2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/crc-itu-t.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/jiffies.h>
27 #include <linux/kernel.h>
28 #include <linux/kref.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/spinlock.h>
33 #include <linux/workqueue.h>
35 #include <linux/atomic.h>
36 #include <asm/byteorder.h>
40 #define define_fw_printk_level(func, kern_level) \
41 void func(const struct fw_card *card, const char *fmt, ...) \
43 struct va_format vaf; \
46 va_start(args, fmt); \
49 printk(kern_level KBUILD_MODNAME " %s: %pV", \
50 dev_name(card->device), &vaf); \
53 define_fw_printk_level(fw_err
, KERN_ERR
);
54 define_fw_printk_level(fw_notice
, KERN_NOTICE
);
56 int fw_compute_block_crc(__be32
*block
)
61 length
= (be32_to_cpu(block
[0]) >> 16) & 0xff;
62 crc
= crc_itu_t(0, (u8
*)&block
[1], length
* 4);
63 *block
|= cpu_to_be32(crc
);
68 static DEFINE_MUTEX(card_mutex
);
69 static LIST_HEAD(card_list
);
71 static LIST_HEAD(descriptor_list
);
72 static int descriptor_count
;
74 static __be32 tmp_config_rom
[256];
75 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
76 static size_t config_rom_length
= 1 + 4 + 1 + 1;
78 #define BIB_CRC(v) ((v) << 0)
79 #define BIB_CRC_LENGTH(v) ((v) << 16)
80 #define BIB_INFO_LENGTH(v) ((v) << 24)
81 #define BIB_BUS_NAME 0x31333934 /* "1394" */
82 #define BIB_LINK_SPEED(v) ((v) << 0)
83 #define BIB_GENERATION(v) ((v) << 4)
84 #define BIB_MAX_ROM(v) ((v) << 8)
85 #define BIB_MAX_RECEIVE(v) ((v) << 12)
86 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
87 #define BIB_PMC ((1) << 27)
88 #define BIB_BMC ((1) << 28)
89 #define BIB_ISC ((1) << 29)
90 #define BIB_CMC ((1) << 30)
91 #define BIB_IRMC ((1) << 31)
92 #define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
95 * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
96 * but we have to make it longer because there are many devices whose firmware
97 * is just too slow for that.
99 #define DEFAULT_SPLIT_TIMEOUT (2 * 8000)
101 #define CANON_OUI 0x000085
103 static void generate_config_rom(struct fw_card
*card
, __be32
*config_rom
)
105 struct fw_descriptor
*desc
;
109 * Initialize contents of config rom buffer. On the OHCI
110 * controller, block reads to the config rom accesses the host
111 * memory, but quadlet read access the hardware bus info block
112 * registers. That's just crack, but it means we should make
113 * sure the contents of bus info block in host memory matches
114 * the version stored in the OHCI registers.
117 config_rom
[0] = cpu_to_be32(
118 BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
119 config_rom
[1] = cpu_to_be32(BIB_BUS_NAME
);
120 config_rom
[2] = cpu_to_be32(
121 BIB_LINK_SPEED(card
->link_speed
) |
122 BIB_GENERATION(card
->config_rom_generation
++ % 14 + 2) |
124 BIB_MAX_RECEIVE(card
->max_receive
) |
125 BIB_BMC
| BIB_ISC
| BIB_CMC
| BIB_IRMC
);
126 config_rom
[3] = cpu_to_be32(card
->guid
>> 32);
127 config_rom
[4] = cpu_to_be32(card
->guid
);
129 /* Generate root directory. */
130 config_rom
[6] = cpu_to_be32(NODE_CAPABILITIES
);
132 j
= 7 + descriptor_count
;
134 /* Generate root directory entries for descriptors. */
135 list_for_each_entry (desc
, &descriptor_list
, link
) {
136 if (desc
->immediate
> 0)
137 config_rom
[i
++] = cpu_to_be32(desc
->immediate
);
138 config_rom
[i
] = cpu_to_be32(desc
->key
| (j
- i
));
143 /* Update root directory length. */
144 config_rom
[5] = cpu_to_be32((i
- 5 - 1) << 16);
146 /* End of root directory, now copy in descriptors. */
147 list_for_each_entry (desc
, &descriptor_list
, link
) {
148 for (k
= 0; k
< desc
->length
; k
++)
149 config_rom
[i
+ k
] = cpu_to_be32(desc
->data
[k
]);
153 /* Calculate CRCs for all blocks in the config rom. This
154 * assumes that CRC length and info length are identical for
155 * the bus info block, which is always the case for this
157 for (i
= 0; i
< j
; i
+= length
+ 1)
158 length
= fw_compute_block_crc(config_rom
+ i
);
160 WARN_ON(j
!= config_rom_length
);
163 static void update_config_roms(void)
165 struct fw_card
*card
;
167 list_for_each_entry (card
, &card_list
, link
) {
168 generate_config_rom(card
, tmp_config_rom
);
169 card
->driver
->set_config_rom(card
, tmp_config_rom
,
174 static size_t required_space(struct fw_descriptor
*desc
)
176 /* descriptor + entry into root dir + optional immediate entry */
177 return desc
->length
+ 1 + (desc
->immediate
> 0 ? 1 : 0);
180 int fw_core_add_descriptor(struct fw_descriptor
*desc
)
186 * Check descriptor is valid; the length of all blocks in the
187 * descriptor has to add up to exactly the length of the
191 while (i
< desc
->length
)
192 i
+= (desc
->data
[i
] >> 16) + 1;
194 if (i
!= desc
->length
)
197 mutex_lock(&card_mutex
);
199 if (config_rom_length
+ required_space(desc
) > 256) {
202 list_add_tail(&desc
->link
, &descriptor_list
);
203 config_rom_length
+= required_space(desc
);
205 if (desc
->immediate
> 0)
207 update_config_roms();
211 mutex_unlock(&card_mutex
);
215 EXPORT_SYMBOL(fw_core_add_descriptor
);
217 void fw_core_remove_descriptor(struct fw_descriptor
*desc
)
219 mutex_lock(&card_mutex
);
221 list_del(&desc
->link
);
222 config_rom_length
-= required_space(desc
);
224 if (desc
->immediate
> 0)
226 update_config_roms();
228 mutex_unlock(&card_mutex
);
230 EXPORT_SYMBOL(fw_core_remove_descriptor
);
232 static int reset_bus(struct fw_card
*card
, bool short_reset
)
234 int reg
= short_reset
? 5 : 1;
235 int bit
= short_reset
? PHY_BUS_SHORT_RESET
: PHY_BUS_RESET
;
237 return card
->driver
->update_phy_reg(card
, reg
, 0, bit
);
240 void fw_schedule_bus_reset(struct fw_card
*card
, bool delayed
, bool short_reset
)
242 /* We don't try hard to sort out requests of long vs. short resets. */
243 card
->br_short
= short_reset
;
245 /* Use an arbitrary short delay to combine multiple reset requests. */
247 if (!queue_delayed_work(fw_workqueue
, &card
->br_work
,
248 delayed
? DIV_ROUND_UP(HZ
, 100) : 0))
251 EXPORT_SYMBOL(fw_schedule_bus_reset
);
253 static void br_work(struct work_struct
*work
)
255 struct fw_card
*card
= container_of(work
, struct fw_card
, br_work
.work
);
257 /* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
258 if (card
->reset_jiffies
!= 0 &&
259 time_before64(get_jiffies_64(), card
->reset_jiffies
+ 2 * HZ
)) {
260 if (!queue_delayed_work(fw_workqueue
, &card
->br_work
, 2 * HZ
))
265 fw_send_phy_config(card
, FW_PHY_CONFIG_NO_NODE_ID
, card
->generation
,
266 FW_PHY_CONFIG_CURRENT_GAP_COUNT
);
267 reset_bus(card
, card
->br_short
);
271 static void allocate_broadcast_channel(struct fw_card
*card
, int generation
)
273 int channel
, bandwidth
= 0;
275 if (!card
->broadcast_channel_allocated
) {
276 fw_iso_resource_manage(card
, generation
, 1ULL << 31,
277 &channel
, &bandwidth
, true);
279 fw_notice(card
, "failed to allocate broadcast channel\n");
282 card
->broadcast_channel_allocated
= true;
285 device_for_each_child(card
->device
, (void *)(long)generation
,
286 fw_device_set_broadcast_channel
);
289 static const char gap_count_table
[] = {
290 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
293 void fw_schedule_bm_work(struct fw_card
*card
, unsigned long delay
)
296 if (!schedule_delayed_work(&card
->bm_work
, delay
))
300 static void bm_work(struct work_struct
*work
)
302 struct fw_card
*card
= container_of(work
, struct fw_card
, bm_work
.work
);
303 struct fw_device
*root_device
, *irm_device
;
304 struct fw_node
*root_node
;
305 int root_id
, new_root_id
, irm_id
, bm_id
, local_id
;
306 int gap_count
, generation
, grace
, rcode
;
307 bool do_reset
= false;
308 bool root_device_is_running
;
309 bool root_device_is_cmc
;
310 bool irm_is_1394_1995_only
;
312 __be32 transaction_data
[2];
314 spin_lock_irq(&card
->lock
);
316 if (card
->local_node
== NULL
) {
317 spin_unlock_irq(&card
->lock
);
321 generation
= card
->generation
;
323 root_node
= card
->root_node
;
324 fw_node_get(root_node
);
325 root_device
= root_node
->data
;
326 root_device_is_running
= root_device
&&
327 atomic_read(&root_device
->state
) == FW_DEVICE_RUNNING
;
328 root_device_is_cmc
= root_device
&& root_device
->cmc
;
330 irm_device
= card
->irm_node
->data
;
331 irm_is_1394_1995_only
= irm_device
&& irm_device
->config_rom
&&
332 (irm_device
->config_rom
[2] & 0x000000f0) == 0;
334 /* Canon MV5i works unreliably if it is not root node. */
335 keep_this_irm
= irm_device
&& irm_device
->config_rom
&&
336 irm_device
->config_rom
[3] >> 8 == CANON_OUI
;
338 root_id
= root_node
->node_id
;
339 irm_id
= card
->irm_node
->node_id
;
340 local_id
= card
->local_node
->node_id
;
342 grace
= time_after64(get_jiffies_64(),
343 card
->reset_jiffies
+ DIV_ROUND_UP(HZ
, 8));
345 if ((is_next_generation(generation
, card
->bm_generation
) &&
346 !card
->bm_abdicate
) ||
347 (card
->bm_generation
!= generation
&& grace
)) {
349 * This first step is to figure out who is IRM and
350 * then try to become bus manager. If the IRM is not
351 * well defined (e.g. does not have an active link
352 * layer or does not responds to our lock request, we
353 * will have to do a little vigilante bus management.
354 * In that case, we do a goto into the gap count logic
355 * so that when we do the reset, we still optimize the
356 * gap count. That could well save a reset in the
360 if (!card
->irm_node
->link_on
) {
361 new_root_id
= local_id
;
362 fw_notice(card
, "%s, making local node (%02x) root\n",
363 "IRM has link off", new_root_id
);
367 if (irm_is_1394_1995_only
&& !keep_this_irm
) {
368 new_root_id
= local_id
;
369 fw_notice(card
, "%s, making local node (%02x) root\n",
370 "IRM is not 1394a compliant", new_root_id
);
374 transaction_data
[0] = cpu_to_be32(0x3f);
375 transaction_data
[1] = cpu_to_be32(local_id
);
377 spin_unlock_irq(&card
->lock
);
379 rcode
= fw_run_transaction(card
, TCODE_LOCK_COMPARE_SWAP
,
380 irm_id
, generation
, SCODE_100
,
381 CSR_REGISTER_BASE
+ CSR_BUS_MANAGER_ID
,
382 transaction_data
, 8);
384 if (rcode
== RCODE_GENERATION
)
385 /* Another bus reset, BM work has been rescheduled. */
388 bm_id
= be32_to_cpu(transaction_data
[0]);
390 spin_lock_irq(&card
->lock
);
391 if (rcode
== RCODE_COMPLETE
&& generation
== card
->generation
)
393 bm_id
== 0x3f ? local_id
: 0xffc0 | bm_id
;
394 spin_unlock_irq(&card
->lock
);
396 if (rcode
== RCODE_COMPLETE
&& bm_id
!= 0x3f) {
397 /* Somebody else is BM. Only act as IRM. */
398 if (local_id
== irm_id
)
399 allocate_broadcast_channel(card
, generation
);
404 if (rcode
== RCODE_SEND_ERROR
) {
406 * We have been unable to send the lock request due to
407 * some local problem. Let's try again later and hope
408 * that the problem has gone away by then.
410 fw_schedule_bm_work(card
, DIV_ROUND_UP(HZ
, 8));
414 spin_lock_irq(&card
->lock
);
416 if (rcode
!= RCODE_COMPLETE
&& !keep_this_irm
) {
418 * The lock request failed, maybe the IRM
419 * isn't really IRM capable after all. Let's
420 * do a bus reset and pick the local node as
421 * root, and thus, IRM.
423 new_root_id
= local_id
;
424 fw_notice(card
, "BM lock failed (%s), making local node (%02x) root\n",
425 fw_rcode_string(rcode
), new_root_id
);
428 } else if (card
->bm_generation
!= generation
) {
430 * We weren't BM in the last generation, and the last
431 * bus reset is less than 125ms ago. Reschedule this job.
433 spin_unlock_irq(&card
->lock
);
434 fw_schedule_bm_work(card
, DIV_ROUND_UP(HZ
, 8));
439 * We're bus manager for this generation, so next step is to
440 * make sure we have an active cycle master and do gap count
443 card
->bm_generation
= generation
;
445 if (root_device
== NULL
) {
447 * Either link_on is false, or we failed to read the
448 * config rom. In either case, pick another root.
450 new_root_id
= local_id
;
451 } else if (!root_device_is_running
) {
453 * If we haven't probed this device yet, bail out now
454 * and let's try again once that's done.
456 spin_unlock_irq(&card
->lock
);
458 } else if (root_device_is_cmc
) {
460 * We will send out a force root packet for this
461 * node as part of the gap count optimization.
463 new_root_id
= root_id
;
466 * Current root has an active link layer and we
467 * successfully read the config rom, but it's not
468 * cycle master capable.
470 new_root_id
= local_id
;
475 * Pick a gap count from 1394a table E-1. The table doesn't cover
476 * the typically much larger 1394b beta repeater delays though.
478 if (!card
->beta_repeaters_present
&&
479 root_node
->max_hops
< ARRAY_SIZE(gap_count_table
))
480 gap_count
= gap_count_table
[root_node
->max_hops
];
485 * Finally, figure out if we should do a reset or not. If we have
486 * done less than 5 resets with the same physical topology and we
487 * have either a new root or a new gap count setting, let's do it.
490 if (card
->bm_retries
++ < 5 &&
491 (card
->gap_count
!= gap_count
|| new_root_id
!= root_id
))
494 spin_unlock_irq(&card
->lock
);
497 fw_notice(card
, "phy config: new root=%x, gap_count=%d\n",
498 new_root_id
, gap_count
);
499 fw_send_phy_config(card
, new_root_id
, generation
, gap_count
);
500 reset_bus(card
, true);
501 /* Will allocate broadcast channel after the reset. */
505 if (root_device_is_cmc
) {
507 * Make sure that the cycle master sends cycle start packets.
509 transaction_data
[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR
);
510 rcode
= fw_run_transaction(card
, TCODE_WRITE_QUADLET_REQUEST
,
511 root_id
, generation
, SCODE_100
,
512 CSR_REGISTER_BASE
+ CSR_STATE_SET
,
513 transaction_data
, 4);
514 if (rcode
== RCODE_GENERATION
)
518 if (local_id
== irm_id
)
519 allocate_broadcast_channel(card
, generation
);
522 fw_node_put(root_node
);
527 void fw_card_initialize(struct fw_card
*card
,
528 const struct fw_card_driver
*driver
,
529 struct device
*device
)
531 static atomic_t index
= ATOMIC_INIT(-1);
533 card
->index
= atomic_inc_return(&index
);
534 card
->driver
= driver
;
535 card
->device
= device
;
536 card
->current_tlabel
= 0;
537 card
->tlabel_mask
= 0;
538 card
->split_timeout_hi
= DEFAULT_SPLIT_TIMEOUT
/ 8000;
539 card
->split_timeout_lo
= (DEFAULT_SPLIT_TIMEOUT
% 8000) << 19;
540 card
->split_timeout_cycles
= DEFAULT_SPLIT_TIMEOUT
;
541 card
->split_timeout_jiffies
=
542 DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT
* HZ
, 8000);
544 card
->broadcast_channel
= BROADCAST_CHANNEL_INITIAL
;
546 kref_init(&card
->kref
);
547 init_completion(&card
->done
);
548 INIT_LIST_HEAD(&card
->transaction_list
);
549 INIT_LIST_HEAD(&card
->phy_receiver_list
);
550 spin_lock_init(&card
->lock
);
552 card
->local_node
= NULL
;
554 INIT_DELAYED_WORK(&card
->br_work
, br_work
);
555 INIT_DELAYED_WORK(&card
->bm_work
, bm_work
);
557 EXPORT_SYMBOL(fw_card_initialize
);
559 int fw_card_add(struct fw_card
*card
,
560 u32 max_receive
, u32 link_speed
, u64 guid
)
564 card
->max_receive
= max_receive
;
565 card
->link_speed
= link_speed
;
568 mutex_lock(&card_mutex
);
570 generate_config_rom(card
, tmp_config_rom
);
571 ret
= card
->driver
->enable(card
, tmp_config_rom
, config_rom_length
);
573 list_add_tail(&card
->link
, &card_list
);
575 mutex_unlock(&card_mutex
);
579 EXPORT_SYMBOL(fw_card_add
);
582 * The next few functions implement a dummy driver that is used once a card
583 * driver shuts down an fw_card. This allows the driver to cleanly unload,
584 * as all IO to the card will be handled (and failed) by the dummy driver
585 * instead of calling into the module. Only functions for iso context
586 * shutdown still need to be provided by the card driver.
588 * .read/write_csr() should never be called anymore after the dummy driver
589 * was bound since they are only used within request handler context.
590 * .set_config_rom() is never called since the card is taken out of card_list
591 * before switching to the dummy driver.
594 static int dummy_read_phy_reg(struct fw_card
*card
, int address
)
599 static int dummy_update_phy_reg(struct fw_card
*card
, int address
,
600 int clear_bits
, int set_bits
)
605 static void dummy_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
607 packet
->callback(packet
, card
, RCODE_CANCELLED
);
610 static void dummy_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
612 packet
->callback(packet
, card
, RCODE_CANCELLED
);
615 static int dummy_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
620 static int dummy_enable_phys_dma(struct fw_card
*card
,
621 int node_id
, int generation
)
626 static struct fw_iso_context
*dummy_allocate_iso_context(struct fw_card
*card
,
627 int type
, int channel
, size_t header_size
)
629 return ERR_PTR(-ENODEV
);
632 static int dummy_start_iso(struct fw_iso_context
*ctx
,
633 s32 cycle
, u32 sync
, u32 tags
)
638 static int dummy_set_iso_channels(struct fw_iso_context
*ctx
, u64
*channels
)
643 static int dummy_queue_iso(struct fw_iso_context
*ctx
, struct fw_iso_packet
*p
,
644 struct fw_iso_buffer
*buffer
, unsigned long payload
)
649 static void dummy_flush_queue_iso(struct fw_iso_context
*ctx
)
653 static int dummy_flush_iso_completions(struct fw_iso_context
*ctx
)
658 static const struct fw_card_driver dummy_driver_template
= {
659 .read_phy_reg
= dummy_read_phy_reg
,
660 .update_phy_reg
= dummy_update_phy_reg
,
661 .send_request
= dummy_send_request
,
662 .send_response
= dummy_send_response
,
663 .cancel_packet
= dummy_cancel_packet
,
664 .enable_phys_dma
= dummy_enable_phys_dma
,
665 .allocate_iso_context
= dummy_allocate_iso_context
,
666 .start_iso
= dummy_start_iso
,
667 .set_iso_channels
= dummy_set_iso_channels
,
668 .queue_iso
= dummy_queue_iso
,
669 .flush_queue_iso
= dummy_flush_queue_iso
,
670 .flush_iso_completions
= dummy_flush_iso_completions
,
673 void fw_card_release(struct kref
*kref
)
675 struct fw_card
*card
= container_of(kref
, struct fw_card
, kref
);
677 complete(&card
->done
);
679 EXPORT_SYMBOL_GPL(fw_card_release
);
681 void fw_core_remove_card(struct fw_card
*card
)
683 struct fw_card_driver dummy_driver
= dummy_driver_template
;
685 card
->driver
->update_phy_reg(card
, 4,
686 PHY_LINK_ACTIVE
| PHY_CONTENDER
, 0);
687 fw_schedule_bus_reset(card
, false, true);
689 mutex_lock(&card_mutex
);
690 list_del_init(&card
->link
);
691 mutex_unlock(&card_mutex
);
693 /* Switch off most of the card driver interface. */
694 dummy_driver
.free_iso_context
= card
->driver
->free_iso_context
;
695 dummy_driver
.stop_iso
= card
->driver
->stop_iso
;
696 card
->driver
= &dummy_driver
;
698 fw_destroy_nodes(card
);
700 /* Wait for all users, especially device workqueue jobs, to finish. */
702 wait_for_completion(&card
->done
);
704 WARN_ON(!list_empty(&card
->transaction_list
));
706 EXPORT_SYMBOL(fw_core_remove_card
);