drm/nouveau/devinit: ensure legacy vga control is enabled during post
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / hpsa.c
blob4217e49aea4624b5e0b2c9354a25b627fe10b915
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71 HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83 "Use 'simple mode' rather than 'performant mode'");
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1920},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1925},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x334d},
111 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
112 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
113 {0,}
116 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
118 /* board_id = Subsystem Device ID & Vendor ID
119 * product = Marketing Name for the board
120 * access = Address of the struct of function pointers
122 static struct board_type products[] = {
123 {0x3241103C, "Smart Array P212", &SA5_access},
124 {0x3243103C, "Smart Array P410", &SA5_access},
125 {0x3245103C, "Smart Array P410i", &SA5_access},
126 {0x3247103C, "Smart Array P411", &SA5_access},
127 {0x3249103C, "Smart Array P812", &SA5_access},
128 {0x324a103C, "Smart Array P712m", &SA5_access},
129 {0x324b103C, "Smart Array P711m", &SA5_access},
130 {0x3350103C, "Smart Array P222", &SA5_access},
131 {0x3351103C, "Smart Array P420", &SA5_access},
132 {0x3352103C, "Smart Array P421", &SA5_access},
133 {0x3353103C, "Smart Array P822", &SA5_access},
134 {0x3354103C, "Smart Array P420i", &SA5_access},
135 {0x3355103C, "Smart Array P220i", &SA5_access},
136 {0x3356103C, "Smart Array P721m", &SA5_access},
137 {0x1920103C, "Smart Array", &SA5_access},
138 {0x1921103C, "Smart Array", &SA5_access},
139 {0x1922103C, "Smart Array", &SA5_access},
140 {0x1923103C, "Smart Array", &SA5_access},
141 {0x1924103C, "Smart Array", &SA5_access},
142 {0x1925103C, "Smart Array", &SA5_access},
143 {0x1926103C, "Smart Array", &SA5_access},
144 {0x1928103C, "Smart Array", &SA5_access},
145 {0x334d103C, "Smart Array P822se", &SA5_access},
146 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
149 static int number_of_controllers;
151 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
152 static spinlock_t lockup_detector_lock;
153 static struct task_struct *hpsa_lockup_detector;
155 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
156 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
157 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
158 static void start_io(struct ctlr_info *h);
160 #ifdef CONFIG_COMPAT
161 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
162 #endif
164 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
165 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
166 static struct CommandList *cmd_alloc(struct ctlr_info *h);
167 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
168 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
169 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
170 int cmd_type);
172 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
173 static void hpsa_scan_start(struct Scsi_Host *);
174 static int hpsa_scan_finished(struct Scsi_Host *sh,
175 unsigned long elapsed_time);
176 static int hpsa_change_queue_depth(struct scsi_device *sdev,
177 int qdepth, int reason);
179 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
180 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
181 static int hpsa_slave_alloc(struct scsi_device *sdev);
182 static void hpsa_slave_destroy(struct scsi_device *sdev);
184 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
185 static int check_for_unit_attention(struct ctlr_info *h,
186 struct CommandList *c);
187 static void check_ioctl_unit_attention(struct ctlr_info *h,
188 struct CommandList *c);
189 /* performant mode helper functions */
190 static void calc_bucket_map(int *bucket, int num_buckets,
191 int nsgs, int *bucket_map);
192 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
193 static inline u32 next_command(struct ctlr_info *h, u8 q);
194 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
195 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
196 u64 *cfg_offset);
197 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
198 unsigned long *memory_bar);
199 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
200 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
201 void __iomem *vaddr, int wait_for_ready);
202 static inline void finish_cmd(struct CommandList *c);
203 #define BOARD_NOT_READY 0
204 #define BOARD_READY 1
206 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
208 unsigned long *priv = shost_priv(sdev->host);
209 return (struct ctlr_info *) *priv;
212 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
214 unsigned long *priv = shost_priv(sh);
215 return (struct ctlr_info *) *priv;
218 static int check_for_unit_attention(struct ctlr_info *h,
219 struct CommandList *c)
221 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
222 return 0;
224 switch (c->err_info->SenseInfo[12]) {
225 case STATE_CHANGED:
226 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
227 "detected, command retried\n", h->ctlr);
228 break;
229 case LUN_FAILED:
230 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
231 "detected, action required\n", h->ctlr);
232 break;
233 case REPORT_LUNS_CHANGED:
234 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
235 "changed, action required\n", h->ctlr);
237 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
238 * target (array) devices.
240 break;
241 case POWER_OR_RESET:
242 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
243 "or device reset detected\n", h->ctlr);
244 break;
245 case UNIT_ATTENTION_CLEARED:
246 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
247 "cleared by another initiator\n", h->ctlr);
248 break;
249 default:
250 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
251 "unit attention detected\n", h->ctlr);
252 break;
254 return 1;
257 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
259 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
260 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
261 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
262 return 0;
263 dev_warn(&h->pdev->dev, HPSA "device busy");
264 return 1;
267 static ssize_t host_store_rescan(struct device *dev,
268 struct device_attribute *attr,
269 const char *buf, size_t count)
271 struct ctlr_info *h;
272 struct Scsi_Host *shost = class_to_shost(dev);
273 h = shost_to_hba(shost);
274 hpsa_scan_start(h->scsi_host);
275 return count;
278 static ssize_t host_show_firmware_revision(struct device *dev,
279 struct device_attribute *attr, char *buf)
281 struct ctlr_info *h;
282 struct Scsi_Host *shost = class_to_shost(dev);
283 unsigned char *fwrev;
285 h = shost_to_hba(shost);
286 if (!h->hba_inquiry_data)
287 return 0;
288 fwrev = &h->hba_inquiry_data[32];
289 return snprintf(buf, 20, "%c%c%c%c\n",
290 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
293 static ssize_t host_show_commands_outstanding(struct device *dev,
294 struct device_attribute *attr, char *buf)
296 struct Scsi_Host *shost = class_to_shost(dev);
297 struct ctlr_info *h = shost_to_hba(shost);
299 return snprintf(buf, 20, "%d\n", h->commands_outstanding);
302 static ssize_t host_show_transport_mode(struct device *dev,
303 struct device_attribute *attr, char *buf)
305 struct ctlr_info *h;
306 struct Scsi_Host *shost = class_to_shost(dev);
308 h = shost_to_hba(shost);
309 return snprintf(buf, 20, "%s\n",
310 h->transMethod & CFGTBL_Trans_Performant ?
311 "performant" : "simple");
314 /* List of controllers which cannot be hard reset on kexec with reset_devices */
315 static u32 unresettable_controller[] = {
316 0x324a103C, /* Smart Array P712m */
317 0x324b103C, /* SmartArray P711m */
318 0x3223103C, /* Smart Array P800 */
319 0x3234103C, /* Smart Array P400 */
320 0x3235103C, /* Smart Array P400i */
321 0x3211103C, /* Smart Array E200i */
322 0x3212103C, /* Smart Array E200 */
323 0x3213103C, /* Smart Array E200i */
324 0x3214103C, /* Smart Array E200i */
325 0x3215103C, /* Smart Array E200i */
326 0x3237103C, /* Smart Array E500 */
327 0x323D103C, /* Smart Array P700m */
328 0x40800E11, /* Smart Array 5i */
329 0x409C0E11, /* Smart Array 6400 */
330 0x409D0E11, /* Smart Array 6400 EM */
331 0x40700E11, /* Smart Array 5300 */
332 0x40820E11, /* Smart Array 532 */
333 0x40830E11, /* Smart Array 5312 */
334 0x409A0E11, /* Smart Array 641 */
335 0x409B0E11, /* Smart Array 642 */
336 0x40910E11, /* Smart Array 6i */
339 /* List of controllers which cannot even be soft reset */
340 static u32 soft_unresettable_controller[] = {
341 0x40800E11, /* Smart Array 5i */
342 0x40700E11, /* Smart Array 5300 */
343 0x40820E11, /* Smart Array 532 */
344 0x40830E11, /* Smart Array 5312 */
345 0x409A0E11, /* Smart Array 641 */
346 0x409B0E11, /* Smart Array 642 */
347 0x40910E11, /* Smart Array 6i */
348 /* Exclude 640x boards. These are two pci devices in one slot
349 * which share a battery backed cache module. One controls the
350 * cache, the other accesses the cache through the one that controls
351 * it. If we reset the one controlling the cache, the other will
352 * likely not be happy. Just forbid resetting this conjoined mess.
353 * The 640x isn't really supported by hpsa anyway.
355 0x409C0E11, /* Smart Array 6400 */
356 0x409D0E11, /* Smart Array 6400 EM */
359 static int ctlr_is_hard_resettable(u32 board_id)
361 int i;
363 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
364 if (unresettable_controller[i] == board_id)
365 return 0;
366 return 1;
369 static int ctlr_is_soft_resettable(u32 board_id)
371 int i;
373 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
374 if (soft_unresettable_controller[i] == board_id)
375 return 0;
376 return 1;
379 static int ctlr_is_resettable(u32 board_id)
381 return ctlr_is_hard_resettable(board_id) ||
382 ctlr_is_soft_resettable(board_id);
385 static ssize_t host_show_resettable(struct device *dev,
386 struct device_attribute *attr, char *buf)
388 struct ctlr_info *h;
389 struct Scsi_Host *shost = class_to_shost(dev);
391 h = shost_to_hba(shost);
392 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
395 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
397 return (scsi3addr[3] & 0xC0) == 0x40;
400 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
401 "1(ADM)", "UNKNOWN"
403 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
405 static ssize_t raid_level_show(struct device *dev,
406 struct device_attribute *attr, char *buf)
408 ssize_t l = 0;
409 unsigned char rlevel;
410 struct ctlr_info *h;
411 struct scsi_device *sdev;
412 struct hpsa_scsi_dev_t *hdev;
413 unsigned long flags;
415 sdev = to_scsi_device(dev);
416 h = sdev_to_hba(sdev);
417 spin_lock_irqsave(&h->lock, flags);
418 hdev = sdev->hostdata;
419 if (!hdev) {
420 spin_unlock_irqrestore(&h->lock, flags);
421 return -ENODEV;
424 /* Is this even a logical drive? */
425 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
426 spin_unlock_irqrestore(&h->lock, flags);
427 l = snprintf(buf, PAGE_SIZE, "N/A\n");
428 return l;
431 rlevel = hdev->raid_level;
432 spin_unlock_irqrestore(&h->lock, flags);
433 if (rlevel > RAID_UNKNOWN)
434 rlevel = RAID_UNKNOWN;
435 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
436 return l;
439 static ssize_t lunid_show(struct device *dev,
440 struct device_attribute *attr, char *buf)
442 struct ctlr_info *h;
443 struct scsi_device *sdev;
444 struct hpsa_scsi_dev_t *hdev;
445 unsigned long flags;
446 unsigned char lunid[8];
448 sdev = to_scsi_device(dev);
449 h = sdev_to_hba(sdev);
450 spin_lock_irqsave(&h->lock, flags);
451 hdev = sdev->hostdata;
452 if (!hdev) {
453 spin_unlock_irqrestore(&h->lock, flags);
454 return -ENODEV;
456 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
457 spin_unlock_irqrestore(&h->lock, flags);
458 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
459 lunid[0], lunid[1], lunid[2], lunid[3],
460 lunid[4], lunid[5], lunid[6], lunid[7]);
463 static ssize_t unique_id_show(struct device *dev,
464 struct device_attribute *attr, char *buf)
466 struct ctlr_info *h;
467 struct scsi_device *sdev;
468 struct hpsa_scsi_dev_t *hdev;
469 unsigned long flags;
470 unsigned char sn[16];
472 sdev = to_scsi_device(dev);
473 h = sdev_to_hba(sdev);
474 spin_lock_irqsave(&h->lock, flags);
475 hdev = sdev->hostdata;
476 if (!hdev) {
477 spin_unlock_irqrestore(&h->lock, flags);
478 return -ENODEV;
480 memcpy(sn, hdev->device_id, sizeof(sn));
481 spin_unlock_irqrestore(&h->lock, flags);
482 return snprintf(buf, 16 * 2 + 2,
483 "%02X%02X%02X%02X%02X%02X%02X%02X"
484 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
485 sn[0], sn[1], sn[2], sn[3],
486 sn[4], sn[5], sn[6], sn[7],
487 sn[8], sn[9], sn[10], sn[11],
488 sn[12], sn[13], sn[14], sn[15]);
491 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
492 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
493 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
494 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
495 static DEVICE_ATTR(firmware_revision, S_IRUGO,
496 host_show_firmware_revision, NULL);
497 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
498 host_show_commands_outstanding, NULL);
499 static DEVICE_ATTR(transport_mode, S_IRUGO,
500 host_show_transport_mode, NULL);
501 static DEVICE_ATTR(resettable, S_IRUGO,
502 host_show_resettable, NULL);
504 static struct device_attribute *hpsa_sdev_attrs[] = {
505 &dev_attr_raid_level,
506 &dev_attr_lunid,
507 &dev_attr_unique_id,
508 NULL,
511 static struct device_attribute *hpsa_shost_attrs[] = {
512 &dev_attr_rescan,
513 &dev_attr_firmware_revision,
514 &dev_attr_commands_outstanding,
515 &dev_attr_transport_mode,
516 &dev_attr_resettable,
517 NULL,
520 static struct scsi_host_template hpsa_driver_template = {
521 .module = THIS_MODULE,
522 .name = HPSA,
523 .proc_name = HPSA,
524 .queuecommand = hpsa_scsi_queue_command,
525 .scan_start = hpsa_scan_start,
526 .scan_finished = hpsa_scan_finished,
527 .change_queue_depth = hpsa_change_queue_depth,
528 .this_id = -1,
529 .use_clustering = ENABLE_CLUSTERING,
530 .eh_abort_handler = hpsa_eh_abort_handler,
531 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
532 .ioctl = hpsa_ioctl,
533 .slave_alloc = hpsa_slave_alloc,
534 .slave_destroy = hpsa_slave_destroy,
535 #ifdef CONFIG_COMPAT
536 .compat_ioctl = hpsa_compat_ioctl,
537 #endif
538 .sdev_attrs = hpsa_sdev_attrs,
539 .shost_attrs = hpsa_shost_attrs,
540 .max_sectors = 8192,
544 /* Enqueuing and dequeuing functions for cmdlists. */
545 static inline void addQ(struct list_head *list, struct CommandList *c)
547 list_add_tail(&c->list, list);
550 static inline u32 next_command(struct ctlr_info *h, u8 q)
552 u32 a;
553 struct reply_pool *rq = &h->reply_queue[q];
554 unsigned long flags;
556 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
557 return h->access.command_completed(h, q);
559 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
560 a = rq->head[rq->current_entry];
561 rq->current_entry++;
562 spin_lock_irqsave(&h->lock, flags);
563 h->commands_outstanding--;
564 spin_unlock_irqrestore(&h->lock, flags);
565 } else {
566 a = FIFO_EMPTY;
568 /* Check for wraparound */
569 if (rq->current_entry == h->max_commands) {
570 rq->current_entry = 0;
571 rq->wraparound ^= 1;
573 return a;
576 /* set_performant_mode: Modify the tag for cciss performant
577 * set bit 0 for pull model, bits 3-1 for block fetch
578 * register number
580 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
582 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
583 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
584 if (likely(h->msix_vector))
585 c->Header.ReplyQueue =
586 smp_processor_id() % h->nreply_queues;
590 static int is_firmware_flash_cmd(u8 *cdb)
592 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
596 * During firmware flash, the heartbeat register may not update as frequently
597 * as it should. So we dial down lockup detection during firmware flash. and
598 * dial it back up when firmware flash completes.
600 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
601 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
602 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
603 struct CommandList *c)
605 if (!is_firmware_flash_cmd(c->Request.CDB))
606 return;
607 atomic_inc(&h->firmware_flash_in_progress);
608 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
611 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
612 struct CommandList *c)
614 if (is_firmware_flash_cmd(c->Request.CDB) &&
615 atomic_dec_and_test(&h->firmware_flash_in_progress))
616 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
619 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
620 struct CommandList *c)
622 unsigned long flags;
624 set_performant_mode(h, c);
625 dial_down_lockup_detection_during_fw_flash(h, c);
626 spin_lock_irqsave(&h->lock, flags);
627 addQ(&h->reqQ, c);
628 h->Qdepth++;
629 spin_unlock_irqrestore(&h->lock, flags);
630 start_io(h);
633 static inline void removeQ(struct CommandList *c)
635 if (WARN_ON(list_empty(&c->list)))
636 return;
637 list_del_init(&c->list);
640 static inline int is_hba_lunid(unsigned char scsi3addr[])
642 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
645 static inline int is_scsi_rev_5(struct ctlr_info *h)
647 if (!h->hba_inquiry_data)
648 return 0;
649 if ((h->hba_inquiry_data[2] & 0x07) == 5)
650 return 1;
651 return 0;
654 static int hpsa_find_target_lun(struct ctlr_info *h,
655 unsigned char scsi3addr[], int bus, int *target, int *lun)
657 /* finds an unused bus, target, lun for a new physical device
658 * assumes h->devlock is held
660 int i, found = 0;
661 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
663 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
665 for (i = 0; i < h->ndevices; i++) {
666 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
667 __set_bit(h->dev[i]->target, lun_taken);
670 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
671 if (i < HPSA_MAX_DEVICES) {
672 /* *bus = 1; */
673 *target = i;
674 *lun = 0;
675 found = 1;
677 return !found;
680 /* Add an entry into h->dev[] array. */
681 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
682 struct hpsa_scsi_dev_t *device,
683 struct hpsa_scsi_dev_t *added[], int *nadded)
685 /* assumes h->devlock is held */
686 int n = h->ndevices;
687 int i;
688 unsigned char addr1[8], addr2[8];
689 struct hpsa_scsi_dev_t *sd;
691 if (n >= HPSA_MAX_DEVICES) {
692 dev_err(&h->pdev->dev, "too many devices, some will be "
693 "inaccessible.\n");
694 return -1;
697 /* physical devices do not have lun or target assigned until now. */
698 if (device->lun != -1)
699 /* Logical device, lun is already assigned. */
700 goto lun_assigned;
702 /* If this device a non-zero lun of a multi-lun device
703 * byte 4 of the 8-byte LUN addr will contain the logical
704 * unit no, zero otherise.
706 if (device->scsi3addr[4] == 0) {
707 /* This is not a non-zero lun of a multi-lun device */
708 if (hpsa_find_target_lun(h, device->scsi3addr,
709 device->bus, &device->target, &device->lun) != 0)
710 return -1;
711 goto lun_assigned;
714 /* This is a non-zero lun of a multi-lun device.
715 * Search through our list and find the device which
716 * has the same 8 byte LUN address, excepting byte 4.
717 * Assign the same bus and target for this new LUN.
718 * Use the logical unit number from the firmware.
720 memcpy(addr1, device->scsi3addr, 8);
721 addr1[4] = 0;
722 for (i = 0; i < n; i++) {
723 sd = h->dev[i];
724 memcpy(addr2, sd->scsi3addr, 8);
725 addr2[4] = 0;
726 /* differ only in byte 4? */
727 if (memcmp(addr1, addr2, 8) == 0) {
728 device->bus = sd->bus;
729 device->target = sd->target;
730 device->lun = device->scsi3addr[4];
731 break;
734 if (device->lun == -1) {
735 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
736 " suspect firmware bug or unsupported hardware "
737 "configuration.\n");
738 return -1;
741 lun_assigned:
743 h->dev[n] = device;
744 h->ndevices++;
745 added[*nadded] = device;
746 (*nadded)++;
748 /* initially, (before registering with scsi layer) we don't
749 * know our hostno and we don't want to print anything first
750 * time anyway (the scsi layer's inquiries will show that info)
752 /* if (hostno != -1) */
753 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
754 scsi_device_type(device->devtype), hostno,
755 device->bus, device->target, device->lun);
756 return 0;
759 /* Update an entry in h->dev[] array. */
760 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
761 int entry, struct hpsa_scsi_dev_t *new_entry)
763 /* assumes h->devlock is held */
764 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
766 /* Raid level changed. */
767 h->dev[entry]->raid_level = new_entry->raid_level;
768 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
769 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
770 new_entry->target, new_entry->lun);
773 /* Replace an entry from h->dev[] array. */
774 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
775 int entry, struct hpsa_scsi_dev_t *new_entry,
776 struct hpsa_scsi_dev_t *added[], int *nadded,
777 struct hpsa_scsi_dev_t *removed[], int *nremoved)
779 /* assumes h->devlock is held */
780 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
781 removed[*nremoved] = h->dev[entry];
782 (*nremoved)++;
785 * New physical devices won't have target/lun assigned yet
786 * so we need to preserve the values in the slot we are replacing.
788 if (new_entry->target == -1) {
789 new_entry->target = h->dev[entry]->target;
790 new_entry->lun = h->dev[entry]->lun;
793 h->dev[entry] = new_entry;
794 added[*nadded] = new_entry;
795 (*nadded)++;
796 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
797 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
798 new_entry->target, new_entry->lun);
801 /* Remove an entry from h->dev[] array. */
802 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
803 struct hpsa_scsi_dev_t *removed[], int *nremoved)
805 /* assumes h->devlock is held */
806 int i;
807 struct hpsa_scsi_dev_t *sd;
809 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
811 sd = h->dev[entry];
812 removed[*nremoved] = h->dev[entry];
813 (*nremoved)++;
815 for (i = entry; i < h->ndevices-1; i++)
816 h->dev[i] = h->dev[i+1];
817 h->ndevices--;
818 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
819 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
820 sd->lun);
823 #define SCSI3ADDR_EQ(a, b) ( \
824 (a)[7] == (b)[7] && \
825 (a)[6] == (b)[6] && \
826 (a)[5] == (b)[5] && \
827 (a)[4] == (b)[4] && \
828 (a)[3] == (b)[3] && \
829 (a)[2] == (b)[2] && \
830 (a)[1] == (b)[1] && \
831 (a)[0] == (b)[0])
833 static void fixup_botched_add(struct ctlr_info *h,
834 struct hpsa_scsi_dev_t *added)
836 /* called when scsi_add_device fails in order to re-adjust
837 * h->dev[] to match the mid layer's view.
839 unsigned long flags;
840 int i, j;
842 spin_lock_irqsave(&h->lock, flags);
843 for (i = 0; i < h->ndevices; i++) {
844 if (h->dev[i] == added) {
845 for (j = i; j < h->ndevices-1; j++)
846 h->dev[j] = h->dev[j+1];
847 h->ndevices--;
848 break;
851 spin_unlock_irqrestore(&h->lock, flags);
852 kfree(added);
855 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
856 struct hpsa_scsi_dev_t *dev2)
858 /* we compare everything except lun and target as these
859 * are not yet assigned. Compare parts likely
860 * to differ first
862 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
863 sizeof(dev1->scsi3addr)) != 0)
864 return 0;
865 if (memcmp(dev1->device_id, dev2->device_id,
866 sizeof(dev1->device_id)) != 0)
867 return 0;
868 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
869 return 0;
870 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
871 return 0;
872 if (dev1->devtype != dev2->devtype)
873 return 0;
874 if (dev1->bus != dev2->bus)
875 return 0;
876 return 1;
879 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
880 struct hpsa_scsi_dev_t *dev2)
882 /* Device attributes that can change, but don't mean
883 * that the device is a different device, nor that the OS
884 * needs to be told anything about the change.
886 if (dev1->raid_level != dev2->raid_level)
887 return 1;
888 return 0;
891 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
892 * and return needle location in *index. If scsi3addr matches, but not
893 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
894 * location in *index.
895 * In the case of a minor device attribute change, such as RAID level, just
896 * return DEVICE_UPDATED, along with the updated device's location in index.
897 * If needle not found, return DEVICE_NOT_FOUND.
899 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
900 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
901 int *index)
903 int i;
904 #define DEVICE_NOT_FOUND 0
905 #define DEVICE_CHANGED 1
906 #define DEVICE_SAME 2
907 #define DEVICE_UPDATED 3
908 for (i = 0; i < haystack_size; i++) {
909 if (haystack[i] == NULL) /* previously removed. */
910 continue;
911 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
912 *index = i;
913 if (device_is_the_same(needle, haystack[i])) {
914 if (device_updated(needle, haystack[i]))
915 return DEVICE_UPDATED;
916 return DEVICE_SAME;
917 } else {
918 return DEVICE_CHANGED;
922 *index = -1;
923 return DEVICE_NOT_FOUND;
926 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
927 struct hpsa_scsi_dev_t *sd[], int nsds)
929 /* sd contains scsi3 addresses and devtypes, and inquiry
930 * data. This function takes what's in sd to be the current
931 * reality and updates h->dev[] to reflect that reality.
933 int i, entry, device_change, changes = 0;
934 struct hpsa_scsi_dev_t *csd;
935 unsigned long flags;
936 struct hpsa_scsi_dev_t **added, **removed;
937 int nadded, nremoved;
938 struct Scsi_Host *sh = NULL;
940 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
941 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
943 if (!added || !removed) {
944 dev_warn(&h->pdev->dev, "out of memory in "
945 "adjust_hpsa_scsi_table\n");
946 goto free_and_out;
949 spin_lock_irqsave(&h->devlock, flags);
951 /* find any devices in h->dev[] that are not in
952 * sd[] and remove them from h->dev[], and for any
953 * devices which have changed, remove the old device
954 * info and add the new device info.
955 * If minor device attributes change, just update
956 * the existing device structure.
958 i = 0;
959 nremoved = 0;
960 nadded = 0;
961 while (i < h->ndevices) {
962 csd = h->dev[i];
963 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
964 if (device_change == DEVICE_NOT_FOUND) {
965 changes++;
966 hpsa_scsi_remove_entry(h, hostno, i,
967 removed, &nremoved);
968 continue; /* remove ^^^, hence i not incremented */
969 } else if (device_change == DEVICE_CHANGED) {
970 changes++;
971 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
972 added, &nadded, removed, &nremoved);
973 /* Set it to NULL to prevent it from being freed
974 * at the bottom of hpsa_update_scsi_devices()
976 sd[entry] = NULL;
977 } else if (device_change == DEVICE_UPDATED) {
978 hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
980 i++;
983 /* Now, make sure every device listed in sd[] is also
984 * listed in h->dev[], adding them if they aren't found
987 for (i = 0; i < nsds; i++) {
988 if (!sd[i]) /* if already added above. */
989 continue;
990 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
991 h->ndevices, &entry);
992 if (device_change == DEVICE_NOT_FOUND) {
993 changes++;
994 if (hpsa_scsi_add_entry(h, hostno, sd[i],
995 added, &nadded) != 0)
996 break;
997 sd[i] = NULL; /* prevent from being freed later. */
998 } else if (device_change == DEVICE_CHANGED) {
999 /* should never happen... */
1000 changes++;
1001 dev_warn(&h->pdev->dev,
1002 "device unexpectedly changed.\n");
1003 /* but if it does happen, we just ignore that device */
1006 spin_unlock_irqrestore(&h->devlock, flags);
1008 /* Don't notify scsi mid layer of any changes the first time through
1009 * (or if there are no changes) scsi_scan_host will do it later the
1010 * first time through.
1012 if (hostno == -1 || !changes)
1013 goto free_and_out;
1015 sh = h->scsi_host;
1016 /* Notify scsi mid layer of any removed devices */
1017 for (i = 0; i < nremoved; i++) {
1018 struct scsi_device *sdev =
1019 scsi_device_lookup(sh, removed[i]->bus,
1020 removed[i]->target, removed[i]->lun);
1021 if (sdev != NULL) {
1022 scsi_remove_device(sdev);
1023 scsi_device_put(sdev);
1024 } else {
1025 /* We don't expect to get here.
1026 * future cmds to this device will get selection
1027 * timeout as if the device was gone.
1029 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1030 " for removal.", hostno, removed[i]->bus,
1031 removed[i]->target, removed[i]->lun);
1033 kfree(removed[i]);
1034 removed[i] = NULL;
1037 /* Notify scsi mid layer of any added devices */
1038 for (i = 0; i < nadded; i++) {
1039 if (scsi_add_device(sh, added[i]->bus,
1040 added[i]->target, added[i]->lun) == 0)
1041 continue;
1042 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1043 "device not added.\n", hostno, added[i]->bus,
1044 added[i]->target, added[i]->lun);
1045 /* now we have to remove it from h->dev,
1046 * since it didn't get added to scsi mid layer
1048 fixup_botched_add(h, added[i]);
1051 free_and_out:
1052 kfree(added);
1053 kfree(removed);
1057 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
1058 * Assume's h->devlock is held.
1060 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1061 int bus, int target, int lun)
1063 int i;
1064 struct hpsa_scsi_dev_t *sd;
1066 for (i = 0; i < h->ndevices; i++) {
1067 sd = h->dev[i];
1068 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1069 return sd;
1071 return NULL;
1074 /* link sdev->hostdata to our per-device structure. */
1075 static int hpsa_slave_alloc(struct scsi_device *sdev)
1077 struct hpsa_scsi_dev_t *sd;
1078 unsigned long flags;
1079 struct ctlr_info *h;
1081 h = sdev_to_hba(sdev);
1082 spin_lock_irqsave(&h->devlock, flags);
1083 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1084 sdev_id(sdev), sdev->lun);
1085 if (sd != NULL)
1086 sdev->hostdata = sd;
1087 spin_unlock_irqrestore(&h->devlock, flags);
1088 return 0;
1091 static void hpsa_slave_destroy(struct scsi_device *sdev)
1093 /* nothing to do. */
1096 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1098 int i;
1100 if (!h->cmd_sg_list)
1101 return;
1102 for (i = 0; i < h->nr_cmds; i++) {
1103 kfree(h->cmd_sg_list[i]);
1104 h->cmd_sg_list[i] = NULL;
1106 kfree(h->cmd_sg_list);
1107 h->cmd_sg_list = NULL;
1110 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1112 int i;
1114 if (h->chainsize <= 0)
1115 return 0;
1117 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1118 GFP_KERNEL);
1119 if (!h->cmd_sg_list)
1120 return -ENOMEM;
1121 for (i = 0; i < h->nr_cmds; i++) {
1122 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1123 h->chainsize, GFP_KERNEL);
1124 if (!h->cmd_sg_list[i])
1125 goto clean;
1127 return 0;
1129 clean:
1130 hpsa_free_sg_chain_blocks(h);
1131 return -ENOMEM;
1134 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1135 struct CommandList *c)
1137 struct SGDescriptor *chain_sg, *chain_block;
1138 u64 temp64;
1140 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1141 chain_block = h->cmd_sg_list[c->cmdindex];
1142 chain_sg->Ext = HPSA_SG_CHAIN;
1143 chain_sg->Len = sizeof(*chain_sg) *
1144 (c->Header.SGTotal - h->max_cmd_sg_entries);
1145 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1146 PCI_DMA_TODEVICE);
1147 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1148 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1151 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1152 struct CommandList *c)
1154 struct SGDescriptor *chain_sg;
1155 union u64bit temp64;
1157 if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1158 return;
1160 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1161 temp64.val32.lower = chain_sg->Addr.lower;
1162 temp64.val32.upper = chain_sg->Addr.upper;
1163 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1166 static void complete_scsi_command(struct CommandList *cp)
1168 struct scsi_cmnd *cmd;
1169 struct ctlr_info *h;
1170 struct ErrorInfo *ei;
1172 unsigned char sense_key;
1173 unsigned char asc; /* additional sense code */
1174 unsigned char ascq; /* additional sense code qualifier */
1175 unsigned long sense_data_size;
1177 ei = cp->err_info;
1178 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1179 h = cp->h;
1181 scsi_dma_unmap(cmd); /* undo the DMA mappings */
1182 if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1183 hpsa_unmap_sg_chain_block(h, cp);
1185 cmd->result = (DID_OK << 16); /* host byte */
1186 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1187 cmd->result |= ei->ScsiStatus;
1189 /* copy the sense data whether we need to or not. */
1190 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1191 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1192 else
1193 sense_data_size = sizeof(ei->SenseInfo);
1194 if (ei->SenseLen < sense_data_size)
1195 sense_data_size = ei->SenseLen;
1197 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1198 scsi_set_resid(cmd, ei->ResidualCnt);
1200 if (ei->CommandStatus == 0) {
1201 cmd->scsi_done(cmd);
1202 cmd_free(h, cp);
1203 return;
1206 /* an error has occurred */
1207 switch (ei->CommandStatus) {
1209 case CMD_TARGET_STATUS:
1210 if (ei->ScsiStatus) {
1211 /* Get sense key */
1212 sense_key = 0xf & ei->SenseInfo[2];
1213 /* Get additional sense code */
1214 asc = ei->SenseInfo[12];
1215 /* Get addition sense code qualifier */
1216 ascq = ei->SenseInfo[13];
1219 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1220 if (check_for_unit_attention(h, cp)) {
1221 cmd->result = DID_SOFT_ERROR << 16;
1222 break;
1224 if (sense_key == ILLEGAL_REQUEST) {
1226 * SCSI REPORT_LUNS is commonly unsupported on
1227 * Smart Array. Suppress noisy complaint.
1229 if (cp->Request.CDB[0] == REPORT_LUNS)
1230 break;
1232 /* If ASC/ASCQ indicate Logical Unit
1233 * Not Supported condition,
1235 if ((asc == 0x25) && (ascq == 0x0)) {
1236 dev_warn(&h->pdev->dev, "cp %p "
1237 "has check condition\n", cp);
1238 break;
1242 if (sense_key == NOT_READY) {
1243 /* If Sense is Not Ready, Logical Unit
1244 * Not ready, Manual Intervention
1245 * required
1247 if ((asc == 0x04) && (ascq == 0x03)) {
1248 dev_warn(&h->pdev->dev, "cp %p "
1249 "has check condition: unit "
1250 "not ready, manual "
1251 "intervention required\n", cp);
1252 break;
1255 if (sense_key == ABORTED_COMMAND) {
1256 /* Aborted command is retryable */
1257 dev_warn(&h->pdev->dev, "cp %p "
1258 "has check condition: aborted command: "
1259 "ASC: 0x%x, ASCQ: 0x%x\n",
1260 cp, asc, ascq);
1261 cmd->result = DID_SOFT_ERROR << 16;
1262 break;
1264 /* Must be some other type of check condition */
1265 dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1266 "unknown type: "
1267 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1268 "Returning result: 0x%x, "
1269 "cmd=[%02x %02x %02x %02x %02x "
1270 "%02x %02x %02x %02x %02x %02x "
1271 "%02x %02x %02x %02x %02x]\n",
1272 cp, sense_key, asc, ascq,
1273 cmd->result,
1274 cmd->cmnd[0], cmd->cmnd[1],
1275 cmd->cmnd[2], cmd->cmnd[3],
1276 cmd->cmnd[4], cmd->cmnd[5],
1277 cmd->cmnd[6], cmd->cmnd[7],
1278 cmd->cmnd[8], cmd->cmnd[9],
1279 cmd->cmnd[10], cmd->cmnd[11],
1280 cmd->cmnd[12], cmd->cmnd[13],
1281 cmd->cmnd[14], cmd->cmnd[15]);
1282 break;
1286 /* Problem was not a check condition
1287 * Pass it up to the upper layers...
1289 if (ei->ScsiStatus) {
1290 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1291 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1292 "Returning result: 0x%x\n",
1293 cp, ei->ScsiStatus,
1294 sense_key, asc, ascq,
1295 cmd->result);
1296 } else { /* scsi status is zero??? How??? */
1297 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1298 "Returning no connection.\n", cp),
1300 /* Ordinarily, this case should never happen,
1301 * but there is a bug in some released firmware
1302 * revisions that allows it to happen if, for
1303 * example, a 4100 backplane loses power and
1304 * the tape drive is in it. We assume that
1305 * it's a fatal error of some kind because we
1306 * can't show that it wasn't. We will make it
1307 * look like selection timeout since that is
1308 * the most common reason for this to occur,
1309 * and it's severe enough.
1312 cmd->result = DID_NO_CONNECT << 16;
1314 break;
1316 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1317 break;
1318 case CMD_DATA_OVERRUN:
1319 dev_warn(&h->pdev->dev, "cp %p has"
1320 " completed with data overrun "
1321 "reported\n", cp);
1322 break;
1323 case CMD_INVALID: {
1324 /* print_bytes(cp, sizeof(*cp), 1, 0);
1325 print_cmd(cp); */
1326 /* We get CMD_INVALID if you address a non-existent device
1327 * instead of a selection timeout (no response). You will
1328 * see this if you yank out a drive, then try to access it.
1329 * This is kind of a shame because it means that any other
1330 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1331 * missing target. */
1332 cmd->result = DID_NO_CONNECT << 16;
1334 break;
1335 case CMD_PROTOCOL_ERR:
1336 cmd->result = DID_ERROR << 16;
1337 dev_warn(&h->pdev->dev, "cp %p has "
1338 "protocol error\n", cp);
1339 break;
1340 case CMD_HARDWARE_ERR:
1341 cmd->result = DID_ERROR << 16;
1342 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1343 break;
1344 case CMD_CONNECTION_LOST:
1345 cmd->result = DID_ERROR << 16;
1346 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1347 break;
1348 case CMD_ABORTED:
1349 cmd->result = DID_ABORT << 16;
1350 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1351 cp, ei->ScsiStatus);
1352 break;
1353 case CMD_ABORT_FAILED:
1354 cmd->result = DID_ERROR << 16;
1355 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1356 break;
1357 case CMD_UNSOLICITED_ABORT:
1358 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1359 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1360 "abort\n", cp);
1361 break;
1362 case CMD_TIMEOUT:
1363 cmd->result = DID_TIME_OUT << 16;
1364 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1365 break;
1366 case CMD_UNABORTABLE:
1367 cmd->result = DID_ERROR << 16;
1368 dev_warn(&h->pdev->dev, "Command unabortable\n");
1369 break;
1370 default:
1371 cmd->result = DID_ERROR << 16;
1372 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1373 cp, ei->CommandStatus);
1375 cmd->scsi_done(cmd);
1376 cmd_free(h, cp);
1379 static void hpsa_pci_unmap(struct pci_dev *pdev,
1380 struct CommandList *c, int sg_used, int data_direction)
1382 int i;
1383 union u64bit addr64;
1385 for (i = 0; i < sg_used; i++) {
1386 addr64.val32.lower = c->SG[i].Addr.lower;
1387 addr64.val32.upper = c->SG[i].Addr.upper;
1388 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1389 data_direction);
1393 static void hpsa_map_one(struct pci_dev *pdev,
1394 struct CommandList *cp,
1395 unsigned char *buf,
1396 size_t buflen,
1397 int data_direction)
1399 u64 addr64;
1401 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1402 cp->Header.SGList = 0;
1403 cp->Header.SGTotal = 0;
1404 return;
1407 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1408 cp->SG[0].Addr.lower =
1409 (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1410 cp->SG[0].Addr.upper =
1411 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1412 cp->SG[0].Len = buflen;
1413 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
1414 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1417 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1418 struct CommandList *c)
1420 DECLARE_COMPLETION_ONSTACK(wait);
1422 c->waiting = &wait;
1423 enqueue_cmd_and_start_io(h, c);
1424 wait_for_completion(&wait);
1427 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1428 struct CommandList *c)
1430 unsigned long flags;
1432 /* If controller lockup detected, fake a hardware error. */
1433 spin_lock_irqsave(&h->lock, flags);
1434 if (unlikely(h->lockup_detected)) {
1435 spin_unlock_irqrestore(&h->lock, flags);
1436 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1437 } else {
1438 spin_unlock_irqrestore(&h->lock, flags);
1439 hpsa_scsi_do_simple_cmd_core(h, c);
1443 #define MAX_DRIVER_CMD_RETRIES 25
1444 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1445 struct CommandList *c, int data_direction)
1447 int backoff_time = 10, retry_count = 0;
1449 do {
1450 memset(c->err_info, 0, sizeof(*c->err_info));
1451 hpsa_scsi_do_simple_cmd_core(h, c);
1452 retry_count++;
1453 if (retry_count > 3) {
1454 msleep(backoff_time);
1455 if (backoff_time < 1000)
1456 backoff_time *= 2;
1458 } while ((check_for_unit_attention(h, c) ||
1459 check_for_busy(h, c)) &&
1460 retry_count <= MAX_DRIVER_CMD_RETRIES);
1461 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1464 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1466 struct ErrorInfo *ei;
1467 struct device *d = &cp->h->pdev->dev;
1469 ei = cp->err_info;
1470 switch (ei->CommandStatus) {
1471 case CMD_TARGET_STATUS:
1472 dev_warn(d, "cmd %p has completed with errors\n", cp);
1473 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1474 ei->ScsiStatus);
1475 if (ei->ScsiStatus == 0)
1476 dev_warn(d, "SCSI status is abnormally zero. "
1477 "(probably indicates selection timeout "
1478 "reported incorrectly due to a known "
1479 "firmware bug, circa July, 2001.)\n");
1480 break;
1481 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1482 dev_info(d, "UNDERRUN\n");
1483 break;
1484 case CMD_DATA_OVERRUN:
1485 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1486 break;
1487 case CMD_INVALID: {
1488 /* controller unfortunately reports SCSI passthru's
1489 * to non-existent targets as invalid commands.
1491 dev_warn(d, "cp %p is reported invalid (probably means "
1492 "target device no longer present)\n", cp);
1493 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1494 print_cmd(cp); */
1496 break;
1497 case CMD_PROTOCOL_ERR:
1498 dev_warn(d, "cp %p has protocol error \n", cp);
1499 break;
1500 case CMD_HARDWARE_ERR:
1501 /* cmd->result = DID_ERROR << 16; */
1502 dev_warn(d, "cp %p had hardware error\n", cp);
1503 break;
1504 case CMD_CONNECTION_LOST:
1505 dev_warn(d, "cp %p had connection lost\n", cp);
1506 break;
1507 case CMD_ABORTED:
1508 dev_warn(d, "cp %p was aborted\n", cp);
1509 break;
1510 case CMD_ABORT_FAILED:
1511 dev_warn(d, "cp %p reports abort failed\n", cp);
1512 break;
1513 case CMD_UNSOLICITED_ABORT:
1514 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1515 break;
1516 case CMD_TIMEOUT:
1517 dev_warn(d, "cp %p timed out\n", cp);
1518 break;
1519 case CMD_UNABORTABLE:
1520 dev_warn(d, "Command unabortable\n");
1521 break;
1522 default:
1523 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1524 ei->CommandStatus);
1528 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1529 unsigned char page, unsigned char *buf,
1530 unsigned char bufsize)
1532 int rc = IO_OK;
1533 struct CommandList *c;
1534 struct ErrorInfo *ei;
1536 c = cmd_special_alloc(h);
1538 if (c == NULL) { /* trouble... */
1539 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1540 return -ENOMEM;
1543 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1544 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1545 ei = c->err_info;
1546 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1547 hpsa_scsi_interpret_error(c);
1548 rc = -1;
1550 cmd_special_free(h, c);
1551 return rc;
1554 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1556 int rc = IO_OK;
1557 struct CommandList *c;
1558 struct ErrorInfo *ei;
1560 c = cmd_special_alloc(h);
1562 if (c == NULL) { /* trouble... */
1563 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1564 return -ENOMEM;
1567 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1568 hpsa_scsi_do_simple_cmd_core(h, c);
1569 /* no unmap needed here because no data xfer. */
1571 ei = c->err_info;
1572 if (ei->CommandStatus != 0) {
1573 hpsa_scsi_interpret_error(c);
1574 rc = -1;
1576 cmd_special_free(h, c);
1577 return rc;
1580 static void hpsa_get_raid_level(struct ctlr_info *h,
1581 unsigned char *scsi3addr, unsigned char *raid_level)
1583 int rc;
1584 unsigned char *buf;
1586 *raid_level = RAID_UNKNOWN;
1587 buf = kzalloc(64, GFP_KERNEL);
1588 if (!buf)
1589 return;
1590 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1591 if (rc == 0)
1592 *raid_level = buf[8];
1593 if (*raid_level > RAID_UNKNOWN)
1594 *raid_level = RAID_UNKNOWN;
1595 kfree(buf);
1596 return;
1599 /* Get the device id from inquiry page 0x83 */
1600 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1601 unsigned char *device_id, int buflen)
1603 int rc;
1604 unsigned char *buf;
1606 if (buflen > 16)
1607 buflen = 16;
1608 buf = kzalloc(64, GFP_KERNEL);
1609 if (!buf)
1610 return -1;
1611 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1612 if (rc == 0)
1613 memcpy(device_id, &buf[8], buflen);
1614 kfree(buf);
1615 return rc != 0;
1618 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1619 struct ReportLUNdata *buf, int bufsize,
1620 int extended_response)
1622 int rc = IO_OK;
1623 struct CommandList *c;
1624 unsigned char scsi3addr[8];
1625 struct ErrorInfo *ei;
1627 c = cmd_special_alloc(h);
1628 if (c == NULL) { /* trouble... */
1629 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1630 return -1;
1632 /* address the controller */
1633 memset(scsi3addr, 0, sizeof(scsi3addr));
1634 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1635 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1636 if (extended_response)
1637 c->Request.CDB[1] = extended_response;
1638 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1639 ei = c->err_info;
1640 if (ei->CommandStatus != 0 &&
1641 ei->CommandStatus != CMD_DATA_UNDERRUN) {
1642 hpsa_scsi_interpret_error(c);
1643 rc = -1;
1645 cmd_special_free(h, c);
1646 return rc;
1649 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1650 struct ReportLUNdata *buf,
1651 int bufsize, int extended_response)
1653 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1656 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1657 struct ReportLUNdata *buf, int bufsize)
1659 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1662 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1663 int bus, int target, int lun)
1665 device->bus = bus;
1666 device->target = target;
1667 device->lun = lun;
1670 static int hpsa_update_device_info(struct ctlr_info *h,
1671 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1672 unsigned char *is_OBDR_device)
1675 #define OBDR_SIG_OFFSET 43
1676 #define OBDR_TAPE_SIG "$DR-10"
1677 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1678 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1680 unsigned char *inq_buff;
1681 unsigned char *obdr_sig;
1683 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1684 if (!inq_buff)
1685 goto bail_out;
1687 /* Do an inquiry to the device to see what it is. */
1688 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1689 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1690 /* Inquiry failed (msg printed already) */
1691 dev_err(&h->pdev->dev,
1692 "hpsa_update_device_info: inquiry failed\n");
1693 goto bail_out;
1696 this_device->devtype = (inq_buff[0] & 0x1f);
1697 memcpy(this_device->scsi3addr, scsi3addr, 8);
1698 memcpy(this_device->vendor, &inq_buff[8],
1699 sizeof(this_device->vendor));
1700 memcpy(this_device->model, &inq_buff[16],
1701 sizeof(this_device->model));
1702 memset(this_device->device_id, 0,
1703 sizeof(this_device->device_id));
1704 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1705 sizeof(this_device->device_id));
1707 if (this_device->devtype == TYPE_DISK &&
1708 is_logical_dev_addr_mode(scsi3addr))
1709 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1710 else
1711 this_device->raid_level = RAID_UNKNOWN;
1713 if (is_OBDR_device) {
1714 /* See if this is a One-Button-Disaster-Recovery device
1715 * by looking for "$DR-10" at offset 43 in inquiry data.
1717 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1718 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1719 strncmp(obdr_sig, OBDR_TAPE_SIG,
1720 OBDR_SIG_LEN) == 0);
1723 kfree(inq_buff);
1724 return 0;
1726 bail_out:
1727 kfree(inq_buff);
1728 return 1;
1731 static unsigned char *ext_target_model[] = {
1732 "MSA2012",
1733 "MSA2024",
1734 "MSA2312",
1735 "MSA2324",
1736 "P2000 G3 SAS",
1737 NULL,
1740 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1742 int i;
1744 for (i = 0; ext_target_model[i]; i++)
1745 if (strncmp(device->model, ext_target_model[i],
1746 strlen(ext_target_model[i])) == 0)
1747 return 1;
1748 return 0;
1751 /* Helper function to assign bus, target, lun mapping of devices.
1752 * Puts non-external target logical volumes on bus 0, external target logical
1753 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1754 * Logical drive target and lun are assigned at this time, but
1755 * physical device lun and target assignment are deferred (assigned
1756 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1758 static void figure_bus_target_lun(struct ctlr_info *h,
1759 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1761 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1763 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1764 /* physical device, target and lun filled in later */
1765 if (is_hba_lunid(lunaddrbytes))
1766 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1767 else
1768 /* defer target, lun assignment for physical devices */
1769 hpsa_set_bus_target_lun(device, 2, -1, -1);
1770 return;
1772 /* It's a logical device */
1773 if (is_ext_target(h, device)) {
1774 /* external target way, put logicals on bus 1
1775 * and match target/lun numbers box
1776 * reports, other smart array, bus 0, target 0, match lunid
1778 hpsa_set_bus_target_lun(device,
1779 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1780 return;
1782 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1786 * If there is no lun 0 on a target, linux won't find any devices.
1787 * For the external targets (arrays), we have to manually detect the enclosure
1788 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1789 * it for some reason. *tmpdevice is the target we're adding,
1790 * this_device is a pointer into the current element of currentsd[]
1791 * that we're building up in update_scsi_devices(), below.
1792 * lunzerobits is a bitmap that tracks which targets already have a
1793 * lun 0 assigned.
1794 * Returns 1 if an enclosure was added, 0 if not.
1796 static int add_ext_target_dev(struct ctlr_info *h,
1797 struct hpsa_scsi_dev_t *tmpdevice,
1798 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1799 unsigned long lunzerobits[], int *n_ext_target_devs)
1801 unsigned char scsi3addr[8];
1803 if (test_bit(tmpdevice->target, lunzerobits))
1804 return 0; /* There is already a lun 0 on this target. */
1806 if (!is_logical_dev_addr_mode(lunaddrbytes))
1807 return 0; /* It's the logical targets that may lack lun 0. */
1809 if (!is_ext_target(h, tmpdevice))
1810 return 0; /* Only external target devices have this problem. */
1812 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1813 return 0;
1815 memset(scsi3addr, 0, 8);
1816 scsi3addr[3] = tmpdevice->target;
1817 if (is_hba_lunid(scsi3addr))
1818 return 0; /* Don't add the RAID controller here. */
1820 if (is_scsi_rev_5(h))
1821 return 0; /* p1210m doesn't need to do this. */
1823 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1824 dev_warn(&h->pdev->dev, "Maximum number of external "
1825 "target devices exceeded. Check your hardware "
1826 "configuration.");
1827 return 0;
1830 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1831 return 0;
1832 (*n_ext_target_devs)++;
1833 hpsa_set_bus_target_lun(this_device,
1834 tmpdevice->bus, tmpdevice->target, 0);
1835 set_bit(tmpdevice->target, lunzerobits);
1836 return 1;
1840 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1841 * logdev. The number of luns in physdev and logdev are returned in
1842 * *nphysicals and *nlogicals, respectively.
1843 * Returns 0 on success, -1 otherwise.
1845 static int hpsa_gather_lun_info(struct ctlr_info *h,
1846 int reportlunsize,
1847 struct ReportLUNdata *physdev, u32 *nphysicals,
1848 struct ReportLUNdata *logdev, u32 *nlogicals)
1850 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1851 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1852 return -1;
1854 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1855 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1856 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1857 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1858 *nphysicals - HPSA_MAX_PHYS_LUN);
1859 *nphysicals = HPSA_MAX_PHYS_LUN;
1861 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1862 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1863 return -1;
1865 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1866 /* Reject Logicals in excess of our max capability. */
1867 if (*nlogicals > HPSA_MAX_LUN) {
1868 dev_warn(&h->pdev->dev,
1869 "maximum logical LUNs (%d) exceeded. "
1870 "%d LUNs ignored.\n", HPSA_MAX_LUN,
1871 *nlogicals - HPSA_MAX_LUN);
1872 *nlogicals = HPSA_MAX_LUN;
1874 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1875 dev_warn(&h->pdev->dev,
1876 "maximum logical + physical LUNs (%d) exceeded. "
1877 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1878 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1879 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1881 return 0;
1884 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1885 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1886 struct ReportLUNdata *logdev_list)
1888 /* Helper function, figure out where the LUN ID info is coming from
1889 * given index i, lists of physical and logical devices, where in
1890 * the list the raid controller is supposed to appear (first or last)
1893 int logicals_start = nphysicals + (raid_ctlr_position == 0);
1894 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1896 if (i == raid_ctlr_position)
1897 return RAID_CTLR_LUNID;
1899 if (i < logicals_start)
1900 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1902 if (i < last_device)
1903 return &logdev_list->LUN[i - nphysicals -
1904 (raid_ctlr_position == 0)][0];
1905 BUG();
1906 return NULL;
1909 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1911 /* the idea here is we could get notified
1912 * that some devices have changed, so we do a report
1913 * physical luns and report logical luns cmd, and adjust
1914 * our list of devices accordingly.
1916 * The scsi3addr's of devices won't change so long as the
1917 * adapter is not reset. That means we can rescan and
1918 * tell which devices we already know about, vs. new
1919 * devices, vs. disappearing devices.
1921 struct ReportLUNdata *physdev_list = NULL;
1922 struct ReportLUNdata *logdev_list = NULL;
1923 u32 nphysicals = 0;
1924 u32 nlogicals = 0;
1925 u32 ndev_allocated = 0;
1926 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1927 int ncurrent = 0;
1928 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1929 int i, n_ext_target_devs, ndevs_to_allocate;
1930 int raid_ctlr_position;
1931 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1933 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1934 physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1935 logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1936 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1938 if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1939 dev_err(&h->pdev->dev, "out of memory\n");
1940 goto out;
1942 memset(lunzerobits, 0, sizeof(lunzerobits));
1944 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1945 logdev_list, &nlogicals))
1946 goto out;
1948 /* We might see up to the maximum number of logical and physical disks
1949 * plus external target devices, and a device for the local RAID
1950 * controller.
1952 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1954 /* Allocate the per device structures */
1955 for (i = 0; i < ndevs_to_allocate; i++) {
1956 if (i >= HPSA_MAX_DEVICES) {
1957 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1958 " %d devices ignored.\n", HPSA_MAX_DEVICES,
1959 ndevs_to_allocate - HPSA_MAX_DEVICES);
1960 break;
1963 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1964 if (!currentsd[i]) {
1965 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1966 __FILE__, __LINE__);
1967 goto out;
1969 ndev_allocated++;
1972 if (unlikely(is_scsi_rev_5(h)))
1973 raid_ctlr_position = 0;
1974 else
1975 raid_ctlr_position = nphysicals + nlogicals;
1977 /* adjust our table of devices */
1978 n_ext_target_devs = 0;
1979 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1980 u8 *lunaddrbytes, is_OBDR = 0;
1982 /* Figure out where the LUN ID info is coming from */
1983 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1984 i, nphysicals, nlogicals, physdev_list, logdev_list);
1985 /* skip masked physical devices. */
1986 if (lunaddrbytes[3] & 0xC0 &&
1987 i < nphysicals + (raid_ctlr_position == 0))
1988 continue;
1990 /* Get device type, vendor, model, device id */
1991 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1992 &is_OBDR))
1993 continue; /* skip it if we can't talk to it. */
1994 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
1995 this_device = currentsd[ncurrent];
1998 * For external target devices, we have to insert a LUN 0 which
1999 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2000 * is nonetheless an enclosure device there. We have to
2001 * present that otherwise linux won't find anything if
2002 * there is no lun 0.
2004 if (add_ext_target_dev(h, tmpdevice, this_device,
2005 lunaddrbytes, lunzerobits,
2006 &n_ext_target_devs)) {
2007 ncurrent++;
2008 this_device = currentsd[ncurrent];
2011 *this_device = *tmpdevice;
2013 switch (this_device->devtype) {
2014 case TYPE_ROM:
2015 /* We don't *really* support actual CD-ROM devices,
2016 * just "One Button Disaster Recovery" tape drive
2017 * which temporarily pretends to be a CD-ROM drive.
2018 * So we check that the device is really an OBDR tape
2019 * device by checking for "$DR-10" in bytes 43-48 of
2020 * the inquiry data.
2022 if (is_OBDR)
2023 ncurrent++;
2024 break;
2025 case TYPE_DISK:
2026 if (i < nphysicals)
2027 break;
2028 ncurrent++;
2029 break;
2030 case TYPE_TAPE:
2031 case TYPE_MEDIUM_CHANGER:
2032 ncurrent++;
2033 break;
2034 case TYPE_RAID:
2035 /* Only present the Smartarray HBA as a RAID controller.
2036 * If it's a RAID controller other than the HBA itself
2037 * (an external RAID controller, MSA500 or similar)
2038 * don't present it.
2040 if (!is_hba_lunid(lunaddrbytes))
2041 break;
2042 ncurrent++;
2043 break;
2044 default:
2045 break;
2047 if (ncurrent >= HPSA_MAX_DEVICES)
2048 break;
2050 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2051 out:
2052 kfree(tmpdevice);
2053 for (i = 0; i < ndev_allocated; i++)
2054 kfree(currentsd[i]);
2055 kfree(currentsd);
2056 kfree(physdev_list);
2057 kfree(logdev_list);
2060 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2061 * dma mapping and fills in the scatter gather entries of the
2062 * hpsa command, cp.
2064 static int hpsa_scatter_gather(struct ctlr_info *h,
2065 struct CommandList *cp,
2066 struct scsi_cmnd *cmd)
2068 unsigned int len;
2069 struct scatterlist *sg;
2070 u64 addr64;
2071 int use_sg, i, sg_index, chained;
2072 struct SGDescriptor *curr_sg;
2074 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2076 use_sg = scsi_dma_map(cmd);
2077 if (use_sg < 0)
2078 return use_sg;
2080 if (!use_sg)
2081 goto sglist_finished;
2083 curr_sg = cp->SG;
2084 chained = 0;
2085 sg_index = 0;
2086 scsi_for_each_sg(cmd, sg, use_sg, i) {
2087 if (i == h->max_cmd_sg_entries - 1 &&
2088 use_sg > h->max_cmd_sg_entries) {
2089 chained = 1;
2090 curr_sg = h->cmd_sg_list[cp->cmdindex];
2091 sg_index = 0;
2093 addr64 = (u64) sg_dma_address(sg);
2094 len = sg_dma_len(sg);
2095 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2096 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2097 curr_sg->Len = len;
2098 curr_sg->Ext = 0; /* we are not chaining */
2099 curr_sg++;
2102 if (use_sg + chained > h->maxSG)
2103 h->maxSG = use_sg + chained;
2105 if (chained) {
2106 cp->Header.SGList = h->max_cmd_sg_entries;
2107 cp->Header.SGTotal = (u16) (use_sg + 1);
2108 hpsa_map_sg_chain_block(h, cp);
2109 return 0;
2112 sglist_finished:
2114 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
2115 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2116 return 0;
2120 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2121 void (*done)(struct scsi_cmnd *))
2123 struct ctlr_info *h;
2124 struct hpsa_scsi_dev_t *dev;
2125 unsigned char scsi3addr[8];
2126 struct CommandList *c;
2127 unsigned long flags;
2129 /* Get the ptr to our adapter structure out of cmd->host. */
2130 h = sdev_to_hba(cmd->device);
2131 dev = cmd->device->hostdata;
2132 if (!dev) {
2133 cmd->result = DID_NO_CONNECT << 16;
2134 done(cmd);
2135 return 0;
2137 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2139 spin_lock_irqsave(&h->lock, flags);
2140 if (unlikely(h->lockup_detected)) {
2141 spin_unlock_irqrestore(&h->lock, flags);
2142 cmd->result = DID_ERROR << 16;
2143 done(cmd);
2144 return 0;
2146 spin_unlock_irqrestore(&h->lock, flags);
2147 c = cmd_alloc(h);
2148 if (c == NULL) { /* trouble... */
2149 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2150 return SCSI_MLQUEUE_HOST_BUSY;
2153 /* Fill in the command list header */
2155 cmd->scsi_done = done; /* save this for use by completion code */
2157 /* save c in case we have to abort it */
2158 cmd->host_scribble = (unsigned char *) c;
2160 c->cmd_type = CMD_SCSI;
2161 c->scsi_cmd = cmd;
2162 c->Header.ReplyQueue = 0; /* unused in simple mode */
2163 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2164 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2165 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2167 /* Fill in the request block... */
2169 c->Request.Timeout = 0;
2170 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2171 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2172 c->Request.CDBLen = cmd->cmd_len;
2173 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2174 c->Request.Type.Type = TYPE_CMD;
2175 c->Request.Type.Attribute = ATTR_SIMPLE;
2176 switch (cmd->sc_data_direction) {
2177 case DMA_TO_DEVICE:
2178 c->Request.Type.Direction = XFER_WRITE;
2179 break;
2180 case DMA_FROM_DEVICE:
2181 c->Request.Type.Direction = XFER_READ;
2182 break;
2183 case DMA_NONE:
2184 c->Request.Type.Direction = XFER_NONE;
2185 break;
2186 case DMA_BIDIRECTIONAL:
2187 /* This can happen if a buggy application does a scsi passthru
2188 * and sets both inlen and outlen to non-zero. ( see
2189 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2192 c->Request.Type.Direction = XFER_RSVD;
2193 /* This is technically wrong, and hpsa controllers should
2194 * reject it with CMD_INVALID, which is the most correct
2195 * response, but non-fibre backends appear to let it
2196 * slide by, and give the same results as if this field
2197 * were set correctly. Either way is acceptable for
2198 * our purposes here.
2201 break;
2203 default:
2204 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2205 cmd->sc_data_direction);
2206 BUG();
2207 break;
2210 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2211 cmd_free(h, c);
2212 return SCSI_MLQUEUE_HOST_BUSY;
2214 enqueue_cmd_and_start_io(h, c);
2215 /* the cmd'll come back via intr handler in complete_scsi_command() */
2216 return 0;
2219 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2221 static void hpsa_scan_start(struct Scsi_Host *sh)
2223 struct ctlr_info *h = shost_to_hba(sh);
2224 unsigned long flags;
2226 /* wait until any scan already in progress is finished. */
2227 while (1) {
2228 spin_lock_irqsave(&h->scan_lock, flags);
2229 if (h->scan_finished)
2230 break;
2231 spin_unlock_irqrestore(&h->scan_lock, flags);
2232 wait_event(h->scan_wait_queue, h->scan_finished);
2233 /* Note: We don't need to worry about a race between this
2234 * thread and driver unload because the midlayer will
2235 * have incremented the reference count, so unload won't
2236 * happen if we're in here.
2239 h->scan_finished = 0; /* mark scan as in progress */
2240 spin_unlock_irqrestore(&h->scan_lock, flags);
2242 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2244 spin_lock_irqsave(&h->scan_lock, flags);
2245 h->scan_finished = 1; /* mark scan as finished. */
2246 wake_up_all(&h->scan_wait_queue);
2247 spin_unlock_irqrestore(&h->scan_lock, flags);
2250 static int hpsa_scan_finished(struct Scsi_Host *sh,
2251 unsigned long elapsed_time)
2253 struct ctlr_info *h = shost_to_hba(sh);
2254 unsigned long flags;
2255 int finished;
2257 spin_lock_irqsave(&h->scan_lock, flags);
2258 finished = h->scan_finished;
2259 spin_unlock_irqrestore(&h->scan_lock, flags);
2260 return finished;
2263 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2264 int qdepth, int reason)
2266 struct ctlr_info *h = sdev_to_hba(sdev);
2268 if (reason != SCSI_QDEPTH_DEFAULT)
2269 return -ENOTSUPP;
2271 if (qdepth < 1)
2272 qdepth = 1;
2273 else
2274 if (qdepth > h->nr_cmds)
2275 qdepth = h->nr_cmds;
2276 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2277 return sdev->queue_depth;
2280 static void hpsa_unregister_scsi(struct ctlr_info *h)
2282 /* we are being forcibly unloaded, and may not refuse. */
2283 scsi_remove_host(h->scsi_host);
2284 scsi_host_put(h->scsi_host);
2285 h->scsi_host = NULL;
2288 static int hpsa_register_scsi(struct ctlr_info *h)
2290 struct Scsi_Host *sh;
2291 int error;
2293 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2294 if (sh == NULL)
2295 goto fail;
2297 sh->io_port = 0;
2298 sh->n_io_port = 0;
2299 sh->this_id = -1;
2300 sh->max_channel = 3;
2301 sh->max_cmd_len = MAX_COMMAND_SIZE;
2302 sh->max_lun = HPSA_MAX_LUN;
2303 sh->max_id = HPSA_MAX_LUN;
2304 sh->can_queue = h->nr_cmds;
2305 sh->cmd_per_lun = h->nr_cmds;
2306 sh->sg_tablesize = h->maxsgentries;
2307 h->scsi_host = sh;
2308 sh->hostdata[0] = (unsigned long) h;
2309 sh->irq = h->intr[h->intr_mode];
2310 sh->unique_id = sh->irq;
2311 error = scsi_add_host(sh, &h->pdev->dev);
2312 if (error)
2313 goto fail_host_put;
2314 scsi_scan_host(sh);
2315 return 0;
2317 fail_host_put:
2318 dev_err(&h->pdev->dev, "%s: scsi_add_host"
2319 " failed for controller %d\n", __func__, h->ctlr);
2320 scsi_host_put(sh);
2321 return error;
2322 fail:
2323 dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2324 " failed for controller %d\n", __func__, h->ctlr);
2325 return -ENOMEM;
2328 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2329 unsigned char lunaddr[])
2331 int rc = 0;
2332 int count = 0;
2333 int waittime = 1; /* seconds */
2334 struct CommandList *c;
2336 c = cmd_special_alloc(h);
2337 if (!c) {
2338 dev_warn(&h->pdev->dev, "out of memory in "
2339 "wait_for_device_to_become_ready.\n");
2340 return IO_ERROR;
2343 /* Send test unit ready until device ready, or give up. */
2344 while (count < HPSA_TUR_RETRY_LIMIT) {
2346 /* Wait for a bit. do this first, because if we send
2347 * the TUR right away, the reset will just abort it.
2349 msleep(1000 * waittime);
2350 count++;
2352 /* Increase wait time with each try, up to a point. */
2353 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2354 waittime = waittime * 2;
2356 /* Send the Test Unit Ready */
2357 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2358 hpsa_scsi_do_simple_cmd_core(h, c);
2359 /* no unmap needed here because no data xfer. */
2361 if (c->err_info->CommandStatus == CMD_SUCCESS)
2362 break;
2364 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2365 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2366 (c->err_info->SenseInfo[2] == NO_SENSE ||
2367 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2368 break;
2370 dev_warn(&h->pdev->dev, "waiting %d secs "
2371 "for device to become ready.\n", waittime);
2372 rc = 1; /* device not ready. */
2375 if (rc)
2376 dev_warn(&h->pdev->dev, "giving up on device.\n");
2377 else
2378 dev_warn(&h->pdev->dev, "device is ready.\n");
2380 cmd_special_free(h, c);
2381 return rc;
2384 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2385 * complaining. Doing a host- or bus-reset can't do anything good here.
2387 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2389 int rc;
2390 struct ctlr_info *h;
2391 struct hpsa_scsi_dev_t *dev;
2393 /* find the controller to which the command to be aborted was sent */
2394 h = sdev_to_hba(scsicmd->device);
2395 if (h == NULL) /* paranoia */
2396 return FAILED;
2397 dev = scsicmd->device->hostdata;
2398 if (!dev) {
2399 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2400 "device lookup failed.\n");
2401 return FAILED;
2403 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2404 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2405 /* send a reset to the SCSI LUN which the command was sent to */
2406 rc = hpsa_send_reset(h, dev->scsi3addr);
2407 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2408 return SUCCESS;
2410 dev_warn(&h->pdev->dev, "resetting device failed.\n");
2411 return FAILED;
2414 static void swizzle_abort_tag(u8 *tag)
2416 u8 original_tag[8];
2418 memcpy(original_tag, tag, 8);
2419 tag[0] = original_tag[3];
2420 tag[1] = original_tag[2];
2421 tag[2] = original_tag[1];
2422 tag[3] = original_tag[0];
2423 tag[4] = original_tag[7];
2424 tag[5] = original_tag[6];
2425 tag[6] = original_tag[5];
2426 tag[7] = original_tag[4];
2429 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2430 struct CommandList *abort, int swizzle)
2432 int rc = IO_OK;
2433 struct CommandList *c;
2434 struct ErrorInfo *ei;
2436 c = cmd_special_alloc(h);
2437 if (c == NULL) { /* trouble... */
2438 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2439 return -ENOMEM;
2442 fill_cmd(c, HPSA_ABORT_MSG, h, abort, 0, 0, scsi3addr, TYPE_MSG);
2443 if (swizzle)
2444 swizzle_abort_tag(&c->Request.CDB[4]);
2445 hpsa_scsi_do_simple_cmd_core(h, c);
2446 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2447 __func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2448 /* no unmap needed here because no data xfer. */
2450 ei = c->err_info;
2451 switch (ei->CommandStatus) {
2452 case CMD_SUCCESS:
2453 break;
2454 case CMD_UNABORTABLE: /* Very common, don't make noise. */
2455 rc = -1;
2456 break;
2457 default:
2458 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2459 __func__, abort->Header.Tag.upper,
2460 abort->Header.Tag.lower);
2461 hpsa_scsi_interpret_error(c);
2462 rc = -1;
2463 break;
2465 cmd_special_free(h, c);
2466 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2467 abort->Header.Tag.upper, abort->Header.Tag.lower);
2468 return rc;
2472 * hpsa_find_cmd_in_queue
2474 * Used to determine whether a command (find) is still present
2475 * in queue_head. Optionally excludes the last element of queue_head.
2477 * This is used to avoid unnecessary aborts. Commands in h->reqQ have
2478 * not yet been submitted, and so can be aborted by the driver without
2479 * sending an abort to the hardware.
2481 * Returns pointer to command if found in queue, NULL otherwise.
2483 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2484 struct scsi_cmnd *find, struct list_head *queue_head)
2486 unsigned long flags;
2487 struct CommandList *c = NULL; /* ptr into cmpQ */
2489 if (!find)
2490 return 0;
2491 spin_lock_irqsave(&h->lock, flags);
2492 list_for_each_entry(c, queue_head, list) {
2493 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2494 continue;
2495 if (c->scsi_cmd == find) {
2496 spin_unlock_irqrestore(&h->lock, flags);
2497 return c;
2500 spin_unlock_irqrestore(&h->lock, flags);
2501 return NULL;
2504 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2505 u8 *tag, struct list_head *queue_head)
2507 unsigned long flags;
2508 struct CommandList *c;
2510 spin_lock_irqsave(&h->lock, flags);
2511 list_for_each_entry(c, queue_head, list) {
2512 if (memcmp(&c->Header.Tag, tag, 8) != 0)
2513 continue;
2514 spin_unlock_irqrestore(&h->lock, flags);
2515 return c;
2517 spin_unlock_irqrestore(&h->lock, flags);
2518 return NULL;
2521 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
2522 * tell which kind we're dealing with, so we send the abort both ways. There
2523 * shouldn't be any collisions between swizzled and unswizzled tags due to the
2524 * way we construct our tags but we check anyway in case the assumptions which
2525 * make this true someday become false.
2527 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2528 unsigned char *scsi3addr, struct CommandList *abort)
2530 u8 swizzled_tag[8];
2531 struct CommandList *c;
2532 int rc = 0, rc2 = 0;
2534 /* we do not expect to find the swizzled tag in our queue, but
2535 * check anyway just to be sure the assumptions which make this
2536 * the case haven't become wrong.
2538 memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2539 swizzle_abort_tag(swizzled_tag);
2540 c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2541 if (c != NULL) {
2542 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2543 return hpsa_send_abort(h, scsi3addr, abort, 0);
2545 rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2547 /* if the command is still in our queue, we can't conclude that it was
2548 * aborted (it might have just completed normally) but in any case
2549 * we don't need to try to abort it another way.
2551 c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2552 if (c)
2553 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2554 return rc && rc2;
2557 /* Send an abort for the specified command.
2558 * If the device and controller support it,
2559 * send a task abort request.
2561 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2564 int i, rc;
2565 struct ctlr_info *h;
2566 struct hpsa_scsi_dev_t *dev;
2567 struct CommandList *abort; /* pointer to command to be aborted */
2568 struct CommandList *found;
2569 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
2570 char msg[256]; /* For debug messaging. */
2571 int ml = 0;
2573 /* Find the controller of the command to be aborted */
2574 h = sdev_to_hba(sc->device);
2575 if (WARN(h == NULL,
2576 "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2577 return FAILED;
2579 /* Check that controller supports some kind of task abort */
2580 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2581 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2582 return FAILED;
2584 memset(msg, 0, sizeof(msg));
2585 ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2586 h->scsi_host->host_no, sc->device->channel,
2587 sc->device->id, sc->device->lun);
2589 /* Find the device of the command to be aborted */
2590 dev = sc->device->hostdata;
2591 if (!dev) {
2592 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2593 msg);
2594 return FAILED;
2597 /* Get SCSI command to be aborted */
2598 abort = (struct CommandList *) sc->host_scribble;
2599 if (abort == NULL) {
2600 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2601 msg);
2602 return FAILED;
2605 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2606 abort->Header.Tag.upper, abort->Header.Tag.lower);
2607 as = (struct scsi_cmnd *) abort->scsi_cmd;
2608 if (as != NULL)
2609 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2610 as->cmnd[0], as->serial_number);
2611 dev_dbg(&h->pdev->dev, "%s\n", msg);
2612 dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2613 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2615 /* Search reqQ to See if command is queued but not submitted,
2616 * if so, complete the command with aborted status and remove
2617 * it from the reqQ.
2619 found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2620 if (found) {
2621 found->err_info->CommandStatus = CMD_ABORTED;
2622 finish_cmd(found);
2623 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2624 msg);
2625 return SUCCESS;
2628 /* not in reqQ, if also not in cmpQ, must have already completed */
2629 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2630 if (!found) {
2631 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2632 msg);
2633 return SUCCESS;
2637 * Command is in flight, or possibly already completed
2638 * by the firmware (but not to the scsi mid layer) but we can't
2639 * distinguish which. Send the abort down.
2641 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2642 if (rc != 0) {
2643 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2644 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2645 h->scsi_host->host_no,
2646 dev->bus, dev->target, dev->lun);
2647 return FAILED;
2649 dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2651 /* If the abort(s) above completed and actually aborted the
2652 * command, then the command to be aborted should already be
2653 * completed. If not, wait around a bit more to see if they
2654 * manage to complete normally.
2656 #define ABORT_COMPLETE_WAIT_SECS 30
2657 for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2658 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2659 if (!found)
2660 return SUCCESS;
2661 msleep(100);
2663 dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2664 msg, ABORT_COMPLETE_WAIT_SECS);
2665 return FAILED;
2670 * For operations that cannot sleep, a command block is allocated at init,
2671 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2672 * which ones are free or in use. Lock must be held when calling this.
2673 * cmd_free() is the complement.
2675 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2677 struct CommandList *c;
2678 int i;
2679 union u64bit temp64;
2680 dma_addr_t cmd_dma_handle, err_dma_handle;
2681 unsigned long flags;
2683 spin_lock_irqsave(&h->lock, flags);
2684 do {
2685 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2686 if (i == h->nr_cmds) {
2687 spin_unlock_irqrestore(&h->lock, flags);
2688 return NULL;
2690 } while (test_and_set_bit
2691 (i & (BITS_PER_LONG - 1),
2692 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2693 h->nr_allocs++;
2694 spin_unlock_irqrestore(&h->lock, flags);
2696 c = h->cmd_pool + i;
2697 memset(c, 0, sizeof(*c));
2698 cmd_dma_handle = h->cmd_pool_dhandle
2699 + i * sizeof(*c);
2700 c->err_info = h->errinfo_pool + i;
2701 memset(c->err_info, 0, sizeof(*c->err_info));
2702 err_dma_handle = h->errinfo_pool_dhandle
2703 + i * sizeof(*c->err_info);
2705 c->cmdindex = i;
2707 INIT_LIST_HEAD(&c->list);
2708 c->busaddr = (u32) cmd_dma_handle;
2709 temp64.val = (u64) err_dma_handle;
2710 c->ErrDesc.Addr.lower = temp64.val32.lower;
2711 c->ErrDesc.Addr.upper = temp64.val32.upper;
2712 c->ErrDesc.Len = sizeof(*c->err_info);
2714 c->h = h;
2715 return c;
2718 /* For operations that can wait for kmalloc to possibly sleep,
2719 * this routine can be called. Lock need not be held to call
2720 * cmd_special_alloc. cmd_special_free() is the complement.
2722 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2724 struct CommandList *c;
2725 union u64bit temp64;
2726 dma_addr_t cmd_dma_handle, err_dma_handle;
2728 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2729 if (c == NULL)
2730 return NULL;
2731 memset(c, 0, sizeof(*c));
2733 c->cmdindex = -1;
2735 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2736 &err_dma_handle);
2738 if (c->err_info == NULL) {
2739 pci_free_consistent(h->pdev,
2740 sizeof(*c), c, cmd_dma_handle);
2741 return NULL;
2743 memset(c->err_info, 0, sizeof(*c->err_info));
2745 INIT_LIST_HEAD(&c->list);
2746 c->busaddr = (u32) cmd_dma_handle;
2747 temp64.val = (u64) err_dma_handle;
2748 c->ErrDesc.Addr.lower = temp64.val32.lower;
2749 c->ErrDesc.Addr.upper = temp64.val32.upper;
2750 c->ErrDesc.Len = sizeof(*c->err_info);
2752 c->h = h;
2753 return c;
2756 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2758 int i;
2759 unsigned long flags;
2761 i = c - h->cmd_pool;
2762 spin_lock_irqsave(&h->lock, flags);
2763 clear_bit(i & (BITS_PER_LONG - 1),
2764 h->cmd_pool_bits + (i / BITS_PER_LONG));
2765 h->nr_frees++;
2766 spin_unlock_irqrestore(&h->lock, flags);
2769 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2771 union u64bit temp64;
2773 temp64.val32.lower = c->ErrDesc.Addr.lower;
2774 temp64.val32.upper = c->ErrDesc.Addr.upper;
2775 pci_free_consistent(h->pdev, sizeof(*c->err_info),
2776 c->err_info, (dma_addr_t) temp64.val);
2777 pci_free_consistent(h->pdev, sizeof(*c),
2778 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2781 #ifdef CONFIG_COMPAT
2783 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2785 IOCTL32_Command_struct __user *arg32 =
2786 (IOCTL32_Command_struct __user *) arg;
2787 IOCTL_Command_struct arg64;
2788 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2789 int err;
2790 u32 cp;
2792 memset(&arg64, 0, sizeof(arg64));
2793 err = 0;
2794 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2795 sizeof(arg64.LUN_info));
2796 err |= copy_from_user(&arg64.Request, &arg32->Request,
2797 sizeof(arg64.Request));
2798 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2799 sizeof(arg64.error_info));
2800 err |= get_user(arg64.buf_size, &arg32->buf_size);
2801 err |= get_user(cp, &arg32->buf);
2802 arg64.buf = compat_ptr(cp);
2803 err |= copy_to_user(p, &arg64, sizeof(arg64));
2805 if (err)
2806 return -EFAULT;
2808 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2809 if (err)
2810 return err;
2811 err |= copy_in_user(&arg32->error_info, &p->error_info,
2812 sizeof(arg32->error_info));
2813 if (err)
2814 return -EFAULT;
2815 return err;
2818 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2819 int cmd, void *arg)
2821 BIG_IOCTL32_Command_struct __user *arg32 =
2822 (BIG_IOCTL32_Command_struct __user *) arg;
2823 BIG_IOCTL_Command_struct arg64;
2824 BIG_IOCTL_Command_struct __user *p =
2825 compat_alloc_user_space(sizeof(arg64));
2826 int err;
2827 u32 cp;
2829 memset(&arg64, 0, sizeof(arg64));
2830 err = 0;
2831 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2832 sizeof(arg64.LUN_info));
2833 err |= copy_from_user(&arg64.Request, &arg32->Request,
2834 sizeof(arg64.Request));
2835 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2836 sizeof(arg64.error_info));
2837 err |= get_user(arg64.buf_size, &arg32->buf_size);
2838 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2839 err |= get_user(cp, &arg32->buf);
2840 arg64.buf = compat_ptr(cp);
2841 err |= copy_to_user(p, &arg64, sizeof(arg64));
2843 if (err)
2844 return -EFAULT;
2846 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2847 if (err)
2848 return err;
2849 err |= copy_in_user(&arg32->error_info, &p->error_info,
2850 sizeof(arg32->error_info));
2851 if (err)
2852 return -EFAULT;
2853 return err;
2856 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2858 switch (cmd) {
2859 case CCISS_GETPCIINFO:
2860 case CCISS_GETINTINFO:
2861 case CCISS_SETINTINFO:
2862 case CCISS_GETNODENAME:
2863 case CCISS_SETNODENAME:
2864 case CCISS_GETHEARTBEAT:
2865 case CCISS_GETBUSTYPES:
2866 case CCISS_GETFIRMVER:
2867 case CCISS_GETDRIVVER:
2868 case CCISS_REVALIDVOLS:
2869 case CCISS_DEREGDISK:
2870 case CCISS_REGNEWDISK:
2871 case CCISS_REGNEWD:
2872 case CCISS_RESCANDISK:
2873 case CCISS_GETLUNINFO:
2874 return hpsa_ioctl(dev, cmd, arg);
2876 case CCISS_PASSTHRU32:
2877 return hpsa_ioctl32_passthru(dev, cmd, arg);
2878 case CCISS_BIG_PASSTHRU32:
2879 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2881 default:
2882 return -ENOIOCTLCMD;
2885 #endif
2887 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2889 struct hpsa_pci_info pciinfo;
2891 if (!argp)
2892 return -EINVAL;
2893 pciinfo.domain = pci_domain_nr(h->pdev->bus);
2894 pciinfo.bus = h->pdev->bus->number;
2895 pciinfo.dev_fn = h->pdev->devfn;
2896 pciinfo.board_id = h->board_id;
2897 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2898 return -EFAULT;
2899 return 0;
2902 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2904 DriverVer_type DriverVer;
2905 unsigned char vmaj, vmin, vsubmin;
2906 int rc;
2908 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2909 &vmaj, &vmin, &vsubmin);
2910 if (rc != 3) {
2911 dev_info(&h->pdev->dev, "driver version string '%s' "
2912 "unrecognized.", HPSA_DRIVER_VERSION);
2913 vmaj = 0;
2914 vmin = 0;
2915 vsubmin = 0;
2917 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2918 if (!argp)
2919 return -EINVAL;
2920 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2921 return -EFAULT;
2922 return 0;
2925 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2927 IOCTL_Command_struct iocommand;
2928 struct CommandList *c;
2929 char *buff = NULL;
2930 union u64bit temp64;
2932 if (!argp)
2933 return -EINVAL;
2934 if (!capable(CAP_SYS_RAWIO))
2935 return -EPERM;
2936 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2937 return -EFAULT;
2938 if ((iocommand.buf_size < 1) &&
2939 (iocommand.Request.Type.Direction != XFER_NONE)) {
2940 return -EINVAL;
2942 if (iocommand.buf_size > 0) {
2943 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2944 if (buff == NULL)
2945 return -EFAULT;
2946 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2947 /* Copy the data into the buffer we created */
2948 if (copy_from_user(buff, iocommand.buf,
2949 iocommand.buf_size)) {
2950 kfree(buff);
2951 return -EFAULT;
2953 } else {
2954 memset(buff, 0, iocommand.buf_size);
2957 c = cmd_special_alloc(h);
2958 if (c == NULL) {
2959 kfree(buff);
2960 return -ENOMEM;
2962 /* Fill in the command type */
2963 c->cmd_type = CMD_IOCTL_PEND;
2964 /* Fill in Command Header */
2965 c->Header.ReplyQueue = 0; /* unused in simple mode */
2966 if (iocommand.buf_size > 0) { /* buffer to fill */
2967 c->Header.SGList = 1;
2968 c->Header.SGTotal = 1;
2969 } else { /* no buffers to fill */
2970 c->Header.SGList = 0;
2971 c->Header.SGTotal = 0;
2973 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2974 /* use the kernel address the cmd block for tag */
2975 c->Header.Tag.lower = c->busaddr;
2977 /* Fill in Request block */
2978 memcpy(&c->Request, &iocommand.Request,
2979 sizeof(c->Request));
2981 /* Fill in the scatter gather information */
2982 if (iocommand.buf_size > 0) {
2983 temp64.val = pci_map_single(h->pdev, buff,
2984 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2985 c->SG[0].Addr.lower = temp64.val32.lower;
2986 c->SG[0].Addr.upper = temp64.val32.upper;
2987 c->SG[0].Len = iocommand.buf_size;
2988 c->SG[0].Ext = 0; /* we are not chaining*/
2990 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2991 if (iocommand.buf_size > 0)
2992 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2993 check_ioctl_unit_attention(h, c);
2995 /* Copy the error information out */
2996 memcpy(&iocommand.error_info, c->err_info,
2997 sizeof(iocommand.error_info));
2998 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2999 kfree(buff);
3000 cmd_special_free(h, c);
3001 return -EFAULT;
3003 if (iocommand.Request.Type.Direction == XFER_READ &&
3004 iocommand.buf_size > 0) {
3005 /* Copy the data out of the buffer we created */
3006 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3007 kfree(buff);
3008 cmd_special_free(h, c);
3009 return -EFAULT;
3012 kfree(buff);
3013 cmd_special_free(h, c);
3014 return 0;
3017 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3019 BIG_IOCTL_Command_struct *ioc;
3020 struct CommandList *c;
3021 unsigned char **buff = NULL;
3022 int *buff_size = NULL;
3023 union u64bit temp64;
3024 BYTE sg_used = 0;
3025 int status = 0;
3026 int i;
3027 u32 left;
3028 u32 sz;
3029 BYTE __user *data_ptr;
3031 if (!argp)
3032 return -EINVAL;
3033 if (!capable(CAP_SYS_RAWIO))
3034 return -EPERM;
3035 ioc = (BIG_IOCTL_Command_struct *)
3036 kmalloc(sizeof(*ioc), GFP_KERNEL);
3037 if (!ioc) {
3038 status = -ENOMEM;
3039 goto cleanup1;
3041 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3042 status = -EFAULT;
3043 goto cleanup1;
3045 if ((ioc->buf_size < 1) &&
3046 (ioc->Request.Type.Direction != XFER_NONE)) {
3047 status = -EINVAL;
3048 goto cleanup1;
3050 /* Check kmalloc limits using all SGs */
3051 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3052 status = -EINVAL;
3053 goto cleanup1;
3055 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3056 status = -EINVAL;
3057 goto cleanup1;
3059 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3060 if (!buff) {
3061 status = -ENOMEM;
3062 goto cleanup1;
3064 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3065 if (!buff_size) {
3066 status = -ENOMEM;
3067 goto cleanup1;
3069 left = ioc->buf_size;
3070 data_ptr = ioc->buf;
3071 while (left) {
3072 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3073 buff_size[sg_used] = sz;
3074 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3075 if (buff[sg_used] == NULL) {
3076 status = -ENOMEM;
3077 goto cleanup1;
3079 if (ioc->Request.Type.Direction == XFER_WRITE) {
3080 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3081 status = -ENOMEM;
3082 goto cleanup1;
3084 } else
3085 memset(buff[sg_used], 0, sz);
3086 left -= sz;
3087 data_ptr += sz;
3088 sg_used++;
3090 c = cmd_special_alloc(h);
3091 if (c == NULL) {
3092 status = -ENOMEM;
3093 goto cleanup1;
3095 c->cmd_type = CMD_IOCTL_PEND;
3096 c->Header.ReplyQueue = 0;
3097 c->Header.SGList = c->Header.SGTotal = sg_used;
3098 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3099 c->Header.Tag.lower = c->busaddr;
3100 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3101 if (ioc->buf_size > 0) {
3102 int i;
3103 for (i = 0; i < sg_used; i++) {
3104 temp64.val = pci_map_single(h->pdev, buff[i],
3105 buff_size[i], PCI_DMA_BIDIRECTIONAL);
3106 c->SG[i].Addr.lower = temp64.val32.lower;
3107 c->SG[i].Addr.upper = temp64.val32.upper;
3108 c->SG[i].Len = buff_size[i];
3109 /* we are not chaining */
3110 c->SG[i].Ext = 0;
3113 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3114 if (sg_used)
3115 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3116 check_ioctl_unit_attention(h, c);
3117 /* Copy the error information out */
3118 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3119 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3120 cmd_special_free(h, c);
3121 status = -EFAULT;
3122 goto cleanup1;
3124 if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3125 /* Copy the data out of the buffer we created */
3126 BYTE __user *ptr = ioc->buf;
3127 for (i = 0; i < sg_used; i++) {
3128 if (copy_to_user(ptr, buff[i], buff_size[i])) {
3129 cmd_special_free(h, c);
3130 status = -EFAULT;
3131 goto cleanup1;
3133 ptr += buff_size[i];
3136 cmd_special_free(h, c);
3137 status = 0;
3138 cleanup1:
3139 if (buff) {
3140 for (i = 0; i < sg_used; i++)
3141 kfree(buff[i]);
3142 kfree(buff);
3144 kfree(buff_size);
3145 kfree(ioc);
3146 return status;
3149 static void check_ioctl_unit_attention(struct ctlr_info *h,
3150 struct CommandList *c)
3152 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3153 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3154 (void) check_for_unit_attention(h, c);
3157 * ioctl
3159 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3161 struct ctlr_info *h;
3162 void __user *argp = (void __user *)arg;
3164 h = sdev_to_hba(dev);
3166 switch (cmd) {
3167 case CCISS_DEREGDISK:
3168 case CCISS_REGNEWDISK:
3169 case CCISS_REGNEWD:
3170 hpsa_scan_start(h->scsi_host);
3171 return 0;
3172 case CCISS_GETPCIINFO:
3173 return hpsa_getpciinfo_ioctl(h, argp);
3174 case CCISS_GETDRIVVER:
3175 return hpsa_getdrivver_ioctl(h, argp);
3176 case CCISS_PASSTHRU:
3177 return hpsa_passthru_ioctl(h, argp);
3178 case CCISS_BIG_PASSTHRU:
3179 return hpsa_big_passthru_ioctl(h, argp);
3180 default:
3181 return -ENOTTY;
3185 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
3186 unsigned char *scsi3addr, u8 reset_type)
3188 struct CommandList *c;
3190 c = cmd_alloc(h);
3191 if (!c)
3192 return -ENOMEM;
3193 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3194 RAID_CTLR_LUNID, TYPE_MSG);
3195 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3196 c->waiting = NULL;
3197 enqueue_cmd_and_start_io(h, c);
3198 /* Don't wait for completion, the reset won't complete. Don't free
3199 * the command either. This is the last command we will send before
3200 * re-initializing everything, so it doesn't matter and won't leak.
3202 return 0;
3205 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3206 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3207 int cmd_type)
3209 int pci_dir = XFER_NONE;
3210 struct CommandList *a; /* for commands to be aborted */
3212 c->cmd_type = CMD_IOCTL_PEND;
3213 c->Header.ReplyQueue = 0;
3214 if (buff != NULL && size > 0) {
3215 c->Header.SGList = 1;
3216 c->Header.SGTotal = 1;
3217 } else {
3218 c->Header.SGList = 0;
3219 c->Header.SGTotal = 0;
3221 c->Header.Tag.lower = c->busaddr;
3222 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3224 c->Request.Type.Type = cmd_type;
3225 if (cmd_type == TYPE_CMD) {
3226 switch (cmd) {
3227 case HPSA_INQUIRY:
3228 /* are we trying to read a vital product page */
3229 if (page_code != 0) {
3230 c->Request.CDB[1] = 0x01;
3231 c->Request.CDB[2] = page_code;
3233 c->Request.CDBLen = 6;
3234 c->Request.Type.Attribute = ATTR_SIMPLE;
3235 c->Request.Type.Direction = XFER_READ;
3236 c->Request.Timeout = 0;
3237 c->Request.CDB[0] = HPSA_INQUIRY;
3238 c->Request.CDB[4] = size & 0xFF;
3239 break;
3240 case HPSA_REPORT_LOG:
3241 case HPSA_REPORT_PHYS:
3242 /* Talking to controller so It's a physical command
3243 mode = 00 target = 0. Nothing to write.
3245 c->Request.CDBLen = 12;
3246 c->Request.Type.Attribute = ATTR_SIMPLE;
3247 c->Request.Type.Direction = XFER_READ;
3248 c->Request.Timeout = 0;
3249 c->Request.CDB[0] = cmd;
3250 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3251 c->Request.CDB[7] = (size >> 16) & 0xFF;
3252 c->Request.CDB[8] = (size >> 8) & 0xFF;
3253 c->Request.CDB[9] = size & 0xFF;
3254 break;
3255 case HPSA_CACHE_FLUSH:
3256 c->Request.CDBLen = 12;
3257 c->Request.Type.Attribute = ATTR_SIMPLE;
3258 c->Request.Type.Direction = XFER_WRITE;
3259 c->Request.Timeout = 0;
3260 c->Request.CDB[0] = BMIC_WRITE;
3261 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3262 c->Request.CDB[7] = (size >> 8) & 0xFF;
3263 c->Request.CDB[8] = size & 0xFF;
3264 break;
3265 case TEST_UNIT_READY:
3266 c->Request.CDBLen = 6;
3267 c->Request.Type.Attribute = ATTR_SIMPLE;
3268 c->Request.Type.Direction = XFER_NONE;
3269 c->Request.Timeout = 0;
3270 break;
3271 default:
3272 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3273 BUG();
3274 return;
3276 } else if (cmd_type == TYPE_MSG) {
3277 switch (cmd) {
3279 case HPSA_DEVICE_RESET_MSG:
3280 c->Request.CDBLen = 16;
3281 c->Request.Type.Type = 1; /* It is a MSG not a CMD */
3282 c->Request.Type.Attribute = ATTR_SIMPLE;
3283 c->Request.Type.Direction = XFER_NONE;
3284 c->Request.Timeout = 0; /* Don't time out */
3285 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3286 c->Request.CDB[0] = cmd;
3287 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3288 /* If bytes 4-7 are zero, it means reset the */
3289 /* LunID device */
3290 c->Request.CDB[4] = 0x00;
3291 c->Request.CDB[5] = 0x00;
3292 c->Request.CDB[6] = 0x00;
3293 c->Request.CDB[7] = 0x00;
3294 break;
3295 case HPSA_ABORT_MSG:
3296 a = buff; /* point to command to be aborted */
3297 dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3298 a->Header.Tag.upper, a->Header.Tag.lower,
3299 c->Header.Tag.upper, c->Header.Tag.lower);
3300 c->Request.CDBLen = 16;
3301 c->Request.Type.Type = TYPE_MSG;
3302 c->Request.Type.Attribute = ATTR_SIMPLE;
3303 c->Request.Type.Direction = XFER_WRITE;
3304 c->Request.Timeout = 0; /* Don't time out */
3305 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3306 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3307 c->Request.CDB[2] = 0x00; /* reserved */
3308 c->Request.CDB[3] = 0x00; /* reserved */
3309 /* Tag to abort goes in CDB[4]-CDB[11] */
3310 c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3311 c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3312 c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3313 c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3314 c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3315 c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3316 c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3317 c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3318 c->Request.CDB[12] = 0x00; /* reserved */
3319 c->Request.CDB[13] = 0x00; /* reserved */
3320 c->Request.CDB[14] = 0x00; /* reserved */
3321 c->Request.CDB[15] = 0x00; /* reserved */
3322 break;
3323 default:
3324 dev_warn(&h->pdev->dev, "unknown message type %d\n",
3325 cmd);
3326 BUG();
3328 } else {
3329 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3330 BUG();
3333 switch (c->Request.Type.Direction) {
3334 case XFER_READ:
3335 pci_dir = PCI_DMA_FROMDEVICE;
3336 break;
3337 case XFER_WRITE:
3338 pci_dir = PCI_DMA_TODEVICE;
3339 break;
3340 case XFER_NONE:
3341 pci_dir = PCI_DMA_NONE;
3342 break;
3343 default:
3344 pci_dir = PCI_DMA_BIDIRECTIONAL;
3347 hpsa_map_one(h->pdev, c, buff, size, pci_dir);
3349 return;
3353 * Map (physical) PCI mem into (virtual) kernel space
3355 static void __iomem *remap_pci_mem(ulong base, ulong size)
3357 ulong page_base = ((ulong) base) & PAGE_MASK;
3358 ulong page_offs = ((ulong) base) - page_base;
3359 void __iomem *page_remapped = ioremap_nocache(page_base,
3360 page_offs + size);
3362 return page_remapped ? (page_remapped + page_offs) : NULL;
3365 /* Takes cmds off the submission queue and sends them to the hardware,
3366 * then puts them on the queue of cmds waiting for completion.
3368 static void start_io(struct ctlr_info *h)
3370 struct CommandList *c;
3371 unsigned long flags;
3373 spin_lock_irqsave(&h->lock, flags);
3374 while (!list_empty(&h->reqQ)) {
3375 c = list_entry(h->reqQ.next, struct CommandList, list);
3376 /* can't do anything if fifo is full */
3377 if ((h->access.fifo_full(h))) {
3378 dev_warn(&h->pdev->dev, "fifo full\n");
3379 break;
3382 /* Get the first entry from the Request Q */
3383 removeQ(c);
3384 h->Qdepth--;
3386 /* Put job onto the completed Q */
3387 addQ(&h->cmpQ, c);
3389 /* Must increment commands_outstanding before unlocking
3390 * and submitting to avoid race checking for fifo full
3391 * condition.
3393 h->commands_outstanding++;
3394 if (h->commands_outstanding > h->max_outstanding)
3395 h->max_outstanding = h->commands_outstanding;
3397 /* Tell the controller execute command */
3398 spin_unlock_irqrestore(&h->lock, flags);
3399 h->access.submit_command(h, c);
3400 spin_lock_irqsave(&h->lock, flags);
3402 spin_unlock_irqrestore(&h->lock, flags);
3405 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3407 return h->access.command_completed(h, q);
3410 static inline bool interrupt_pending(struct ctlr_info *h)
3412 return h->access.intr_pending(h);
3415 static inline long interrupt_not_for_us(struct ctlr_info *h)
3417 return (h->access.intr_pending(h) == 0) ||
3418 (h->interrupts_enabled == 0);
3421 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3422 u32 raw_tag)
3424 if (unlikely(tag_index >= h->nr_cmds)) {
3425 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3426 return 1;
3428 return 0;
3431 static inline void finish_cmd(struct CommandList *c)
3433 unsigned long flags;
3435 spin_lock_irqsave(&c->h->lock, flags);
3436 removeQ(c);
3437 spin_unlock_irqrestore(&c->h->lock, flags);
3438 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3439 if (likely(c->cmd_type == CMD_SCSI))
3440 complete_scsi_command(c);
3441 else if (c->cmd_type == CMD_IOCTL_PEND)
3442 complete(c->waiting);
3445 static inline u32 hpsa_tag_contains_index(u32 tag)
3447 return tag & DIRECT_LOOKUP_BIT;
3450 static inline u32 hpsa_tag_to_index(u32 tag)
3452 return tag >> DIRECT_LOOKUP_SHIFT;
3456 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3458 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3459 #define HPSA_SIMPLE_ERROR_BITS 0x03
3460 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3461 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3462 return tag & ~HPSA_PERF_ERROR_BITS;
3465 /* process completion of an indexed ("direct lookup") command */
3466 static inline void process_indexed_cmd(struct ctlr_info *h,
3467 u32 raw_tag)
3469 u32 tag_index;
3470 struct CommandList *c;
3472 tag_index = hpsa_tag_to_index(raw_tag);
3473 if (!bad_tag(h, tag_index, raw_tag)) {
3474 c = h->cmd_pool + tag_index;
3475 finish_cmd(c);
3479 /* process completion of a non-indexed command */
3480 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3481 u32 raw_tag)
3483 u32 tag;
3484 struct CommandList *c = NULL;
3485 unsigned long flags;
3487 tag = hpsa_tag_discard_error_bits(h, raw_tag);
3488 spin_lock_irqsave(&h->lock, flags);
3489 list_for_each_entry(c, &h->cmpQ, list) {
3490 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3491 spin_unlock_irqrestore(&h->lock, flags);
3492 finish_cmd(c);
3493 return;
3496 spin_unlock_irqrestore(&h->lock, flags);
3497 bad_tag(h, h->nr_cmds + 1, raw_tag);
3500 /* Some controllers, like p400, will give us one interrupt
3501 * after a soft reset, even if we turned interrupts off.
3502 * Only need to check for this in the hpsa_xxx_discard_completions
3503 * functions.
3505 static int ignore_bogus_interrupt(struct ctlr_info *h)
3507 if (likely(!reset_devices))
3508 return 0;
3510 if (likely(h->interrupts_enabled))
3511 return 0;
3513 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3514 "(known firmware bug.) Ignoring.\n");
3516 return 1;
3520 * Convert &h->q[x] (passed to interrupt handlers) back to h.
3521 * Relies on (h-q[x] == x) being true for x such that
3522 * 0 <= x < MAX_REPLY_QUEUES.
3524 static struct ctlr_info *queue_to_hba(u8 *queue)
3526 return container_of((queue - *queue), struct ctlr_info, q[0]);
3529 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3531 struct ctlr_info *h = queue_to_hba(queue);
3532 u8 q = *(u8 *) queue;
3533 u32 raw_tag;
3535 if (ignore_bogus_interrupt(h))
3536 return IRQ_NONE;
3538 if (interrupt_not_for_us(h))
3539 return IRQ_NONE;
3540 h->last_intr_timestamp = get_jiffies_64();
3541 while (interrupt_pending(h)) {
3542 raw_tag = get_next_completion(h, q);
3543 while (raw_tag != FIFO_EMPTY)
3544 raw_tag = next_command(h, q);
3546 return IRQ_HANDLED;
3549 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3551 struct ctlr_info *h = queue_to_hba(queue);
3552 u32 raw_tag;
3553 u8 q = *(u8 *) queue;
3555 if (ignore_bogus_interrupt(h))
3556 return IRQ_NONE;
3558 h->last_intr_timestamp = get_jiffies_64();
3559 raw_tag = get_next_completion(h, q);
3560 while (raw_tag != FIFO_EMPTY)
3561 raw_tag = next_command(h, q);
3562 return IRQ_HANDLED;
3565 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3567 struct ctlr_info *h = queue_to_hba((u8 *) queue);
3568 u32 raw_tag;
3569 u8 q = *(u8 *) queue;
3571 if (interrupt_not_for_us(h))
3572 return IRQ_NONE;
3573 h->last_intr_timestamp = get_jiffies_64();
3574 while (interrupt_pending(h)) {
3575 raw_tag = get_next_completion(h, q);
3576 while (raw_tag != FIFO_EMPTY) {
3577 if (likely(hpsa_tag_contains_index(raw_tag)))
3578 process_indexed_cmd(h, raw_tag);
3579 else
3580 process_nonindexed_cmd(h, raw_tag);
3581 raw_tag = next_command(h, q);
3584 return IRQ_HANDLED;
3587 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3589 struct ctlr_info *h = queue_to_hba(queue);
3590 u32 raw_tag;
3591 u8 q = *(u8 *) queue;
3593 h->last_intr_timestamp = get_jiffies_64();
3594 raw_tag = get_next_completion(h, q);
3595 while (raw_tag != FIFO_EMPTY) {
3596 if (likely(hpsa_tag_contains_index(raw_tag)))
3597 process_indexed_cmd(h, raw_tag);
3598 else
3599 process_nonindexed_cmd(h, raw_tag);
3600 raw_tag = next_command(h, q);
3602 return IRQ_HANDLED;
3605 /* Send a message CDB to the firmware. Careful, this only works
3606 * in simple mode, not performant mode due to the tag lookup.
3607 * We only ever use this immediately after a controller reset.
3609 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3610 unsigned char type)
3612 struct Command {
3613 struct CommandListHeader CommandHeader;
3614 struct RequestBlock Request;
3615 struct ErrDescriptor ErrorDescriptor;
3617 struct Command *cmd;
3618 static const size_t cmd_sz = sizeof(*cmd) +
3619 sizeof(cmd->ErrorDescriptor);
3620 dma_addr_t paddr64;
3621 uint32_t paddr32, tag;
3622 void __iomem *vaddr;
3623 int i, err;
3625 vaddr = pci_ioremap_bar(pdev, 0);
3626 if (vaddr == NULL)
3627 return -ENOMEM;
3629 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3630 * CCISS commands, so they must be allocated from the lower 4GiB of
3631 * memory.
3633 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3634 if (err) {
3635 iounmap(vaddr);
3636 return -ENOMEM;
3639 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3640 if (cmd == NULL) {
3641 iounmap(vaddr);
3642 return -ENOMEM;
3645 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3646 * although there's no guarantee, we assume that the address is at
3647 * least 4-byte aligned (most likely, it's page-aligned).
3649 paddr32 = paddr64;
3651 cmd->CommandHeader.ReplyQueue = 0;
3652 cmd->CommandHeader.SGList = 0;
3653 cmd->CommandHeader.SGTotal = 0;
3654 cmd->CommandHeader.Tag.lower = paddr32;
3655 cmd->CommandHeader.Tag.upper = 0;
3656 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3658 cmd->Request.CDBLen = 16;
3659 cmd->Request.Type.Type = TYPE_MSG;
3660 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3661 cmd->Request.Type.Direction = XFER_NONE;
3662 cmd->Request.Timeout = 0; /* Don't time out */
3663 cmd->Request.CDB[0] = opcode;
3664 cmd->Request.CDB[1] = type;
3665 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3666 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3667 cmd->ErrorDescriptor.Addr.upper = 0;
3668 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3670 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3672 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3673 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3674 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3675 break;
3676 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3679 iounmap(vaddr);
3681 /* we leak the DMA buffer here ... no choice since the controller could
3682 * still complete the command.
3684 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3685 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3686 opcode, type);
3687 return -ETIMEDOUT;
3690 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3692 if (tag & HPSA_ERROR_BIT) {
3693 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3694 opcode, type);
3695 return -EIO;
3698 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3699 opcode, type);
3700 return 0;
3703 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3705 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3706 void * __iomem vaddr, u32 use_doorbell)
3708 u16 pmcsr;
3709 int pos;
3711 if (use_doorbell) {
3712 /* For everything after the P600, the PCI power state method
3713 * of resetting the controller doesn't work, so we have this
3714 * other way using the doorbell register.
3716 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3717 writel(use_doorbell, vaddr + SA5_DOORBELL);
3718 } else { /* Try to do it the PCI power state way */
3720 /* Quoting from the Open CISS Specification: "The Power
3721 * Management Control/Status Register (CSR) controls the power
3722 * state of the device. The normal operating state is D0,
3723 * CSR=00h. The software off state is D3, CSR=03h. To reset
3724 * the controller, place the interface device in D3 then to D0,
3725 * this causes a secondary PCI reset which will reset the
3726 * controller." */
3728 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3729 if (pos == 0) {
3730 dev_err(&pdev->dev,
3731 "hpsa_reset_controller: "
3732 "PCI PM not supported\n");
3733 return -ENODEV;
3735 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3736 /* enter the D3hot power management state */
3737 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3738 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3739 pmcsr |= PCI_D3hot;
3740 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3742 msleep(500);
3744 /* enter the D0 power management state */
3745 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3746 pmcsr |= PCI_D0;
3747 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3750 * The P600 requires a small delay when changing states.
3751 * Otherwise we may think the board did not reset and we bail.
3752 * This for kdump only and is particular to the P600.
3754 msleep(500);
3756 return 0;
3759 static __devinit void init_driver_version(char *driver_version, int len)
3761 memset(driver_version, 0, len);
3762 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3765 static __devinit int write_driver_ver_to_cfgtable(
3766 struct CfgTable __iomem *cfgtable)
3768 char *driver_version;
3769 int i, size = sizeof(cfgtable->driver_version);
3771 driver_version = kmalloc(size, GFP_KERNEL);
3772 if (!driver_version)
3773 return -ENOMEM;
3775 init_driver_version(driver_version, size);
3776 for (i = 0; i < size; i++)
3777 writeb(driver_version[i], &cfgtable->driver_version[i]);
3778 kfree(driver_version);
3779 return 0;
3782 static __devinit void read_driver_ver_from_cfgtable(
3783 struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3785 int i;
3787 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3788 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3791 static __devinit int controller_reset_failed(
3792 struct CfgTable __iomem *cfgtable)
3795 char *driver_ver, *old_driver_ver;
3796 int rc, size = sizeof(cfgtable->driver_version);
3798 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3799 if (!old_driver_ver)
3800 return -ENOMEM;
3801 driver_ver = old_driver_ver + size;
3803 /* After a reset, the 32 bytes of "driver version" in the cfgtable
3804 * should have been changed, otherwise we know the reset failed.
3806 init_driver_version(old_driver_ver, size);
3807 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3808 rc = !memcmp(driver_ver, old_driver_ver, size);
3809 kfree(old_driver_ver);
3810 return rc;
3812 /* This does a hard reset of the controller using PCI power management
3813 * states or the using the doorbell register.
3815 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3817 u64 cfg_offset;
3818 u32 cfg_base_addr;
3819 u64 cfg_base_addr_index;
3820 void __iomem *vaddr;
3821 unsigned long paddr;
3822 u32 misc_fw_support;
3823 int rc;
3824 struct CfgTable __iomem *cfgtable;
3825 u32 use_doorbell;
3826 u32 board_id;
3827 u16 command_register;
3829 /* For controllers as old as the P600, this is very nearly
3830 * the same thing as
3832 * pci_save_state(pci_dev);
3833 * pci_set_power_state(pci_dev, PCI_D3hot);
3834 * pci_set_power_state(pci_dev, PCI_D0);
3835 * pci_restore_state(pci_dev);
3837 * For controllers newer than the P600, the pci power state
3838 * method of resetting doesn't work so we have another way
3839 * using the doorbell register.
3842 rc = hpsa_lookup_board_id(pdev, &board_id);
3843 if (rc < 0 || !ctlr_is_resettable(board_id)) {
3844 dev_warn(&pdev->dev, "Not resetting device.\n");
3845 return -ENODEV;
3848 /* if controller is soft- but not hard resettable... */
3849 if (!ctlr_is_hard_resettable(board_id))
3850 return -ENOTSUPP; /* try soft reset later. */
3852 /* Save the PCI command register */
3853 pci_read_config_word(pdev, 4, &command_register);
3854 /* Turn the board off. This is so that later pci_restore_state()
3855 * won't turn the board on before the rest of config space is ready.
3857 pci_disable_device(pdev);
3858 pci_save_state(pdev);
3860 /* find the first memory BAR, so we can find the cfg table */
3861 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3862 if (rc)
3863 return rc;
3864 vaddr = remap_pci_mem(paddr, 0x250);
3865 if (!vaddr)
3866 return -ENOMEM;
3868 /* find cfgtable in order to check if reset via doorbell is supported */
3869 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3870 &cfg_base_addr_index, &cfg_offset);
3871 if (rc)
3872 goto unmap_vaddr;
3873 cfgtable = remap_pci_mem(pci_resource_start(pdev,
3874 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3875 if (!cfgtable) {
3876 rc = -ENOMEM;
3877 goto unmap_vaddr;
3879 rc = write_driver_ver_to_cfgtable(cfgtable);
3880 if (rc)
3881 goto unmap_vaddr;
3883 /* If reset via doorbell register is supported, use that.
3884 * There are two such methods. Favor the newest method.
3886 misc_fw_support = readl(&cfgtable->misc_fw_support);
3887 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3888 if (use_doorbell) {
3889 use_doorbell = DOORBELL_CTLR_RESET2;
3890 } else {
3891 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3892 if (use_doorbell) {
3893 dev_warn(&pdev->dev, "Soft reset not supported. "
3894 "Firmware update is required.\n");
3895 rc = -ENOTSUPP; /* try soft reset */
3896 goto unmap_cfgtable;
3900 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3901 if (rc)
3902 goto unmap_cfgtable;
3904 pci_restore_state(pdev);
3905 rc = pci_enable_device(pdev);
3906 if (rc) {
3907 dev_warn(&pdev->dev, "failed to enable device.\n");
3908 goto unmap_cfgtable;
3910 pci_write_config_word(pdev, 4, command_register);
3912 /* Some devices (notably the HP Smart Array 5i Controller)
3913 need a little pause here */
3914 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3916 /* Wait for board to become not ready, then ready. */
3917 dev_info(&pdev->dev, "Waiting for board to reset.\n");
3918 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3919 if (rc) {
3920 dev_warn(&pdev->dev,
3921 "failed waiting for board to reset."
3922 " Will try soft reset.\n");
3923 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3924 goto unmap_cfgtable;
3926 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3927 if (rc) {
3928 dev_warn(&pdev->dev,
3929 "failed waiting for board to become ready "
3930 "after hard reset\n");
3931 goto unmap_cfgtable;
3934 rc = controller_reset_failed(vaddr);
3935 if (rc < 0)
3936 goto unmap_cfgtable;
3937 if (rc) {
3938 dev_warn(&pdev->dev, "Unable to successfully reset "
3939 "controller. Will try soft reset.\n");
3940 rc = -ENOTSUPP;
3941 } else {
3942 dev_info(&pdev->dev, "board ready after hard reset.\n");
3945 unmap_cfgtable:
3946 iounmap(cfgtable);
3948 unmap_vaddr:
3949 iounmap(vaddr);
3950 return rc;
3954 * We cannot read the structure directly, for portability we must use
3955 * the io functions.
3956 * This is for debug only.
3958 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3960 #ifdef HPSA_DEBUG
3961 int i;
3962 char temp_name[17];
3964 dev_info(dev, "Controller Configuration information\n");
3965 dev_info(dev, "------------------------------------\n");
3966 for (i = 0; i < 4; i++)
3967 temp_name[i] = readb(&(tb->Signature[i]));
3968 temp_name[4] = '\0';
3969 dev_info(dev, " Signature = %s\n", temp_name);
3970 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
3971 dev_info(dev, " Transport methods supported = 0x%x\n",
3972 readl(&(tb->TransportSupport)));
3973 dev_info(dev, " Transport methods active = 0x%x\n",
3974 readl(&(tb->TransportActive)));
3975 dev_info(dev, " Requested transport Method = 0x%x\n",
3976 readl(&(tb->HostWrite.TransportRequest)));
3977 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
3978 readl(&(tb->HostWrite.CoalIntDelay)));
3979 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
3980 readl(&(tb->HostWrite.CoalIntCount)));
3981 dev_info(dev, " Max outstanding commands = 0x%d\n",
3982 readl(&(tb->CmdsOutMax)));
3983 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3984 for (i = 0; i < 16; i++)
3985 temp_name[i] = readb(&(tb->ServerName[i]));
3986 temp_name[16] = '\0';
3987 dev_info(dev, " Server Name = %s\n", temp_name);
3988 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
3989 readl(&(tb->HeartBeat)));
3990 #endif /* HPSA_DEBUG */
3993 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3995 int i, offset, mem_type, bar_type;
3997 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3998 return 0;
3999 offset = 0;
4000 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4001 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
4002 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
4003 offset += 4;
4004 else {
4005 mem_type = pci_resource_flags(pdev, i) &
4006 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
4007 switch (mem_type) {
4008 case PCI_BASE_ADDRESS_MEM_TYPE_32:
4009 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
4010 offset += 4; /* 32 bit */
4011 break;
4012 case PCI_BASE_ADDRESS_MEM_TYPE_64:
4013 offset += 8;
4014 break;
4015 default: /* reserved in PCI 2.2 */
4016 dev_warn(&pdev->dev,
4017 "base address is invalid\n");
4018 return -1;
4019 break;
4022 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4023 return i + 1;
4025 return -1;
4028 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4029 * controllers that are capable. If not, we use IO-APIC mode.
4032 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
4034 #ifdef CONFIG_PCI_MSI
4035 int err, i;
4036 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4038 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4039 hpsa_msix_entries[i].vector = 0;
4040 hpsa_msix_entries[i].entry = i;
4043 /* Some boards advertise MSI but don't really support it */
4044 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4045 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4046 goto default_int_mode;
4047 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4048 dev_info(&h->pdev->dev, "MSIX\n");
4049 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4050 MAX_REPLY_QUEUES);
4051 if (!err) {
4052 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4053 h->intr[i] = hpsa_msix_entries[i].vector;
4054 h->msix_vector = 1;
4055 return;
4057 if (err > 0) {
4058 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4059 "available\n", err);
4060 goto default_int_mode;
4061 } else {
4062 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4063 err);
4064 goto default_int_mode;
4067 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4068 dev_info(&h->pdev->dev, "MSI\n");
4069 if (!pci_enable_msi(h->pdev))
4070 h->msi_vector = 1;
4071 else
4072 dev_warn(&h->pdev->dev, "MSI init failed\n");
4074 default_int_mode:
4075 #endif /* CONFIG_PCI_MSI */
4076 /* if we get here we're going to use the default interrupt mode */
4077 h->intr[h->intr_mode] = h->pdev->irq;
4080 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4082 int i;
4083 u32 subsystem_vendor_id, subsystem_device_id;
4085 subsystem_vendor_id = pdev->subsystem_vendor;
4086 subsystem_device_id = pdev->subsystem_device;
4087 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4088 subsystem_vendor_id;
4090 for (i = 0; i < ARRAY_SIZE(products); i++)
4091 if (*board_id == products[i].board_id)
4092 return i;
4094 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4095 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4096 !hpsa_allow_any) {
4097 dev_warn(&pdev->dev, "unrecognized board ID: "
4098 "0x%08x, ignoring.\n", *board_id);
4099 return -ENODEV;
4101 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4104 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4105 unsigned long *memory_bar)
4107 int i;
4109 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4110 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4111 /* addressing mode bits already removed */
4112 *memory_bar = pci_resource_start(pdev, i);
4113 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4114 *memory_bar);
4115 return 0;
4117 dev_warn(&pdev->dev, "no memory BAR found\n");
4118 return -ENODEV;
4121 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
4122 void __iomem *vaddr, int wait_for_ready)
4124 int i, iterations;
4125 u32 scratchpad;
4126 if (wait_for_ready)
4127 iterations = HPSA_BOARD_READY_ITERATIONS;
4128 else
4129 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4131 for (i = 0; i < iterations; i++) {
4132 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4133 if (wait_for_ready) {
4134 if (scratchpad == HPSA_FIRMWARE_READY)
4135 return 0;
4136 } else {
4137 if (scratchpad != HPSA_FIRMWARE_READY)
4138 return 0;
4140 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4142 dev_warn(&pdev->dev, "board not ready, timed out.\n");
4143 return -ENODEV;
4146 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
4147 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4148 u64 *cfg_offset)
4150 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4151 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4152 *cfg_base_addr &= (u32) 0x0000ffff;
4153 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4154 if (*cfg_base_addr_index == -1) {
4155 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4156 return -ENODEV;
4158 return 0;
4161 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
4163 u64 cfg_offset;
4164 u32 cfg_base_addr;
4165 u64 cfg_base_addr_index;
4166 u32 trans_offset;
4167 int rc;
4169 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4170 &cfg_base_addr_index, &cfg_offset);
4171 if (rc)
4172 return rc;
4173 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4174 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4175 if (!h->cfgtable)
4176 return -ENOMEM;
4177 rc = write_driver_ver_to_cfgtable(h->cfgtable);
4178 if (rc)
4179 return rc;
4180 /* Find performant mode table. */
4181 trans_offset = readl(&h->cfgtable->TransMethodOffset);
4182 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4183 cfg_base_addr_index)+cfg_offset+trans_offset,
4184 sizeof(*h->transtable));
4185 if (!h->transtable)
4186 return -ENOMEM;
4187 return 0;
4190 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4192 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4194 /* Limit commands in memory limited kdump scenario. */
4195 if (reset_devices && h->max_commands > 32)
4196 h->max_commands = 32;
4198 if (h->max_commands < 16) {
4199 dev_warn(&h->pdev->dev, "Controller reports "
4200 "max supported commands of %d, an obvious lie. "
4201 "Using 16. Ensure that firmware is up to date.\n",
4202 h->max_commands);
4203 h->max_commands = 16;
4207 /* Interrogate the hardware for some limits:
4208 * max commands, max SG elements without chaining, and with chaining,
4209 * SG chain block size, etc.
4211 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
4213 hpsa_get_max_perf_mode_cmds(h);
4214 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4215 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4217 * Limit in-command s/g elements to 32 save dma'able memory.
4218 * Howvever spec says if 0, use 31
4220 h->max_cmd_sg_entries = 31;
4221 if (h->maxsgentries > 512) {
4222 h->max_cmd_sg_entries = 32;
4223 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4224 h->maxsgentries--; /* save one for chain pointer */
4225 } else {
4226 h->maxsgentries = 31; /* default to traditional values */
4227 h->chainsize = 0;
4230 /* Find out what task management functions are supported and cache */
4231 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4234 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4236 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4237 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4238 return false;
4240 return true;
4243 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4244 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4246 #ifdef CONFIG_X86
4247 u32 prefetch;
4249 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4250 prefetch |= 0x100;
4251 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4252 #endif
4255 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4256 * in a prefetch beyond physical memory.
4258 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4260 u32 dma_prefetch;
4262 if (h->board_id != 0x3225103C)
4263 return;
4264 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4265 dma_prefetch |= 0x8000;
4266 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4269 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4271 int i;
4272 u32 doorbell_value;
4273 unsigned long flags;
4275 /* under certain very rare conditions, this can take awhile.
4276 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4277 * as we enter this code.)
4279 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4280 spin_lock_irqsave(&h->lock, flags);
4281 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4282 spin_unlock_irqrestore(&h->lock, flags);
4283 if (!(doorbell_value & CFGTBL_ChangeReq))
4284 break;
4285 /* delay and try again */
4286 usleep_range(10000, 20000);
4290 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
4292 u32 trans_support;
4294 trans_support = readl(&(h->cfgtable->TransportSupport));
4295 if (!(trans_support & SIMPLE_MODE))
4296 return -ENOTSUPP;
4298 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4299 /* Update the field, and then ring the doorbell */
4300 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4301 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4302 hpsa_wait_for_mode_change_ack(h);
4303 print_cfg_table(&h->pdev->dev, h->cfgtable);
4304 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4305 dev_warn(&h->pdev->dev,
4306 "unable to get board into simple mode\n");
4307 return -ENODEV;
4309 h->transMethod = CFGTBL_Trans_Simple;
4310 return 0;
4313 static int __devinit hpsa_pci_init(struct ctlr_info *h)
4315 int prod_index, err;
4317 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4318 if (prod_index < 0)
4319 return -ENODEV;
4320 h->product_name = products[prod_index].product_name;
4321 h->access = *(products[prod_index].access);
4323 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4324 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4326 err = pci_enable_device(h->pdev);
4327 if (err) {
4328 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4329 return err;
4332 /* Enable bus mastering (pci_disable_device may disable this) */
4333 pci_set_master(h->pdev);
4335 err = pci_request_regions(h->pdev, HPSA);
4336 if (err) {
4337 dev_err(&h->pdev->dev,
4338 "cannot obtain PCI resources, aborting\n");
4339 return err;
4341 hpsa_interrupt_mode(h);
4342 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4343 if (err)
4344 goto err_out_free_res;
4345 h->vaddr = remap_pci_mem(h->paddr, 0x250);
4346 if (!h->vaddr) {
4347 err = -ENOMEM;
4348 goto err_out_free_res;
4350 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4351 if (err)
4352 goto err_out_free_res;
4353 err = hpsa_find_cfgtables(h);
4354 if (err)
4355 goto err_out_free_res;
4356 hpsa_find_board_params(h);
4358 if (!hpsa_CISS_signature_present(h)) {
4359 err = -ENODEV;
4360 goto err_out_free_res;
4362 hpsa_enable_scsi_prefetch(h);
4363 hpsa_p600_dma_prefetch_quirk(h);
4364 err = hpsa_enter_simple_mode(h);
4365 if (err)
4366 goto err_out_free_res;
4367 return 0;
4369 err_out_free_res:
4370 if (h->transtable)
4371 iounmap(h->transtable);
4372 if (h->cfgtable)
4373 iounmap(h->cfgtable);
4374 if (h->vaddr)
4375 iounmap(h->vaddr);
4376 pci_disable_device(h->pdev);
4377 pci_release_regions(h->pdev);
4378 return err;
4381 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
4383 int rc;
4385 #define HBA_INQUIRY_BYTE_COUNT 64
4386 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4387 if (!h->hba_inquiry_data)
4388 return;
4389 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4390 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4391 if (rc != 0) {
4392 kfree(h->hba_inquiry_data);
4393 h->hba_inquiry_data = NULL;
4397 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
4399 int rc, i;
4401 if (!reset_devices)
4402 return 0;
4404 /* Reset the controller with a PCI power-cycle or via doorbell */
4405 rc = hpsa_kdump_hard_reset_controller(pdev);
4407 /* -ENOTSUPP here means we cannot reset the controller
4408 * but it's already (and still) up and running in
4409 * "performant mode". Or, it might be 640x, which can't reset
4410 * due to concerns about shared bbwc between 6402/6404 pair.
4412 if (rc == -ENOTSUPP)
4413 return rc; /* just try to do the kdump anyhow. */
4414 if (rc)
4415 return -ENODEV;
4417 /* Now try to get the controller to respond to a no-op */
4418 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4419 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4420 if (hpsa_noop(pdev) == 0)
4421 break;
4422 else
4423 dev_warn(&pdev->dev, "no-op failed%s\n",
4424 (i < 11 ? "; re-trying" : ""));
4426 return 0;
4429 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4431 h->cmd_pool_bits = kzalloc(
4432 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4433 sizeof(unsigned long), GFP_KERNEL);
4434 h->cmd_pool = pci_alloc_consistent(h->pdev,
4435 h->nr_cmds * sizeof(*h->cmd_pool),
4436 &(h->cmd_pool_dhandle));
4437 h->errinfo_pool = pci_alloc_consistent(h->pdev,
4438 h->nr_cmds * sizeof(*h->errinfo_pool),
4439 &(h->errinfo_pool_dhandle));
4440 if ((h->cmd_pool_bits == NULL)
4441 || (h->cmd_pool == NULL)
4442 || (h->errinfo_pool == NULL)) {
4443 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4444 return -ENOMEM;
4446 return 0;
4449 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4451 kfree(h->cmd_pool_bits);
4452 if (h->cmd_pool)
4453 pci_free_consistent(h->pdev,
4454 h->nr_cmds * sizeof(struct CommandList),
4455 h->cmd_pool, h->cmd_pool_dhandle);
4456 if (h->errinfo_pool)
4457 pci_free_consistent(h->pdev,
4458 h->nr_cmds * sizeof(struct ErrorInfo),
4459 h->errinfo_pool,
4460 h->errinfo_pool_dhandle);
4463 static int hpsa_request_irq(struct ctlr_info *h,
4464 irqreturn_t (*msixhandler)(int, void *),
4465 irqreturn_t (*intxhandler)(int, void *))
4467 int rc, i;
4470 * initialize h->q[x] = x so that interrupt handlers know which
4471 * queue to process.
4473 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4474 h->q[i] = (u8) i;
4476 if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4477 /* If performant mode and MSI-X, use multiple reply queues */
4478 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4479 rc = request_irq(h->intr[i], msixhandler,
4480 0, h->devname,
4481 &h->q[i]);
4482 } else {
4483 /* Use single reply pool */
4484 if (h->msix_vector || h->msi_vector) {
4485 rc = request_irq(h->intr[h->intr_mode],
4486 msixhandler, 0, h->devname,
4487 &h->q[h->intr_mode]);
4488 } else {
4489 rc = request_irq(h->intr[h->intr_mode],
4490 intxhandler, IRQF_SHARED, h->devname,
4491 &h->q[h->intr_mode]);
4494 if (rc) {
4495 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4496 h->intr[h->intr_mode], h->devname);
4497 return -ENODEV;
4499 return 0;
4502 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4504 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4505 HPSA_RESET_TYPE_CONTROLLER)) {
4506 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4507 return -EIO;
4510 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4511 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4512 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4513 return -1;
4516 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4517 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4518 dev_warn(&h->pdev->dev, "Board failed to become ready "
4519 "after soft reset.\n");
4520 return -1;
4523 return 0;
4526 static void free_irqs(struct ctlr_info *h)
4528 int i;
4530 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4531 /* Single reply queue, only one irq to free */
4532 i = h->intr_mode;
4533 free_irq(h->intr[i], &h->q[i]);
4534 return;
4537 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4538 free_irq(h->intr[i], &h->q[i]);
4541 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4543 free_irqs(h);
4544 #ifdef CONFIG_PCI_MSI
4545 if (h->msix_vector) {
4546 if (h->pdev->msix_enabled)
4547 pci_disable_msix(h->pdev);
4548 } else if (h->msi_vector) {
4549 if (h->pdev->msi_enabled)
4550 pci_disable_msi(h->pdev);
4552 #endif /* CONFIG_PCI_MSI */
4555 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4557 hpsa_free_irqs_and_disable_msix(h);
4558 hpsa_free_sg_chain_blocks(h);
4559 hpsa_free_cmd_pool(h);
4560 kfree(h->blockFetchTable);
4561 pci_free_consistent(h->pdev, h->reply_pool_size,
4562 h->reply_pool, h->reply_pool_dhandle);
4563 if (h->vaddr)
4564 iounmap(h->vaddr);
4565 if (h->transtable)
4566 iounmap(h->transtable);
4567 if (h->cfgtable)
4568 iounmap(h->cfgtable);
4569 pci_release_regions(h->pdev);
4570 kfree(h);
4573 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4575 assert_spin_locked(&lockup_detector_lock);
4576 if (!hpsa_lockup_detector)
4577 return;
4578 if (h->lockup_detected)
4579 return; /* already stopped the lockup detector */
4580 list_del(&h->lockup_list);
4583 /* Called when controller lockup detected. */
4584 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4586 struct CommandList *c = NULL;
4588 assert_spin_locked(&h->lock);
4589 /* Mark all outstanding commands as failed and complete them. */
4590 while (!list_empty(list)) {
4591 c = list_entry(list->next, struct CommandList, list);
4592 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4593 finish_cmd(c);
4597 static void controller_lockup_detected(struct ctlr_info *h)
4599 unsigned long flags;
4601 assert_spin_locked(&lockup_detector_lock);
4602 remove_ctlr_from_lockup_detector_list(h);
4603 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4604 spin_lock_irqsave(&h->lock, flags);
4605 h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4606 spin_unlock_irqrestore(&h->lock, flags);
4607 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4608 h->lockup_detected);
4609 pci_disable_device(h->pdev);
4610 spin_lock_irqsave(&h->lock, flags);
4611 fail_all_cmds_on_list(h, &h->cmpQ);
4612 fail_all_cmds_on_list(h, &h->reqQ);
4613 spin_unlock_irqrestore(&h->lock, flags);
4616 static void detect_controller_lockup(struct ctlr_info *h)
4618 u64 now;
4619 u32 heartbeat;
4620 unsigned long flags;
4622 assert_spin_locked(&lockup_detector_lock);
4623 now = get_jiffies_64();
4624 /* If we've received an interrupt recently, we're ok. */
4625 if (time_after64(h->last_intr_timestamp +
4626 (h->heartbeat_sample_interval), now))
4627 return;
4630 * If we've already checked the heartbeat recently, we're ok.
4631 * This could happen if someone sends us a signal. We
4632 * otherwise don't care about signals in this thread.
4634 if (time_after64(h->last_heartbeat_timestamp +
4635 (h->heartbeat_sample_interval), now))
4636 return;
4638 /* If heartbeat has not changed since we last looked, we're not ok. */
4639 spin_lock_irqsave(&h->lock, flags);
4640 heartbeat = readl(&h->cfgtable->HeartBeat);
4641 spin_unlock_irqrestore(&h->lock, flags);
4642 if (h->last_heartbeat == heartbeat) {
4643 controller_lockup_detected(h);
4644 return;
4647 /* We're ok. */
4648 h->last_heartbeat = heartbeat;
4649 h->last_heartbeat_timestamp = now;
4652 static int detect_controller_lockup_thread(void *notused)
4654 struct ctlr_info *h;
4655 unsigned long flags;
4657 while (1) {
4658 struct list_head *this, *tmp;
4660 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4661 if (kthread_should_stop())
4662 break;
4663 spin_lock_irqsave(&lockup_detector_lock, flags);
4664 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4665 h = list_entry(this, struct ctlr_info, lockup_list);
4666 detect_controller_lockup(h);
4668 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4670 return 0;
4673 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4675 unsigned long flags;
4677 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4678 spin_lock_irqsave(&lockup_detector_lock, flags);
4679 list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4680 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4683 static void start_controller_lockup_detector(struct ctlr_info *h)
4685 /* Start the lockup detector thread if not already started */
4686 if (!hpsa_lockup_detector) {
4687 spin_lock_init(&lockup_detector_lock);
4688 hpsa_lockup_detector =
4689 kthread_run(detect_controller_lockup_thread,
4690 NULL, HPSA);
4692 if (!hpsa_lockup_detector) {
4693 dev_warn(&h->pdev->dev,
4694 "Could not start lockup detector thread\n");
4695 return;
4697 add_ctlr_to_lockup_detector_list(h);
4700 static void stop_controller_lockup_detector(struct ctlr_info *h)
4702 unsigned long flags;
4704 spin_lock_irqsave(&lockup_detector_lock, flags);
4705 remove_ctlr_from_lockup_detector_list(h);
4706 /* If the list of ctlr's to monitor is empty, stop the thread */
4707 if (list_empty(&hpsa_ctlr_list)) {
4708 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4709 kthread_stop(hpsa_lockup_detector);
4710 spin_lock_irqsave(&lockup_detector_lock, flags);
4711 hpsa_lockup_detector = NULL;
4713 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4716 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4717 const struct pci_device_id *ent)
4719 int dac, rc;
4720 struct ctlr_info *h;
4721 int try_soft_reset = 0;
4722 unsigned long flags;
4724 if (number_of_controllers == 0)
4725 printk(KERN_INFO DRIVER_NAME "\n");
4727 rc = hpsa_init_reset_devices(pdev);
4728 if (rc) {
4729 if (rc != -ENOTSUPP)
4730 return rc;
4731 /* If the reset fails in a particular way (it has no way to do
4732 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4733 * a soft reset once we get the controller configured up to the
4734 * point that it can accept a command.
4736 try_soft_reset = 1;
4737 rc = 0;
4740 reinit_after_soft_reset:
4742 /* Command structures must be aligned on a 32-byte boundary because
4743 * the 5 lower bits of the address are used by the hardware. and by
4744 * the driver. See comments in hpsa.h for more info.
4746 #define COMMANDLIST_ALIGNMENT 32
4747 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4748 h = kzalloc(sizeof(*h), GFP_KERNEL);
4749 if (!h)
4750 return -ENOMEM;
4752 h->pdev = pdev;
4753 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4754 INIT_LIST_HEAD(&h->cmpQ);
4755 INIT_LIST_HEAD(&h->reqQ);
4756 spin_lock_init(&h->lock);
4757 spin_lock_init(&h->scan_lock);
4758 rc = hpsa_pci_init(h);
4759 if (rc != 0)
4760 goto clean1;
4762 sprintf(h->devname, HPSA "%d", number_of_controllers);
4763 h->ctlr = number_of_controllers;
4764 number_of_controllers++;
4766 /* configure PCI DMA stuff */
4767 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4768 if (rc == 0) {
4769 dac = 1;
4770 } else {
4771 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4772 if (rc == 0) {
4773 dac = 0;
4774 } else {
4775 dev_err(&pdev->dev, "no suitable DMA available\n");
4776 goto clean1;
4780 /* make sure the board interrupts are off */
4781 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4783 if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4784 goto clean2;
4785 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4786 h->devname, pdev->device,
4787 h->intr[h->intr_mode], dac ? "" : " not");
4788 if (hpsa_allocate_cmd_pool(h))
4789 goto clean4;
4790 if (hpsa_allocate_sg_chain_blocks(h))
4791 goto clean4;
4792 init_waitqueue_head(&h->scan_wait_queue);
4793 h->scan_finished = 1; /* no scan currently in progress */
4795 pci_set_drvdata(pdev, h);
4796 h->ndevices = 0;
4797 h->scsi_host = NULL;
4798 spin_lock_init(&h->devlock);
4799 hpsa_put_ctlr_into_performant_mode(h);
4801 /* At this point, the controller is ready to take commands.
4802 * Now, if reset_devices and the hard reset didn't work, try
4803 * the soft reset and see if that works.
4805 if (try_soft_reset) {
4807 /* This is kind of gross. We may or may not get a completion
4808 * from the soft reset command, and if we do, then the value
4809 * from the fifo may or may not be valid. So, we wait 10 secs
4810 * after the reset throwing away any completions we get during
4811 * that time. Unregister the interrupt handler and register
4812 * fake ones to scoop up any residual completions.
4814 spin_lock_irqsave(&h->lock, flags);
4815 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4816 spin_unlock_irqrestore(&h->lock, flags);
4817 free_irqs(h);
4818 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4819 hpsa_intx_discard_completions);
4820 if (rc) {
4821 dev_warn(&h->pdev->dev, "Failed to request_irq after "
4822 "soft reset.\n");
4823 goto clean4;
4826 rc = hpsa_kdump_soft_reset(h);
4827 if (rc)
4828 /* Neither hard nor soft reset worked, we're hosed. */
4829 goto clean4;
4831 dev_info(&h->pdev->dev, "Board READY.\n");
4832 dev_info(&h->pdev->dev,
4833 "Waiting for stale completions to drain.\n");
4834 h->access.set_intr_mask(h, HPSA_INTR_ON);
4835 msleep(10000);
4836 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4838 rc = controller_reset_failed(h->cfgtable);
4839 if (rc)
4840 dev_info(&h->pdev->dev,
4841 "Soft reset appears to have failed.\n");
4843 /* since the controller's reset, we have to go back and re-init
4844 * everything. Easiest to just forget what we've done and do it
4845 * all over again.
4847 hpsa_undo_allocations_after_kdump_soft_reset(h);
4848 try_soft_reset = 0;
4849 if (rc)
4850 /* don't go to clean4, we already unallocated */
4851 return -ENODEV;
4853 goto reinit_after_soft_reset;
4856 /* Turn the interrupts on so we can service requests */
4857 h->access.set_intr_mask(h, HPSA_INTR_ON);
4859 hpsa_hba_inquiry(h);
4860 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
4861 start_controller_lockup_detector(h);
4862 return 1;
4864 clean4:
4865 hpsa_free_sg_chain_blocks(h);
4866 hpsa_free_cmd_pool(h);
4867 free_irqs(h);
4868 clean2:
4869 clean1:
4870 kfree(h);
4871 return rc;
4874 static void hpsa_flush_cache(struct ctlr_info *h)
4876 char *flush_buf;
4877 struct CommandList *c;
4879 flush_buf = kzalloc(4, GFP_KERNEL);
4880 if (!flush_buf)
4881 return;
4883 c = cmd_special_alloc(h);
4884 if (!c) {
4885 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4886 goto out_of_memory;
4888 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4889 RAID_CTLR_LUNID, TYPE_CMD);
4890 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4891 if (c->err_info->CommandStatus != 0)
4892 dev_warn(&h->pdev->dev,
4893 "error flushing cache on controller\n");
4894 cmd_special_free(h, c);
4895 out_of_memory:
4896 kfree(flush_buf);
4899 static void hpsa_shutdown(struct pci_dev *pdev)
4901 struct ctlr_info *h;
4903 h = pci_get_drvdata(pdev);
4904 /* Turn board interrupts off and send the flush cache command
4905 * sendcmd will turn off interrupt, and send the flush...
4906 * To write all data in the battery backed cache to disks
4908 hpsa_flush_cache(h);
4909 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4910 hpsa_free_irqs_and_disable_msix(h);
4913 static void __devexit hpsa_free_device_info(struct ctlr_info *h)
4915 int i;
4917 for (i = 0; i < h->ndevices; i++)
4918 kfree(h->dev[i]);
4921 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4923 struct ctlr_info *h;
4925 if (pci_get_drvdata(pdev) == NULL) {
4926 dev_err(&pdev->dev, "unable to remove device\n");
4927 return;
4929 h = pci_get_drvdata(pdev);
4930 stop_controller_lockup_detector(h);
4931 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
4932 hpsa_shutdown(pdev);
4933 iounmap(h->vaddr);
4934 iounmap(h->transtable);
4935 iounmap(h->cfgtable);
4936 hpsa_free_device_info(h);
4937 hpsa_free_sg_chain_blocks(h);
4938 pci_free_consistent(h->pdev,
4939 h->nr_cmds * sizeof(struct CommandList),
4940 h->cmd_pool, h->cmd_pool_dhandle);
4941 pci_free_consistent(h->pdev,
4942 h->nr_cmds * sizeof(struct ErrorInfo),
4943 h->errinfo_pool, h->errinfo_pool_dhandle);
4944 pci_free_consistent(h->pdev, h->reply_pool_size,
4945 h->reply_pool, h->reply_pool_dhandle);
4946 kfree(h->cmd_pool_bits);
4947 kfree(h->blockFetchTable);
4948 kfree(h->hba_inquiry_data);
4949 pci_disable_device(pdev);
4950 pci_release_regions(pdev);
4951 pci_set_drvdata(pdev, NULL);
4952 kfree(h);
4955 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4956 __attribute__((unused)) pm_message_t state)
4958 return -ENOSYS;
4961 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4963 return -ENOSYS;
4966 static struct pci_driver hpsa_pci_driver = {
4967 .name = HPSA,
4968 .probe = hpsa_init_one,
4969 .remove = __devexit_p(hpsa_remove_one),
4970 .id_table = hpsa_pci_device_id, /* id_table */
4971 .shutdown = hpsa_shutdown,
4972 .suspend = hpsa_suspend,
4973 .resume = hpsa_resume,
4976 /* Fill in bucket_map[], given nsgs (the max number of
4977 * scatter gather elements supported) and bucket[],
4978 * which is an array of 8 integers. The bucket[] array
4979 * contains 8 different DMA transfer sizes (in 16
4980 * byte increments) which the controller uses to fetch
4981 * commands. This function fills in bucket_map[], which
4982 * maps a given number of scatter gather elements to one of
4983 * the 8 DMA transfer sizes. The point of it is to allow the
4984 * controller to only do as much DMA as needed to fetch the
4985 * command, with the DMA transfer size encoded in the lower
4986 * bits of the command address.
4988 static void calc_bucket_map(int bucket[], int num_buckets,
4989 int nsgs, int *bucket_map)
4991 int i, j, b, size;
4993 /* even a command with 0 SGs requires 4 blocks */
4994 #define MINIMUM_TRANSFER_BLOCKS 4
4995 #define NUM_BUCKETS 8
4996 /* Note, bucket_map must have nsgs+1 entries. */
4997 for (i = 0; i <= nsgs; i++) {
4998 /* Compute size of a command with i SG entries */
4999 size = i + MINIMUM_TRANSFER_BLOCKS;
5000 b = num_buckets; /* Assume the biggest bucket */
5001 /* Find the bucket that is just big enough */
5002 for (j = 0; j < 8; j++) {
5003 if (bucket[j] >= size) {
5004 b = j;
5005 break;
5008 /* for a command with i SG entries, use bucket b. */
5009 bucket_map[i] = b;
5013 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
5014 u32 use_short_tags)
5016 int i;
5017 unsigned long register_value;
5019 /* This is a bit complicated. There are 8 registers on
5020 * the controller which we write to to tell it 8 different
5021 * sizes of commands which there may be. It's a way of
5022 * reducing the DMA done to fetch each command. Encoded into
5023 * each command's tag are 3 bits which communicate to the controller
5024 * which of the eight sizes that command fits within. The size of
5025 * each command depends on how many scatter gather entries there are.
5026 * Each SG entry requires 16 bytes. The eight registers are programmed
5027 * with the number of 16-byte blocks a command of that size requires.
5028 * The smallest command possible requires 5 such 16 byte blocks.
5029 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5030 * blocks. Note, this only extends to the SG entries contained
5031 * within the command block, and does not extend to chained blocks
5032 * of SG elements. bft[] contains the eight values we write to
5033 * the registers. They are not evenly distributed, but have more
5034 * sizes for small commands, and fewer sizes for larger commands.
5036 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5037 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5038 /* 5 = 1 s/g entry or 4k
5039 * 6 = 2 s/g entry or 8k
5040 * 8 = 4 s/g entry or 16k
5041 * 10 = 6 s/g entry or 24k
5044 /* Controller spec: zero out this buffer. */
5045 memset(h->reply_pool, 0, h->reply_pool_size);
5047 bft[7] = SG_ENTRIES_IN_CMD + 4;
5048 calc_bucket_map(bft, ARRAY_SIZE(bft),
5049 SG_ENTRIES_IN_CMD, h->blockFetchTable);
5050 for (i = 0; i < 8; i++)
5051 writel(bft[i], &h->transtable->BlockFetch[i]);
5053 /* size of controller ring buffer */
5054 writel(h->max_commands, &h->transtable->RepQSize);
5055 writel(h->nreply_queues, &h->transtable->RepQCount);
5056 writel(0, &h->transtable->RepQCtrAddrLow32);
5057 writel(0, &h->transtable->RepQCtrAddrHigh32);
5059 for (i = 0; i < h->nreply_queues; i++) {
5060 writel(0, &h->transtable->RepQAddr[i].upper);
5061 writel(h->reply_pool_dhandle +
5062 (h->max_commands * sizeof(u64) * i),
5063 &h->transtable->RepQAddr[i].lower);
5066 writel(CFGTBL_Trans_Performant | use_short_tags |
5067 CFGTBL_Trans_enable_directed_msix,
5068 &(h->cfgtable->HostWrite.TransportRequest));
5069 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5070 hpsa_wait_for_mode_change_ack(h);
5071 register_value = readl(&(h->cfgtable->TransportActive));
5072 if (!(register_value & CFGTBL_Trans_Performant)) {
5073 dev_warn(&h->pdev->dev, "unable to get board into"
5074 " performant mode\n");
5075 return;
5077 /* Change the access methods to the performant access methods */
5078 h->access = SA5_performant_access;
5079 h->transMethod = CFGTBL_Trans_Performant;
5082 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5084 u32 trans_support;
5085 int i;
5087 if (hpsa_simple_mode)
5088 return;
5090 trans_support = readl(&(h->cfgtable->TransportSupport));
5091 if (!(trans_support & PERFORMANT_MODE))
5092 return;
5094 h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5095 hpsa_get_max_perf_mode_cmds(h);
5096 /* Performant mode ring buffer and supporting data structures */
5097 h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5098 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5099 &(h->reply_pool_dhandle));
5101 for (i = 0; i < h->nreply_queues; i++) {
5102 h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5103 h->reply_queue[i].size = h->max_commands;
5104 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
5105 h->reply_queue[i].current_entry = 0;
5108 /* Need a block fetch table for performant mode */
5109 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5110 sizeof(u32)), GFP_KERNEL);
5112 if ((h->reply_pool == NULL)
5113 || (h->blockFetchTable == NULL))
5114 goto clean_up;
5116 hpsa_enter_performant_mode(h,
5117 trans_support & CFGTBL_Trans_use_short_tags);
5119 return;
5121 clean_up:
5122 if (h->reply_pool)
5123 pci_free_consistent(h->pdev, h->reply_pool_size,
5124 h->reply_pool, h->reply_pool_dhandle);
5125 kfree(h->blockFetchTable);
5129 * This is it. Register the PCI driver information for the cards we control
5130 * the OS will call our registered routines when it finds one of our cards.
5132 static int __init hpsa_init(void)
5134 return pci_register_driver(&hpsa_pci_driver);
5137 static void __exit hpsa_cleanup(void)
5139 pci_unregister_driver(&hpsa_pci_driver);
5142 module_init(hpsa_init);
5143 module_exit(hpsa_cleanup);