2 * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
4 * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
5 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6 * Copyright (C) 1999 - 2001 Kanoj Sarcar
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/errno.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/timex.h>
20 #include <linux/smp.h>
21 #include <linux/random.h>
22 #include <linux/kernel.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/delay.h>
25 #include <linux/bitops.h>
27 #include <asm/bootinfo.h>
29 #include <asm/mipsregs.h>
30 #include <asm/system.h>
32 #include <asm/processor.h>
33 #include <asm/pci/bridge.h>
34 #include <asm/sn/addrs.h>
35 #include <asm/sn/agent.h>
36 #include <asm/sn/arch.h>
37 #include <asm/sn/hub.h>
38 #include <asm/sn/intr.h>
41 * Linux has a controller-independent x86 interrupt architecture.
42 * every controller has a 'controller-template', that is used
43 * by the main code to do the right thing. Each driver-visible
44 * interrupt source is transparently wired to the appropriate
45 * controller. Thus drivers need not be aware of the
46 * interrupt-controller.
48 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
49 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
50 * (IO-APICs assumed to be messaging to Pentium local-APICs)
52 * the code is designed to be easily extended with new/different
53 * interrupt controllers, without having to do assembly magic.
56 extern asmlinkage
void ip27_irq(void);
58 extern struct bridge_controller
*irq_to_bridge
[];
59 extern int irq_to_slot
[];
62 * use these macros to get the encoded nasid and widget id
65 #define IRQ_TO_BRIDGE(i) irq_to_bridge[(i)]
66 #define SLOT_FROM_PCI_IRQ(i) irq_to_slot[i]
68 static inline int alloc_level(int cpu
, int irq
)
70 struct hub_data
*hub
= hub_data(cpu_to_node(cpu
));
71 struct slice_data
*si
= cpu_data
[cpu
].data
;
74 level
= find_first_zero_bit(hub
->irq_alloc_mask
, LEVELS_PER_SLICE
);
75 if (level
>= LEVELS_PER_SLICE
)
76 panic("Cpu %d flooded with devices\n", cpu
);
78 __set_bit(level
, hub
->irq_alloc_mask
);
79 si
->level_to_irq
[level
] = irq
;
84 static inline int find_level(cpuid_t
*cpunum
, int irq
)
88 for_each_online_cpu(cpu
) {
89 struct slice_data
*si
= cpu_data
[cpu
].data
;
91 for (i
= BASE_PCI_IRQ
; i
< LEVELS_PER_SLICE
; i
++)
92 if (si
->level_to_irq
[i
] == irq
) {
99 panic("Could not identify cpu/level for irq %d\n", irq
);
105 static int ms1bit(unsigned long x
)
109 s
= 16; if (x
>> 16 == 0) s
= 0; b
+= s
; x
>>= s
;
110 s
= 8; if (x
>> 8 == 0) s
= 0; b
+= s
; x
>>= s
;
111 s
= 4; if (x
>> 4 == 0) s
= 0; b
+= s
; x
>>= s
;
112 s
= 2; if (x
>> 2 == 0) s
= 0; b
+= s
; x
>>= s
;
113 s
= 1; if (x
>> 1 == 0) s
= 0; b
+= s
;
119 * This code is unnecessarily complex, because we do IRQF_DISABLED
120 * intr enabling. Basically, once we grab the set of intrs we need
121 * to service, we must mask _all_ these interrupts; firstly, to make
122 * sure the same intr does not intr again, causing recursion that
123 * can lead to stack overflow. Secondly, we can not just mask the
124 * one intr we are do_IRQing, because the non-masked intrs in the
125 * first set might intr again, causing multiple servicings of the
126 * same intr. This effect is mostly seen for intercpu intrs.
130 static void ip27_do_irq_mask0(void)
133 hubreg_t pend0
, mask0
;
134 cpuid_t cpu
= smp_processor_id();
136 (cputoslice(cpu
) == 0) ? PI_INT_MASK0_A
: PI_INT_MASK0_B
;
138 /* copied from Irix intpend0() */
139 pend0
= LOCAL_HUB_L(PI_INT_PEND0
);
140 mask0
= LOCAL_HUB_L(pi_int_mask0
);
142 pend0
&= mask0
; /* Pick intrs we should look at */
146 swlevel
= ms1bit(pend0
);
148 if (pend0
& (1UL << CPU_RESCHED_A_IRQ
)) {
149 LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ
);
150 } else if (pend0
& (1UL << CPU_RESCHED_B_IRQ
)) {
151 LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ
);
152 } else if (pend0
& (1UL << CPU_CALL_A_IRQ
)) {
153 LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ
);
154 smp_call_function_interrupt();
155 } else if (pend0
& (1UL << CPU_CALL_B_IRQ
)) {
156 LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ
);
157 smp_call_function_interrupt();
161 /* "map" swlevel to irq */
162 struct slice_data
*si
= cpu_data
[cpu
].data
;
164 irq
= si
->level_to_irq
[swlevel
];
168 LOCAL_HUB_L(PI_INT_PEND0
);
171 static void ip27_do_irq_mask1(void)
174 hubreg_t pend1
, mask1
;
175 cpuid_t cpu
= smp_processor_id();
176 int pi_int_mask1
= (cputoslice(cpu
) == 0) ? PI_INT_MASK1_A
: PI_INT_MASK1_B
;
177 struct slice_data
*si
= cpu_data
[cpu
].data
;
179 /* copied from Irix intpend0() */
180 pend1
= LOCAL_HUB_L(PI_INT_PEND1
);
181 mask1
= LOCAL_HUB_L(pi_int_mask1
);
183 pend1
&= mask1
; /* Pick intrs we should look at */
187 swlevel
= ms1bit(pend1
);
188 /* "map" swlevel to irq */
189 irq
= si
->level_to_irq
[swlevel
];
190 LOCAL_HUB_CLR_INTR(swlevel
);
193 LOCAL_HUB_L(PI_INT_PEND1
);
196 static void ip27_prof_timer(void)
198 panic("CPU %d got a profiling interrupt", smp_processor_id());
201 static void ip27_hub_error(void)
203 panic("CPU %d got a hub error interrupt", smp_processor_id());
206 static int intr_connect_level(int cpu
, int bit
)
208 nasid_t nasid
= COMPACT_TO_NASID_NODEID(cpu_to_node(cpu
));
209 struct slice_data
*si
= cpu_data
[cpu
].data
;
211 set_bit(bit
, si
->irq_enable_mask
);
213 if (!cputoslice(cpu
)) {
214 REMOTE_HUB_S(nasid
, PI_INT_MASK0_A
, si
->irq_enable_mask
[0]);
215 REMOTE_HUB_S(nasid
, PI_INT_MASK1_A
, si
->irq_enable_mask
[1]);
217 REMOTE_HUB_S(nasid
, PI_INT_MASK0_B
, si
->irq_enable_mask
[0]);
218 REMOTE_HUB_S(nasid
, PI_INT_MASK1_B
, si
->irq_enable_mask
[1]);
224 static int intr_disconnect_level(int cpu
, int bit
)
226 nasid_t nasid
= COMPACT_TO_NASID_NODEID(cpu_to_node(cpu
));
227 struct slice_data
*si
= cpu_data
[cpu
].data
;
229 clear_bit(bit
, si
->irq_enable_mask
);
231 if (!cputoslice(cpu
)) {
232 REMOTE_HUB_S(nasid
, PI_INT_MASK0_A
, si
->irq_enable_mask
[0]);
233 REMOTE_HUB_S(nasid
, PI_INT_MASK1_A
, si
->irq_enable_mask
[1]);
235 REMOTE_HUB_S(nasid
, PI_INT_MASK0_B
, si
->irq_enable_mask
[0]);
236 REMOTE_HUB_S(nasid
, PI_INT_MASK1_B
, si
->irq_enable_mask
[1]);
242 /* Startup one of the (PCI ...) IRQs routes over a bridge. */
243 static unsigned int startup_bridge_irq(struct irq_data
*d
)
245 struct bridge_controller
*bc
;
251 pin
= SLOT_FROM_PCI_IRQ(d
->irq
);
252 bc
= IRQ_TO_BRIDGE(d
->irq
);
255 pr_debug("bridge_startup(): irq= 0x%x pin=%d\n", d
->irq
, pin
);
257 * "map" irq to a swlevel greater than 6 since the first 6 bits
258 * of INT_PEND0 are taken
260 swlevel
= find_level(&cpu
, d
->irq
);
261 bridge
->b_int_addr
[pin
].addr
= (0x20000 | swlevel
| (bc
->nasid
<< 8));
262 bridge
->b_int_enable
|= (1 << pin
);
263 bridge
->b_int_enable
|= 0x7ffffe00; /* more stuff in int_enable */
266 * Enable sending of an interrupt clear packt to the hub on a high to
267 * low transition of the interrupt pin.
269 * IRIX sets additional bits in the address which are documented as
270 * reserved in the bridge docs.
272 bridge
->b_int_mode
|= (1UL << pin
);
275 * We assume the bridge to have a 1:1 mapping between devices
276 * (slots) and intr pins.
278 device
= bridge
->b_int_device
;
279 device
&= ~(7 << (pin
*3));
280 device
|= (pin
<< (pin
*3));
281 bridge
->b_int_device
= device
;
283 bridge
->b_wid_tflush
;
285 intr_connect_level(cpu
, swlevel
);
287 return 0; /* Never anything pending. */
290 /* Shutdown one of the (PCI ...) IRQs routes over a bridge. */
291 static void shutdown_bridge_irq(struct irq_data
*d
)
293 struct bridge_controller
*bc
= IRQ_TO_BRIDGE(d
->irq
);
294 bridge_t
*bridge
= bc
->base
;
298 pr_debug("bridge_shutdown: irq 0x%x\n", d
->irq
);
299 pin
= SLOT_FROM_PCI_IRQ(d
->irq
);
302 * map irq to a swlevel greater than 6 since the first 6 bits
303 * of INT_PEND0 are taken
305 swlevel
= find_level(&cpu
, d
->irq
);
306 intr_disconnect_level(cpu
, swlevel
);
308 bridge
->b_int_enable
&= ~(1 << pin
);
309 bridge
->b_wid_tflush
;
312 static inline void enable_bridge_irq(struct irq_data
*d
)
317 swlevel
= find_level(&cpu
, d
->irq
); /* Criminal offence */
318 intr_connect_level(cpu
, swlevel
);
321 static inline void disable_bridge_irq(struct irq_data
*d
)
326 swlevel
= find_level(&cpu
, d
->irq
); /* Criminal offence */
327 intr_disconnect_level(cpu
, swlevel
);
330 static struct irq_chip bridge_irq_type
= {
332 .irq_startup
= startup_bridge_irq
,
333 .irq_shutdown
= shutdown_bridge_irq
,
334 .irq_mask
= disable_bridge_irq
,
335 .irq_unmask
= enable_bridge_irq
,
338 void __devinit
register_bridge_irq(unsigned int irq
)
340 irq_set_chip_and_handler(irq
, &bridge_irq_type
, handle_level_irq
);
343 int __devinit
request_bridge_irq(struct bridge_controller
*bc
)
345 int irq
= allocate_irqno();
353 * "map" irq to a swlevel greater than 6 since the first 6 bits
354 * of INT_PEND0 are taken
357 swlevel
= alloc_level(cpu
, irq
);
358 if (unlikely(swlevel
< 0)) {
364 /* Make sure it's not already pending when we connect it. */
365 nasid
= COMPACT_TO_NASID_NODEID(cpu_to_node(cpu
));
366 REMOTE_HUB_CLR_INTR(nasid
, swlevel
);
368 intr_connect_level(cpu
, swlevel
);
370 register_bridge_irq(irq
);
375 asmlinkage
void plat_irq_dispatch(void)
377 unsigned long pending
= read_c0_cause() & read_c0_status();
378 extern unsigned int rt_timer_irq
;
380 if (pending
& CAUSEF_IP4
)
381 do_IRQ(rt_timer_irq
);
382 else if (pending
& CAUSEF_IP2
) /* PI_INT_PEND_0 or CC_PEND_{A|B} */
384 else if (pending
& CAUSEF_IP3
) /* PI_INT_PEND_1 */
386 else if (pending
& CAUSEF_IP5
)
388 else if (pending
& CAUSEF_IP6
)
392 void __init
arch_init_irq(void)
396 void install_ipi(void)
398 int slice
= LOCAL_HUB_L(PI_CPU_NUM
);
399 int cpu
= smp_processor_id();
400 struct slice_data
*si
= cpu_data
[cpu
].data
;
401 struct hub_data
*hub
= hub_data(cpu_to_node(cpu
));
404 resched
= CPU_RESCHED_A_IRQ
+ slice
;
405 __set_bit(resched
, hub
->irq_alloc_mask
);
406 __set_bit(resched
, si
->irq_enable_mask
);
407 LOCAL_HUB_CLR_INTR(resched
);
409 call
= CPU_CALL_A_IRQ
+ slice
;
410 __set_bit(call
, hub
->irq_alloc_mask
);
411 __set_bit(call
, si
->irq_enable_mask
);
412 LOCAL_HUB_CLR_INTR(call
);
415 LOCAL_HUB_S(PI_INT_MASK0_A
, si
->irq_enable_mask
[0]);
416 LOCAL_HUB_S(PI_INT_MASK1_A
, si
->irq_enable_mask
[1]);
418 LOCAL_HUB_S(PI_INT_MASK0_B
, si
->irq_enable_mask
[0]);
419 LOCAL_HUB_S(PI_INT_MASK1_B
, si
->irq_enable_mask
[1]);