NFS: Separate metadata and page cache revalidation mechanisms
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / cfq-iosched.c
bloba46d030e092aa60cba5f1b513cde94378f6b9ce7
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@suse.de>
8 */
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/hash.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
18 * tunables
20 static const int cfq_quantum = 4; /* max queue in one round of service */
21 static const int cfq_queued = 8; /* minimum rq allocate limit per-queue*/
22 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
24 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 70;
31 #define CFQ_IDLE_GRACE (HZ / 10)
32 #define CFQ_SLICE_SCALE (5)
34 #define CFQ_KEY_ASYNC (0)
36 static DEFINE_SPINLOCK(cfq_exit_lock);
39 * for the hash of cfqq inside the cfqd
41 #define CFQ_QHASH_SHIFT 6
42 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
43 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
46 * for the hash of crq inside the cfqq
48 #define CFQ_MHASH_SHIFT 6
49 #define CFQ_MHASH_BLOCK(sec) ((sec) >> 3)
50 #define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT)
51 #define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
52 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
53 #define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash)
55 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
56 #define list_entry_fifo(ptr) list_entry((ptr), struct request, queuelist)
58 #define RQ_DATA(rq) (rq)->elevator_private
61 * rb-tree defines
63 #define RB_NONE (2)
64 #define RB_EMPTY(node) ((node)->rb_node == NULL)
65 #define RB_CLEAR_COLOR(node) (node)->rb_color = RB_NONE
66 #define RB_CLEAR(node) do { \
67 (node)->rb_parent = NULL; \
68 RB_CLEAR_COLOR((node)); \
69 (node)->rb_right = NULL; \
70 (node)->rb_left = NULL; \
71 } while (0)
72 #define RB_CLEAR_ROOT(root) ((root)->rb_node = NULL)
73 #define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node)
74 #define rq_rb_key(rq) (rq)->sector
76 static kmem_cache_t *crq_pool;
77 static kmem_cache_t *cfq_pool;
78 static kmem_cache_t *cfq_ioc_pool;
80 static atomic_t ioc_count = ATOMIC_INIT(0);
81 static struct completion *ioc_gone;
83 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
84 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
85 #define cfq_class_be(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
86 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
88 #define ASYNC (0)
89 #define SYNC (1)
91 #define cfq_cfqq_dispatched(cfqq) \
92 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
94 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
96 #define cfq_cfqq_sync(cfqq) \
97 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
99 #define sample_valid(samples) ((samples) > 80)
102 * Per block device queue structure
104 struct cfq_data {
105 request_queue_t *queue;
108 * rr list of queues with requests and the count of them
110 struct list_head rr_list[CFQ_PRIO_LISTS];
111 struct list_head busy_rr;
112 struct list_head cur_rr;
113 struct list_head idle_rr;
114 unsigned int busy_queues;
117 * non-ordered list of empty cfqq's
119 struct list_head empty_list;
122 * cfqq lookup hash
124 struct hlist_head *cfq_hash;
127 * global crq hash for all queues
129 struct hlist_head *crq_hash;
131 unsigned int max_queued;
133 mempool_t *crq_pool;
135 int rq_in_driver;
136 int hw_tag;
139 * schedule slice state info
142 * idle window management
144 struct timer_list idle_slice_timer;
145 struct work_struct unplug_work;
147 struct cfq_queue *active_queue;
148 struct cfq_io_context *active_cic;
149 int cur_prio, cur_end_prio;
150 unsigned int dispatch_slice;
152 struct timer_list idle_class_timer;
154 sector_t last_sector;
155 unsigned long last_end_request;
157 unsigned int rq_starved;
160 * tunables, see top of file
162 unsigned int cfq_quantum;
163 unsigned int cfq_queued;
164 unsigned int cfq_fifo_expire[2];
165 unsigned int cfq_back_penalty;
166 unsigned int cfq_back_max;
167 unsigned int cfq_slice[2];
168 unsigned int cfq_slice_async_rq;
169 unsigned int cfq_slice_idle;
171 struct list_head cic_list;
175 * Per process-grouping structure
177 struct cfq_queue {
178 /* reference count */
179 atomic_t ref;
180 /* parent cfq_data */
181 struct cfq_data *cfqd;
182 /* cfqq lookup hash */
183 struct hlist_node cfq_hash;
184 /* hash key */
185 unsigned int key;
186 /* on either rr or empty list of cfqd */
187 struct list_head cfq_list;
188 /* sorted list of pending requests */
189 struct rb_root sort_list;
190 /* if fifo isn't expired, next request to serve */
191 struct cfq_rq *next_crq;
192 /* requests queued in sort_list */
193 int queued[2];
194 /* currently allocated requests */
195 int allocated[2];
196 /* fifo list of requests in sort_list */
197 struct list_head fifo;
199 unsigned long slice_start;
200 unsigned long slice_end;
201 unsigned long slice_left;
202 unsigned long service_last;
204 /* number of requests that are on the dispatch list */
205 int on_dispatch[2];
207 /* io prio of this group */
208 unsigned short ioprio, org_ioprio;
209 unsigned short ioprio_class, org_ioprio_class;
211 /* various state flags, see below */
212 unsigned int flags;
215 struct cfq_rq {
216 struct rb_node rb_node;
217 sector_t rb_key;
218 struct request *request;
219 struct hlist_node hash;
221 struct cfq_queue *cfq_queue;
222 struct cfq_io_context *io_context;
224 unsigned int crq_flags;
227 enum cfqq_state_flags {
228 CFQ_CFQQ_FLAG_on_rr = 0,
229 CFQ_CFQQ_FLAG_wait_request,
230 CFQ_CFQQ_FLAG_must_alloc,
231 CFQ_CFQQ_FLAG_must_alloc_slice,
232 CFQ_CFQQ_FLAG_must_dispatch,
233 CFQ_CFQQ_FLAG_fifo_expire,
234 CFQ_CFQQ_FLAG_idle_window,
235 CFQ_CFQQ_FLAG_prio_changed,
238 #define CFQ_CFQQ_FNS(name) \
239 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
241 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
243 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
245 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
247 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
249 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
252 CFQ_CFQQ_FNS(on_rr);
253 CFQ_CFQQ_FNS(wait_request);
254 CFQ_CFQQ_FNS(must_alloc);
255 CFQ_CFQQ_FNS(must_alloc_slice);
256 CFQ_CFQQ_FNS(must_dispatch);
257 CFQ_CFQQ_FNS(fifo_expire);
258 CFQ_CFQQ_FNS(idle_window);
259 CFQ_CFQQ_FNS(prio_changed);
260 #undef CFQ_CFQQ_FNS
262 enum cfq_rq_state_flags {
263 CFQ_CRQ_FLAG_is_sync = 0,
266 #define CFQ_CRQ_FNS(name) \
267 static inline void cfq_mark_crq_##name(struct cfq_rq *crq) \
269 crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name); \
271 static inline void cfq_clear_crq_##name(struct cfq_rq *crq) \
273 crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name); \
275 static inline int cfq_crq_##name(const struct cfq_rq *crq) \
277 return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0; \
280 CFQ_CRQ_FNS(is_sync);
281 #undef CFQ_CRQ_FNS
283 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
284 static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *);
285 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
287 #define process_sync(tsk) ((tsk)->flags & PF_SYNCWRITE)
290 * lots of deadline iosched dupes, can be abstracted later...
292 static inline void cfq_del_crq_hash(struct cfq_rq *crq)
294 hlist_del_init(&crq->hash);
297 static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq)
299 const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request));
301 hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]);
304 static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset)
306 struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)];
307 struct hlist_node *entry, *next;
309 hlist_for_each_safe(entry, next, hash_list) {
310 struct cfq_rq *crq = list_entry_hash(entry);
311 struct request *__rq = crq->request;
313 if (!rq_mergeable(__rq)) {
314 cfq_del_crq_hash(crq);
315 continue;
318 if (rq_hash_key(__rq) == offset)
319 return __rq;
322 return NULL;
326 * scheduler run of queue, if there are requests pending and no one in the
327 * driver that will restart queueing
329 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
331 if (cfqd->busy_queues)
332 kblockd_schedule_work(&cfqd->unplug_work);
335 static int cfq_queue_empty(request_queue_t *q)
337 struct cfq_data *cfqd = q->elevator->elevator_data;
339 return !cfqd->busy_queues;
342 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
344 if (rw == READ || process_sync(task))
345 return task->pid;
347 return CFQ_KEY_ASYNC;
351 * Lifted from AS - choose which of crq1 and crq2 that is best served now.
352 * We choose the request that is closest to the head right now. Distance
353 * behind the head is penalized and only allowed to a certain extent.
355 static struct cfq_rq *
356 cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2)
358 sector_t last, s1, s2, d1 = 0, d2 = 0;
359 unsigned long back_max;
360 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
361 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
362 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
364 if (crq1 == NULL || crq1 == crq2)
365 return crq2;
366 if (crq2 == NULL)
367 return crq1;
369 if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2))
370 return crq1;
371 else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1))
372 return crq2;
374 s1 = crq1->request->sector;
375 s2 = crq2->request->sector;
377 last = cfqd->last_sector;
380 * by definition, 1KiB is 2 sectors
382 back_max = cfqd->cfq_back_max * 2;
385 * Strict one way elevator _except_ in the case where we allow
386 * short backward seeks which are biased as twice the cost of a
387 * similar forward seek.
389 if (s1 >= last)
390 d1 = s1 - last;
391 else if (s1 + back_max >= last)
392 d1 = (last - s1) * cfqd->cfq_back_penalty;
393 else
394 wrap |= CFQ_RQ1_WRAP;
396 if (s2 >= last)
397 d2 = s2 - last;
398 else if (s2 + back_max >= last)
399 d2 = (last - s2) * cfqd->cfq_back_penalty;
400 else
401 wrap |= CFQ_RQ2_WRAP;
403 /* Found required data */
406 * By doing switch() on the bit mask "wrap" we avoid having to
407 * check two variables for all permutations: --> faster!
409 switch (wrap) {
410 case 0: /* common case for CFQ: crq1 and crq2 not wrapped */
411 if (d1 < d2)
412 return crq1;
413 else if (d2 < d1)
414 return crq2;
415 else {
416 if (s1 >= s2)
417 return crq1;
418 else
419 return crq2;
422 case CFQ_RQ2_WRAP:
423 return crq1;
424 case CFQ_RQ1_WRAP:
425 return crq2;
426 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both crqs wrapped */
427 default:
429 * Since both rqs are wrapped,
430 * start with the one that's further behind head
431 * (--> only *one* back seek required),
432 * since back seek takes more time than forward.
434 if (s1 <= s2)
435 return crq1;
436 else
437 return crq2;
442 * would be nice to take fifo expire time into account as well
444 static struct cfq_rq *
445 cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
446 struct cfq_rq *last)
448 struct cfq_rq *crq_next = NULL, *crq_prev = NULL;
449 struct rb_node *rbnext, *rbprev;
451 if (!(rbnext = rb_next(&last->rb_node))) {
452 rbnext = rb_first(&cfqq->sort_list);
453 if (rbnext == &last->rb_node)
454 rbnext = NULL;
457 rbprev = rb_prev(&last->rb_node);
459 if (rbprev)
460 crq_prev = rb_entry_crq(rbprev);
461 if (rbnext)
462 crq_next = rb_entry_crq(rbnext);
464 return cfq_choose_req(cfqd, crq_next, crq_prev);
467 static void cfq_update_next_crq(struct cfq_rq *crq)
469 struct cfq_queue *cfqq = crq->cfq_queue;
471 if (cfqq->next_crq == crq)
472 cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq);
475 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
477 struct cfq_data *cfqd = cfqq->cfqd;
478 struct list_head *list, *entry;
480 BUG_ON(!cfq_cfqq_on_rr(cfqq));
482 list_del(&cfqq->cfq_list);
484 if (cfq_class_rt(cfqq))
485 list = &cfqd->cur_rr;
486 else if (cfq_class_idle(cfqq))
487 list = &cfqd->idle_rr;
488 else {
490 * if cfqq has requests in flight, don't allow it to be
491 * found in cfq_set_active_queue before it has finished them.
492 * this is done to increase fairness between a process that
493 * has lots of io pending vs one that only generates one
494 * sporadically or synchronously
496 if (cfq_cfqq_dispatched(cfqq))
497 list = &cfqd->busy_rr;
498 else
499 list = &cfqd->rr_list[cfqq->ioprio];
503 * if queue was preempted, just add to front to be fair. busy_rr
504 * isn't sorted, but insert at the back for fairness.
506 if (preempted || list == &cfqd->busy_rr) {
507 if (preempted)
508 list = list->prev;
510 list_add_tail(&cfqq->cfq_list, list);
511 return;
515 * sort by when queue was last serviced
517 entry = list;
518 while ((entry = entry->prev) != list) {
519 struct cfq_queue *__cfqq = list_entry_cfqq(entry);
521 if (!__cfqq->service_last)
522 break;
523 if (time_before(__cfqq->service_last, cfqq->service_last))
524 break;
527 list_add(&cfqq->cfq_list, entry);
531 * add to busy list of queues for service, trying to be fair in ordering
532 * the pending list according to last request service
534 static inline void
535 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
537 BUG_ON(cfq_cfqq_on_rr(cfqq));
538 cfq_mark_cfqq_on_rr(cfqq);
539 cfqd->busy_queues++;
541 cfq_resort_rr_list(cfqq, 0);
544 static inline void
545 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
547 BUG_ON(!cfq_cfqq_on_rr(cfqq));
548 cfq_clear_cfqq_on_rr(cfqq);
549 list_move(&cfqq->cfq_list, &cfqd->empty_list);
551 BUG_ON(!cfqd->busy_queues);
552 cfqd->busy_queues--;
556 * rb tree support functions
558 static inline void cfq_del_crq_rb(struct cfq_rq *crq)
560 struct cfq_queue *cfqq = crq->cfq_queue;
561 struct cfq_data *cfqd = cfqq->cfqd;
562 const int sync = cfq_crq_is_sync(crq);
564 BUG_ON(!cfqq->queued[sync]);
565 cfqq->queued[sync]--;
567 cfq_update_next_crq(crq);
569 rb_erase(&crq->rb_node, &cfqq->sort_list);
570 RB_CLEAR_COLOR(&crq->rb_node);
572 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY(&cfqq->sort_list))
573 cfq_del_cfqq_rr(cfqd, cfqq);
576 static struct cfq_rq *
577 __cfq_add_crq_rb(struct cfq_rq *crq)
579 struct rb_node **p = &crq->cfq_queue->sort_list.rb_node;
580 struct rb_node *parent = NULL;
581 struct cfq_rq *__crq;
583 while (*p) {
584 parent = *p;
585 __crq = rb_entry_crq(parent);
587 if (crq->rb_key < __crq->rb_key)
588 p = &(*p)->rb_left;
589 else if (crq->rb_key > __crq->rb_key)
590 p = &(*p)->rb_right;
591 else
592 return __crq;
595 rb_link_node(&crq->rb_node, parent, p);
596 return NULL;
599 static void cfq_add_crq_rb(struct cfq_rq *crq)
601 struct cfq_queue *cfqq = crq->cfq_queue;
602 struct cfq_data *cfqd = cfqq->cfqd;
603 struct request *rq = crq->request;
604 struct cfq_rq *__alias;
606 crq->rb_key = rq_rb_key(rq);
607 cfqq->queued[cfq_crq_is_sync(crq)]++;
610 * looks a little odd, but the first insert might return an alias.
611 * if that happens, put the alias on the dispatch list
613 while ((__alias = __cfq_add_crq_rb(crq)) != NULL)
614 cfq_dispatch_insert(cfqd->queue, __alias);
616 rb_insert_color(&crq->rb_node, &cfqq->sort_list);
618 if (!cfq_cfqq_on_rr(cfqq))
619 cfq_add_cfqq_rr(cfqd, cfqq);
622 * check if this request is a better next-serve candidate
624 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
627 static inline void
628 cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq)
630 rb_erase(&crq->rb_node, &cfqq->sort_list);
631 cfqq->queued[cfq_crq_is_sync(crq)]--;
633 cfq_add_crq_rb(crq);
636 static struct request *
637 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
639 struct task_struct *tsk = current;
640 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
641 struct cfq_queue *cfqq;
642 struct rb_node *n;
643 sector_t sector;
645 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
646 if (!cfqq)
647 goto out;
649 sector = bio->bi_sector + bio_sectors(bio);
650 n = cfqq->sort_list.rb_node;
651 while (n) {
652 struct cfq_rq *crq = rb_entry_crq(n);
654 if (sector < crq->rb_key)
655 n = n->rb_left;
656 else if (sector > crq->rb_key)
657 n = n->rb_right;
658 else
659 return crq->request;
662 out:
663 return NULL;
666 static void cfq_activate_request(request_queue_t *q, struct request *rq)
668 struct cfq_data *cfqd = q->elevator->elevator_data;
670 cfqd->rq_in_driver++;
673 * If the depth is larger 1, it really could be queueing. But lets
674 * make the mark a little higher - idling could still be good for
675 * low queueing, and a low queueing number could also just indicate
676 * a SCSI mid layer like behaviour where limit+1 is often seen.
678 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
679 cfqd->hw_tag = 1;
682 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
684 struct cfq_data *cfqd = q->elevator->elevator_data;
686 WARN_ON(!cfqd->rq_in_driver);
687 cfqd->rq_in_driver--;
690 static void cfq_remove_request(struct request *rq)
692 struct cfq_rq *crq = RQ_DATA(rq);
694 list_del_init(&rq->queuelist);
695 cfq_del_crq_rb(crq);
696 cfq_del_crq_hash(crq);
699 static int
700 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
702 struct cfq_data *cfqd = q->elevator->elevator_data;
703 struct request *__rq;
704 int ret;
706 __rq = cfq_find_rq_hash(cfqd, bio->bi_sector);
707 if (__rq && elv_rq_merge_ok(__rq, bio)) {
708 ret = ELEVATOR_BACK_MERGE;
709 goto out;
712 __rq = cfq_find_rq_fmerge(cfqd, bio);
713 if (__rq && elv_rq_merge_ok(__rq, bio)) {
714 ret = ELEVATOR_FRONT_MERGE;
715 goto out;
718 return ELEVATOR_NO_MERGE;
719 out:
720 *req = __rq;
721 return ret;
724 static void cfq_merged_request(request_queue_t *q, struct request *req)
726 struct cfq_data *cfqd = q->elevator->elevator_data;
727 struct cfq_rq *crq = RQ_DATA(req);
729 cfq_del_crq_hash(crq);
730 cfq_add_crq_hash(cfqd, crq);
732 if (rq_rb_key(req) != crq->rb_key) {
733 struct cfq_queue *cfqq = crq->cfq_queue;
735 cfq_update_next_crq(crq);
736 cfq_reposition_crq_rb(cfqq, crq);
740 static void
741 cfq_merged_requests(request_queue_t *q, struct request *rq,
742 struct request *next)
744 cfq_merged_request(q, rq);
747 * reposition in fifo if next is older than rq
749 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
750 time_before(next->start_time, rq->start_time))
751 list_move(&rq->queuelist, &next->queuelist);
753 cfq_remove_request(next);
756 static inline void
757 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
759 if (cfqq) {
761 * stop potential idle class queues waiting service
763 del_timer(&cfqd->idle_class_timer);
765 cfqq->slice_start = jiffies;
766 cfqq->slice_end = 0;
767 cfqq->slice_left = 0;
768 cfq_clear_cfqq_must_alloc_slice(cfqq);
769 cfq_clear_cfqq_fifo_expire(cfqq);
772 cfqd->active_queue = cfqq;
776 * current cfqq expired its slice (or was too idle), select new one
778 static void
779 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
780 int preempted)
782 unsigned long now = jiffies;
784 if (cfq_cfqq_wait_request(cfqq))
785 del_timer(&cfqd->idle_slice_timer);
787 if (!preempted && !cfq_cfqq_dispatched(cfqq)) {
788 cfqq->service_last = now;
789 cfq_schedule_dispatch(cfqd);
792 cfq_clear_cfqq_must_dispatch(cfqq);
793 cfq_clear_cfqq_wait_request(cfqq);
796 * store what was left of this slice, if the queue idled out
797 * or was preempted
799 if (time_after(cfqq->slice_end, now))
800 cfqq->slice_left = cfqq->slice_end - now;
801 else
802 cfqq->slice_left = 0;
804 if (cfq_cfqq_on_rr(cfqq))
805 cfq_resort_rr_list(cfqq, preempted);
807 if (cfqq == cfqd->active_queue)
808 cfqd->active_queue = NULL;
810 if (cfqd->active_cic) {
811 put_io_context(cfqd->active_cic->ioc);
812 cfqd->active_cic = NULL;
815 cfqd->dispatch_slice = 0;
818 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
820 struct cfq_queue *cfqq = cfqd->active_queue;
822 if (cfqq)
823 __cfq_slice_expired(cfqd, cfqq, preempted);
828 * 0,1
829 * 0,1,2
830 * 0,1,2,3
831 * 0,1,2,3,4
832 * 0,1,2,3,4,5
833 * 0,1,2,3,4,5,6
834 * 0,1,2,3,4,5,6,7
836 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
838 int prio, wrap;
840 prio = -1;
841 wrap = 0;
842 do {
843 int p;
845 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
846 if (!list_empty(&cfqd->rr_list[p])) {
847 prio = p;
848 break;
852 if (prio != -1)
853 break;
854 cfqd->cur_prio = 0;
855 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
856 cfqd->cur_end_prio = 0;
857 if (wrap)
858 break;
859 wrap = 1;
861 } while (1);
863 if (unlikely(prio == -1))
864 return -1;
866 BUG_ON(prio >= CFQ_PRIO_LISTS);
868 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
870 cfqd->cur_prio = prio + 1;
871 if (cfqd->cur_prio > cfqd->cur_end_prio) {
872 cfqd->cur_end_prio = cfqd->cur_prio;
873 cfqd->cur_prio = 0;
875 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
876 cfqd->cur_prio = 0;
877 cfqd->cur_end_prio = 0;
880 return prio;
883 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
885 struct cfq_queue *cfqq = NULL;
888 * if current list is non-empty, grab first entry. if it is empty,
889 * get next prio level and grab first entry then if any are spliced
891 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1)
892 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
895 * If no new queues are available, check if the busy list has some
896 * before falling back to idle io.
898 if (!cfqq && !list_empty(&cfqd->busy_rr))
899 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
902 * if we have idle queues and no rt or be queues had pending
903 * requests, either allow immediate service if the grace period
904 * has passed or arm the idle grace timer
906 if (!cfqq && !list_empty(&cfqd->idle_rr)) {
907 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
909 if (time_after_eq(jiffies, end))
910 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
911 else
912 mod_timer(&cfqd->idle_class_timer, end);
915 __cfq_set_active_queue(cfqd, cfqq);
916 return cfqq;
919 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
922 struct cfq_io_context *cic;
923 unsigned long sl;
925 WARN_ON(!RB_EMPTY(&cfqq->sort_list));
926 WARN_ON(cfqq != cfqd->active_queue);
929 * idle is disabled, either manually or by past process history
931 if (!cfqd->cfq_slice_idle)
932 return 0;
933 if (!cfq_cfqq_idle_window(cfqq))
934 return 0;
936 * task has exited, don't wait
938 cic = cfqd->active_cic;
939 if (!cic || !cic->ioc->task)
940 return 0;
942 cfq_mark_cfqq_must_dispatch(cfqq);
943 cfq_mark_cfqq_wait_request(cfqq);
945 sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
948 * we don't want to idle for seeks, but we do want to allow
949 * fair distribution of slice time for a process doing back-to-back
950 * seeks. so allow a little bit of time for him to submit a new rq
952 if (sample_valid(cic->seek_samples) && cic->seek_mean > 131072)
953 sl = 2;
955 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
956 return 1;
959 static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq)
961 struct cfq_data *cfqd = q->elevator->elevator_data;
962 struct cfq_queue *cfqq = crq->cfq_queue;
964 cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq);
965 cfq_remove_request(crq->request);
966 cfqq->on_dispatch[cfq_crq_is_sync(crq)]++;
967 elv_dispatch_sort(q, crq->request);
971 * return expired entry, or NULL to just start from scratch in rbtree
973 static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq)
975 struct cfq_data *cfqd = cfqq->cfqd;
976 struct request *rq;
977 struct cfq_rq *crq;
979 if (cfq_cfqq_fifo_expire(cfqq))
980 return NULL;
982 if (!list_empty(&cfqq->fifo)) {
983 int fifo = cfq_cfqq_class_sync(cfqq);
985 crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next));
986 rq = crq->request;
987 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
988 cfq_mark_cfqq_fifo_expire(cfqq);
989 return crq;
993 return NULL;
997 * Scale schedule slice based on io priority. Use the sync time slice only
998 * if a queue is marked sync and has sync io queued. A sync queue with async
999 * io only, should not get full sync slice length.
1001 static inline int
1002 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1004 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
1006 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1008 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
1011 static inline void
1012 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1014 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
1017 static inline int
1018 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1020 const int base_rq = cfqd->cfq_slice_async_rq;
1022 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1024 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1028 * get next queue for service
1030 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1032 unsigned long now = jiffies;
1033 struct cfq_queue *cfqq;
1035 cfqq = cfqd->active_queue;
1036 if (!cfqq)
1037 goto new_queue;
1040 * slice has expired
1042 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
1043 goto expire;
1046 * if queue has requests, dispatch one. if not, check if
1047 * enough slice is left to wait for one
1049 if (!RB_EMPTY(&cfqq->sort_list))
1050 goto keep_queue;
1051 else if (cfq_cfqq_class_sync(cfqq) &&
1052 time_before(now, cfqq->slice_end)) {
1053 if (cfq_arm_slice_timer(cfqd, cfqq))
1054 return NULL;
1057 expire:
1058 cfq_slice_expired(cfqd, 0);
1059 new_queue:
1060 cfqq = cfq_set_active_queue(cfqd);
1061 keep_queue:
1062 return cfqq;
1065 static int
1066 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1067 int max_dispatch)
1069 int dispatched = 0;
1071 BUG_ON(RB_EMPTY(&cfqq->sort_list));
1073 do {
1074 struct cfq_rq *crq;
1077 * follow expired path, else get first next available
1079 if ((crq = cfq_check_fifo(cfqq)) == NULL)
1080 crq = cfqq->next_crq;
1083 * finally, insert request into driver dispatch list
1085 cfq_dispatch_insert(cfqd->queue, crq);
1087 cfqd->dispatch_slice++;
1088 dispatched++;
1090 if (!cfqd->active_cic) {
1091 atomic_inc(&crq->io_context->ioc->refcount);
1092 cfqd->active_cic = crq->io_context;
1095 if (RB_EMPTY(&cfqq->sort_list))
1096 break;
1098 } while (dispatched < max_dispatch);
1101 * if slice end isn't set yet, set it. if at least one request was
1102 * sync, use the sync time slice value
1104 if (!cfqq->slice_end)
1105 cfq_set_prio_slice(cfqd, cfqq);
1108 * expire an async queue immediately if it has used up its slice. idle
1109 * queue always expire after 1 dispatch round.
1111 if ((!cfq_cfqq_sync(cfqq) &&
1112 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1113 cfq_class_idle(cfqq))
1114 cfq_slice_expired(cfqd, 0);
1116 return dispatched;
1119 static int
1120 cfq_forced_dispatch_cfqqs(struct list_head *list)
1122 int dispatched = 0;
1123 struct cfq_queue *cfqq, *next;
1124 struct cfq_rq *crq;
1126 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1127 while ((crq = cfqq->next_crq)) {
1128 cfq_dispatch_insert(cfqq->cfqd->queue, crq);
1129 dispatched++;
1131 BUG_ON(!list_empty(&cfqq->fifo));
1133 return dispatched;
1136 static int
1137 cfq_forced_dispatch(struct cfq_data *cfqd)
1139 int i, dispatched = 0;
1141 for (i = 0; i < CFQ_PRIO_LISTS; i++)
1142 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1144 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1145 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1146 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1148 cfq_slice_expired(cfqd, 0);
1150 BUG_ON(cfqd->busy_queues);
1152 return dispatched;
1155 static int
1156 cfq_dispatch_requests(request_queue_t *q, int force)
1158 struct cfq_data *cfqd = q->elevator->elevator_data;
1159 struct cfq_queue *cfqq;
1161 if (!cfqd->busy_queues)
1162 return 0;
1164 if (unlikely(force))
1165 return cfq_forced_dispatch(cfqd);
1167 cfqq = cfq_select_queue(cfqd);
1168 if (cfqq) {
1169 int max_dispatch;
1171 cfq_clear_cfqq_must_dispatch(cfqq);
1172 cfq_clear_cfqq_wait_request(cfqq);
1173 del_timer(&cfqd->idle_slice_timer);
1175 max_dispatch = cfqd->cfq_quantum;
1176 if (cfq_class_idle(cfqq))
1177 max_dispatch = 1;
1179 return __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1182 return 0;
1186 * task holds one reference to the queue, dropped when task exits. each crq
1187 * in-flight on this queue also holds a reference, dropped when crq is freed.
1189 * queue lock must be held here.
1191 static void cfq_put_queue(struct cfq_queue *cfqq)
1193 struct cfq_data *cfqd = cfqq->cfqd;
1195 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1197 if (!atomic_dec_and_test(&cfqq->ref))
1198 return;
1200 BUG_ON(rb_first(&cfqq->sort_list));
1201 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1202 BUG_ON(cfq_cfqq_on_rr(cfqq));
1204 if (unlikely(cfqd->active_queue == cfqq))
1205 __cfq_slice_expired(cfqd, cfqq, 0);
1208 * it's on the empty list and still hashed
1210 list_del(&cfqq->cfq_list);
1211 hlist_del(&cfqq->cfq_hash);
1212 kmem_cache_free(cfq_pool, cfqq);
1215 static inline struct cfq_queue *
1216 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1217 const int hashval)
1219 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1220 struct hlist_node *entry;
1221 struct cfq_queue *__cfqq;
1223 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1224 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1226 if (__cfqq->key == key && (__p == prio || !prio))
1227 return __cfqq;
1230 return NULL;
1233 static struct cfq_queue *
1234 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1236 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1239 static void cfq_free_io_context(struct io_context *ioc)
1241 struct cfq_io_context *__cic;
1242 struct rb_node *n;
1243 int freed = 0;
1245 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1246 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1247 rb_erase(&__cic->rb_node, &ioc->cic_root);
1248 kmem_cache_free(cfq_ioc_pool, __cic);
1249 freed++;
1252 if (atomic_sub_and_test(freed, &ioc_count) && ioc_gone)
1253 complete(ioc_gone);
1256 static void cfq_trim(struct io_context *ioc)
1258 ioc->set_ioprio = NULL;
1259 cfq_free_io_context(ioc);
1263 * Called with interrupts disabled
1265 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1267 struct cfq_data *cfqd = cic->key;
1268 request_queue_t *q;
1270 if (!cfqd)
1271 return;
1273 q = cfqd->queue;
1275 WARN_ON(!irqs_disabled());
1277 spin_lock(q->queue_lock);
1279 if (cic->cfqq[ASYNC]) {
1280 if (unlikely(cic->cfqq[ASYNC] == cfqd->active_queue))
1281 __cfq_slice_expired(cfqd, cic->cfqq[ASYNC], 0);
1282 cfq_put_queue(cic->cfqq[ASYNC]);
1283 cic->cfqq[ASYNC] = NULL;
1286 if (cic->cfqq[SYNC]) {
1287 if (unlikely(cic->cfqq[SYNC] == cfqd->active_queue))
1288 __cfq_slice_expired(cfqd, cic->cfqq[SYNC], 0);
1289 cfq_put_queue(cic->cfqq[SYNC]);
1290 cic->cfqq[SYNC] = NULL;
1293 cic->key = NULL;
1294 list_del_init(&cic->queue_list);
1295 spin_unlock(q->queue_lock);
1298 static void cfq_exit_io_context(struct io_context *ioc)
1300 struct cfq_io_context *__cic;
1301 unsigned long flags;
1302 struct rb_node *n;
1305 * put the reference this task is holding to the various queues
1307 spin_lock_irqsave(&cfq_exit_lock, flags);
1309 n = rb_first(&ioc->cic_root);
1310 while (n != NULL) {
1311 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1313 cfq_exit_single_io_context(__cic);
1314 n = rb_next(n);
1317 spin_unlock_irqrestore(&cfq_exit_lock, flags);
1320 static struct cfq_io_context *
1321 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1323 struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask);
1325 if (cic) {
1326 RB_CLEAR(&cic->rb_node);
1327 cic->key = NULL;
1328 cic->cfqq[ASYNC] = NULL;
1329 cic->cfqq[SYNC] = NULL;
1330 cic->last_end_request = jiffies;
1331 cic->ttime_total = 0;
1332 cic->ttime_samples = 0;
1333 cic->ttime_mean = 0;
1334 cic->dtor = cfq_free_io_context;
1335 cic->exit = cfq_exit_io_context;
1336 INIT_LIST_HEAD(&cic->queue_list);
1337 atomic_inc(&ioc_count);
1340 return cic;
1343 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1345 struct task_struct *tsk = current;
1346 int ioprio_class;
1348 if (!cfq_cfqq_prio_changed(cfqq))
1349 return;
1351 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1352 switch (ioprio_class) {
1353 default:
1354 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1355 case IOPRIO_CLASS_NONE:
1357 * no prio set, place us in the middle of the BE classes
1359 cfqq->ioprio = task_nice_ioprio(tsk);
1360 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1361 break;
1362 case IOPRIO_CLASS_RT:
1363 cfqq->ioprio = task_ioprio(tsk);
1364 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1365 break;
1366 case IOPRIO_CLASS_BE:
1367 cfqq->ioprio = task_ioprio(tsk);
1368 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1369 break;
1370 case IOPRIO_CLASS_IDLE:
1371 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1372 cfqq->ioprio = 7;
1373 cfq_clear_cfqq_idle_window(cfqq);
1374 break;
1378 * keep track of original prio settings in case we have to temporarily
1379 * elevate the priority of this queue
1381 cfqq->org_ioprio = cfqq->ioprio;
1382 cfqq->org_ioprio_class = cfqq->ioprio_class;
1384 if (cfq_cfqq_on_rr(cfqq))
1385 cfq_resort_rr_list(cfqq, 0);
1387 cfq_clear_cfqq_prio_changed(cfqq);
1390 static inline void changed_ioprio(struct cfq_io_context *cic)
1392 struct cfq_data *cfqd = cic->key;
1393 struct cfq_queue *cfqq;
1394 if (cfqd) {
1395 spin_lock(cfqd->queue->queue_lock);
1396 cfqq = cic->cfqq[ASYNC];
1397 if (cfqq) {
1398 struct cfq_queue *new_cfqq;
1399 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC,
1400 cic->ioc->task, GFP_ATOMIC);
1401 if (new_cfqq) {
1402 cic->cfqq[ASYNC] = new_cfqq;
1403 cfq_put_queue(cfqq);
1406 cfqq = cic->cfqq[SYNC];
1407 if (cfqq) {
1408 cfq_mark_cfqq_prio_changed(cfqq);
1409 cfq_init_prio_data(cfqq);
1411 spin_unlock(cfqd->queue->queue_lock);
1416 * callback from sys_ioprio_set, irqs are disabled
1418 static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio)
1420 struct cfq_io_context *cic;
1421 struct rb_node *n;
1423 spin_lock(&cfq_exit_lock);
1425 n = rb_first(&ioc->cic_root);
1426 while (n != NULL) {
1427 cic = rb_entry(n, struct cfq_io_context, rb_node);
1429 changed_ioprio(cic);
1430 n = rb_next(n);
1433 spin_unlock(&cfq_exit_lock);
1435 return 0;
1438 static struct cfq_queue *
1439 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1440 gfp_t gfp_mask)
1442 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1443 struct cfq_queue *cfqq, *new_cfqq = NULL;
1444 unsigned short ioprio;
1446 retry:
1447 ioprio = tsk->ioprio;
1448 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1450 if (!cfqq) {
1451 if (new_cfqq) {
1452 cfqq = new_cfqq;
1453 new_cfqq = NULL;
1454 } else if (gfp_mask & __GFP_WAIT) {
1455 spin_unlock_irq(cfqd->queue->queue_lock);
1456 new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1457 spin_lock_irq(cfqd->queue->queue_lock);
1458 goto retry;
1459 } else {
1460 cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1461 if (!cfqq)
1462 goto out;
1465 memset(cfqq, 0, sizeof(*cfqq));
1467 INIT_HLIST_NODE(&cfqq->cfq_hash);
1468 INIT_LIST_HEAD(&cfqq->cfq_list);
1469 RB_CLEAR_ROOT(&cfqq->sort_list);
1470 INIT_LIST_HEAD(&cfqq->fifo);
1472 cfqq->key = key;
1473 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1474 atomic_set(&cfqq->ref, 0);
1475 cfqq->cfqd = cfqd;
1476 cfqq->service_last = 0;
1478 * set ->slice_left to allow preemption for a new process
1480 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1481 if (!cfqd->hw_tag)
1482 cfq_mark_cfqq_idle_window(cfqq);
1483 cfq_mark_cfqq_prio_changed(cfqq);
1484 cfq_init_prio_data(cfqq);
1487 if (new_cfqq)
1488 kmem_cache_free(cfq_pool, new_cfqq);
1490 atomic_inc(&cfqq->ref);
1491 out:
1492 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1493 return cfqq;
1496 static void
1497 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1499 spin_lock(&cfq_exit_lock);
1500 rb_erase(&cic->rb_node, &ioc->cic_root);
1501 list_del_init(&cic->queue_list);
1502 spin_unlock(&cfq_exit_lock);
1503 kmem_cache_free(cfq_ioc_pool, cic);
1504 atomic_dec(&ioc_count);
1507 static struct cfq_io_context *
1508 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1510 struct rb_node *n;
1511 struct cfq_io_context *cic;
1512 void *k, *key = cfqd;
1514 restart:
1515 n = ioc->cic_root.rb_node;
1516 while (n) {
1517 cic = rb_entry(n, struct cfq_io_context, rb_node);
1518 /* ->key must be copied to avoid race with cfq_exit_queue() */
1519 k = cic->key;
1520 if (unlikely(!k)) {
1521 cfq_drop_dead_cic(ioc, cic);
1522 goto restart;
1525 if (key < k)
1526 n = n->rb_left;
1527 else if (key > k)
1528 n = n->rb_right;
1529 else
1530 return cic;
1533 return NULL;
1536 static inline void
1537 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1538 struct cfq_io_context *cic)
1540 struct rb_node **p;
1541 struct rb_node *parent;
1542 struct cfq_io_context *__cic;
1543 void *k;
1545 cic->ioc = ioc;
1546 cic->key = cfqd;
1548 ioc->set_ioprio = cfq_ioc_set_ioprio;
1549 restart:
1550 parent = NULL;
1551 p = &ioc->cic_root.rb_node;
1552 while (*p) {
1553 parent = *p;
1554 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1555 /* ->key must be copied to avoid race with cfq_exit_queue() */
1556 k = __cic->key;
1557 if (unlikely(!k)) {
1558 cfq_drop_dead_cic(ioc, cic);
1559 goto restart;
1562 if (cic->key < k)
1563 p = &(*p)->rb_left;
1564 else if (cic->key > k)
1565 p = &(*p)->rb_right;
1566 else
1567 BUG();
1570 spin_lock(&cfq_exit_lock);
1571 rb_link_node(&cic->rb_node, parent, p);
1572 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1573 list_add(&cic->queue_list, &cfqd->cic_list);
1574 spin_unlock(&cfq_exit_lock);
1578 * Setup general io context and cfq io context. There can be several cfq
1579 * io contexts per general io context, if this process is doing io to more
1580 * than one device managed by cfq.
1582 static struct cfq_io_context *
1583 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1585 struct io_context *ioc = NULL;
1586 struct cfq_io_context *cic;
1588 might_sleep_if(gfp_mask & __GFP_WAIT);
1590 ioc = get_io_context(gfp_mask);
1591 if (!ioc)
1592 return NULL;
1594 cic = cfq_cic_rb_lookup(cfqd, ioc);
1595 if (cic)
1596 goto out;
1598 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1599 if (cic == NULL)
1600 goto err;
1602 cfq_cic_link(cfqd, ioc, cic);
1603 out:
1604 return cic;
1605 err:
1606 put_io_context(ioc);
1607 return NULL;
1610 static void
1611 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1613 unsigned long elapsed, ttime;
1616 * if this context already has stuff queued, thinktime is from
1617 * last queue not last end
1619 #if 0
1620 if (time_after(cic->last_end_request, cic->last_queue))
1621 elapsed = jiffies - cic->last_end_request;
1622 else
1623 elapsed = jiffies - cic->last_queue;
1624 #else
1625 elapsed = jiffies - cic->last_end_request;
1626 #endif
1628 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1630 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1631 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1632 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1635 static void
1636 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1637 struct cfq_rq *crq)
1639 sector_t sdist;
1640 u64 total;
1642 if (cic->last_request_pos < crq->request->sector)
1643 sdist = crq->request->sector - cic->last_request_pos;
1644 else
1645 sdist = cic->last_request_pos - crq->request->sector;
1648 * Don't allow the seek distance to get too large from the
1649 * odd fragment, pagein, etc
1651 if (cic->seek_samples <= 60) /* second&third seek */
1652 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1653 else
1654 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1656 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1657 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1658 total = cic->seek_total + (cic->seek_samples/2);
1659 do_div(total, cic->seek_samples);
1660 cic->seek_mean = (sector_t)total;
1664 * Disable idle window if the process thinks too long or seeks so much that
1665 * it doesn't matter
1667 static void
1668 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1669 struct cfq_io_context *cic)
1671 int enable_idle = cfq_cfqq_idle_window(cfqq);
1673 if (!cic->ioc->task || !cfqd->cfq_slice_idle || cfqd->hw_tag)
1674 enable_idle = 0;
1675 else if (sample_valid(cic->ttime_samples)) {
1676 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1677 enable_idle = 0;
1678 else
1679 enable_idle = 1;
1682 if (enable_idle)
1683 cfq_mark_cfqq_idle_window(cfqq);
1684 else
1685 cfq_clear_cfqq_idle_window(cfqq);
1690 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1691 * no or if we aren't sure, a 1 will cause a preempt.
1693 static int
1694 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1695 struct cfq_rq *crq)
1697 struct cfq_queue *cfqq = cfqd->active_queue;
1699 if (cfq_class_idle(new_cfqq))
1700 return 0;
1702 if (!cfqq)
1703 return 1;
1705 if (cfq_class_idle(cfqq))
1706 return 1;
1707 if (!cfq_cfqq_wait_request(new_cfqq))
1708 return 0;
1710 * if it doesn't have slice left, forget it
1712 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1713 return 0;
1714 if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq))
1715 return 1;
1717 return 0;
1721 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1722 * let it have half of its nominal slice.
1724 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1726 struct cfq_queue *__cfqq, *next;
1728 list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1729 cfq_resort_rr_list(__cfqq, 1);
1731 if (!cfqq->slice_left)
1732 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1734 cfqq->slice_end = cfqq->slice_left + jiffies;
1735 __cfq_slice_expired(cfqd, cfqq, 1);
1736 __cfq_set_active_queue(cfqd, cfqq);
1740 * should really be a ll_rw_blk.c helper
1742 static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1744 request_queue_t *q = cfqd->queue;
1746 if (!blk_queue_plugged(q))
1747 q->request_fn(q);
1748 else
1749 __generic_unplug_device(q);
1753 * Called when a new fs request (crq) is added (to cfqq). Check if there's
1754 * something we should do about it
1756 static void
1757 cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1758 struct cfq_rq *crq)
1760 struct cfq_io_context *cic;
1762 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
1764 cic = crq->io_context;
1767 * we never wait for an async request and we don't allow preemption
1768 * of an async request. so just return early
1770 if (!cfq_crq_is_sync(crq)) {
1772 * sync process issued an async request, if it's waiting
1773 * then expire it and kick rq handling.
1775 if (cic == cfqd->active_cic &&
1776 del_timer(&cfqd->idle_slice_timer)) {
1777 cfq_slice_expired(cfqd, 0);
1778 cfq_start_queueing(cfqd, cfqq);
1780 return;
1783 cfq_update_io_thinktime(cfqd, cic);
1784 cfq_update_io_seektime(cfqd, cic, crq);
1785 cfq_update_idle_window(cfqd, cfqq, cic);
1787 cic->last_queue = jiffies;
1788 cic->last_request_pos = crq->request->sector + crq->request->nr_sectors;
1790 if (cfqq == cfqd->active_queue) {
1792 * if we are waiting for a request for this queue, let it rip
1793 * immediately and flag that we must not expire this queue
1794 * just now
1796 if (cfq_cfqq_wait_request(cfqq)) {
1797 cfq_mark_cfqq_must_dispatch(cfqq);
1798 del_timer(&cfqd->idle_slice_timer);
1799 cfq_start_queueing(cfqd, cfqq);
1801 } else if (cfq_should_preempt(cfqd, cfqq, crq)) {
1803 * not the active queue - expire current slice if it is
1804 * idle and has expired it's mean thinktime or this new queue
1805 * has some old slice time left and is of higher priority
1807 cfq_preempt_queue(cfqd, cfqq);
1808 cfq_mark_cfqq_must_dispatch(cfqq);
1809 cfq_start_queueing(cfqd, cfqq);
1813 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1815 struct cfq_data *cfqd = q->elevator->elevator_data;
1816 struct cfq_rq *crq = RQ_DATA(rq);
1817 struct cfq_queue *cfqq = crq->cfq_queue;
1819 cfq_init_prio_data(cfqq);
1821 cfq_add_crq_rb(crq);
1823 list_add_tail(&rq->queuelist, &cfqq->fifo);
1825 if (rq_mergeable(rq))
1826 cfq_add_crq_hash(cfqd, crq);
1828 cfq_crq_enqueued(cfqd, cfqq, crq);
1831 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1833 struct cfq_rq *crq = RQ_DATA(rq);
1834 struct cfq_queue *cfqq = crq->cfq_queue;
1835 struct cfq_data *cfqd = cfqq->cfqd;
1836 const int sync = cfq_crq_is_sync(crq);
1837 unsigned long now;
1839 now = jiffies;
1841 WARN_ON(!cfqd->rq_in_driver);
1842 WARN_ON(!cfqq->on_dispatch[sync]);
1843 cfqd->rq_in_driver--;
1844 cfqq->on_dispatch[sync]--;
1846 if (!cfq_class_idle(cfqq))
1847 cfqd->last_end_request = now;
1849 if (!cfq_cfqq_dispatched(cfqq)) {
1850 if (cfq_cfqq_on_rr(cfqq)) {
1851 cfqq->service_last = now;
1852 cfq_resort_rr_list(cfqq, 0);
1854 cfq_schedule_dispatch(cfqd);
1857 if (cfq_crq_is_sync(crq))
1858 crq->io_context->last_end_request = now;
1861 static struct request *
1862 cfq_former_request(request_queue_t *q, struct request *rq)
1864 struct cfq_rq *crq = RQ_DATA(rq);
1865 struct rb_node *rbprev = rb_prev(&crq->rb_node);
1867 if (rbprev)
1868 return rb_entry_crq(rbprev)->request;
1870 return NULL;
1873 static struct request *
1874 cfq_latter_request(request_queue_t *q, struct request *rq)
1876 struct cfq_rq *crq = RQ_DATA(rq);
1877 struct rb_node *rbnext = rb_next(&crq->rb_node);
1879 if (rbnext)
1880 return rb_entry_crq(rbnext)->request;
1882 return NULL;
1886 * we temporarily boost lower priority queues if they are holding fs exclusive
1887 * resources. they are boosted to normal prio (CLASS_BE/4)
1889 static void cfq_prio_boost(struct cfq_queue *cfqq)
1891 const int ioprio_class = cfqq->ioprio_class;
1892 const int ioprio = cfqq->ioprio;
1894 if (has_fs_excl()) {
1896 * boost idle prio on transactions that would lock out other
1897 * users of the filesystem
1899 if (cfq_class_idle(cfqq))
1900 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1901 if (cfqq->ioprio > IOPRIO_NORM)
1902 cfqq->ioprio = IOPRIO_NORM;
1903 } else {
1905 * check if we need to unboost the queue
1907 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1908 cfqq->ioprio_class = cfqq->org_ioprio_class;
1909 if (cfqq->ioprio != cfqq->org_ioprio)
1910 cfqq->ioprio = cfqq->org_ioprio;
1914 * refile between round-robin lists if we moved the priority class
1916 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1917 cfq_cfqq_on_rr(cfqq))
1918 cfq_resort_rr_list(cfqq, 0);
1921 static inline int
1922 __cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1923 struct task_struct *task, int rw)
1925 #if 1
1926 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1927 !cfq_cfqq_must_alloc_slice(cfqq)) {
1928 cfq_mark_cfqq_must_alloc_slice(cfqq);
1929 return ELV_MQUEUE_MUST;
1932 return ELV_MQUEUE_MAY;
1933 #else
1934 if (!cfqq || task->flags & PF_MEMALLOC)
1935 return ELV_MQUEUE_MAY;
1936 if (!cfqq->allocated[rw] || cfq_cfqq_must_alloc(cfqq)) {
1937 if (cfq_cfqq_wait_request(cfqq))
1938 return ELV_MQUEUE_MUST;
1941 * only allow 1 ELV_MQUEUE_MUST per slice, otherwise we
1942 * can quickly flood the queue with writes from a single task
1944 if (rw == READ || !cfq_cfqq_must_alloc_slice(cfqq)) {
1945 cfq_mark_cfqq_must_alloc_slice(cfqq);
1946 return ELV_MQUEUE_MUST;
1949 return ELV_MQUEUE_MAY;
1951 if (cfq_class_idle(cfqq))
1952 return ELV_MQUEUE_NO;
1953 if (cfqq->allocated[rw] >= cfqd->max_queued) {
1954 struct io_context *ioc = get_io_context(GFP_ATOMIC);
1955 int ret = ELV_MQUEUE_NO;
1957 if (ioc && ioc->nr_batch_requests)
1958 ret = ELV_MQUEUE_MAY;
1960 put_io_context(ioc);
1961 return ret;
1964 return ELV_MQUEUE_MAY;
1965 #endif
1968 static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio)
1970 struct cfq_data *cfqd = q->elevator->elevator_data;
1971 struct task_struct *tsk = current;
1972 struct cfq_queue *cfqq;
1975 * don't force setup of a queue from here, as a call to may_queue
1976 * does not necessarily imply that a request actually will be queued.
1977 * so just lookup a possibly existing queue, or return 'may queue'
1978 * if that fails
1980 cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1981 if (cfqq) {
1982 cfq_init_prio_data(cfqq);
1983 cfq_prio_boost(cfqq);
1985 return __cfq_may_queue(cfqd, cfqq, tsk, rw);
1988 return ELV_MQUEUE_MAY;
1991 static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
1993 struct cfq_data *cfqd = q->elevator->elevator_data;
1994 struct request_list *rl = &q->rq;
1996 if (cfqq->allocated[READ] <= cfqd->max_queued || cfqd->rq_starved) {
1997 smp_mb();
1998 if (waitqueue_active(&rl->wait[READ]))
1999 wake_up(&rl->wait[READ]);
2002 if (cfqq->allocated[WRITE] <= cfqd->max_queued || cfqd->rq_starved) {
2003 smp_mb();
2004 if (waitqueue_active(&rl->wait[WRITE]))
2005 wake_up(&rl->wait[WRITE]);
2010 * queue lock held here
2012 static void cfq_put_request(request_queue_t *q, struct request *rq)
2014 struct cfq_data *cfqd = q->elevator->elevator_data;
2015 struct cfq_rq *crq = RQ_DATA(rq);
2017 if (crq) {
2018 struct cfq_queue *cfqq = crq->cfq_queue;
2019 const int rw = rq_data_dir(rq);
2021 BUG_ON(!cfqq->allocated[rw]);
2022 cfqq->allocated[rw]--;
2024 put_io_context(crq->io_context->ioc);
2026 mempool_free(crq, cfqd->crq_pool);
2027 rq->elevator_private = NULL;
2029 cfq_check_waiters(q, cfqq);
2030 cfq_put_queue(cfqq);
2035 * Allocate cfq data structures associated with this request.
2037 static int
2038 cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
2039 gfp_t gfp_mask)
2041 struct cfq_data *cfqd = q->elevator->elevator_data;
2042 struct task_struct *tsk = current;
2043 struct cfq_io_context *cic;
2044 const int rw = rq_data_dir(rq);
2045 pid_t key = cfq_queue_pid(tsk, rw);
2046 struct cfq_queue *cfqq;
2047 struct cfq_rq *crq;
2048 unsigned long flags;
2049 int is_sync = key != CFQ_KEY_ASYNC;
2051 might_sleep_if(gfp_mask & __GFP_WAIT);
2053 cic = cfq_get_io_context(cfqd, gfp_mask);
2055 spin_lock_irqsave(q->queue_lock, flags);
2057 if (!cic)
2058 goto queue_fail;
2060 if (!cic->cfqq[is_sync]) {
2061 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
2062 if (!cfqq)
2063 goto queue_fail;
2065 cic->cfqq[is_sync] = cfqq;
2066 } else
2067 cfqq = cic->cfqq[is_sync];
2069 cfqq->allocated[rw]++;
2070 cfq_clear_cfqq_must_alloc(cfqq);
2071 cfqd->rq_starved = 0;
2072 atomic_inc(&cfqq->ref);
2073 spin_unlock_irqrestore(q->queue_lock, flags);
2075 crq = mempool_alloc(cfqd->crq_pool, gfp_mask);
2076 if (crq) {
2077 RB_CLEAR(&crq->rb_node);
2078 crq->rb_key = 0;
2079 crq->request = rq;
2080 INIT_HLIST_NODE(&crq->hash);
2081 crq->cfq_queue = cfqq;
2082 crq->io_context = cic;
2084 if (is_sync)
2085 cfq_mark_crq_is_sync(crq);
2086 else
2087 cfq_clear_crq_is_sync(crq);
2089 rq->elevator_private = crq;
2090 return 0;
2093 spin_lock_irqsave(q->queue_lock, flags);
2094 cfqq->allocated[rw]--;
2095 if (!(cfqq->allocated[0] + cfqq->allocated[1]))
2096 cfq_mark_cfqq_must_alloc(cfqq);
2097 cfq_put_queue(cfqq);
2098 queue_fail:
2099 if (cic)
2100 put_io_context(cic->ioc);
2102 * mark us rq allocation starved. we need to kickstart the process
2103 * ourselves if there are no pending requests that can do it for us.
2104 * that would be an extremely rare OOM situation
2106 cfqd->rq_starved = 1;
2107 cfq_schedule_dispatch(cfqd);
2108 spin_unlock_irqrestore(q->queue_lock, flags);
2109 return 1;
2112 static void cfq_kick_queue(void *data)
2114 request_queue_t *q = data;
2115 struct cfq_data *cfqd = q->elevator->elevator_data;
2116 unsigned long flags;
2118 spin_lock_irqsave(q->queue_lock, flags);
2120 if (cfqd->rq_starved) {
2121 struct request_list *rl = &q->rq;
2124 * we aren't guaranteed to get a request after this, but we
2125 * have to be opportunistic
2127 smp_mb();
2128 if (waitqueue_active(&rl->wait[READ]))
2129 wake_up(&rl->wait[READ]);
2130 if (waitqueue_active(&rl->wait[WRITE]))
2131 wake_up(&rl->wait[WRITE]);
2134 blk_remove_plug(q);
2135 q->request_fn(q);
2136 spin_unlock_irqrestore(q->queue_lock, flags);
2140 * Timer running if the active_queue is currently idling inside its time slice
2142 static void cfq_idle_slice_timer(unsigned long data)
2144 struct cfq_data *cfqd = (struct cfq_data *) data;
2145 struct cfq_queue *cfqq;
2146 unsigned long flags;
2148 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2150 if ((cfqq = cfqd->active_queue) != NULL) {
2151 unsigned long now = jiffies;
2154 * expired
2156 if (time_after(now, cfqq->slice_end))
2157 goto expire;
2160 * only expire and reinvoke request handler, if there are
2161 * other queues with pending requests
2163 if (!cfqd->busy_queues) {
2164 cfqd->idle_slice_timer.expires = min(now + cfqd->cfq_slice_idle, cfqq->slice_end);
2165 add_timer(&cfqd->idle_slice_timer);
2166 goto out_cont;
2170 * not expired and it has a request pending, let it dispatch
2172 if (!RB_EMPTY(&cfqq->sort_list)) {
2173 cfq_mark_cfqq_must_dispatch(cfqq);
2174 goto out_kick;
2177 expire:
2178 cfq_slice_expired(cfqd, 0);
2179 out_kick:
2180 cfq_schedule_dispatch(cfqd);
2181 out_cont:
2182 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2186 * Timer running if an idle class queue is waiting for service
2188 static void cfq_idle_class_timer(unsigned long data)
2190 struct cfq_data *cfqd = (struct cfq_data *) data;
2191 unsigned long flags, end;
2193 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2196 * race with a non-idle queue, reset timer
2198 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2199 if (!time_after_eq(jiffies, end))
2200 mod_timer(&cfqd->idle_class_timer, end);
2201 else
2202 cfq_schedule_dispatch(cfqd);
2204 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2207 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2209 del_timer_sync(&cfqd->idle_slice_timer);
2210 del_timer_sync(&cfqd->idle_class_timer);
2211 blk_sync_queue(cfqd->queue);
2214 static void cfq_exit_queue(elevator_t *e)
2216 struct cfq_data *cfqd = e->elevator_data;
2217 request_queue_t *q = cfqd->queue;
2219 cfq_shutdown_timer_wq(cfqd);
2221 spin_lock(&cfq_exit_lock);
2222 spin_lock_irq(q->queue_lock);
2224 if (cfqd->active_queue)
2225 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2227 while (!list_empty(&cfqd->cic_list)) {
2228 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2229 struct cfq_io_context,
2230 queue_list);
2231 if (cic->cfqq[ASYNC]) {
2232 cfq_put_queue(cic->cfqq[ASYNC]);
2233 cic->cfqq[ASYNC] = NULL;
2235 if (cic->cfqq[SYNC]) {
2236 cfq_put_queue(cic->cfqq[SYNC]);
2237 cic->cfqq[SYNC] = NULL;
2239 cic->key = NULL;
2240 list_del_init(&cic->queue_list);
2243 spin_unlock_irq(q->queue_lock);
2244 spin_unlock(&cfq_exit_lock);
2246 cfq_shutdown_timer_wq(cfqd);
2248 mempool_destroy(cfqd->crq_pool);
2249 kfree(cfqd->crq_hash);
2250 kfree(cfqd->cfq_hash);
2251 kfree(cfqd);
2254 static void *cfq_init_queue(request_queue_t *q, elevator_t *e)
2256 struct cfq_data *cfqd;
2257 int i;
2259 cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
2260 if (!cfqd)
2261 return NULL;
2263 memset(cfqd, 0, sizeof(*cfqd));
2265 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2266 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2268 INIT_LIST_HEAD(&cfqd->busy_rr);
2269 INIT_LIST_HEAD(&cfqd->cur_rr);
2270 INIT_LIST_HEAD(&cfqd->idle_rr);
2271 INIT_LIST_HEAD(&cfqd->empty_list);
2272 INIT_LIST_HEAD(&cfqd->cic_list);
2274 cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL);
2275 if (!cfqd->crq_hash)
2276 goto out_crqhash;
2278 cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
2279 if (!cfqd->cfq_hash)
2280 goto out_cfqhash;
2282 cfqd->crq_pool = mempool_create_slab_pool(BLKDEV_MIN_RQ, crq_pool);
2283 if (!cfqd->crq_pool)
2284 goto out_crqpool;
2286 for (i = 0; i < CFQ_MHASH_ENTRIES; i++)
2287 INIT_HLIST_HEAD(&cfqd->crq_hash[i]);
2288 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2289 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2291 cfqd->queue = q;
2293 cfqd->max_queued = q->nr_requests / 4;
2294 q->nr_batching = cfq_queued;
2296 init_timer(&cfqd->idle_slice_timer);
2297 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2298 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2300 init_timer(&cfqd->idle_class_timer);
2301 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2302 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2304 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
2306 cfqd->cfq_queued = cfq_queued;
2307 cfqd->cfq_quantum = cfq_quantum;
2308 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2309 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2310 cfqd->cfq_back_max = cfq_back_max;
2311 cfqd->cfq_back_penalty = cfq_back_penalty;
2312 cfqd->cfq_slice[0] = cfq_slice_async;
2313 cfqd->cfq_slice[1] = cfq_slice_sync;
2314 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2315 cfqd->cfq_slice_idle = cfq_slice_idle;
2317 return cfqd;
2318 out_crqpool:
2319 kfree(cfqd->cfq_hash);
2320 out_cfqhash:
2321 kfree(cfqd->crq_hash);
2322 out_crqhash:
2323 kfree(cfqd);
2324 return NULL;
2327 static void cfq_slab_kill(void)
2329 if (crq_pool)
2330 kmem_cache_destroy(crq_pool);
2331 if (cfq_pool)
2332 kmem_cache_destroy(cfq_pool);
2333 if (cfq_ioc_pool)
2334 kmem_cache_destroy(cfq_ioc_pool);
2337 static int __init cfq_slab_setup(void)
2339 crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0,
2340 NULL, NULL);
2341 if (!crq_pool)
2342 goto fail;
2344 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2345 NULL, NULL);
2346 if (!cfq_pool)
2347 goto fail;
2349 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2350 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2351 if (!cfq_ioc_pool)
2352 goto fail;
2354 return 0;
2355 fail:
2356 cfq_slab_kill();
2357 return -ENOMEM;
2361 * sysfs parts below -->
2364 static ssize_t
2365 cfq_var_show(unsigned int var, char *page)
2367 return sprintf(page, "%d\n", var);
2370 static ssize_t
2371 cfq_var_store(unsigned int *var, const char *page, size_t count)
2373 char *p = (char *) page;
2375 *var = simple_strtoul(p, &p, 10);
2376 return count;
2379 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2380 static ssize_t __FUNC(elevator_t *e, char *page) \
2382 struct cfq_data *cfqd = e->elevator_data; \
2383 unsigned int __data = __VAR; \
2384 if (__CONV) \
2385 __data = jiffies_to_msecs(__data); \
2386 return cfq_var_show(__data, (page)); \
2388 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2389 SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
2390 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2391 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2392 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2393 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2394 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2395 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2396 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2397 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2398 #undef SHOW_FUNCTION
2400 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2401 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2403 struct cfq_data *cfqd = e->elevator_data; \
2404 unsigned int __data; \
2405 int ret = cfq_var_store(&__data, (page), count); \
2406 if (__data < (MIN)) \
2407 __data = (MIN); \
2408 else if (__data > (MAX)) \
2409 __data = (MAX); \
2410 if (__CONV) \
2411 *(__PTR) = msecs_to_jiffies(__data); \
2412 else \
2413 *(__PTR) = __data; \
2414 return ret; \
2416 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2417 STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
2418 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2419 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2420 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2421 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2422 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2423 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2424 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2425 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2426 #undef STORE_FUNCTION
2428 #define CFQ_ATTR(name) \
2429 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2431 static struct elv_fs_entry cfq_attrs[] = {
2432 CFQ_ATTR(quantum),
2433 CFQ_ATTR(queued),
2434 CFQ_ATTR(fifo_expire_sync),
2435 CFQ_ATTR(fifo_expire_async),
2436 CFQ_ATTR(back_seek_max),
2437 CFQ_ATTR(back_seek_penalty),
2438 CFQ_ATTR(slice_sync),
2439 CFQ_ATTR(slice_async),
2440 CFQ_ATTR(slice_async_rq),
2441 CFQ_ATTR(slice_idle),
2442 __ATTR_NULL
2445 static struct elevator_type iosched_cfq = {
2446 .ops = {
2447 .elevator_merge_fn = cfq_merge,
2448 .elevator_merged_fn = cfq_merged_request,
2449 .elevator_merge_req_fn = cfq_merged_requests,
2450 .elevator_dispatch_fn = cfq_dispatch_requests,
2451 .elevator_add_req_fn = cfq_insert_request,
2452 .elevator_activate_req_fn = cfq_activate_request,
2453 .elevator_deactivate_req_fn = cfq_deactivate_request,
2454 .elevator_queue_empty_fn = cfq_queue_empty,
2455 .elevator_completed_req_fn = cfq_completed_request,
2456 .elevator_former_req_fn = cfq_former_request,
2457 .elevator_latter_req_fn = cfq_latter_request,
2458 .elevator_set_req_fn = cfq_set_request,
2459 .elevator_put_req_fn = cfq_put_request,
2460 .elevator_may_queue_fn = cfq_may_queue,
2461 .elevator_init_fn = cfq_init_queue,
2462 .elevator_exit_fn = cfq_exit_queue,
2463 .trim = cfq_trim,
2465 .elevator_attrs = cfq_attrs,
2466 .elevator_name = "cfq",
2467 .elevator_owner = THIS_MODULE,
2470 static int __init cfq_init(void)
2472 int ret;
2475 * could be 0 on HZ < 1000 setups
2477 if (!cfq_slice_async)
2478 cfq_slice_async = 1;
2479 if (!cfq_slice_idle)
2480 cfq_slice_idle = 1;
2482 if (cfq_slab_setup())
2483 return -ENOMEM;
2485 ret = elv_register(&iosched_cfq);
2486 if (ret)
2487 cfq_slab_kill();
2489 return ret;
2492 static void __exit cfq_exit(void)
2494 DECLARE_COMPLETION(all_gone);
2495 elv_unregister(&iosched_cfq);
2496 ioc_gone = &all_gone;
2497 /* ioc_gone's update must be visible before reading ioc_count */
2498 smp_wmb();
2499 if (atomic_read(&ioc_count))
2500 wait_for_completion(ioc_gone);
2501 synchronize_rcu();
2502 cfq_slab_kill();
2505 module_init(cfq_init);
2506 module_exit(cfq_exit);
2508 MODULE_AUTHOR("Jens Axboe");
2509 MODULE_LICENSE("GPL");
2510 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");