x86: Remove warning and warning_symbol from struct stacktrace_ops
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / cpu / perf_event.c
blob3a0338b4b1790714293dbe213342fba56f13373c
1 /*
2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
33 #include <asm/smp.h>
34 #include <asm/alternative.h>
36 #if 0
37 #undef wrmsrl
38 #define wrmsrl(msr, val) \
39 do { \
40 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
41 (unsigned long)(val)); \
42 native_write_msr((msr), (u32)((u64)(val)), \
43 (u32)((u64)(val) >> 32)); \
44 } while (0)
45 #endif
48 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
50 static unsigned long
51 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
53 unsigned long offset, addr = (unsigned long)from;
54 unsigned long size, len = 0;
55 struct page *page;
56 void *map;
57 int ret;
59 do {
60 ret = __get_user_pages_fast(addr, 1, 0, &page);
61 if (!ret)
62 break;
64 offset = addr & (PAGE_SIZE - 1);
65 size = min(PAGE_SIZE - offset, n - len);
67 map = kmap_atomic(page);
68 memcpy(to, map+offset, size);
69 kunmap_atomic(map);
70 put_page(page);
72 len += size;
73 to += size;
74 addr += size;
76 } while (len < n);
78 return len;
81 struct event_constraint {
82 union {
83 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
84 u64 idxmsk64;
86 u64 code;
87 u64 cmask;
88 int weight;
91 struct amd_nb {
92 int nb_id; /* NorthBridge id */
93 int refcnt; /* reference count */
94 struct perf_event *owners[X86_PMC_IDX_MAX];
95 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
98 struct intel_percore;
100 #define MAX_LBR_ENTRIES 16
102 struct cpu_hw_events {
104 * Generic x86 PMC bits
106 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
107 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
108 unsigned long running[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
109 int enabled;
111 int n_events;
112 int n_added;
113 int n_txn;
114 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
115 u64 tags[X86_PMC_IDX_MAX];
116 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
118 unsigned int group_flag;
121 * Intel DebugStore bits
123 struct debug_store *ds;
124 u64 pebs_enabled;
127 * Intel LBR bits
129 int lbr_users;
130 void *lbr_context;
131 struct perf_branch_stack lbr_stack;
132 struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
135 * Intel percore register state.
136 * Coordinate shared resources between HT threads.
138 int percore_used; /* Used by this CPU? */
139 struct intel_percore *per_core;
142 * AMD specific bits
144 struct amd_nb *amd_nb;
147 #define __EVENT_CONSTRAINT(c, n, m, w) {\
148 { .idxmsk64 = (n) }, \
149 .code = (c), \
150 .cmask = (m), \
151 .weight = (w), \
154 #define EVENT_CONSTRAINT(c, n, m) \
155 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
158 * Constraint on the Event code.
160 #define INTEL_EVENT_CONSTRAINT(c, n) \
161 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
164 * Constraint on the Event code + UMask + fixed-mask
166 * filter mask to validate fixed counter events.
167 * the following filters disqualify for fixed counters:
168 * - inv
169 * - edge
170 * - cnt-mask
171 * The other filters are supported by fixed counters.
172 * The any-thread option is supported starting with v3.
174 #define FIXED_EVENT_CONSTRAINT(c, n) \
175 EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
178 * Constraint on the Event code + UMask
180 #define INTEL_UEVENT_CONSTRAINT(c, n) \
181 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
183 #define EVENT_CONSTRAINT_END \
184 EVENT_CONSTRAINT(0, 0, 0)
186 #define for_each_event_constraint(e, c) \
187 for ((e) = (c); (e)->weight; (e)++)
190 * Extra registers for specific events.
191 * Some events need large masks and require external MSRs.
192 * Define a mapping to these extra registers.
194 struct extra_reg {
195 unsigned int event;
196 unsigned int msr;
197 u64 config_mask;
198 u64 valid_mask;
201 #define EVENT_EXTRA_REG(e, ms, m, vm) { \
202 .event = (e), \
203 .msr = (ms), \
204 .config_mask = (m), \
205 .valid_mask = (vm), \
207 #define INTEL_EVENT_EXTRA_REG(event, msr, vm) \
208 EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm)
209 #define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0)
211 union perf_capabilities {
212 struct {
213 u64 lbr_format : 6;
214 u64 pebs_trap : 1;
215 u64 pebs_arch_reg : 1;
216 u64 pebs_format : 4;
217 u64 smm_freeze : 1;
219 u64 capabilities;
223 * struct x86_pmu - generic x86 pmu
225 struct x86_pmu {
227 * Generic x86 PMC bits
229 const char *name;
230 int version;
231 int (*handle_irq)(struct pt_regs *);
232 void (*disable_all)(void);
233 void (*enable_all)(int added);
234 void (*enable)(struct perf_event *);
235 void (*disable)(struct perf_event *);
236 int (*hw_config)(struct perf_event *event);
237 int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
238 unsigned eventsel;
239 unsigned perfctr;
240 u64 (*event_map)(int);
241 int max_events;
242 int num_counters;
243 int num_counters_fixed;
244 int cntval_bits;
245 u64 cntval_mask;
246 int apic;
247 u64 max_period;
248 struct event_constraint *
249 (*get_event_constraints)(struct cpu_hw_events *cpuc,
250 struct perf_event *event);
252 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
253 struct perf_event *event);
254 struct event_constraint *event_constraints;
255 struct event_constraint *percore_constraints;
256 void (*quirks)(void);
257 int perfctr_second_write;
259 int (*cpu_prepare)(int cpu);
260 void (*cpu_starting)(int cpu);
261 void (*cpu_dying)(int cpu);
262 void (*cpu_dead)(int cpu);
265 * Intel Arch Perfmon v2+
267 u64 intel_ctrl;
268 union perf_capabilities intel_cap;
271 * Intel DebugStore bits
273 int bts, pebs;
274 int bts_active, pebs_active;
275 int pebs_record_size;
276 void (*drain_pebs)(struct pt_regs *regs);
277 struct event_constraint *pebs_constraints;
280 * Intel LBR
282 unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
283 int lbr_nr; /* hardware stack size */
286 * Extra registers for events
288 struct extra_reg *extra_regs;
291 static struct x86_pmu x86_pmu __read_mostly;
293 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
294 .enabled = 1,
297 static int x86_perf_event_set_period(struct perf_event *event);
300 * Generalized hw caching related hw_event table, filled
301 * in on a per model basis. A value of 0 means
302 * 'not supported', -1 means 'hw_event makes no sense on
303 * this CPU', any other value means the raw hw_event
304 * ID.
307 #define C(x) PERF_COUNT_HW_CACHE_##x
309 static u64 __read_mostly hw_cache_event_ids
310 [PERF_COUNT_HW_CACHE_MAX]
311 [PERF_COUNT_HW_CACHE_OP_MAX]
312 [PERF_COUNT_HW_CACHE_RESULT_MAX];
313 static u64 __read_mostly hw_cache_extra_regs
314 [PERF_COUNT_HW_CACHE_MAX]
315 [PERF_COUNT_HW_CACHE_OP_MAX]
316 [PERF_COUNT_HW_CACHE_RESULT_MAX];
319 * Propagate event elapsed time into the generic event.
320 * Can only be executed on the CPU where the event is active.
321 * Returns the delta events processed.
323 static u64
324 x86_perf_event_update(struct perf_event *event)
326 struct hw_perf_event *hwc = &event->hw;
327 int shift = 64 - x86_pmu.cntval_bits;
328 u64 prev_raw_count, new_raw_count;
329 int idx = hwc->idx;
330 s64 delta;
332 if (idx == X86_PMC_IDX_FIXED_BTS)
333 return 0;
336 * Careful: an NMI might modify the previous event value.
338 * Our tactic to handle this is to first atomically read and
339 * exchange a new raw count - then add that new-prev delta
340 * count to the generic event atomically:
342 again:
343 prev_raw_count = local64_read(&hwc->prev_count);
344 rdmsrl(hwc->event_base, new_raw_count);
346 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
347 new_raw_count) != prev_raw_count)
348 goto again;
351 * Now we have the new raw value and have updated the prev
352 * timestamp already. We can now calculate the elapsed delta
353 * (event-)time and add that to the generic event.
355 * Careful, not all hw sign-extends above the physical width
356 * of the count.
358 delta = (new_raw_count << shift) - (prev_raw_count << shift);
359 delta >>= shift;
361 local64_add(delta, &event->count);
362 local64_sub(delta, &hwc->period_left);
364 return new_raw_count;
367 static inline int x86_pmu_addr_offset(int index)
369 int offset;
371 /* offset = X86_FEATURE_PERFCTR_CORE ? index << 1 : index */
372 alternative_io(ASM_NOP2,
373 "shll $1, %%eax",
374 X86_FEATURE_PERFCTR_CORE,
375 "=a" (offset),
376 "a" (index));
378 return offset;
381 static inline unsigned int x86_pmu_config_addr(int index)
383 return x86_pmu.eventsel + x86_pmu_addr_offset(index);
386 static inline unsigned int x86_pmu_event_addr(int index)
388 return x86_pmu.perfctr + x86_pmu_addr_offset(index);
392 * Find and validate any extra registers to set up.
394 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
396 struct extra_reg *er;
398 event->hw.extra_reg = 0;
399 event->hw.extra_config = 0;
401 if (!x86_pmu.extra_regs)
402 return 0;
404 for (er = x86_pmu.extra_regs; er->msr; er++) {
405 if (er->event != (config & er->config_mask))
406 continue;
407 if (event->attr.config1 & ~er->valid_mask)
408 return -EINVAL;
409 event->hw.extra_reg = er->msr;
410 event->hw.extra_config = event->attr.config1;
411 break;
413 return 0;
416 static atomic_t active_events;
417 static DEFINE_MUTEX(pmc_reserve_mutex);
419 #ifdef CONFIG_X86_LOCAL_APIC
421 static bool reserve_pmc_hardware(void)
423 int i;
425 for (i = 0; i < x86_pmu.num_counters; i++) {
426 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
427 goto perfctr_fail;
430 for (i = 0; i < x86_pmu.num_counters; i++) {
431 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
432 goto eventsel_fail;
435 return true;
437 eventsel_fail:
438 for (i--; i >= 0; i--)
439 release_evntsel_nmi(x86_pmu_config_addr(i));
441 i = x86_pmu.num_counters;
443 perfctr_fail:
444 for (i--; i >= 0; i--)
445 release_perfctr_nmi(x86_pmu_event_addr(i));
447 return false;
450 static void release_pmc_hardware(void)
452 int i;
454 for (i = 0; i < x86_pmu.num_counters; i++) {
455 release_perfctr_nmi(x86_pmu_event_addr(i));
456 release_evntsel_nmi(x86_pmu_config_addr(i));
460 #else
462 static bool reserve_pmc_hardware(void) { return true; }
463 static void release_pmc_hardware(void) {}
465 #endif
467 static bool check_hw_exists(void)
469 u64 val, val_new = 0;
470 int i, reg, ret = 0;
473 * Check to see if the BIOS enabled any of the counters, if so
474 * complain and bail.
476 for (i = 0; i < x86_pmu.num_counters; i++) {
477 reg = x86_pmu_config_addr(i);
478 ret = rdmsrl_safe(reg, &val);
479 if (ret)
480 goto msr_fail;
481 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
482 goto bios_fail;
485 if (x86_pmu.num_counters_fixed) {
486 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
487 ret = rdmsrl_safe(reg, &val);
488 if (ret)
489 goto msr_fail;
490 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
491 if (val & (0x03 << i*4))
492 goto bios_fail;
497 * Now write a value and read it back to see if it matches,
498 * this is needed to detect certain hardware emulators (qemu/kvm)
499 * that don't trap on the MSR access and always return 0s.
501 val = 0xabcdUL;
502 ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
503 ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
504 if (ret || val != val_new)
505 goto msr_fail;
507 return true;
509 bios_fail:
511 * We still allow the PMU driver to operate:
513 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
514 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
516 return true;
518 msr_fail:
519 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
521 return false;
524 static void reserve_ds_buffers(void);
525 static void release_ds_buffers(void);
527 static void hw_perf_event_destroy(struct perf_event *event)
529 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
530 release_pmc_hardware();
531 release_ds_buffers();
532 mutex_unlock(&pmc_reserve_mutex);
536 static inline int x86_pmu_initialized(void)
538 return x86_pmu.handle_irq != NULL;
541 static inline int
542 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
544 struct perf_event_attr *attr = &event->attr;
545 unsigned int cache_type, cache_op, cache_result;
546 u64 config, val;
548 config = attr->config;
550 cache_type = (config >> 0) & 0xff;
551 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
552 return -EINVAL;
554 cache_op = (config >> 8) & 0xff;
555 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
556 return -EINVAL;
558 cache_result = (config >> 16) & 0xff;
559 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
560 return -EINVAL;
562 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
564 if (val == 0)
565 return -ENOENT;
567 if (val == -1)
568 return -EINVAL;
570 hwc->config |= val;
571 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
572 return x86_pmu_extra_regs(val, event);
575 static int x86_setup_perfctr(struct perf_event *event)
577 struct perf_event_attr *attr = &event->attr;
578 struct hw_perf_event *hwc = &event->hw;
579 u64 config;
581 if (!is_sampling_event(event)) {
582 hwc->sample_period = x86_pmu.max_period;
583 hwc->last_period = hwc->sample_period;
584 local64_set(&hwc->period_left, hwc->sample_period);
585 } else {
587 * If we have a PMU initialized but no APIC
588 * interrupts, we cannot sample hardware
589 * events (user-space has to fall back and
590 * sample via a hrtimer based software event):
592 if (!x86_pmu.apic)
593 return -EOPNOTSUPP;
597 * Do not allow config1 (extended registers) to propagate,
598 * there's no sane user-space generalization yet:
600 if (attr->type == PERF_TYPE_RAW)
601 return 0;
603 if (attr->type == PERF_TYPE_HW_CACHE)
604 return set_ext_hw_attr(hwc, event);
606 if (attr->config >= x86_pmu.max_events)
607 return -EINVAL;
610 * The generic map:
612 config = x86_pmu.event_map(attr->config);
614 if (config == 0)
615 return -ENOENT;
617 if (config == -1LL)
618 return -EINVAL;
621 * Branch tracing:
623 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
624 !attr->freq && hwc->sample_period == 1) {
625 /* BTS is not supported by this architecture. */
626 if (!x86_pmu.bts_active)
627 return -EOPNOTSUPP;
629 /* BTS is currently only allowed for user-mode. */
630 if (!attr->exclude_kernel)
631 return -EOPNOTSUPP;
634 hwc->config |= config;
636 return 0;
639 static int x86_pmu_hw_config(struct perf_event *event)
641 if (event->attr.precise_ip) {
642 int precise = 0;
644 /* Support for constant skid */
645 if (x86_pmu.pebs_active) {
646 precise++;
648 /* Support for IP fixup */
649 if (x86_pmu.lbr_nr)
650 precise++;
653 if (event->attr.precise_ip > precise)
654 return -EOPNOTSUPP;
658 * Generate PMC IRQs:
659 * (keep 'enabled' bit clear for now)
661 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
664 * Count user and OS events unless requested not to
666 if (!event->attr.exclude_user)
667 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
668 if (!event->attr.exclude_kernel)
669 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
671 if (event->attr.type == PERF_TYPE_RAW)
672 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
674 return x86_setup_perfctr(event);
678 * Setup the hardware configuration for a given attr_type
680 static int __x86_pmu_event_init(struct perf_event *event)
682 int err;
684 if (!x86_pmu_initialized())
685 return -ENODEV;
687 err = 0;
688 if (!atomic_inc_not_zero(&active_events)) {
689 mutex_lock(&pmc_reserve_mutex);
690 if (atomic_read(&active_events) == 0) {
691 if (!reserve_pmc_hardware())
692 err = -EBUSY;
693 else
694 reserve_ds_buffers();
696 if (!err)
697 atomic_inc(&active_events);
698 mutex_unlock(&pmc_reserve_mutex);
700 if (err)
701 return err;
703 event->destroy = hw_perf_event_destroy;
705 event->hw.idx = -1;
706 event->hw.last_cpu = -1;
707 event->hw.last_tag = ~0ULL;
709 return x86_pmu.hw_config(event);
712 static void x86_pmu_disable_all(void)
714 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
715 int idx;
717 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
718 u64 val;
720 if (!test_bit(idx, cpuc->active_mask))
721 continue;
722 rdmsrl(x86_pmu_config_addr(idx), val);
723 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
724 continue;
725 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
726 wrmsrl(x86_pmu_config_addr(idx), val);
730 static void x86_pmu_disable(struct pmu *pmu)
732 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
734 if (!x86_pmu_initialized())
735 return;
737 if (!cpuc->enabled)
738 return;
740 cpuc->n_added = 0;
741 cpuc->enabled = 0;
742 barrier();
744 x86_pmu.disable_all();
747 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
748 u64 enable_mask)
750 if (hwc->extra_reg)
751 wrmsrl(hwc->extra_reg, hwc->extra_config);
752 wrmsrl(hwc->config_base, hwc->config | enable_mask);
755 static void x86_pmu_enable_all(int added)
757 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
758 int idx;
760 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
761 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
763 if (!test_bit(idx, cpuc->active_mask))
764 continue;
766 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
770 static struct pmu pmu;
772 static inline int is_x86_event(struct perf_event *event)
774 return event->pmu == &pmu;
777 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
779 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
780 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
781 int i, j, w, wmax, num = 0;
782 struct hw_perf_event *hwc;
784 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
786 for (i = 0; i < n; i++) {
787 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
788 constraints[i] = c;
792 * fastpath, try to reuse previous register
794 for (i = 0; i < n; i++) {
795 hwc = &cpuc->event_list[i]->hw;
796 c = constraints[i];
798 /* never assigned */
799 if (hwc->idx == -1)
800 break;
802 /* constraint still honored */
803 if (!test_bit(hwc->idx, c->idxmsk))
804 break;
806 /* not already used */
807 if (test_bit(hwc->idx, used_mask))
808 break;
810 __set_bit(hwc->idx, used_mask);
811 if (assign)
812 assign[i] = hwc->idx;
814 if (i == n)
815 goto done;
818 * begin slow path
821 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
824 * weight = number of possible counters
826 * 1 = most constrained, only works on one counter
827 * wmax = least constrained, works on any counter
829 * assign events to counters starting with most
830 * constrained events.
832 wmax = x86_pmu.num_counters;
835 * when fixed event counters are present,
836 * wmax is incremented by 1 to account
837 * for one more choice
839 if (x86_pmu.num_counters_fixed)
840 wmax++;
842 for (w = 1, num = n; num && w <= wmax; w++) {
843 /* for each event */
844 for (i = 0; num && i < n; i++) {
845 c = constraints[i];
846 hwc = &cpuc->event_list[i]->hw;
848 if (c->weight != w)
849 continue;
851 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
852 if (!test_bit(j, used_mask))
853 break;
856 if (j == X86_PMC_IDX_MAX)
857 break;
859 __set_bit(j, used_mask);
861 if (assign)
862 assign[i] = j;
863 num--;
866 done:
868 * scheduling failed or is just a simulation,
869 * free resources if necessary
871 if (!assign || num) {
872 for (i = 0; i < n; i++) {
873 if (x86_pmu.put_event_constraints)
874 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
877 return num ? -ENOSPC : 0;
881 * dogrp: true if must collect siblings events (group)
882 * returns total number of events and error code
884 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
886 struct perf_event *event;
887 int n, max_count;
889 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
891 /* current number of events already accepted */
892 n = cpuc->n_events;
894 if (is_x86_event(leader)) {
895 if (n >= max_count)
896 return -ENOSPC;
897 cpuc->event_list[n] = leader;
898 n++;
900 if (!dogrp)
901 return n;
903 list_for_each_entry(event, &leader->sibling_list, group_entry) {
904 if (!is_x86_event(event) ||
905 event->state <= PERF_EVENT_STATE_OFF)
906 continue;
908 if (n >= max_count)
909 return -ENOSPC;
911 cpuc->event_list[n] = event;
912 n++;
914 return n;
917 static inline void x86_assign_hw_event(struct perf_event *event,
918 struct cpu_hw_events *cpuc, int i)
920 struct hw_perf_event *hwc = &event->hw;
922 hwc->idx = cpuc->assign[i];
923 hwc->last_cpu = smp_processor_id();
924 hwc->last_tag = ++cpuc->tags[i];
926 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
927 hwc->config_base = 0;
928 hwc->event_base = 0;
929 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
930 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
931 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - X86_PMC_IDX_FIXED);
932 } else {
933 hwc->config_base = x86_pmu_config_addr(hwc->idx);
934 hwc->event_base = x86_pmu_event_addr(hwc->idx);
938 static inline int match_prev_assignment(struct hw_perf_event *hwc,
939 struct cpu_hw_events *cpuc,
940 int i)
942 return hwc->idx == cpuc->assign[i] &&
943 hwc->last_cpu == smp_processor_id() &&
944 hwc->last_tag == cpuc->tags[i];
947 static void x86_pmu_start(struct perf_event *event, int flags);
948 static void x86_pmu_stop(struct perf_event *event, int flags);
950 static void x86_pmu_enable(struct pmu *pmu)
952 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
953 struct perf_event *event;
954 struct hw_perf_event *hwc;
955 int i, added = cpuc->n_added;
957 if (!x86_pmu_initialized())
958 return;
960 if (cpuc->enabled)
961 return;
963 if (cpuc->n_added) {
964 int n_running = cpuc->n_events - cpuc->n_added;
966 * apply assignment obtained either from
967 * hw_perf_group_sched_in() or x86_pmu_enable()
969 * step1: save events moving to new counters
970 * step2: reprogram moved events into new counters
972 for (i = 0; i < n_running; i++) {
973 event = cpuc->event_list[i];
974 hwc = &event->hw;
977 * we can avoid reprogramming counter if:
978 * - assigned same counter as last time
979 * - running on same CPU as last time
980 * - no other event has used the counter since
982 if (hwc->idx == -1 ||
983 match_prev_assignment(hwc, cpuc, i))
984 continue;
987 * Ensure we don't accidentally enable a stopped
988 * counter simply because we rescheduled.
990 if (hwc->state & PERF_HES_STOPPED)
991 hwc->state |= PERF_HES_ARCH;
993 x86_pmu_stop(event, PERF_EF_UPDATE);
996 for (i = 0; i < cpuc->n_events; i++) {
997 event = cpuc->event_list[i];
998 hwc = &event->hw;
1000 if (!match_prev_assignment(hwc, cpuc, i))
1001 x86_assign_hw_event(event, cpuc, i);
1002 else if (i < n_running)
1003 continue;
1005 if (hwc->state & PERF_HES_ARCH)
1006 continue;
1008 x86_pmu_start(event, PERF_EF_RELOAD);
1010 cpuc->n_added = 0;
1011 perf_events_lapic_init();
1014 cpuc->enabled = 1;
1015 barrier();
1017 x86_pmu.enable_all(added);
1020 static inline void x86_pmu_disable_event(struct perf_event *event)
1022 struct hw_perf_event *hwc = &event->hw;
1024 wrmsrl(hwc->config_base, hwc->config);
1027 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1030 * Set the next IRQ period, based on the hwc->period_left value.
1031 * To be called with the event disabled in hw:
1033 static int
1034 x86_perf_event_set_period(struct perf_event *event)
1036 struct hw_perf_event *hwc = &event->hw;
1037 s64 left = local64_read(&hwc->period_left);
1038 s64 period = hwc->sample_period;
1039 int ret = 0, idx = hwc->idx;
1041 if (idx == X86_PMC_IDX_FIXED_BTS)
1042 return 0;
1045 * If we are way outside a reasonable range then just skip forward:
1047 if (unlikely(left <= -period)) {
1048 left = period;
1049 local64_set(&hwc->period_left, left);
1050 hwc->last_period = period;
1051 ret = 1;
1054 if (unlikely(left <= 0)) {
1055 left += period;
1056 local64_set(&hwc->period_left, left);
1057 hwc->last_period = period;
1058 ret = 1;
1061 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1063 if (unlikely(left < 2))
1064 left = 2;
1066 if (left > x86_pmu.max_period)
1067 left = x86_pmu.max_period;
1069 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1072 * The hw event starts counting from this event offset,
1073 * mark it to be able to extra future deltas:
1075 local64_set(&hwc->prev_count, (u64)-left);
1077 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1080 * Due to erratum on certan cpu we need
1081 * a second write to be sure the register
1082 * is updated properly
1084 if (x86_pmu.perfctr_second_write) {
1085 wrmsrl(hwc->event_base,
1086 (u64)(-left) & x86_pmu.cntval_mask);
1089 perf_event_update_userpage(event);
1091 return ret;
1094 static void x86_pmu_enable_event(struct perf_event *event)
1096 if (__this_cpu_read(cpu_hw_events.enabled))
1097 __x86_pmu_enable_event(&event->hw,
1098 ARCH_PERFMON_EVENTSEL_ENABLE);
1102 * Add a single event to the PMU.
1104 * The event is added to the group of enabled events
1105 * but only if it can be scehduled with existing events.
1107 static int x86_pmu_add(struct perf_event *event, int flags)
1109 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1110 struct hw_perf_event *hwc;
1111 int assign[X86_PMC_IDX_MAX];
1112 int n, n0, ret;
1114 hwc = &event->hw;
1116 perf_pmu_disable(event->pmu);
1117 n0 = cpuc->n_events;
1118 ret = n = collect_events(cpuc, event, false);
1119 if (ret < 0)
1120 goto out;
1122 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1123 if (!(flags & PERF_EF_START))
1124 hwc->state |= PERF_HES_ARCH;
1127 * If group events scheduling transaction was started,
1128 * skip the schedulability test here, it will be performed
1129 * at commit time (->commit_txn) as a whole
1131 if (cpuc->group_flag & PERF_EVENT_TXN)
1132 goto done_collect;
1134 ret = x86_pmu.schedule_events(cpuc, n, assign);
1135 if (ret)
1136 goto out;
1138 * copy new assignment, now we know it is possible
1139 * will be used by hw_perf_enable()
1141 memcpy(cpuc->assign, assign, n*sizeof(int));
1143 done_collect:
1144 cpuc->n_events = n;
1145 cpuc->n_added += n - n0;
1146 cpuc->n_txn += n - n0;
1148 ret = 0;
1149 out:
1150 perf_pmu_enable(event->pmu);
1151 return ret;
1154 static void x86_pmu_start(struct perf_event *event, int flags)
1156 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1157 int idx = event->hw.idx;
1159 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1160 return;
1162 if (WARN_ON_ONCE(idx == -1))
1163 return;
1165 if (flags & PERF_EF_RELOAD) {
1166 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1167 x86_perf_event_set_period(event);
1170 event->hw.state = 0;
1172 cpuc->events[idx] = event;
1173 __set_bit(idx, cpuc->active_mask);
1174 __set_bit(idx, cpuc->running);
1175 x86_pmu.enable(event);
1176 perf_event_update_userpage(event);
1179 void perf_event_print_debug(void)
1181 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1182 u64 pebs;
1183 struct cpu_hw_events *cpuc;
1184 unsigned long flags;
1185 int cpu, idx;
1187 if (!x86_pmu.num_counters)
1188 return;
1190 local_irq_save(flags);
1192 cpu = smp_processor_id();
1193 cpuc = &per_cpu(cpu_hw_events, cpu);
1195 if (x86_pmu.version >= 2) {
1196 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1197 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1198 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1199 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1200 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1202 pr_info("\n");
1203 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1204 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1205 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1206 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1207 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1209 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1211 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1212 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1213 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1215 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1217 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1218 cpu, idx, pmc_ctrl);
1219 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1220 cpu, idx, pmc_count);
1221 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1222 cpu, idx, prev_left);
1224 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1225 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1227 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1228 cpu, idx, pmc_count);
1230 local_irq_restore(flags);
1233 static void x86_pmu_stop(struct perf_event *event, int flags)
1235 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1236 struct hw_perf_event *hwc = &event->hw;
1238 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1239 x86_pmu.disable(event);
1240 cpuc->events[hwc->idx] = NULL;
1241 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1242 hwc->state |= PERF_HES_STOPPED;
1245 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1247 * Drain the remaining delta count out of a event
1248 * that we are disabling:
1250 x86_perf_event_update(event);
1251 hwc->state |= PERF_HES_UPTODATE;
1255 static void x86_pmu_del(struct perf_event *event, int flags)
1257 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1258 int i;
1261 * If we're called during a txn, we don't need to do anything.
1262 * The events never got scheduled and ->cancel_txn will truncate
1263 * the event_list.
1265 if (cpuc->group_flag & PERF_EVENT_TXN)
1266 return;
1268 x86_pmu_stop(event, PERF_EF_UPDATE);
1270 for (i = 0; i < cpuc->n_events; i++) {
1271 if (event == cpuc->event_list[i]) {
1273 if (x86_pmu.put_event_constraints)
1274 x86_pmu.put_event_constraints(cpuc, event);
1276 while (++i < cpuc->n_events)
1277 cpuc->event_list[i-1] = cpuc->event_list[i];
1279 --cpuc->n_events;
1280 break;
1283 perf_event_update_userpage(event);
1286 static int x86_pmu_handle_irq(struct pt_regs *regs)
1288 struct perf_sample_data data;
1289 struct cpu_hw_events *cpuc;
1290 struct perf_event *event;
1291 int idx, handled = 0;
1292 u64 val;
1294 perf_sample_data_init(&data, 0);
1296 cpuc = &__get_cpu_var(cpu_hw_events);
1299 * Some chipsets need to unmask the LVTPC in a particular spot
1300 * inside the nmi handler. As a result, the unmasking was pushed
1301 * into all the nmi handlers.
1303 * This generic handler doesn't seem to have any issues where the
1304 * unmasking occurs so it was left at the top.
1306 apic_write(APIC_LVTPC, APIC_DM_NMI);
1308 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1309 if (!test_bit(idx, cpuc->active_mask)) {
1311 * Though we deactivated the counter some cpus
1312 * might still deliver spurious interrupts still
1313 * in flight. Catch them:
1315 if (__test_and_clear_bit(idx, cpuc->running))
1316 handled++;
1317 continue;
1320 event = cpuc->events[idx];
1322 val = x86_perf_event_update(event);
1323 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1324 continue;
1327 * event overflow
1329 handled++;
1330 data.period = event->hw.last_period;
1332 if (!x86_perf_event_set_period(event))
1333 continue;
1335 if (perf_event_overflow(event, 1, &data, regs))
1336 x86_pmu_stop(event, 0);
1339 if (handled)
1340 inc_irq_stat(apic_perf_irqs);
1342 return handled;
1345 void perf_events_lapic_init(void)
1347 if (!x86_pmu.apic || !x86_pmu_initialized())
1348 return;
1351 * Always use NMI for PMU
1353 apic_write(APIC_LVTPC, APIC_DM_NMI);
1356 struct pmu_nmi_state {
1357 unsigned int marked;
1358 int handled;
1361 static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
1363 static int __kprobes
1364 perf_event_nmi_handler(struct notifier_block *self,
1365 unsigned long cmd, void *__args)
1367 struct die_args *args = __args;
1368 unsigned int this_nmi;
1369 int handled;
1371 if (!atomic_read(&active_events))
1372 return NOTIFY_DONE;
1374 switch (cmd) {
1375 case DIE_NMI:
1376 break;
1377 case DIE_NMIUNKNOWN:
1378 this_nmi = percpu_read(irq_stat.__nmi_count);
1379 if (this_nmi != __this_cpu_read(pmu_nmi.marked))
1380 /* let the kernel handle the unknown nmi */
1381 return NOTIFY_DONE;
1383 * This one is a PMU back-to-back nmi. Two events
1384 * trigger 'simultaneously' raising two back-to-back
1385 * NMIs. If the first NMI handles both, the latter
1386 * will be empty and daze the CPU. So, we drop it to
1387 * avoid false-positive 'unknown nmi' messages.
1389 return NOTIFY_STOP;
1390 default:
1391 return NOTIFY_DONE;
1394 handled = x86_pmu.handle_irq(args->regs);
1395 if (!handled)
1396 return NOTIFY_DONE;
1398 this_nmi = percpu_read(irq_stat.__nmi_count);
1399 if ((handled > 1) ||
1400 /* the next nmi could be a back-to-back nmi */
1401 ((__this_cpu_read(pmu_nmi.marked) == this_nmi) &&
1402 (__this_cpu_read(pmu_nmi.handled) > 1))) {
1404 * We could have two subsequent back-to-back nmis: The
1405 * first handles more than one counter, the 2nd
1406 * handles only one counter and the 3rd handles no
1407 * counter.
1409 * This is the 2nd nmi because the previous was
1410 * handling more than one counter. We will mark the
1411 * next (3rd) and then drop it if unhandled.
1413 __this_cpu_write(pmu_nmi.marked, this_nmi + 1);
1414 __this_cpu_write(pmu_nmi.handled, handled);
1417 return NOTIFY_STOP;
1420 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1421 .notifier_call = perf_event_nmi_handler,
1422 .next = NULL,
1423 .priority = NMI_LOCAL_LOW_PRIOR,
1426 static struct event_constraint unconstrained;
1427 static struct event_constraint emptyconstraint;
1429 static struct event_constraint *
1430 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1432 struct event_constraint *c;
1434 if (x86_pmu.event_constraints) {
1435 for_each_event_constraint(c, x86_pmu.event_constraints) {
1436 if ((event->hw.config & c->cmask) == c->code)
1437 return c;
1441 return &unconstrained;
1444 #include "perf_event_amd.c"
1445 #include "perf_event_p6.c"
1446 #include "perf_event_p4.c"
1447 #include "perf_event_intel_lbr.c"
1448 #include "perf_event_intel_ds.c"
1449 #include "perf_event_intel.c"
1451 static int __cpuinit
1452 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1454 unsigned int cpu = (long)hcpu;
1455 int ret = NOTIFY_OK;
1457 switch (action & ~CPU_TASKS_FROZEN) {
1458 case CPU_UP_PREPARE:
1459 if (x86_pmu.cpu_prepare)
1460 ret = x86_pmu.cpu_prepare(cpu);
1461 break;
1463 case CPU_STARTING:
1464 if (x86_pmu.cpu_starting)
1465 x86_pmu.cpu_starting(cpu);
1466 break;
1468 case CPU_DYING:
1469 if (x86_pmu.cpu_dying)
1470 x86_pmu.cpu_dying(cpu);
1471 break;
1473 case CPU_UP_CANCELED:
1474 case CPU_DEAD:
1475 if (x86_pmu.cpu_dead)
1476 x86_pmu.cpu_dead(cpu);
1477 break;
1479 default:
1480 break;
1483 return ret;
1486 static void __init pmu_check_apic(void)
1488 if (cpu_has_apic)
1489 return;
1491 x86_pmu.apic = 0;
1492 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1493 pr_info("no hardware sampling interrupt available.\n");
1496 static int __init init_hw_perf_events(void)
1498 struct event_constraint *c;
1499 int err;
1501 pr_info("Performance Events: ");
1503 switch (boot_cpu_data.x86_vendor) {
1504 case X86_VENDOR_INTEL:
1505 err = intel_pmu_init();
1506 break;
1507 case X86_VENDOR_AMD:
1508 err = amd_pmu_init();
1509 break;
1510 default:
1511 return 0;
1513 if (err != 0) {
1514 pr_cont("no PMU driver, software events only.\n");
1515 return 0;
1518 pmu_check_apic();
1520 /* sanity check that the hardware exists or is emulated */
1521 if (!check_hw_exists())
1522 return 0;
1524 pr_cont("%s PMU driver.\n", x86_pmu.name);
1526 if (x86_pmu.quirks)
1527 x86_pmu.quirks();
1529 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1530 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1531 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1532 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1534 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1536 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1537 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1538 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1539 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1542 x86_pmu.intel_ctrl |=
1543 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1545 perf_events_lapic_init();
1546 register_die_notifier(&perf_event_nmi_notifier);
1548 unconstrained = (struct event_constraint)
1549 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1550 0, x86_pmu.num_counters);
1552 if (x86_pmu.event_constraints) {
1553 for_each_event_constraint(c, x86_pmu.event_constraints) {
1554 if (c->cmask != X86_RAW_EVENT_MASK)
1555 continue;
1557 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1558 c->weight += x86_pmu.num_counters;
1562 pr_info("... version: %d\n", x86_pmu.version);
1563 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1564 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1565 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1566 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1567 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1568 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1570 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1571 perf_cpu_notifier(x86_pmu_notifier);
1573 return 0;
1575 early_initcall(init_hw_perf_events);
1577 static inline void x86_pmu_read(struct perf_event *event)
1579 x86_perf_event_update(event);
1583 * Start group events scheduling transaction
1584 * Set the flag to make pmu::enable() not perform the
1585 * schedulability test, it will be performed at commit time
1587 static void x86_pmu_start_txn(struct pmu *pmu)
1589 perf_pmu_disable(pmu);
1590 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1591 __this_cpu_write(cpu_hw_events.n_txn, 0);
1595 * Stop group events scheduling transaction
1596 * Clear the flag and pmu::enable() will perform the
1597 * schedulability test.
1599 static void x86_pmu_cancel_txn(struct pmu *pmu)
1601 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1603 * Truncate the collected events.
1605 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1606 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1607 perf_pmu_enable(pmu);
1611 * Commit group events scheduling transaction
1612 * Perform the group schedulability test as a whole
1613 * Return 0 if success
1615 static int x86_pmu_commit_txn(struct pmu *pmu)
1617 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1618 int assign[X86_PMC_IDX_MAX];
1619 int n, ret;
1621 n = cpuc->n_events;
1623 if (!x86_pmu_initialized())
1624 return -EAGAIN;
1626 ret = x86_pmu.schedule_events(cpuc, n, assign);
1627 if (ret)
1628 return ret;
1631 * copy new assignment, now we know it is possible
1632 * will be used by hw_perf_enable()
1634 memcpy(cpuc->assign, assign, n*sizeof(int));
1636 cpuc->group_flag &= ~PERF_EVENT_TXN;
1637 perf_pmu_enable(pmu);
1638 return 0;
1642 * validate that we can schedule this event
1644 static int validate_event(struct perf_event *event)
1646 struct cpu_hw_events *fake_cpuc;
1647 struct event_constraint *c;
1648 int ret = 0;
1650 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1651 if (!fake_cpuc)
1652 return -ENOMEM;
1654 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1656 if (!c || !c->weight)
1657 ret = -ENOSPC;
1659 if (x86_pmu.put_event_constraints)
1660 x86_pmu.put_event_constraints(fake_cpuc, event);
1662 kfree(fake_cpuc);
1664 return ret;
1668 * validate a single event group
1670 * validation include:
1671 * - check events are compatible which each other
1672 * - events do not compete for the same counter
1673 * - number of events <= number of counters
1675 * validation ensures the group can be loaded onto the
1676 * PMU if it was the only group available.
1678 static int validate_group(struct perf_event *event)
1680 struct perf_event *leader = event->group_leader;
1681 struct cpu_hw_events *fake_cpuc;
1682 int ret, n;
1684 ret = -ENOMEM;
1685 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1686 if (!fake_cpuc)
1687 goto out;
1690 * the event is not yet connected with its
1691 * siblings therefore we must first collect
1692 * existing siblings, then add the new event
1693 * before we can simulate the scheduling
1695 ret = -ENOSPC;
1696 n = collect_events(fake_cpuc, leader, true);
1697 if (n < 0)
1698 goto out_free;
1700 fake_cpuc->n_events = n;
1701 n = collect_events(fake_cpuc, event, false);
1702 if (n < 0)
1703 goto out_free;
1705 fake_cpuc->n_events = n;
1707 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1709 out_free:
1710 kfree(fake_cpuc);
1711 out:
1712 return ret;
1715 static int x86_pmu_event_init(struct perf_event *event)
1717 struct pmu *tmp;
1718 int err;
1720 switch (event->attr.type) {
1721 case PERF_TYPE_RAW:
1722 case PERF_TYPE_HARDWARE:
1723 case PERF_TYPE_HW_CACHE:
1724 break;
1726 default:
1727 return -ENOENT;
1730 err = __x86_pmu_event_init(event);
1731 if (!err) {
1733 * we temporarily connect event to its pmu
1734 * such that validate_group() can classify
1735 * it as an x86 event using is_x86_event()
1737 tmp = event->pmu;
1738 event->pmu = &pmu;
1740 if (event->group_leader != event)
1741 err = validate_group(event);
1742 else
1743 err = validate_event(event);
1745 event->pmu = tmp;
1747 if (err) {
1748 if (event->destroy)
1749 event->destroy(event);
1752 return err;
1755 static struct pmu pmu = {
1756 .pmu_enable = x86_pmu_enable,
1757 .pmu_disable = x86_pmu_disable,
1759 .event_init = x86_pmu_event_init,
1761 .add = x86_pmu_add,
1762 .del = x86_pmu_del,
1763 .start = x86_pmu_start,
1764 .stop = x86_pmu_stop,
1765 .read = x86_pmu_read,
1767 .start_txn = x86_pmu_start_txn,
1768 .cancel_txn = x86_pmu_cancel_txn,
1769 .commit_txn = x86_pmu_commit_txn,
1773 * callchain support
1776 static int backtrace_stack(void *data, char *name)
1778 return 0;
1781 static void backtrace_address(void *data, unsigned long addr, int reliable)
1783 struct perf_callchain_entry *entry = data;
1785 perf_callchain_store(entry, addr);
1788 static const struct stacktrace_ops backtrace_ops = {
1789 .stack = backtrace_stack,
1790 .address = backtrace_address,
1791 .walk_stack = print_context_stack_bp,
1794 void
1795 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1797 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1798 /* TODO: We don't support guest os callchain now */
1799 return;
1802 perf_callchain_store(entry, regs->ip);
1804 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1807 #ifdef CONFIG_COMPAT
1808 static inline int
1809 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1811 /* 32-bit process in 64-bit kernel. */
1812 struct stack_frame_ia32 frame;
1813 const void __user *fp;
1815 if (!test_thread_flag(TIF_IA32))
1816 return 0;
1818 fp = compat_ptr(regs->bp);
1819 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1820 unsigned long bytes;
1821 frame.next_frame = 0;
1822 frame.return_address = 0;
1824 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1825 if (bytes != sizeof(frame))
1826 break;
1828 if (fp < compat_ptr(regs->sp))
1829 break;
1831 perf_callchain_store(entry, frame.return_address);
1832 fp = compat_ptr(frame.next_frame);
1834 return 1;
1836 #else
1837 static inline int
1838 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1840 return 0;
1842 #endif
1844 void
1845 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1847 struct stack_frame frame;
1848 const void __user *fp;
1850 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1851 /* TODO: We don't support guest os callchain now */
1852 return;
1855 fp = (void __user *)regs->bp;
1857 perf_callchain_store(entry, regs->ip);
1859 if (perf_callchain_user32(regs, entry))
1860 return;
1862 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1863 unsigned long bytes;
1864 frame.next_frame = NULL;
1865 frame.return_address = 0;
1867 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1868 if (bytes != sizeof(frame))
1869 break;
1871 if ((unsigned long)fp < regs->sp)
1872 break;
1874 perf_callchain_store(entry, frame.return_address);
1875 fp = frame.next_frame;
1879 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1881 unsigned long ip;
1883 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1884 ip = perf_guest_cbs->get_guest_ip();
1885 else
1886 ip = instruction_pointer(regs);
1888 return ip;
1891 unsigned long perf_misc_flags(struct pt_regs *regs)
1893 int misc = 0;
1895 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1896 if (perf_guest_cbs->is_user_mode())
1897 misc |= PERF_RECORD_MISC_GUEST_USER;
1898 else
1899 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1900 } else {
1901 if (user_mode(regs))
1902 misc |= PERF_RECORD_MISC_USER;
1903 else
1904 misc |= PERF_RECORD_MISC_KERNEL;
1907 if (regs->flags & PERF_EFLAGS_EXACT)
1908 misc |= PERF_RECORD_MISC_EXACT_IP;
1910 return misc;