(bio
->bi_io_vec
[i
].bv_len
);
1244 if (bv_len
> remaining
)
1247 remaining
-= bv_len
;
1251 tio
= alloc_tio(ci
, ti
);
1252 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
, i
- ci
->idx
, len
,
1254 __map_bio(ti
, clone
, tio
);
1257 ci
->sector_count
-= len
;
1262 * Handle a bvec that must be split between two or more targets.
1264 struct bio_vec
*bv
= bio
->bi_io_vec
+ ci
->idx
;
1265 sector_t remaining
= to_sector(bv
->bv_len
);
1266 unsigned int offset
= 0;
1270 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1271 if (!dm_target_is_valid(ti
))
1274 max
= max_io_len(ci
->sector
, ti
);
1277 len
= min(remaining
, max
);
1279 tio
= alloc_tio(ci
, ti
);
1280 clone
= split_bvec(bio
, ci
->sector
, ci
->idx
,
1281 bv
->bv_offset
+ offset
, len
,
1284 __map_bio(ti
, clone
, tio
);
1287 ci
->sector_count
-= len
;
1288 offset
+= to_bytes(len
);
1289 } while (remaining
-= len
);
1298 * Split the bio into several clones and submit it to targets.
1300 static void __split_and_process_bio(struct mapped_device
*md
, struct bio
*bio
)
1302 struct clone_info ci
;
1305 ci
.map
= dm_get_live_table(md
);
1306 if (unlikely(!ci
.map
)) {
1312 ci
.io
= alloc_io(md
);
1314 atomic_set(&ci
.io
->io_count
, 1);
1317 spin_lock_init(&ci
.io
->endio_lock
);
1318 ci
.sector
= bio
->bi_sector
;
1319 ci
.idx
= bio
->bi_idx
;
1321 start_io_acct(ci
.io
);
1322 if (bio
->bi_rw
& REQ_FLUSH
) {
1323 ci
.bio
= &ci
.md
->flush_bio
;
1324 ci
.sector_count
= 0;
1325 error
= __clone_and_map_empty_flush(&ci
);
1326 /* dec_pending submits any data associated with flush */
1329 ci
.sector_count
= bio_sectors(bio
);
1330 while (ci
.sector_count
&& !error
)
1331 error
= __clone_and_map(&ci
);
1334 /* drop the extra reference count */
1335 dec_pending(ci
.io
, error
);
1336 dm_table_put(ci
.map
);
1338 /*-----------------------------------------------------------------
1340 *---------------------------------------------------------------*/
1342 static int dm_merge_bvec(struct request_queue
*q
,
1343 struct bvec_merge_data
*bvm
,
1344 struct bio_vec
*biovec
)
1346 struct mapped_device
*md
= q
->queuedata
;
1347 struct dm_table
*map
= dm_get_live_table(md
);
1348 struct dm_target
*ti
;
1349 sector_t max_sectors
;
1355 ti
= dm_table_find_target(map
, bvm
->bi_sector
);
1356 if (!dm_target_is_valid(ti
))
1360 * Find maximum amount of I/O that won't need splitting
1362 max_sectors
= min(max_io_len(bvm
->bi_sector
, ti
),
1363 (sector_t
) BIO_MAX_SECTORS
);
1364 max_size
= (max_sectors
<< SECTOR_SHIFT
) - bvm
->bi_size
;
1369 * merge_bvec_fn() returns number of bytes
1370 * it can accept at this offset
1371 * max is precomputed maximal io size
1373 if (max_size
&& ti
->type
->merge
)
1374 max_size
= ti
->type
->merge(ti
, bvm
, biovec
, max_size
);
1376 * If the target doesn't support merge method and some of the devices
1377 * provided their merge_bvec method (we know this by looking at
1378 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1379 * entries. So always set max_size to 0, and the code below allows
1382 else if (queue_max_hw_sectors(q
) <= PAGE_SIZE
>> 9)
1391 * Always allow an entire first page
1393 if (max_size
<= biovec
->bv_len
&& !(bvm
->bi_size
>> SECTOR_SHIFT
))
1394 max_size
= biovec
->bv_len
;
1400 * The request function that just remaps the bio built up by
1403 static void _dm_request(struct request_queue
*q
, struct bio
*bio
)
1405 int rw
= bio_data_dir(bio
);
1406 struct mapped_device
*md
= q
->queuedata
;
1409 down_read(&md
->io_lock
);
1411 cpu
= part_stat_lock();
1412 part_stat_inc(cpu
, &dm_disk(md
)->part0
, ios
[rw
]);
1413 part_stat_add(cpu
, &dm_disk(md
)->part0
, sectors
[rw
], bio_sectors(bio
));
1416 /* if we're suspended, we have to queue this io for later */
1417 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1418 up_read(&md
->io_lock
);
1420 if (bio_rw(bio
) != READA
)
1427 __split_and_process_bio(md
, bio
);
1428 up_read(&md
->io_lock
);
1432 static int dm_request_based(struct mapped_device
*md
)
1434 return blk_queue_stackable(md
->queue
);
1437 static void dm_request(struct request_queue
*q
, struct bio
*bio
)
1439 struct mapped_device
*md
= q
->queuedata
;
1441 if (dm_request_based(md
))
1442 blk_queue_bio(q
, bio
);
1444 _dm_request(q
, bio
);
1447 void dm_dispatch_request(struct request
*rq
)
1451 if (blk_queue_io_stat(rq
->q
))
1452 rq
->cmd_flags
|= REQ_IO_STAT
;
1454 rq
->start_time
= jiffies
;
1455 r
= blk_insert_cloned_request(rq
->q
, rq
);
1457 dm_complete_request(rq
, r
);
1459 EXPORT_SYMBOL_GPL(dm_dispatch_request
);
1461 static void dm_rq_bio_destructor(struct bio
*bio
)
1463 struct dm_rq_clone_bio_info
*info
= bio
->bi_private
;
1464 struct mapped_device
*md
= info
->tio
->md
;
1466 free_bio_info(info
);
1467 bio_free(bio
, md
->bs
);
1470 static int dm_rq_bio_constructor(struct bio
*bio
, struct bio
*bio_orig
,
1473 struct dm_rq_target_io
*tio
= data
;
1474 struct mapped_device
*md
= tio
->md
;
1475 struct dm_rq_clone_bio_info
*info
= alloc_bio_info(md
);
1480 info
->orig
= bio_orig
;
1482 bio
->bi_end_io
= end_clone_bio
;
1483 bio
->bi_private
= info
;
1484 bio
->bi_destructor
= dm_rq_bio_destructor
;
1489 static int setup_clone(struct request
*clone
, struct request
*rq
,
1490 struct dm_rq_target_io
*tio
)
1494 r
= blk_rq_prep_clone(clone
, rq
, tio
->md
->bs
, GFP_ATOMIC
,
1495 dm_rq_bio_constructor
, tio
);
1499 clone
->cmd
= rq
->cmd
;
1500 clone
->cmd_len
= rq
->cmd_len
;
1501 clone
->sense
= rq
->sense
;
1502 clone
->buffer
= rq
->buffer
;
1503 clone
->end_io
= end_clone_request
;
1504 clone
->end_io_data
= tio
;
1509 static struct request
*clone_rq(struct request
*rq
, struct mapped_device
*md
,
1512 struct request
*clone
;
1513 struct dm_rq_target_io
*tio
;
1515 tio
= alloc_rq_tio(md
, gfp_mask
);
1523 memset(&tio
->info
, 0, sizeof(tio
->info
));
1525 clone
= &tio
->clone
;
1526 if (setup_clone(clone
, rq
, tio
)) {
1536 * Called with the queue lock held.
1538 static int dm_prep_fn(struct request_queue
*q
, struct request
*rq
)
1540 struct mapped_device
*md
= q
->queuedata
;
1541 struct request
*clone
;
1543 if (unlikely(rq
->special
)) {
1544 DMWARN("Already has something in rq->special.");
1545 return BLKPREP_KILL
;
1548 clone
= clone_rq(rq
, md
, GFP_ATOMIC
);
1550 return BLKPREP_DEFER
;
1552 rq
->special
= clone
;
1553 rq
->cmd_flags
|= REQ_DONTPREP
;
1560 * 0 : the request has been processed (not requeued)
1561 * !0 : the request has been requeued
1563 static int map_request(struct dm_target
*ti
, struct request
*clone
,
1564 struct mapped_device
*md
)
1566 int r
, requeued
= 0;
1567 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1570 * Hold the md reference here for the in-flight I/O.
1571 * We can't rely on the reference count by device opener,
1572 * because the device may be closed during the request completion
1573 * when all bios are completed.
1574 * See the comment in rq_completed() too.
1579 r
= ti
->type
->map_rq(ti
, clone
, &tio
->info
);
1581 case DM_MAPIO_SUBMITTED
:
1582 /* The target has taken the I/O to submit by itself later */
1584 case DM_MAPIO_REMAPPED
:
1585 /* The target has remapped the I/O so dispatch it */
1586 trace_block_rq_remap(clone
->q
, clone
, disk_devt(dm_disk(md
)),
1587 blk_rq_pos(tio
->orig
));
1588 dm_dispatch_request(clone
);
1590 case DM_MAPIO_REQUEUE
:
1591 /* The target wants to requeue the I/O */
1592 dm_requeue_unmapped_request(clone
);
1597 DMWARN("unimplemented target map return value: %d", r
);
1601 /* The target wants to complete the I/O */
1602 dm_kill_unmapped_request(clone
, r
);
1610 * q->request_fn for request-based dm.
1611 * Called with the queue lock held.
1613 static void dm_request_fn(struct request_queue
*q
)
1615 struct mapped_device
*md
= q
->queuedata
;
1616 struct dm_table
*map
= dm_get_live_table(md
);
1617 struct dm_target
*ti
;
1618 struct request
*rq
, *clone
;
1622 * For suspend, check blk_queue_stopped() and increment
1623 * ->pending within a single queue_lock not to increment the
1624 * number of in-flight I/Os after the queue is stopped in
1627 while (!blk_queue_stopped(q
)) {
1628 rq
= blk_peek_request(q
);
1632 /* always use block 0 to find the target for flushes for now */
1634 if (!(rq
->cmd_flags
& REQ_FLUSH
))
1635 pos
= blk_rq_pos(rq
);
1637 ti
= dm_table_find_target(map
, pos
);
1638 BUG_ON(!dm_target_is_valid(ti
));
1640 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
1643 blk_start_request(rq
);
1644 clone
= rq
->special
;
1645 atomic_inc(&md
->pending
[rq_data_dir(clone
)]);
1647 spin_unlock(q
->queue_lock
);
1648 if (map_request(ti
, clone
, md
))
1651 BUG_ON(!irqs_disabled());
1652 spin_lock(q
->queue_lock
);
1658 BUG_ON(!irqs_disabled());
1659 spin_lock(q
->queue_lock
);
1662 blk_delay_queue(q
, HZ
/ 10);
1669 int dm_underlying_device_busy(struct request_queue
*q
)
1671 return blk_lld_busy(q
);
1673 EXPORT_SYMBOL_GPL(dm_underlying_device_busy
);
1675 static int dm_lld_busy(struct request_queue
*q
)
1678 struct mapped_device
*md
= q
->queuedata
;
1679 struct dm_table
*map
= dm_get_live_table(md
);
1681 if (!map
|| test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))
1684 r
= dm_table_any_busy_target(map
);
1691 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1694 struct mapped_device
*md
= congested_data
;
1695 struct dm_table
*map
;
1697 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1698 map
= dm_get_live_table(md
);
1701 * Request-based dm cares about only own queue for
1702 * the query about congestion status of request_queue
1704 if (dm_request_based(md
))
1705 r
= md
->queue
->backing_dev_info
.state
&
1708 r
= dm_table_any_congested(map
, bdi_bits
);
1717 /*-----------------------------------------------------------------
1718 * An IDR is used to keep track of allocated minor numbers.
1719 *---------------------------------------------------------------*/
1720 static void free_minor(int minor
)
1722 spin_lock(&_minor_lock
);
1723 idr_remove(&_minor_idr
, minor
);
1724 spin_unlock(&_minor_lock
);
1728 * See if the device with a specific minor # is free.
1730 static int specific_minor(int minor
)
1734 if (minor
>= (1 << MINORBITS
))
1737 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1741 spin_lock(&_minor_lock
);
1743 if (idr_find(&_minor_idr
, minor
)) {
1748 r
= idr_get_new_above(&_minor_idr
, MINOR_ALLOCED
, minor
, &m
);
1753 idr_remove(&_minor_idr
, m
);
1759 spin_unlock(&_minor_lock
);
1763 static int next_free_minor(int *minor
)
1767 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1771 spin_lock(&_minor_lock
);
1773 r
= idr_get_new(&_minor_idr
, MINOR_ALLOCED
, &m
);
1777 if (m
>= (1 << MINORBITS
)) {
1778 idr_remove(&_minor_idr
, m
);
1786 spin_unlock(&_minor_lock
);
1790 static const struct block_device_operations dm_blk_dops
;
1792 static void dm_wq_work(struct work_struct
*work
);
1794 static void dm_init_md_queue(struct mapped_device
*md
)
1797 * Request-based dm devices cannot be stacked on top of bio-based dm
1798 * devices. The type of this dm device has not been decided yet.
1799 * The type is decided at the first table loading time.
1800 * To prevent problematic device stacking, clear the queue flag
1801 * for request stacking support until then.
1803 * This queue is new, so no concurrency on the queue_flags.
1805 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE
, md
->queue
);
1807 md
->queue
->queuedata
= md
;
1808 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
1809 md
->queue
->backing_dev_info
.congested_data
= md
;
1810 blk_queue_make_request(md
->queue
, dm_request
);
1811 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
1812 blk_queue_merge_bvec(md
->queue
, dm_merge_bvec
);
1816 * Allocate and initialise a blank device with a given minor.
1818 static struct mapped_device
*alloc_dev(int minor
)
1821 struct mapped_device
*md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
1825 DMWARN("unable to allocate device, out of memory.");
1829 if (!try_module_get(THIS_MODULE
))
1830 goto bad_module_get
;
1832 /* get a minor number for the dev */
1833 if (minor
== DM_ANY_MINOR
)
1834 r
= next_free_minor(&minor
);
1836 r
= specific_minor(minor
);
1840 md
->type
= DM_TYPE_NONE
;
1841 init_rwsem(&md
->io_lock
);
1842 mutex_init(&md
->suspend_lock
);
1843 mutex_init(&md
->type_lock
);
1844 spin_lock_init(&md
->deferred_lock
);
1845 rwlock_init(&md
->map_lock
);
1846 atomic_set(&md
->holders
, 1);
1847 atomic_set(&md
->open_count
, 0);
1848 atomic_set(&md
->event_nr
, 0);
1849 atomic_set(&md
->uevent_seq
, 0);
1850 INIT_LIST_HEAD(&md
->uevent_list
);
1851 spin_lock_init(&md
->uevent_lock
);
1853 md
->queue
= blk_alloc_queue(GFP_KERNEL
);
1857 dm_init_md_queue(md
);
1859 md
->disk
= alloc_disk(1);
1863 atomic_set(&md
->pending
[0], 0);
1864 atomic_set(&md
->pending
[1], 0);
1865 init_waitqueue_head(&md
->wait
);
1866 INIT_WORK(&md
->work
, dm_wq_work
);
1867 init_waitqueue_head(&md
->eventq
);
1869 md
->disk
->major
= _major
;
1870 md
->disk
->first_minor
= minor
;
1871 md
->disk
->fops
= &dm_blk_dops
;
1872 md
->disk
->queue
= md
->queue
;
1873 md
->disk
->private_data
= md
;
1874 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1876 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1878 md
->wq
= alloc_workqueue("kdmflush",
1879 WQ_NON_REENTRANT
| WQ_MEM_RECLAIM
, 0);
1883 md
->bdev
= bdget_disk(md
->disk
, 0);
1887 bio_init(&md
->flush_bio
);
1888 md
->flush_bio
.bi_bdev
= md
->bdev
;
1889 md
->flush_bio
.bi_rw
= WRITE_FLUSH
;
1891 /* Populate the mapping, nobody knows we exist yet */
1892 spin_lock(&_minor_lock
);
1893 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1894 spin_unlock(&_minor_lock
);
1896 BUG_ON(old_md
!= MINOR_ALLOCED
);
1901 destroy_workqueue(md
->wq
);
1903 del_gendisk(md
->disk
);
1906 blk_cleanup_queue(md
->queue
);
1910 module_put(THIS_MODULE
);
1916 static void unlock_fs(struct mapped_device
*md
);
1918 static void free_dev(struct mapped_device
*md
)
1920 int minor
= MINOR(disk_devt(md
->disk
));
1924 destroy_workqueue(md
->wq
);
1926 mempool_destroy(md
->tio_pool
);
1928 mempool_destroy(md
->io_pool
);
1930 bioset_free(md
->bs
);
1931 blk_integrity_unregister(md
->disk
);
1932 del_gendisk(md
->disk
);
1935 spin_lock(&_minor_lock
);
1936 md
->disk
->private_data
= NULL
;
1937 spin_unlock(&_minor_lock
);
1940 blk_cleanup_queue(md
->queue
);
1941 module_put(THIS_MODULE
);
1945 static void __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
1947 struct dm_md_mempools
*p
;
1949 if (md
->io_pool
&& md
->tio_pool
&& md
->bs
)
1950 /* the md already has necessary mempools */
1953 p
= dm_table_get_md_mempools(t
);
1954 BUG_ON(!p
|| md
->io_pool
|| md
->tio_pool
|| md
->bs
);
1956 md
->io_pool
= p
->io_pool
;
1958 md
->tio_pool
= p
->tio_pool
;
1964 /* mempool bind completed, now no need any mempools in the table */
1965 dm_table_free_md_mempools(t
);
1969 * Bind a table to the device.
1971 static void event_callback(void *context
)
1973 unsigned long flags
;
1975 struct mapped_device
*md
= (struct mapped_device
*) context
;
1977 spin_lock_irqsave(&md
->uevent_lock
, flags
);
1978 list_splice_init(&md
->uevent_list
, &uevents
);
1979 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
1981 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
1983 atomic_inc(&md
->event_nr
);
1984 wake_up(&md
->eventq
);
1988 * Protected by md->suspend_lock obtained by dm_swap_table().
1990 static void __set_size(struct mapped_device
*md
, sector_t size
)
1992 set_capacity(md
->disk
, size
);
1994 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
1998 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2000 * If this function returns 0, then the device is either a non-dm
2001 * device without a merge_bvec_fn, or it is a dm device that is
2002 * able to split any bios it receives that are too big.
2004 int dm_queue_merge_is_compulsory(struct request_queue
*q
)
2006 struct mapped_device
*dev_md
;
2008 if (!q
->merge_bvec_fn
)
2011 if (q
->make_request_fn
== dm_request
) {
2012 dev_md
= q
->queuedata
;
2013 if (test_bit(DMF_MERGE_IS_OPTIONAL
, &dev_md
->flags
))
2020 static int dm_device_merge_is_compulsory(struct dm_target
*ti
,
2021 struct dm_dev
*dev
, sector_t start
,
2022 sector_t len
, void *data
)
2024 struct block_device
*bdev
= dev
->bdev
;
2025 struct request_queue
*q
= bdev_get_queue(bdev
);
2027 return dm_queue_merge_is_compulsory(q
);
2031 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2032 * on the properties of the underlying devices.
2034 static int dm_table_merge_is_optional(struct dm_table
*table
)
2037 struct dm_target
*ti
;
2039 while (i
< dm_table_get_num_targets(table
)) {
2040 ti
= dm_table_get_target(table
, i
++);
2042 if (ti
->type
->iterate_devices
&&
2043 ti
->type
->iterate_devices(ti
, dm_device_merge_is_compulsory
, NULL
))
2051 * Returns old map, which caller must destroy.
2053 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2054 struct queue_limits
*limits
)
2056 struct dm_table
*old_map
;
2057 struct request_queue
*q
= md
->queue
;
2059 unsigned long flags
;
2060 int merge_is_optional
;
2062 size
= dm_table_get_size(t
);
2065 * Wipe any geometry if the size of the table changed.
2067 if (size
!= get_capacity(md
->disk
))
2068 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2070 __set_size(md
, size
);
2072 dm_table_event_callback(t
, event_callback
, md
);
2075 * The queue hasn't been stopped yet, if the old table type wasn't
2076 * for request-based during suspension. So stop it to prevent
2077 * I/O mapping before resume.
2078 * This must be done before setting the queue restrictions,
2079 * because request-based dm may be run just after the setting.
2081 if (dm_table_request_based(t
) && !blk_queue_stopped(q
))
2084 __bind_mempools(md
, t
);
2086 merge_is_optional
= dm_table_merge_is_optional(t
);
2088 write_lock_irqsave(&md
->map_lock
, flags
);
2091 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
2093 dm_table_set_restrictions(t
, q
, limits
);
2094 if (merge_is_optional
)
2095 set_bit(DMF_MERGE_IS_OPTIONAL
, &md
->flags
);
2097 clear_bit(DMF_MERGE_IS_OPTIONAL
, &md
->flags
);
2098 write_unlock_irqrestore(&md
->map_lock
, flags
);
2104 * Returns unbound table for the caller to free.
2106 static struct dm_table
*__unbind(struct mapped_device
*md
)
2108 struct dm_table
*map
= md
->map
;
2109 unsigned long flags
;
2114 dm_table_event_callback(map
, NULL
, NULL
);
2115 write_lock_irqsave(&md
->map_lock
, flags
);
2117 write_unlock_irqrestore(&md
->map_lock
, flags
);
2123 * Constructor for a new device.
2125 int dm_create(int minor
, struct mapped_device
**result
)
2127 struct mapped_device
*md
;
2129 md
= alloc_dev(minor
);
2140 * Functions to manage md->type.
2141 * All are required to hold md->type_lock.
2143 void dm_lock_md_type(struct mapped_device
*md
)
2145 mutex_lock(&md
->type_lock
);
2148 void dm_unlock_md_type(struct mapped_device
*md
)
2150 mutex_unlock(&md
->type_lock
);
2153 void dm_set_md_type(struct mapped_device
*md
, unsigned type
)
2158 unsigned dm_get_md_type(struct mapped_device
*md
)
2163 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
2165 return md
->immutable_target_type
;
2169 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2171 static int dm_init_request_based_queue(struct mapped_device
*md
)
2173 struct request_queue
*q
= NULL
;
2175 if (md
->queue
->elevator
)
2178 /* Fully initialize the queue */
2179 q
= blk_init_allocated_queue(md
->queue
, dm_request_fn
, NULL
);
2184 dm_init_md_queue(md
);
2185 blk_queue_softirq_done(md
->queue
, dm_softirq_done
);
2186 blk_queue_prep_rq(md
->queue
, dm_prep_fn
);
2187 blk_queue_lld_busy(md
->queue
, dm_lld_busy
);
2189 elv_register_queue(md
->queue
);
2195 * Setup the DM device's queue based on md's type
2197 int dm_setup_md_queue(struct mapped_device
*md
)
2199 if ((dm_get_md_type(md
) == DM_TYPE_REQUEST_BASED
) &&
2200 !dm_init_request_based_queue(md
)) {
2201 DMWARN("Cannot initialize queue for request-based mapped device");
2208 static struct mapped_device
*dm_find_md(dev_t dev
)
2210 struct mapped_device
*md
;
2211 unsigned minor
= MINOR(dev
);
2213 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2216 spin_lock(&_minor_lock
);
2218 md
= idr_find(&_minor_idr
, minor
);
2219 if (md
&& (md
== MINOR_ALLOCED
||
2220 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2221 dm_deleting_md(md
) ||
2222 test_bit(DMF_FREEING
, &md
->flags
))) {
2228 spin_unlock(&_minor_lock
);
2233 struct mapped_device
*dm_get_md(dev_t dev
)
2235 struct mapped_device
*md
= dm_find_md(dev
);
2242 EXPORT_SYMBOL_GPL(dm_get_md
);
2244 void *dm_get_mdptr(struct mapped_device
*md
)
2246 return md
->interface_ptr
;
2249 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2251 md
->interface_ptr
= ptr
;
2254 void dm_get(struct mapped_device
*md
)
2256 atomic_inc(&md
->holders
);
2257 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2260 const char *dm_device_name(struct mapped_device
*md
)
2264 EXPORT_SYMBOL_GPL(dm_device_name
);
2266 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2268 struct dm_table
*map
;
2272 spin_lock(&_minor_lock
);
2273 map
= dm_get_live_table(md
);
2274 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2275 set_bit(DMF_FREEING
, &md
->flags
);
2276 spin_unlock(&_minor_lock
);
2278 if (!dm_suspended_md(md
)) {
2279 dm_table_presuspend_targets(map
);
2280 dm_table_postsuspend_targets(map
);
2284 * Rare, but there may be I/O requests still going to complete,
2285 * for example. Wait for all references to disappear.
2286 * No one should increment the reference count of the mapped_device,
2287 * after the mapped_device state becomes DMF_FREEING.
2290 while (atomic_read(&md
->holders
))
2292 else if (atomic_read(&md
->holders
))
2293 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2294 dm_device_name(md
), atomic_read(&md
->holders
));
2298 dm_table_destroy(__unbind(md
));
2302 void dm_destroy(struct mapped_device
*md
)
2304 __dm_destroy(md
, true);
2307 void dm_destroy_immediate(struct mapped_device
*md
)
2309 __dm_destroy(md
, false);
2312 void dm_put(struct mapped_device
*md
)
2314 atomic_dec(&md
->holders
);
2316 EXPORT_SYMBOL_GPL(dm_put
);
2318 static int dm_wait_for_completion(struct mapped_device
*md
, int interruptible
)
2321 DECLARE_WAITQUEUE(wait
, current
);
2323 add_wait_queue(&md
->wait
, &wait
);
2326 set_current_state(interruptible
);
2328 if (!md_in_flight(md
))
2331 if (interruptible
== TASK_INTERRUPTIBLE
&&
2332 signal_pending(current
)) {
2339 set_current_state(TASK_RUNNING
);
2341 remove_wait_queue(&md
->wait
, &wait
);
2347 * Process the deferred bios
2349 static void dm_wq_work(struct work_struct
*work
)
2351 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2355 down_read(&md
->io_lock
);
2357 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2358 spin_lock_irq(&md
->deferred_lock
);
2359 c
= bio_list_pop(&md
->deferred
);
2360 spin_unlock_irq(&md
->deferred_lock
);
2365 up_read(&md
->io_lock
);
2367 if (dm_request_based(md
))
2368 generic_make_request(c
);
2370 __split_and_process_bio(md
, c
);
2372 down_read(&md
->io_lock
);
2375 up_read(&md
->io_lock
);
2378 static void dm_queue_flush(struct mapped_device
*md
)
2380 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2381 smp_mb__after_clear_bit();
2382 queue_work(md
->wq
, &md
->work
);
2386 * Swap in a new table, returning the old one for the caller to destroy.
2388 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2390 struct dm_table
*map
= ERR_PTR(-EINVAL
);
2391 struct queue_limits limits
;
2394 mutex_lock(&md
->suspend_lock
);
2396 /* device must be suspended */
2397 if (!dm_suspended_md(md
))
2400 r
= dm_calculate_queue_limits(table
, &limits
);
2406 map
= __bind(md
, table
, &limits
);
2409 mutex_unlock(&md
->suspend_lock
);
2414 * Functions to lock and unlock any filesystem running on the
2417 static int lock_fs(struct mapped_device
*md
)
2421 WARN_ON(md
->frozen_sb
);
2423 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2424 if (IS_ERR(md
->frozen_sb
)) {
2425 r
= PTR_ERR(md
->frozen_sb
);
2426 md
->frozen_sb
= NULL
;
2430 set_bit(DMF_FROZEN
, &md
->flags
);
2435 static void unlock_fs(struct mapped_device
*md
)
2437 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2440 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2441 md
->frozen_sb
= NULL
;
2442 clear_bit(DMF_FROZEN
, &md
->flags
);
2446 * We need to be able to change a mapping table under a mounted
2447 * filesystem. For example we might want to move some data in
2448 * the background. Before the table can be swapped with
2449 * dm_bind_table, dm_suspend must be called to flush any in
2450 * flight bios and ensure that any further io gets deferred.
2453 * Suspend mechanism in request-based dm.
2455 * 1. Flush all I/Os by lock_fs() if needed.
2456 * 2. Stop dispatching any I/O by stopping the request_queue.
2457 * 3. Wait for all in-flight I/Os to be completed or requeued.
2459 * To abort suspend, start the request_queue.
2461 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2463 struct dm_table
*map
= NULL
;
2465 int do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
? 1 : 0;
2466 int noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
? 1 : 0;
2468 mutex_lock(&md
->suspend_lock
);
2470 if (dm_suspended_md(md
)) {
2475 map
= dm_get_live_table(md
);
2478 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2479 * This flag is cleared before dm_suspend returns.
2482 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2484 /* This does not get reverted if there's an error later. */
2485 dm_table_presuspend_targets(map
);
2488 * Flush I/O to the device.
2489 * Any I/O submitted after lock_fs() may not be flushed.
2490 * noflush takes precedence over do_lockfs.
2491 * (lock_fs() flushes I/Os and waits for them to complete.)
2493 if (!noflush
&& do_lockfs
) {
2500 * Here we must make sure that no processes are submitting requests
2501 * to target drivers i.e. no one may be executing
2502 * __split_and_process_bio. This is called from dm_request and
2505 * To get all processes out of __split_and_process_bio in dm_request,
2506 * we take the write lock. To prevent any process from reentering
2507 * __split_and_process_bio from dm_request and quiesce the thread
2508 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2509 * flush_workqueue(md->wq).
2511 down_write(&md
->io_lock
);
2512 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2513 up_write(&md
->io_lock
);
2516 * Stop md->queue before flushing md->wq in case request-based
2517 * dm defers requests to md->wq from md->queue.
2519 if (dm_request_based(md
))
2520 stop_queue(md
->queue
);
2522 flush_workqueue(md
->wq
);
2525 * At this point no more requests are entering target request routines.
2526 * We call dm_wait_for_completion to wait for all existing requests
2529 r
= dm_wait_for_completion(md
, TASK_INTERRUPTIBLE
);
2531 down_write(&md
->io_lock
);
2533 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2534 up_write(&md
->io_lock
);
2536 /* were we interrupted ? */
2540 if (dm_request_based(md
))
2541 start_queue(md
->queue
);
2544 goto out
; /* pushback list is already flushed, so skip flush */
2548 * If dm_wait_for_completion returned 0, the device is completely
2549 * quiescent now. There is no request-processing activity. All new
2550 * requests are being added to md->deferred list.
2553 set_bit(DMF_SUSPENDED
, &md
->flags
);
2555 dm_table_postsuspend_targets(map
);
2561 mutex_unlock(&md
->suspend_lock
);
2565 int dm_resume(struct mapped_device
*md
)
2568 struct dm_table
*map
= NULL
;
2570 mutex_lock(&md
->suspend_lock
);
2571 if (!dm_suspended_md(md
))
2574 map
= dm_get_live_table(md
);
2575 if (!map
|| !dm_table_get_size(map
))
2578 r
= dm_table_resume_targets(map
);
2585 * Flushing deferred I/Os must be done after targets are resumed
2586 * so that mapping of targets can work correctly.
2587 * Request-based dm is queueing the deferred I/Os in its request_queue.
2589 if (dm_request_based(md
))
2590 start_queue(md
->queue
);
2594 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2599 mutex_unlock(&md
->suspend_lock
);
2604 /*-----------------------------------------------------------------
2605 * Event notification.
2606 *---------------------------------------------------------------*/
2607 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2610 char udev_cookie
[DM_COOKIE_LENGTH
];
2611 char *envp
[] = { udev_cookie
, NULL
};
2614 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2616 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2617 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2618 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2623 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2625 return atomic_add_return(1, &md
->uevent_seq
);
2628 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2630 return atomic_read(&md
->event_nr
);
2633 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2635 return wait_event_interruptible(md
->eventq
,
2636 (event_nr
!= atomic_read(&md
->event_nr
)));
2639 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2641 unsigned long flags
;
2643 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2644 list_add(elist
, &md
->uevent_list
);
2645 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2649 * The gendisk is only valid as long as you have a reference
2652 struct gendisk
*dm_disk(struct mapped_device
*md
)
2657 struct kobject
*dm_kobject(struct mapped_device
*md
)
2663 * struct mapped_device should not be exported outside of dm.c
2664 * so use this check to verify that kobj is part of md structure
2666 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2668 struct mapped_device
*md
;
2670 md
= container_of(kobj
, struct mapped_device
, kobj
);
2671 if (&md
->kobj
!= kobj
)
2674 if (test_bit(DMF_FREEING
, &md
->flags
) ||
2682 int dm_suspended_md(struct mapped_device
*md
)
2684 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2687 int dm_suspended(struct dm_target
*ti
)
2689 return dm_suspended_md(dm_table_get_md(ti
->table
));
2691 EXPORT_SYMBOL_GPL(dm_suspended
);
2693 int dm_noflush_suspending(struct dm_target
*ti
)
2695 return __noflush_suspending(dm_table_get_md(ti
->table
));
2697 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2699 struct dm_md_mempools
*dm_alloc_md_mempools(unsigned type
, unsigned integrity
)
2701 struct dm_md_mempools
*pools
= kmalloc(sizeof(*pools
), GFP_KERNEL
);
2702 unsigned int pool_size
= (type
== DM_TYPE_BIO_BASED
) ? 16 : MIN_IOS
;
2707 pools
->io_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2708 mempool_create_slab_pool(MIN_IOS
, _io_cache
) :
2709 mempool_create_slab_pool(MIN_IOS
, _rq_bio_info_cache
);
2710 if (!pools
->io_pool
)
2711 goto free_pools_and_out
;
2713 pools
->tio_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2714 mempool_create_slab_pool(MIN_IOS
, _tio_cache
) :
2715 mempool_create_slab_pool(MIN_IOS
, _rq_tio_cache
);
2716 if (!pools
->tio_pool
)
2717 goto free_io_pool_and_out
;
2719 pools
->bs
= bioset_create(pool_size
, 0);
2721 goto free_tio_pool_and_out
;
2723 if (integrity
&& bioset_integrity_create(pools
->bs
, pool_size
))
2724 goto free_bioset_and_out
;
2728 free_bioset_and_out
:
2729 bioset_free(pools
->bs
);
2731 free_tio_pool_and_out
:
2732 mempool_destroy(pools
->tio_pool
);
2734 free_io_pool_and_out
:
2735 mempool_destroy(pools
->io_pool
);
2743 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
2749 mempool_destroy(pools
->io_pool
);
2751 if (pools
->tio_pool
)
2752 mempool_destroy(pools
->tio_pool
);
2755 bioset_free(pools
->bs
);
2760 static const struct block_device_operations dm_blk_dops
= {
2761 .open
= dm_blk_open
,
2762 .release
= dm_blk_close
,
2763 .ioctl
= dm_blk_ioctl
,
2764 .getgeo
= dm_blk_getgeo
,
2765 .owner
= THIS_MODULE
2768 EXPORT_SYMBOL(dm_get_mapinfo
);
2773 module_init(dm_init
);
2774 module_exit(dm_exit
);
2776 module_param(major
, uint
, 0);
2777 MODULE_PARM_DESC(major
, "The major number of the device mapper");
2778 MODULE_DESCRIPTION(DM_NAME
" driver");
2779 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2780 MODULE_LICENSE("GPL");