1 /* -*- mode: c; c-basic-offset: 8 -*- */
3 /* NCR (or Symbios) 53c700 and 53c700-66 Driver
5 * Copyright (C) 2001 by James.Bottomley@HansenPartnership.com
6 **-----------------------------------------------------------------------------
8 ** This program is free software; you can redistribute it and/or modify
9 ** it under the terms of the GNU General Public License as published by
10 ** the Free Software Foundation; either version 2 of the License, or
11 ** (at your option) any later version.
13 ** This program is distributed in the hope that it will be useful,
14 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
15 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 ** GNU General Public License for more details.
18 ** You should have received a copy of the GNU General Public License
19 ** along with this program; if not, write to the Free Software
20 ** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 **-----------------------------------------------------------------------------
27 * This driver is designed exclusively for these chips (virtually the
28 * earliest of the scripts engine chips). They need their own drivers
29 * because they are missing so many of the scripts and snazzy register
30 * features of their elder brothers (the 710, 720 and 770).
32 * The 700 is the lowliest of the line, it can only do async SCSI.
33 * The 700-66 can at least do synchronous SCSI up to 10MHz.
35 * The 700 chip has no host bus interface logic of its own. However,
36 * it is usually mapped to a location with well defined register
37 * offsets. Therefore, if you can determine the base address and the
38 * irq your board incorporating this chip uses, you can probably use
39 * this driver to run it (although you'll probably have to write a
40 * minimal wrapper for the purpose---see the NCR_D700 driver for
41 * details about how to do this).
46 * 1. Better statistics in the proc fs
48 * 2. Implement message queue (queues SCSI messages like commands) and make
49 * the abort and device reset functions use them.
56 * Fixed bad bug affecting tag starvation processing (previously the
57 * driver would hang the system if too many tags starved. Also fixed
58 * bad bug having to do with 10 byte command processing and REQUEST
59 * SENSE (the command would loop forever getting a transfer length
60 * mismatch in the CMD phase).
64 * Fixed scripts problem which caused certain devices (notably CDRWs)
65 * to hang on initial INQUIRY. Updated NCR_700_readl/writel to use
66 * __raw_readl/writel for parisc compatibility (Thomas
67 * Bogendoerfer). Added missing SCp->request_bufflen initialisation
68 * for sense requests (Ryan Bradetich).
72 * Following test of the 64 bit parisc kernel by Richard Hirst,
73 * several problems have now been corrected. Also adds support for
74 * consistent memory allocation.
78 * More Compatibility changes for 710 (now actually works). Enhanced
79 * support for odd clock speeds which constrain SDTR negotiations.
80 * correct cacheline separation for scsi messages and status for
81 * incoherent architectures. Use of the pci mapping functions on
82 * buffers to begin support for 64 bit drivers.
86 * Added support for the 53c710 chip (in 53c700 emulation mode only---no
87 * special 53c710 instructions or registers are used).
91 * More endianness/cache coherency changes.
93 * Better bad device handling (handles devices lying about tag
94 * queueing support and devices which fail to provide sense data on
95 * contingent allegiance conditions)
97 * Many thanks to Richard Hirst <rhirst@linuxcare.com> for patiently
98 * debugging this driver on the parisc architecture and suggesting
99 * many improvements and bug fixes.
101 * Thanks also go to Linuxcare Inc. for providing several PARISC
102 * machines for me to debug the driver on.
106 * Made the driver mem or io mapped; added endian invariance; added
107 * dma cache flushing operations for architectures which need it;
108 * added support for more varied clocking speeds.
112 * Initial modularisation from the D700. See NCR_D700.c for the rest of
115 #define NCR_700_VERSION "2.8"
117 #include <linux/kernel.h>
118 #include <linux/types.h>
119 #include <linux/string.h>
120 #include <linux/slab.h>
121 #include <linux/ioport.h>
122 #include <linux/delay.h>
123 #include <linux/spinlock.h>
124 #include <linux/completion.h>
125 #include <linux/init.h>
126 #include <linux/proc_fs.h>
127 #include <linux/blkdev.h>
128 #include <linux/module.h>
129 #include <linux/interrupt.h>
130 #include <linux/device.h>
132 #include <asm/system.h>
134 #include <asm/pgtable.h>
135 #include <asm/byteorder.h>
137 #include <scsi/scsi.h>
138 #include <scsi/scsi_cmnd.h>
139 #include <scsi/scsi_dbg.h>
140 #include <scsi/scsi_eh.h>
141 #include <scsi/scsi_host.h>
142 #include <scsi/scsi_tcq.h>
143 #include <scsi/scsi_transport.h>
144 #include <scsi/scsi_transport_spi.h>
148 /* NOTE: For 64 bit drivers there are points in the code where we use
149 * a non dereferenceable pointer to point to a structure in dma-able
150 * memory (which is 32 bits) so that we can use all of the structure
151 * operations but take the address at the end. This macro allows us
152 * to truncate the 64 bit pointer down to 32 bits without the compiler
154 #define to32bit(x) ((__u32)((unsigned long)(x)))
159 #define STATIC static
162 MODULE_AUTHOR("James Bottomley");
163 MODULE_DESCRIPTION("53c700 and 53c700-66 Driver");
164 MODULE_LICENSE("GPL");
166 /* This is the script */
167 #include "53c700_d.h"
170 STATIC
int NCR_700_queuecommand(struct scsi_cmnd
*, void (*done
)(struct scsi_cmnd
*));
171 STATIC
int NCR_700_abort(struct scsi_cmnd
* SCpnt
);
172 STATIC
int NCR_700_bus_reset(struct scsi_cmnd
* SCpnt
);
173 STATIC
int NCR_700_host_reset(struct scsi_cmnd
* SCpnt
);
174 STATIC
void NCR_700_chip_setup(struct Scsi_Host
*host
);
175 STATIC
void NCR_700_chip_reset(struct Scsi_Host
*host
);
176 STATIC
int NCR_700_slave_alloc(struct scsi_device
*SDpnt
);
177 STATIC
int NCR_700_slave_configure(struct scsi_device
*SDpnt
);
178 STATIC
void NCR_700_slave_destroy(struct scsi_device
*SDpnt
);
179 static int NCR_700_change_queue_depth(struct scsi_device
*SDpnt
, int depth
, int reason
);
180 static int NCR_700_change_queue_type(struct scsi_device
*SDpnt
, int depth
);
182 STATIC
struct device_attribute
*NCR_700_dev_attrs
[];
184 STATIC
struct scsi_transport_template
*NCR_700_transport_template
= NULL
;
186 static char *NCR_700_phase
[] = {
189 "before command phase",
190 "after command phase",
191 "after status phase",
192 "after data in phase",
193 "after data out phase",
197 static char *NCR_700_condition
[] = {
205 "REJECT_MSG RECEIVED",
206 "DISCONNECT_MSG RECEIVED",
212 static char *NCR_700_fatal_messages
[] = {
213 "unexpected message after reselection",
214 "still MSG_OUT after message injection",
215 "not MSG_IN after selection",
216 "Illegal message length received",
219 static char *NCR_700_SBCL_bits
[] = {
230 static char *NCR_700_SBCL_to_phase
[] = {
241 /* This translates the SDTR message offset and period to a value
242 * which can be loaded into the SXFER_REG.
244 * NOTE: According to SCSI-2, the true transfer period (in ns) is
245 * actually four times this period value */
247 NCR_700_offset_period_to_sxfer(struct NCR_700_Host_Parameters
*hostdata
,
248 __u8 offset
, __u8 period
)
252 __u8 min_xferp
= (hostdata
->chip710
253 ? NCR_710_MIN_XFERP
: NCR_700_MIN_XFERP
);
254 __u8 max_offset
= (hostdata
->chip710
255 ? NCR_710_MAX_OFFSET
: NCR_700_MAX_OFFSET
);
260 if(period
< hostdata
->min_period
) {
261 printk(KERN_WARNING
"53c700: Period %dns is less than this chip's minimum, setting to %d\n", period
*4, NCR_700_MIN_PERIOD
*4);
262 period
= hostdata
->min_period
;
264 XFERP
= (period
*4 * hostdata
->sync_clock
)/1000 - 4;
265 if(offset
> max_offset
) {
266 printk(KERN_WARNING
"53c700: Offset %d exceeds chip maximum, setting to %d\n",
270 if(XFERP
< min_xferp
) {
273 return (offset
& 0x0f) | (XFERP
& 0x07)<<4;
277 NCR_700_get_SXFER(struct scsi_device
*SDp
)
279 struct NCR_700_Host_Parameters
*hostdata
=
280 (struct NCR_700_Host_Parameters
*)SDp
->host
->hostdata
[0];
282 return NCR_700_offset_period_to_sxfer(hostdata
,
283 spi_offset(SDp
->sdev_target
),
284 spi_period(SDp
->sdev_target
));
288 NCR_700_detect(struct scsi_host_template
*tpnt
,
289 struct NCR_700_Host_Parameters
*hostdata
, struct device
*dev
)
291 dma_addr_t pScript
, pSlots
;
294 struct Scsi_Host
*host
;
295 static int banner
= 0;
298 if(tpnt
->sdev_attrs
== NULL
)
299 tpnt
->sdev_attrs
= NCR_700_dev_attrs
;
301 memory
= dma_alloc_noncoherent(hostdata
->dev
, TOTAL_MEM_SIZE
,
302 &pScript
, GFP_KERNEL
);
304 printk(KERN_ERR
"53c700: Failed to allocate memory for driver, detatching\n");
308 script
= (__u32
*)memory
;
309 hostdata
->msgin
= memory
+ MSGIN_OFFSET
;
310 hostdata
->msgout
= memory
+ MSGOUT_OFFSET
;
311 hostdata
->status
= memory
+ STATUS_OFFSET
;
312 /* all of these offsets are L1_CACHE_BYTES separated. It is fatal
313 * if this isn't sufficient separation to avoid dma flushing issues */
314 BUG_ON(!dma_is_consistent(hostdata
->dev
, pScript
) && L1_CACHE_BYTES
< dma_get_cache_alignment());
315 hostdata
->slots
= (struct NCR_700_command_slot
*)(memory
+ SLOTS_OFFSET
);
318 pSlots
= pScript
+ SLOTS_OFFSET
;
320 /* Fill in the missing routines from the host template */
321 tpnt
->queuecommand
= NCR_700_queuecommand
;
322 tpnt
->eh_abort_handler
= NCR_700_abort
;
323 tpnt
->eh_bus_reset_handler
= NCR_700_bus_reset
;
324 tpnt
->eh_host_reset_handler
= NCR_700_host_reset
;
325 tpnt
->can_queue
= NCR_700_COMMAND_SLOTS_PER_HOST
;
326 tpnt
->sg_tablesize
= NCR_700_SG_SEGMENTS
;
327 tpnt
->cmd_per_lun
= NCR_700_CMD_PER_LUN
;
328 tpnt
->use_clustering
= ENABLE_CLUSTERING
;
329 tpnt
->slave_configure
= NCR_700_slave_configure
;
330 tpnt
->slave_destroy
= NCR_700_slave_destroy
;
331 tpnt
->slave_alloc
= NCR_700_slave_alloc
;
332 tpnt
->change_queue_depth
= NCR_700_change_queue_depth
;
333 tpnt
->change_queue_type
= NCR_700_change_queue_type
;
335 if(tpnt
->name
== NULL
)
336 tpnt
->name
= "53c700";
337 if(tpnt
->proc_name
== NULL
)
338 tpnt
->proc_name
= "53c700";
340 host
= scsi_host_alloc(tpnt
, 4);
343 memset(hostdata
->slots
, 0, sizeof(struct NCR_700_command_slot
)
344 * NCR_700_COMMAND_SLOTS_PER_HOST
);
345 for (j
= 0; j
< NCR_700_COMMAND_SLOTS_PER_HOST
; j
++) {
346 dma_addr_t offset
= (dma_addr_t
)((unsigned long)&hostdata
->slots
[j
].SG
[0]
347 - (unsigned long)&hostdata
->slots
[0].SG
[0]);
348 hostdata
->slots
[j
].pSG
= (struct NCR_700_SG_List
*)((unsigned long)(pSlots
+ offset
));
350 hostdata
->free_list
= &hostdata
->slots
[j
];
352 hostdata
->slots
[j
-1].ITL_forw
= &hostdata
->slots
[j
];
353 hostdata
->slots
[j
].state
= NCR_700_SLOT_FREE
;
356 for (j
= 0; j
< ARRAY_SIZE(SCRIPT
); j
++)
357 script
[j
] = bS_to_host(SCRIPT
[j
]);
359 /* adjust all labels to be bus physical */
360 for (j
= 0; j
< PATCHES
; j
++)
361 script
[LABELPATCHES
[j
]] = bS_to_host(pScript
+ SCRIPT
[LABELPATCHES
[j
]]);
362 /* now patch up fixed addresses. */
363 script_patch_32(hostdata
->dev
, script
, MessageLocation
,
364 pScript
+ MSGOUT_OFFSET
);
365 script_patch_32(hostdata
->dev
, script
, StatusAddress
,
366 pScript
+ STATUS_OFFSET
);
367 script_patch_32(hostdata
->dev
, script
, ReceiveMsgAddress
,
368 pScript
+ MSGIN_OFFSET
);
370 hostdata
->script
= script
;
371 hostdata
->pScript
= pScript
;
372 dma_sync_single_for_device(hostdata
->dev
, pScript
, sizeof(SCRIPT
), DMA_TO_DEVICE
);
373 hostdata
->state
= NCR_700_HOST_FREE
;
374 hostdata
->cmd
= NULL
;
376 host
->max_lun
= NCR_700_MAX_LUNS
;
377 BUG_ON(NCR_700_transport_template
== NULL
);
378 host
->transportt
= NCR_700_transport_template
;
379 host
->unique_id
= (unsigned long)hostdata
->base
;
380 hostdata
->eh_complete
= NULL
;
381 host
->hostdata
[0] = (unsigned long)hostdata
;
383 NCR_700_writeb(0xff, host
, CTEST9_REG
);
384 if (hostdata
->chip710
)
385 hostdata
->rev
= (NCR_700_readb(host
, CTEST8_REG
)>>4) & 0x0f;
387 hostdata
->rev
= (NCR_700_readb(host
, CTEST7_REG
)>>4) & 0x0f;
388 hostdata
->fast
= (NCR_700_readb(host
, CTEST9_REG
) == 0);
390 printk(KERN_NOTICE
"53c700: Version " NCR_700_VERSION
" By James.Bottomley@HansenPartnership.com\n");
393 printk(KERN_NOTICE
"scsi%d: %s rev %d %s\n", host
->host_no
,
394 hostdata
->chip710
? "53c710" :
395 (hostdata
->fast
? "53c700-66" : "53c700"),
396 hostdata
->rev
, hostdata
->differential
?
397 "(Differential)" : "");
399 NCR_700_chip_reset(host
);
401 if (scsi_add_host(host
, dev
)) {
402 dev_printk(KERN_ERR
, dev
, "53c700: scsi_add_host failed\n");
407 spi_signalling(host
) = hostdata
->differential
? SPI_SIGNAL_HVD
:
414 NCR_700_release(struct Scsi_Host
*host
)
416 struct NCR_700_Host_Parameters
*hostdata
=
417 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
419 dma_free_noncoherent(hostdata
->dev
, TOTAL_MEM_SIZE
,
420 hostdata
->script
, hostdata
->pScript
);
425 NCR_700_identify(int can_disconnect
, __u8 lun
)
427 return IDENTIFY_BASE
|
428 ((can_disconnect
) ? 0x40 : 0) |
429 (lun
& NCR_700_LUN_MASK
);
433 * Function : static int data_residual (Scsi_Host *host)
435 * Purpose : return residual data count of what's in the chip. If you
436 * really want to know what this function is doing, it's almost a
437 * direct transcription of the algorithm described in the 53c710
438 * guide, except that the DBC and DFIFO registers are only 6 bits
441 * Inputs : host - SCSI host */
443 NCR_700_data_residual (struct Scsi_Host
*host
) {
444 struct NCR_700_Host_Parameters
*hostdata
=
445 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
446 int count
, synchronous
= 0;
449 if(hostdata
->chip710
) {
450 count
= ((NCR_700_readb(host
, DFIFO_REG
) & 0x7f) -
451 (NCR_700_readl(host
, DBC_REG
) & 0x7f)) & 0x7f;
453 count
= ((NCR_700_readb(host
, DFIFO_REG
) & 0x3f) -
454 (NCR_700_readl(host
, DBC_REG
) & 0x3f)) & 0x3f;
458 synchronous
= NCR_700_readb(host
, SXFER_REG
) & 0x0f;
460 /* get the data direction */
461 ddir
= NCR_700_readb(host
, CTEST0_REG
) & 0x01;
466 count
+= (NCR_700_readb(host
, SSTAT2_REG
) & 0xf0) >> 4;
468 if (NCR_700_readb(host
, SSTAT1_REG
) & SIDL_REG_FULL
)
472 __u8 sstat
= NCR_700_readb(host
, SSTAT1_REG
);
473 if (sstat
& SODL_REG_FULL
)
475 if (synchronous
&& (sstat
& SODR_REG_FULL
))
480 printk("RESIDUAL IS %d (ddir %d)\n", count
, ddir
);
485 /* print out the SCSI wires and corresponding phase from the SBCL register
488 sbcl_to_string(__u8 sbcl
)
491 static char ret
[256];
496 strcat(ret
, NCR_700_SBCL_bits
[i
]);
498 strcat(ret
, NCR_700_SBCL_to_phase
[sbcl
& 0x07]);
503 bitmap_to_number(__u8 bitmap
)
507 for(i
=0; i
<8 && !(bitmap
&(1<<i
)); i
++)
512 /* Pull a slot off the free list */
513 STATIC
struct NCR_700_command_slot
*
514 find_empty_slot(struct NCR_700_Host_Parameters
*hostdata
)
516 struct NCR_700_command_slot
*slot
= hostdata
->free_list
;
520 if(hostdata
->command_slot_count
!= NCR_700_COMMAND_SLOTS_PER_HOST
)
521 printk(KERN_ERR
"SLOTS FULL, but count is %d, should be %d\n", hostdata
->command_slot_count
, NCR_700_COMMAND_SLOTS_PER_HOST
);
525 if(slot
->state
!= NCR_700_SLOT_FREE
)
527 printk(KERN_ERR
"BUSY SLOT ON FREE LIST!!!\n");
530 hostdata
->free_list
= slot
->ITL_forw
;
531 slot
->ITL_forw
= NULL
;
534 /* NOTE: set the state to busy here, not queued, since this
535 * indicates the slot is in use and cannot be run by the IRQ
536 * finish routine. If we cannot queue the command when it
537 * is properly build, we then change to NCR_700_SLOT_QUEUED */
538 slot
->state
= NCR_700_SLOT_BUSY
;
540 hostdata
->command_slot_count
++;
546 free_slot(struct NCR_700_command_slot
*slot
,
547 struct NCR_700_Host_Parameters
*hostdata
)
549 if((slot
->state
& NCR_700_SLOT_MASK
) != NCR_700_SLOT_MAGIC
) {
550 printk(KERN_ERR
"53c700: SLOT %p is not MAGIC!!!\n", slot
);
552 if(slot
->state
== NCR_700_SLOT_FREE
) {
553 printk(KERN_ERR
"53c700: SLOT %p is FREE!!!\n", slot
);
556 slot
->resume_offset
= 0;
558 slot
->state
= NCR_700_SLOT_FREE
;
559 slot
->ITL_forw
= hostdata
->free_list
;
560 hostdata
->free_list
= slot
;
561 hostdata
->command_slot_count
--;
565 /* This routine really does very little. The command is indexed on
566 the ITL and (if tagged) the ITLQ lists in _queuecommand */
568 save_for_reselection(struct NCR_700_Host_Parameters
*hostdata
,
569 struct scsi_cmnd
*SCp
, __u32 dsp
)
571 /* Its just possible that this gets executed twice */
573 struct NCR_700_command_slot
*slot
=
574 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
576 slot
->resume_offset
= dsp
;
578 hostdata
->state
= NCR_700_HOST_FREE
;
579 hostdata
->cmd
= NULL
;
583 NCR_700_unmap(struct NCR_700_Host_Parameters
*hostdata
, struct scsi_cmnd
*SCp
,
584 struct NCR_700_command_slot
*slot
)
586 if(SCp
->sc_data_direction
!= DMA_NONE
&&
587 SCp
->sc_data_direction
!= DMA_BIDIRECTIONAL
)
592 NCR_700_scsi_done(struct NCR_700_Host_Parameters
*hostdata
,
593 struct scsi_cmnd
*SCp
, int result
)
595 hostdata
->state
= NCR_700_HOST_FREE
;
596 hostdata
->cmd
= NULL
;
599 struct NCR_700_command_slot
*slot
=
600 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
602 dma_unmap_single(hostdata
->dev
, slot
->pCmd
,
603 MAX_COMMAND_SIZE
, DMA_TO_DEVICE
);
604 if (slot
->flags
== NCR_700_FLAG_AUTOSENSE
) {
605 char *cmnd
= NCR_700_get_sense_cmnd(SCp
->device
);
607 printk(" ORIGINAL CMD %p RETURNED %d, new return is %d sense is\n",
608 SCp
, SCp
->cmnd
[7], result
);
609 scsi_print_sense("53c700", SCp
);
612 dma_unmap_single(hostdata
->dev
, slot
->dma_handle
,
613 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
614 /* restore the old result if the request sense was
618 /* restore the original length */
619 SCp
->cmd_len
= cmnd
[8];
621 NCR_700_unmap(hostdata
, SCp
, slot
);
623 free_slot(slot
, hostdata
);
625 if(NCR_700_get_depth(SCp
->device
) == 0 ||
626 NCR_700_get_depth(SCp
->device
) > SCp
->device
->queue_depth
)
627 printk(KERN_ERR
"Invalid depth in NCR_700_scsi_done(): %d\n",
628 NCR_700_get_depth(SCp
->device
));
629 #endif /* NCR_700_DEBUG */
630 NCR_700_set_depth(SCp
->device
, NCR_700_get_depth(SCp
->device
) - 1);
632 SCp
->host_scribble
= NULL
;
633 SCp
->result
= result
;
636 printk(KERN_ERR
"53c700: SCSI DONE HAS NULL SCp\n");
642 NCR_700_internal_bus_reset(struct Scsi_Host
*host
)
645 NCR_700_writeb(ASSERT_RST
, host
, SCNTL1_REG
);
647 NCR_700_writeb(0, host
, SCNTL1_REG
);
652 NCR_700_chip_setup(struct Scsi_Host
*host
)
654 struct NCR_700_Host_Parameters
*hostdata
=
655 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
657 __u8 min_xferp
= (hostdata
->chip710
? NCR_710_MIN_XFERP
: NCR_700_MIN_XFERP
);
659 if(hostdata
->chip710
) {
660 __u8 burst_disable
= 0;
661 __u8 burst_length
= 0;
663 switch (hostdata
->burst_length
) {
665 burst_length
= BURST_LENGTH_1
;
668 burst_length
= BURST_LENGTH_2
;
671 burst_length
= BURST_LENGTH_4
;
674 burst_length
= BURST_LENGTH_8
;
677 burst_disable
= BURST_DISABLE
;
680 hostdata
->dcntl_extra
|= COMPAT_700_MODE
;
682 NCR_700_writeb(hostdata
->dcntl_extra
, host
, DCNTL_REG
);
683 NCR_700_writeb(burst_length
| hostdata
->dmode_extra
,
684 host
, DMODE_710_REG
);
685 NCR_700_writeb(burst_disable
| hostdata
->ctest7_extra
|
686 (hostdata
->differential
? DIFF
: 0),
688 NCR_700_writeb(BTB_TIMER_DISABLE
, host
, CTEST0_REG
);
689 NCR_700_writeb(FULL_ARBITRATION
| ENABLE_PARITY
| PARITY
690 | AUTO_ATN
, host
, SCNTL0_REG
);
692 NCR_700_writeb(BURST_LENGTH_8
| hostdata
->dmode_extra
,
693 host
, DMODE_700_REG
);
694 NCR_700_writeb(hostdata
->differential
?
695 DIFF
: 0, host
, CTEST7_REG
);
697 /* this is for 700-66, does nothing on 700 */
698 NCR_700_writeb(LAST_DIS_ENBL
| ENABLE_ACTIVE_NEGATION
699 | GENERATE_RECEIVE_PARITY
, host
,
702 NCR_700_writeb(FULL_ARBITRATION
| ENABLE_PARITY
703 | PARITY
| AUTO_ATN
, host
, SCNTL0_REG
);
707 NCR_700_writeb(1 << host
->this_id
, host
, SCID_REG
);
708 NCR_700_writeb(0, host
, SBCL_REG
);
709 NCR_700_writeb(ASYNC_OPERATION
, host
, SXFER_REG
);
711 NCR_700_writeb(PHASE_MM_INT
| SEL_TIMEOUT_INT
| GROSS_ERR_INT
| UX_DISC_INT
712 | RST_INT
| PAR_ERR_INT
| SELECT_INT
, host
, SIEN_REG
);
714 NCR_700_writeb(ABORT_INT
| INT_INST_INT
| ILGL_INST_INT
, host
, DIEN_REG
);
715 NCR_700_writeb(ENABLE_SELECT
, host
, SCNTL1_REG
);
716 if(hostdata
->clock
> 75) {
717 printk(KERN_ERR
"53c700: Clock speed %dMHz is too high: 75Mhz is the maximum this chip can be driven at\n", hostdata
->clock
);
718 /* do the best we can, but the async clock will be out
719 * of spec: sync divider 2, async divider 3 */
720 DEBUG(("53c700: sync 2 async 3\n"));
721 NCR_700_writeb(SYNC_DIV_2_0
, host
, SBCL_REG
);
722 NCR_700_writeb(ASYNC_DIV_3_0
| hostdata
->dcntl_extra
, host
, DCNTL_REG
);
723 hostdata
->sync_clock
= hostdata
->clock
/2;
724 } else if(hostdata
->clock
> 50 && hostdata
->clock
<= 75) {
725 /* sync divider 1.5, async divider 3 */
726 DEBUG(("53c700: sync 1.5 async 3\n"));
727 NCR_700_writeb(SYNC_DIV_1_5
, host
, SBCL_REG
);
728 NCR_700_writeb(ASYNC_DIV_3_0
| hostdata
->dcntl_extra
, host
, DCNTL_REG
);
729 hostdata
->sync_clock
= hostdata
->clock
*2;
730 hostdata
->sync_clock
/= 3;
732 } else if(hostdata
->clock
> 37 && hostdata
->clock
<= 50) {
733 /* sync divider 1, async divider 2 */
734 DEBUG(("53c700: sync 1 async 2\n"));
735 NCR_700_writeb(SYNC_DIV_1_0
, host
, SBCL_REG
);
736 NCR_700_writeb(ASYNC_DIV_2_0
| hostdata
->dcntl_extra
, host
, DCNTL_REG
);
737 hostdata
->sync_clock
= hostdata
->clock
;
738 } else if(hostdata
->clock
> 25 && hostdata
->clock
<=37) {
739 /* sync divider 1, async divider 1.5 */
740 DEBUG(("53c700: sync 1 async 1.5\n"));
741 NCR_700_writeb(SYNC_DIV_1_0
, host
, SBCL_REG
);
742 NCR_700_writeb(ASYNC_DIV_1_5
| hostdata
->dcntl_extra
, host
, DCNTL_REG
);
743 hostdata
->sync_clock
= hostdata
->clock
;
745 DEBUG(("53c700: sync 1 async 1\n"));
746 NCR_700_writeb(SYNC_DIV_1_0
, host
, SBCL_REG
);
747 NCR_700_writeb(ASYNC_DIV_1_0
| hostdata
->dcntl_extra
, host
, DCNTL_REG
);
748 /* sync divider 1, async divider 1 */
749 hostdata
->sync_clock
= hostdata
->clock
;
751 /* Calculate the actual minimum period that can be supported
752 * by our synchronous clock speed. See the 710 manual for
753 * exact details of this calculation which is based on a
754 * setting of the SXFER register */
755 min_period
= 1000*(4+min_xferp
)/(4*hostdata
->sync_clock
);
756 hostdata
->min_period
= NCR_700_MIN_PERIOD
;
757 if(min_period
> NCR_700_MIN_PERIOD
)
758 hostdata
->min_period
= min_period
;
762 NCR_700_chip_reset(struct Scsi_Host
*host
)
764 struct NCR_700_Host_Parameters
*hostdata
=
765 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
766 if(hostdata
->chip710
) {
767 NCR_700_writeb(SOFTWARE_RESET_710
, host
, ISTAT_REG
);
770 NCR_700_writeb(0, host
, ISTAT_REG
);
772 NCR_700_writeb(SOFTWARE_RESET
, host
, DCNTL_REG
);
775 NCR_700_writeb(0, host
, DCNTL_REG
);
780 NCR_700_chip_setup(host
);
783 /* The heart of the message processing engine is that the instruction
784 * immediately after the INT is the normal case (and so must be CLEAR
785 * ACK). If we want to do something else, we call that routine in
786 * scripts and set temp to be the normal case + 8 (skipping the CLEAR
787 * ACK) so that the routine returns correctly to resume its activity
790 process_extended_message(struct Scsi_Host
*host
,
791 struct NCR_700_Host_Parameters
*hostdata
,
792 struct scsi_cmnd
*SCp
, __u32 dsp
, __u32 dsps
)
794 __u32 resume_offset
= dsp
, temp
= dsp
+ 8;
795 __u8 pun
= 0xff, lun
= 0xff;
798 pun
= SCp
->device
->id
;
799 lun
= SCp
->device
->lun
;
802 switch(hostdata
->msgin
[2]) {
804 if(SCp
!= NULL
&& NCR_700_is_flag_set(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
)) {
805 struct scsi_target
*starget
= SCp
->device
->sdev_target
;
806 __u8 period
= hostdata
->msgin
[3];
807 __u8 offset
= hostdata
->msgin
[4];
809 if(offset
== 0 || period
== 0) {
814 spi_offset(starget
) = offset
;
815 spi_period(starget
) = period
;
817 if(NCR_700_is_flag_set(SCp
->device
, NCR_700_DEV_PRINT_SYNC_NEGOTIATION
)) {
818 spi_display_xfer_agreement(starget
);
819 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_PRINT_SYNC_NEGOTIATION
);
822 NCR_700_set_flag(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
);
823 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
825 NCR_700_writeb(NCR_700_get_SXFER(SCp
->device
),
829 /* SDTR message out of the blue, reject it */
830 shost_printk(KERN_WARNING
, host
,
831 "Unexpected SDTR msg\n");
832 hostdata
->msgout
[0] = A_REJECT_MSG
;
833 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, 1, DMA_TO_DEVICE
);
834 script_patch_16(hostdata
->dev
, hostdata
->script
,
836 /* SendMsgOut returns, so set up the return
838 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
843 printk(KERN_INFO
"scsi%d: (%d:%d), Unsolicited WDTR after CMD, Rejecting\n",
844 host
->host_no
, pun
, lun
);
845 hostdata
->msgout
[0] = A_REJECT_MSG
;
846 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, 1, DMA_TO_DEVICE
);
847 script_patch_16(hostdata
->dev
, hostdata
->script
, MessageCount
,
849 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
854 printk(KERN_INFO
"scsi%d (%d:%d): Unexpected message %s: ",
855 host
->host_no
, pun
, lun
,
856 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
857 spi_print_msg(hostdata
->msgin
);
860 hostdata
->msgout
[0] = A_REJECT_MSG
;
861 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, 1, DMA_TO_DEVICE
);
862 script_patch_16(hostdata
->dev
, hostdata
->script
, MessageCount
,
864 /* SendMsgOut returns, so set up the return
866 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
868 NCR_700_writel(temp
, host
, TEMP_REG
);
869 return resume_offset
;
873 process_message(struct Scsi_Host
*host
, struct NCR_700_Host_Parameters
*hostdata
,
874 struct scsi_cmnd
*SCp
, __u32 dsp
, __u32 dsps
)
876 /* work out where to return to */
877 __u32 temp
= dsp
+ 8, resume_offset
= dsp
;
878 __u8 pun
= 0xff, lun
= 0xff;
881 pun
= SCp
->device
->id
;
882 lun
= SCp
->device
->lun
;
886 printk("scsi%d (%d:%d): message %s: ", host
->host_no
, pun
, lun
,
887 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
888 spi_print_msg(hostdata
->msgin
);
892 switch(hostdata
->msgin
[0]) {
895 resume_offset
= process_extended_message(host
, hostdata
, SCp
,
900 if(SCp
!= NULL
&& NCR_700_is_flag_set(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
)) {
901 /* Rejected our sync negotiation attempt */
902 spi_period(SCp
->device
->sdev_target
) =
903 spi_offset(SCp
->device
->sdev_target
) = 0;
904 NCR_700_set_flag(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
);
905 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
906 } else if(SCp
!= NULL
&& NCR_700_get_tag_neg_state(SCp
->device
) == NCR_700_DURING_TAG_NEGOTIATION
) {
907 /* rejected our first simple tag message */
908 scmd_printk(KERN_WARNING
, SCp
,
909 "Rejected first tag queue attempt, turning off tag queueing\n");
910 /* we're done negotiating */
911 NCR_700_set_tag_neg_state(SCp
->device
, NCR_700_FINISHED_TAG_NEGOTIATION
);
912 hostdata
->tag_negotiated
&= ~(1<<scmd_id(SCp
));
913 SCp
->device
->tagged_supported
= 0;
914 scsi_deactivate_tcq(SCp
->device
, host
->cmd_per_lun
);
916 shost_printk(KERN_WARNING
, host
,
917 "(%d:%d) Unexpected REJECT Message %s\n",
919 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
920 /* however, just ignore it */
924 case A_PARITY_ERROR_MSG
:
925 printk(KERN_ERR
"scsi%d (%d:%d) Parity Error!\n", host
->host_no
,
927 NCR_700_internal_bus_reset(host
);
929 case A_SIMPLE_TAG_MSG
:
930 printk(KERN_INFO
"scsi%d (%d:%d) SIMPLE TAG %d %s\n", host
->host_no
,
931 pun
, lun
, hostdata
->msgin
[1],
932 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
936 printk(KERN_INFO
"scsi%d (%d:%d): Unexpected message %s: ",
937 host
->host_no
, pun
, lun
,
938 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
940 spi_print_msg(hostdata
->msgin
);
943 hostdata
->msgout
[0] = A_REJECT_MSG
;
944 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, 1, DMA_TO_DEVICE
);
945 script_patch_16(hostdata
->dev
, hostdata
->script
, MessageCount
,
947 /* SendMsgOut returns, so set up the return
949 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
953 NCR_700_writel(temp
, host
, TEMP_REG
);
954 /* set us up to receive another message */
955 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
, MSG_ARRAY_SIZE
, DMA_FROM_DEVICE
);
956 return resume_offset
;
960 process_script_interrupt(__u32 dsps
, __u32 dsp
, struct scsi_cmnd
*SCp
,
961 struct Scsi_Host
*host
,
962 struct NCR_700_Host_Parameters
*hostdata
)
964 __u32 resume_offset
= 0;
965 __u8 pun
= 0xff, lun
=0xff;
968 pun
= SCp
->device
->id
;
969 lun
= SCp
->device
->lun
;
972 if(dsps
== A_GOOD_STATUS_AFTER_STATUS
) {
973 DEBUG((" COMMAND COMPLETE, status=%02x\n",
974 hostdata
->status
[0]));
975 /* OK, if TCQ still under negotiation, we now know it works */
976 if (NCR_700_get_tag_neg_state(SCp
->device
) == NCR_700_DURING_TAG_NEGOTIATION
)
977 NCR_700_set_tag_neg_state(SCp
->device
,
978 NCR_700_FINISHED_TAG_NEGOTIATION
);
980 /* check for contingent allegiance contitions */
981 if(status_byte(hostdata
->status
[0]) == CHECK_CONDITION
||
982 status_byte(hostdata
->status
[0]) == COMMAND_TERMINATED
) {
983 struct NCR_700_command_slot
*slot
=
984 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
985 if(slot
->flags
== NCR_700_FLAG_AUTOSENSE
) {
986 /* OOPS: bad device, returning another
987 * contingent allegiance condition */
988 scmd_printk(KERN_ERR
, SCp
,
989 "broken device is looping in contingent allegiance: ignoring\n");
990 NCR_700_scsi_done(hostdata
, SCp
, hostdata
->status
[0]);
993 NCR_700_get_sense_cmnd(SCp
->device
);
995 scsi_print_command(SCp
);
996 printk(" cmd %p has status %d, requesting sense\n",
997 SCp
, hostdata
->status
[0]);
999 /* we can destroy the command here
1000 * because the contingent allegiance
1001 * condition will cause a retry which
1002 * will re-copy the command from the
1003 * saved data_cmnd. We also unmap any
1004 * data associated with the command
1006 NCR_700_unmap(hostdata
, SCp
, slot
);
1007 dma_unmap_single(hostdata
->dev
, slot
->pCmd
,
1011 cmnd
[0] = REQUEST_SENSE
;
1012 cmnd
[1] = (SCp
->device
->lun
& 0x7) << 5;
1015 cmnd
[4] = SCSI_SENSE_BUFFERSIZE
;
1017 /* Here's a quiet hack: the
1018 * REQUEST_SENSE command is six bytes,
1019 * so store a flag indicating that
1020 * this was an internal sense request
1021 * and the original status at the end
1023 cmnd
[6] = NCR_700_INTERNAL_SENSE_MAGIC
;
1024 cmnd
[7] = hostdata
->status
[0];
1025 cmnd
[8] = SCp
->cmd_len
;
1026 SCp
->cmd_len
= 6; /* command length for
1028 slot
->pCmd
= dma_map_single(hostdata
->dev
, cmnd
, MAX_COMMAND_SIZE
, DMA_TO_DEVICE
);
1029 slot
->dma_handle
= dma_map_single(hostdata
->dev
, SCp
->sense_buffer
, SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
1030 slot
->SG
[0].ins
= bS_to_host(SCRIPT_MOVE_DATA_IN
| SCSI_SENSE_BUFFERSIZE
);
1031 slot
->SG
[0].pAddr
= bS_to_host(slot
->dma_handle
);
1032 slot
->SG
[1].ins
= bS_to_host(SCRIPT_RETURN
);
1033 slot
->SG
[1].pAddr
= 0;
1034 slot
->resume_offset
= hostdata
->pScript
;
1035 dma_cache_sync(hostdata
->dev
, slot
->SG
, sizeof(slot
->SG
[0])*2, DMA_TO_DEVICE
);
1036 dma_cache_sync(hostdata
->dev
, SCp
->sense_buffer
, SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
1038 /* queue the command for reissue */
1039 slot
->state
= NCR_700_SLOT_QUEUED
;
1040 slot
->flags
= NCR_700_FLAG_AUTOSENSE
;
1041 hostdata
->state
= NCR_700_HOST_FREE
;
1042 hostdata
->cmd
= NULL
;
1045 // Currently rely on the mid layer evaluation
1046 // of the tag queuing capability
1048 //if(status_byte(hostdata->status[0]) == GOOD &&
1049 // SCp->cmnd[0] == INQUIRY && SCp->use_sg == 0) {
1050 // /* Piggy back the tag queueing support
1051 // * on this command */
1052 // dma_sync_single_for_cpu(hostdata->dev,
1053 // slot->dma_handle,
1054 // SCp->request_bufflen,
1055 // DMA_FROM_DEVICE);
1056 // if(((char *)SCp->request_buffer)[7] & 0x02) {
1057 // scmd_printk(KERN_INFO, SCp,
1058 // "Enabling Tag Command Queuing\n");
1059 // hostdata->tag_negotiated |= (1<<scmd_id(SCp));
1060 // NCR_700_set_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING);
1062 // NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING);
1063 // hostdata->tag_negotiated &= ~(1<<scmd_id(SCp));
1066 NCR_700_scsi_done(hostdata
, SCp
, hostdata
->status
[0]);
1068 } else if((dsps
& 0xfffff0f0) == A_UNEXPECTED_PHASE
) {
1069 __u8 i
= (dsps
& 0xf00) >> 8;
1071 scmd_printk(KERN_ERR
, SCp
, "UNEXPECTED PHASE %s (%s)\n",
1073 sbcl_to_string(NCR_700_readb(host
, SBCL_REG
)));
1074 scmd_printk(KERN_ERR
, SCp
, " len = %d, cmd =",
1076 scsi_print_command(SCp
);
1078 NCR_700_internal_bus_reset(host
);
1079 } else if((dsps
& 0xfffff000) == A_FATAL
) {
1080 int i
= (dsps
& 0xfff);
1082 printk(KERN_ERR
"scsi%d: (%d:%d) FATAL ERROR: %s\n",
1083 host
->host_no
, pun
, lun
, NCR_700_fatal_messages
[i
]);
1084 if(dsps
== A_FATAL_ILLEGAL_MSG_LENGTH
) {
1085 printk(KERN_ERR
" msg begins %02x %02x\n",
1086 hostdata
->msgin
[0], hostdata
->msgin
[1]);
1088 NCR_700_internal_bus_reset(host
);
1089 } else if((dsps
& 0xfffff0f0) == A_DISCONNECT
) {
1090 #ifdef NCR_700_DEBUG
1091 __u8 i
= (dsps
& 0xf00) >> 8;
1093 printk("scsi%d: (%d:%d), DISCONNECTED (%d) %s\n",
1094 host
->host_no
, pun
, lun
,
1095 i
, NCR_700_phase
[i
]);
1097 save_for_reselection(hostdata
, SCp
, dsp
);
1099 } else if(dsps
== A_RESELECTION_IDENTIFIED
) {
1101 struct NCR_700_command_slot
*slot
;
1102 __u8 reselection_id
= hostdata
->reselection_id
;
1103 struct scsi_device
*SDp
;
1105 lun
= hostdata
->msgin
[0] & 0x1f;
1107 hostdata
->reselection_id
= 0xff;
1108 DEBUG(("scsi%d: (%d:%d) RESELECTED!\n",
1109 host
->host_no
, reselection_id
, lun
));
1110 /* clear the reselection indicator */
1111 SDp
= __scsi_device_lookup(host
, 0, reselection_id
, lun
);
1112 if(unlikely(SDp
== NULL
)) {
1113 printk(KERN_ERR
"scsi%d: (%d:%d) HAS NO device\n",
1114 host
->host_no
, reselection_id
, lun
);
1117 if(hostdata
->msgin
[1] == A_SIMPLE_TAG_MSG
) {
1118 struct scsi_cmnd
*SCp
= scsi_find_tag(SDp
, hostdata
->msgin
[2]);
1119 if(unlikely(SCp
== NULL
)) {
1120 printk(KERN_ERR
"scsi%d: (%d:%d) no saved request for tag %d\n",
1121 host
->host_no
, reselection_id
, lun
, hostdata
->msgin
[2]);
1125 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1126 DDEBUG(KERN_DEBUG
, SDp
,
1127 "reselection is tag %d, slot %p(%d)\n",
1128 hostdata
->msgin
[2], slot
, slot
->tag
);
1130 struct scsi_cmnd
*SCp
= scsi_find_tag(SDp
, SCSI_NO_TAG
);
1131 if(unlikely(SCp
== NULL
)) {
1132 sdev_printk(KERN_ERR
, SDp
,
1133 "no saved request for untagged cmd\n");
1136 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1140 printk(KERN_ERR
"scsi%d: (%d:%d) RESELECTED but no saved command (MSG = %02x %02x %02x)!!\n",
1141 host
->host_no
, reselection_id
, lun
,
1142 hostdata
->msgin
[0], hostdata
->msgin
[1],
1143 hostdata
->msgin
[2]);
1145 if(hostdata
->state
!= NCR_700_HOST_BUSY
)
1146 printk(KERN_ERR
"scsi%d: FATAL, host not busy during valid reselection!\n",
1148 resume_offset
= slot
->resume_offset
;
1149 hostdata
->cmd
= slot
->cmnd
;
1151 /* re-patch for this command */
1152 script_patch_32_abs(hostdata
->dev
, hostdata
->script
,
1153 CommandAddress
, slot
->pCmd
);
1154 script_patch_16(hostdata
->dev
, hostdata
->script
,
1155 CommandCount
, slot
->cmnd
->cmd_len
);
1156 script_patch_32_abs(hostdata
->dev
, hostdata
->script
,
1157 SGScriptStartAddress
,
1158 to32bit(&slot
->pSG
[0].ins
));
1160 /* Note: setting SXFER only works if we're
1161 * still in the MESSAGE phase, so it is vital
1162 * that ACK is still asserted when we process
1163 * the reselection message. The resume offset
1164 * should therefore always clear ACK */
1165 NCR_700_writeb(NCR_700_get_SXFER(hostdata
->cmd
->device
),
1167 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
,
1168 MSG_ARRAY_SIZE
, DMA_FROM_DEVICE
);
1169 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
,
1170 MSG_ARRAY_SIZE
, DMA_TO_DEVICE
);
1171 /* I'm just being paranoid here, the command should
1172 * already have been flushed from the cache */
1173 dma_cache_sync(hostdata
->dev
, slot
->cmnd
->cmnd
,
1174 slot
->cmnd
->cmd_len
, DMA_TO_DEVICE
);
1179 } else if(dsps
== A_RESELECTED_DURING_SELECTION
) {
1181 /* This section is full of debugging code because I've
1182 * never managed to reach it. I think what happens is
1183 * that, because the 700 runs with selection
1184 * interrupts enabled the whole time that we take a
1185 * selection interrupt before we manage to get to the
1186 * reselected script interrupt */
1188 __u8 reselection_id
= NCR_700_readb(host
, SFBR_REG
);
1189 struct NCR_700_command_slot
*slot
;
1191 /* Take out our own ID */
1192 reselection_id
&= ~(1<<host
->this_id
);
1194 /* I've never seen this happen, so keep this as a printk rather
1196 printk(KERN_INFO
"scsi%d: (%d:%d) RESELECTION DURING SELECTION, dsp=%08x[%04x] state=%d, count=%d\n",
1197 host
->host_no
, reselection_id
, lun
, dsp
, dsp
- hostdata
->pScript
, hostdata
->state
, hostdata
->command_slot_count
);
1200 /* FIXME: DEBUGGING CODE */
1201 __u32 SG
= (__u32
)bS_to_cpu(hostdata
->script
[A_SGScriptStartAddress_used
[0]]);
1204 for(i
=0; i
< NCR_700_COMMAND_SLOTS_PER_HOST
; i
++) {
1205 if(SG
>= to32bit(&hostdata
->slots
[i
].pSG
[0])
1206 && SG
<= to32bit(&hostdata
->slots
[i
].pSG
[NCR_700_SG_SEGMENTS
]))
1209 printk(KERN_INFO
"IDENTIFIED SG segment as being %08x in slot %p, cmd %p, slot->resume_offset=%08x\n", SG
, &hostdata
->slots
[i
], hostdata
->slots
[i
].cmnd
, hostdata
->slots
[i
].resume_offset
);
1210 SCp
= hostdata
->slots
[i
].cmnd
;
1214 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1215 /* change slot from busy to queued to redo command */
1216 slot
->state
= NCR_700_SLOT_QUEUED
;
1218 hostdata
->cmd
= NULL
;
1220 if(reselection_id
== 0) {
1221 if(hostdata
->reselection_id
== 0xff) {
1222 printk(KERN_ERR
"scsi%d: Invalid reselection during selection!!\n", host
->host_no
);
1225 printk(KERN_ERR
"scsi%d: script reselected and we took a selection interrupt\n",
1227 reselection_id
= hostdata
->reselection_id
;
1231 /* convert to real ID */
1232 reselection_id
= bitmap_to_number(reselection_id
);
1234 hostdata
->reselection_id
= reselection_id
;
1235 /* just in case we have a stale simple tag message, clear it */
1236 hostdata
->msgin
[1] = 0;
1237 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
,
1238 MSG_ARRAY_SIZE
, DMA_BIDIRECTIONAL
);
1239 if(hostdata
->tag_negotiated
& (1<<reselection_id
)) {
1240 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionWithTag
;
1242 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionData
;
1244 } else if(dsps
== A_COMPLETED_SELECTION_AS_TARGET
) {
1245 /* we've just disconnected from the bus, do nothing since
1246 * a return here will re-run the queued command slot
1247 * that may have been interrupted by the initial selection */
1248 DEBUG((" SELECTION COMPLETED\n"));
1249 } else if((dsps
& 0xfffff0f0) == A_MSG_IN
) {
1250 resume_offset
= process_message(host
, hostdata
, SCp
,
1252 } else if((dsps
& 0xfffff000) == 0) {
1253 __u8 i
= (dsps
& 0xf0) >> 4, j
= (dsps
& 0xf00) >> 8;
1254 printk(KERN_ERR
"scsi%d: (%d:%d), unhandled script condition %s %s at %04x\n",
1255 host
->host_no
, pun
, lun
, NCR_700_condition
[i
],
1256 NCR_700_phase
[j
], dsp
- hostdata
->pScript
);
1258 struct scatterlist
*sg
;
1260 scsi_print_command(SCp
);
1261 scsi_for_each_sg(SCp
, sg
, scsi_sg_count(SCp
) + 1, i
) {
1262 printk(KERN_INFO
" SG[%d].length = %d, move_insn=%08x, addr %08x\n", i
, sg
->length
, ((struct NCR_700_command_slot
*)SCp
->host_scribble
)->SG
[i
].ins
, ((struct NCR_700_command_slot
*)SCp
->host_scribble
)->SG
[i
].pAddr
);
1265 NCR_700_internal_bus_reset(host
);
1266 } else if((dsps
& 0xfffff000) == A_DEBUG_INTERRUPT
) {
1267 printk(KERN_NOTICE
"scsi%d (%d:%d) DEBUG INTERRUPT %d AT %08x[%04x], continuing\n",
1268 host
->host_no
, pun
, lun
, dsps
& 0xfff, dsp
, dsp
- hostdata
->pScript
);
1269 resume_offset
= dsp
;
1271 printk(KERN_ERR
"scsi%d: (%d:%d), unidentified script interrupt 0x%x at %04x\n",
1272 host
->host_no
, pun
, lun
, dsps
, dsp
- hostdata
->pScript
);
1273 NCR_700_internal_bus_reset(host
);
1275 return resume_offset
;
1278 /* We run the 53c700 with selection interrupts always enabled. This
1279 * means that the chip may be selected as soon as the bus frees. On a
1280 * busy bus, this can be before the scripts engine finishes its
1281 * processing. Therefore, part of the selection processing has to be
1282 * to find out what the scripts engine is doing and complete the
1283 * function if necessary (i.e. process the pending disconnect or save
1284 * the interrupted initial selection */
1286 process_selection(struct Scsi_Host
*host
, __u32 dsp
)
1288 __u8 id
= 0; /* Squash compiler warning */
1290 __u32 resume_offset
= 0;
1291 struct NCR_700_Host_Parameters
*hostdata
=
1292 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1293 struct scsi_cmnd
*SCp
= hostdata
->cmd
;
1296 for(count
= 0; count
< 5; count
++) {
1297 id
= NCR_700_readb(host
, hostdata
->chip710
?
1298 CTEST9_REG
: SFBR_REG
);
1300 /* Take out our own ID */
1301 id
&= ~(1<<host
->this_id
);
1306 sbcl
= NCR_700_readb(host
, SBCL_REG
);
1307 if((sbcl
& SBCL_IO
) == 0) {
1308 /* mark as having been selected rather than reselected */
1311 /* convert to real ID */
1312 hostdata
->reselection_id
= id
= bitmap_to_number(id
);
1313 DEBUG(("scsi%d: Reselected by %d\n",
1314 host
->host_no
, id
));
1316 if(hostdata
->state
== NCR_700_HOST_BUSY
&& SCp
!= NULL
) {
1317 struct NCR_700_command_slot
*slot
=
1318 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1319 DEBUG((" ID %d WARNING: RESELECTION OF BUSY HOST, saving cmd %p, slot %p, addr %x [%04x], resume %x!\n", id
, hostdata
->cmd
, slot
, dsp
, dsp
- hostdata
->pScript
, resume_offset
));
1321 switch(dsp
- hostdata
->pScript
) {
1322 case Ent_Disconnect1
:
1323 case Ent_Disconnect2
:
1324 save_for_reselection(hostdata
, SCp
, Ent_Disconnect2
+ hostdata
->pScript
);
1326 case Ent_Disconnect3
:
1327 case Ent_Disconnect4
:
1328 save_for_reselection(hostdata
, SCp
, Ent_Disconnect4
+ hostdata
->pScript
);
1330 case Ent_Disconnect5
:
1331 case Ent_Disconnect6
:
1332 save_for_reselection(hostdata
, SCp
, Ent_Disconnect6
+ hostdata
->pScript
);
1334 case Ent_Disconnect7
:
1335 case Ent_Disconnect8
:
1336 save_for_reselection(hostdata
, SCp
, Ent_Disconnect8
+ hostdata
->pScript
);
1340 process_script_interrupt(A_GOOD_STATUS_AFTER_STATUS
, dsp
, SCp
, host
, hostdata
);
1344 slot
->state
= NCR_700_SLOT_QUEUED
;
1348 hostdata
->state
= NCR_700_HOST_BUSY
;
1349 hostdata
->cmd
= NULL
;
1350 /* clear any stale simple tag message */
1351 hostdata
->msgin
[1] = 0;
1352 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
, MSG_ARRAY_SIZE
,
1356 /* Selected as target, Ignore */
1357 resume_offset
= hostdata
->pScript
+ Ent_SelectedAsTarget
;
1358 } else if(hostdata
->tag_negotiated
& (1<<id
)) {
1359 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionWithTag
;
1361 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionData
;
1363 return resume_offset
;
1367 NCR_700_clear_fifo(struct Scsi_Host
*host
) {
1368 const struct NCR_700_Host_Parameters
*hostdata
1369 = (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1370 if(hostdata
->chip710
) {
1371 NCR_700_writeb(CLR_FIFO_710
, host
, CTEST8_REG
);
1373 NCR_700_writeb(CLR_FIFO
, host
, DFIFO_REG
);
1378 NCR_700_flush_fifo(struct Scsi_Host
*host
) {
1379 const struct NCR_700_Host_Parameters
*hostdata
1380 = (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1381 if(hostdata
->chip710
) {
1382 NCR_700_writeb(FLUSH_DMA_FIFO_710
, host
, CTEST8_REG
);
1384 NCR_700_writeb(0, host
, CTEST8_REG
);
1386 NCR_700_writeb(FLUSH_DMA_FIFO
, host
, DFIFO_REG
);
1388 NCR_700_writeb(0, host
, DFIFO_REG
);
1393 /* The queue lock with interrupts disabled must be held on entry to
1396 NCR_700_start_command(struct scsi_cmnd
*SCp
)
1398 struct NCR_700_command_slot
*slot
=
1399 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1400 struct NCR_700_Host_Parameters
*hostdata
=
1401 (struct NCR_700_Host_Parameters
*)SCp
->device
->host
->hostdata
[0];
1402 __u16 count
= 1; /* for IDENTIFY message */
1404 if(hostdata
->state
!= NCR_700_HOST_FREE
) {
1405 /* keep this inside the lock to close the race window where
1406 * the running command finishes on another CPU while we don't
1407 * change the state to queued on this one */
1408 slot
->state
= NCR_700_SLOT_QUEUED
;
1410 DEBUG(("scsi%d: host busy, queueing command %p, slot %p\n",
1411 SCp
->device
->host
->host_no
, slot
->cmnd
, slot
));
1414 hostdata
->state
= NCR_700_HOST_BUSY
;
1415 hostdata
->cmd
= SCp
;
1416 slot
->state
= NCR_700_SLOT_BUSY
;
1417 /* keep interrupts disabled until we have the command correctly
1418 * set up so we cannot take a selection interrupt */
1420 hostdata
->msgout
[0] = NCR_700_identify((SCp
->cmnd
[0] != REQUEST_SENSE
&&
1421 slot
->flags
!= NCR_700_FLAG_AUTOSENSE
),
1423 /* for INQUIRY or REQUEST_SENSE commands, we cannot be sure
1424 * if the negotiated transfer parameters still hold, so
1425 * always renegotiate them */
1426 if(SCp
->cmnd
[0] == INQUIRY
|| SCp
->cmnd
[0] == REQUEST_SENSE
||
1427 slot
->flags
== NCR_700_FLAG_AUTOSENSE
) {
1428 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
);
1431 /* REQUEST_SENSE is asking for contingent I_T_L(_Q) status.
1432 * If a contingent allegiance condition exists, the device
1433 * will refuse all tags, so send the request sense as untagged
1435 if((hostdata
->tag_negotiated
& (1<<scmd_id(SCp
)))
1436 && (slot
->tag
!= SCSI_NO_TAG
&& SCp
->cmnd
[0] != REQUEST_SENSE
&&
1437 slot
->flags
!= NCR_700_FLAG_AUTOSENSE
)) {
1438 count
+= scsi_populate_tag_msg(SCp
, &hostdata
->msgout
[count
]);
1441 if(hostdata
->fast
&&
1442 NCR_700_is_flag_clear(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
)) {
1443 count
+= spi_populate_sync_msg(&hostdata
->msgout
[count
],
1444 spi_period(SCp
->device
->sdev_target
),
1445 spi_offset(SCp
->device
->sdev_target
));
1446 NCR_700_set_flag(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
1449 script_patch_16(hostdata
->dev
, hostdata
->script
, MessageCount
, count
);
1452 script_patch_ID(hostdata
->dev
, hostdata
->script
,
1453 Device_ID
, 1<<scmd_id(SCp
));
1455 script_patch_32_abs(hostdata
->dev
, hostdata
->script
, CommandAddress
,
1457 script_patch_16(hostdata
->dev
, hostdata
->script
, CommandCount
,
1459 /* finally plumb the beginning of the SG list into the script
1461 script_patch_32_abs(hostdata
->dev
, hostdata
->script
,
1462 SGScriptStartAddress
, to32bit(&slot
->pSG
[0].ins
));
1463 NCR_700_clear_fifo(SCp
->device
->host
);
1465 if(slot
->resume_offset
== 0)
1466 slot
->resume_offset
= hostdata
->pScript
;
1467 /* now perform all the writebacks and invalidates */
1468 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, count
, DMA_TO_DEVICE
);
1469 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
, MSG_ARRAY_SIZE
,
1471 dma_cache_sync(hostdata
->dev
, SCp
->cmnd
, SCp
->cmd_len
, DMA_TO_DEVICE
);
1472 dma_cache_sync(hostdata
->dev
, hostdata
->status
, 1, DMA_FROM_DEVICE
);
1474 /* set the synchronous period/offset */
1475 NCR_700_writeb(NCR_700_get_SXFER(SCp
->device
),
1476 SCp
->device
->host
, SXFER_REG
);
1477 NCR_700_writel(slot
->temp
, SCp
->device
->host
, TEMP_REG
);
1478 NCR_700_writel(slot
->resume_offset
, SCp
->device
->host
, DSP_REG
);
1484 NCR_700_intr(int irq
, void *dev_id
)
1486 struct Scsi_Host
*host
= (struct Scsi_Host
*)dev_id
;
1487 struct NCR_700_Host_Parameters
*hostdata
=
1488 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1490 __u32 resume_offset
= 0;
1491 __u8 pun
= 0xff, lun
= 0xff;
1492 unsigned long flags
;
1495 /* Use the host lock to serialise access to the 53c700
1496 * hardware. Note: In future, we may need to take the queue
1497 * lock to enter the done routines. When that happens, we
1498 * need to ensure that for this driver, the host lock and the
1499 * queue lock point to the same thing. */
1500 spin_lock_irqsave(host
->host_lock
, flags
);
1501 if((istat
= NCR_700_readb(host
, ISTAT_REG
))
1502 & (SCSI_INT_PENDING
| DMA_INT_PENDING
)) {
1504 __u8 sstat0
= 0, dstat
= 0;
1506 struct scsi_cmnd
*SCp
= hostdata
->cmd
;
1507 enum NCR_700_Host_State state
;
1510 state
= hostdata
->state
;
1511 SCp
= hostdata
->cmd
;
1513 if(istat
& SCSI_INT_PENDING
) {
1516 sstat0
= NCR_700_readb(host
, SSTAT0_REG
);
1519 if(istat
& DMA_INT_PENDING
) {
1522 dstat
= NCR_700_readb(host
, DSTAT_REG
);
1525 dsps
= NCR_700_readl(host
, DSPS_REG
);
1526 dsp
= NCR_700_readl(host
, DSP_REG
);
1528 DEBUG(("scsi%d: istat %02x sstat0 %02x dstat %02x dsp %04x[%08x] dsps 0x%x\n",
1529 host
->host_no
, istat
, sstat0
, dstat
,
1530 (dsp
- (__u32
)(hostdata
->pScript
))/4,
1534 pun
= SCp
->device
->id
;
1535 lun
= SCp
->device
->lun
;
1538 if(sstat0
& SCSI_RESET_DETECTED
) {
1539 struct scsi_device
*SDp
;
1542 hostdata
->state
= NCR_700_HOST_BUSY
;
1544 printk(KERN_ERR
"scsi%d: Bus Reset detected, executing command %p, slot %p, dsp %08x[%04x]\n",
1545 host
->host_no
, SCp
, SCp
== NULL
? NULL
: SCp
->host_scribble
, dsp
, dsp
- hostdata
->pScript
);
1547 scsi_report_bus_reset(host
, 0);
1549 /* clear all the negotiated parameters */
1550 __shost_for_each_device(SDp
, host
)
1551 NCR_700_clear_flag(SDp
, ~0);
1553 /* clear all the slots and their pending commands */
1554 for(i
= 0; i
< NCR_700_COMMAND_SLOTS_PER_HOST
; i
++) {
1555 struct scsi_cmnd
*SCp
;
1556 struct NCR_700_command_slot
*slot
=
1557 &hostdata
->slots
[i
];
1559 if(slot
->state
== NCR_700_SLOT_FREE
)
1563 printk(KERN_ERR
" failing command because of reset, slot %p, cmnd %p\n",
1565 free_slot(slot
, hostdata
);
1566 SCp
->host_scribble
= NULL
;
1567 NCR_700_set_depth(SCp
->device
, 0);
1568 /* NOTE: deadlock potential here: we
1569 * rely on mid-layer guarantees that
1570 * scsi_done won't try to issue the
1571 * command again otherwise we'll
1573 * hostdata->state_lock */
1574 SCp
->result
= DID_RESET
<< 16;
1575 SCp
->scsi_done(SCp
);
1578 NCR_700_chip_setup(host
);
1580 hostdata
->state
= NCR_700_HOST_FREE
;
1581 hostdata
->cmd
= NULL
;
1582 /* signal back if this was an eh induced reset */
1583 if(hostdata
->eh_complete
!= NULL
)
1584 complete(hostdata
->eh_complete
);
1586 } else if(sstat0
& SELECTION_TIMEOUT
) {
1587 DEBUG(("scsi%d: (%d:%d) selection timeout\n",
1588 host
->host_no
, pun
, lun
));
1589 NCR_700_scsi_done(hostdata
, SCp
, DID_NO_CONNECT
<<16);
1590 } else if(sstat0
& PHASE_MISMATCH
) {
1591 struct NCR_700_command_slot
*slot
= (SCp
== NULL
) ? NULL
:
1592 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1594 if(dsp
== Ent_SendMessage
+ 8 + hostdata
->pScript
) {
1595 /* It wants to reply to some part of
1597 #ifdef NCR_700_DEBUG
1598 __u32 temp
= NCR_700_readl(host
, TEMP_REG
);
1599 int count
= (hostdata
->script
[Ent_SendMessage
/4] & 0xffffff) - ((NCR_700_readl(host
, DBC_REG
) & 0xffffff) + NCR_700_data_residual(host
));
1600 printk("scsi%d (%d:%d) PHASE MISMATCH IN SEND MESSAGE %d remain, return %p[%04x], phase %s\n", host
->host_no
, pun
, lun
, count
, (void *)temp
, temp
- hostdata
->pScript
, sbcl_to_string(NCR_700_readb(host
, SBCL_REG
)));
1602 resume_offset
= hostdata
->pScript
+ Ent_SendMessagePhaseMismatch
;
1603 } else if(dsp
>= to32bit(&slot
->pSG
[0].ins
) &&
1604 dsp
<= to32bit(&slot
->pSG
[NCR_700_SG_SEGMENTS
].ins
)) {
1605 int data_transfer
= NCR_700_readl(host
, DBC_REG
) & 0xffffff;
1606 int SGcount
= (dsp
- to32bit(&slot
->pSG
[0].ins
))/sizeof(struct NCR_700_SG_List
);
1607 int residual
= NCR_700_data_residual(host
);
1609 #ifdef NCR_700_DEBUG
1610 __u32 naddr
= NCR_700_readl(host
, DNAD_REG
);
1612 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x\n",
1613 host
->host_no
, pun
, lun
,
1614 SGcount
, data_transfer
);
1615 scsi_print_command(SCp
);
1617 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x, residual %d\n",
1618 host
->host_no
, pun
, lun
,
1619 SGcount
, data_transfer
, residual
);
1622 data_transfer
+= residual
;
1624 if(data_transfer
!= 0) {
1630 count
= (bS_to_cpu(slot
->SG
[SGcount
].ins
) & 0x00ffffff);
1631 DEBUG(("DATA TRANSFER MISMATCH, count = %d, transferred %d\n", count
, count
-data_transfer
));
1632 slot
->SG
[SGcount
].ins
&= bS_to_host(0xff000000);
1633 slot
->SG
[SGcount
].ins
|= bS_to_host(data_transfer
);
1634 pAddr
= bS_to_cpu(slot
->SG
[SGcount
].pAddr
);
1635 pAddr
+= (count
- data_transfer
);
1636 #ifdef NCR_700_DEBUG
1637 if(pAddr
!= naddr
) {
1638 printk("scsi%d (%d:%d) transfer mismatch pAddr=%lx, naddr=%lx, data_transfer=%d, residual=%d\n", host
->host_no
, pun
, lun
, (unsigned long)pAddr
, (unsigned long)naddr
, data_transfer
, residual
);
1641 slot
->SG
[SGcount
].pAddr
= bS_to_host(pAddr
);
1643 /* set the executed moves to nops */
1644 for(i
=0; i
<SGcount
; i
++) {
1645 slot
->SG
[i
].ins
= bS_to_host(SCRIPT_NOP
);
1646 slot
->SG
[i
].pAddr
= 0;
1648 dma_cache_sync(hostdata
->dev
, slot
->SG
, sizeof(slot
->SG
), DMA_TO_DEVICE
);
1649 /* and pretend we disconnected after
1650 * the command phase */
1651 resume_offset
= hostdata
->pScript
+ Ent_MsgInDuringData
;
1652 /* make sure all the data is flushed */
1653 NCR_700_flush_fifo(host
);
1655 __u8 sbcl
= NCR_700_readb(host
, SBCL_REG
);
1656 printk(KERN_ERR
"scsi%d: (%d:%d) phase mismatch at %04x, phase %s\n",
1657 host
->host_no
, pun
, lun
, dsp
- hostdata
->pScript
, sbcl_to_string(sbcl
));
1658 NCR_700_internal_bus_reset(host
);
1661 } else if(sstat0
& SCSI_GROSS_ERROR
) {
1662 printk(KERN_ERR
"scsi%d: (%d:%d) GROSS ERROR\n",
1663 host
->host_no
, pun
, lun
);
1664 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1665 } else if(sstat0
& PARITY_ERROR
) {
1666 printk(KERN_ERR
"scsi%d: (%d:%d) PARITY ERROR\n",
1667 host
->host_no
, pun
, lun
);
1668 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1669 } else if(dstat
& SCRIPT_INT_RECEIVED
) {
1670 DEBUG(("scsi%d: (%d:%d) ====>SCRIPT INTERRUPT<====\n",
1671 host
->host_no
, pun
, lun
));
1672 resume_offset
= process_script_interrupt(dsps
, dsp
, SCp
, host
, hostdata
);
1673 } else if(dstat
& (ILGL_INST_DETECTED
)) {
1674 printk(KERN_ERR
"scsi%d: (%d:%d) Illegal Instruction detected at 0x%08x[0x%x]!!!\n"
1675 " Please email James.Bottomley@HansenPartnership.com with the details\n",
1676 host
->host_no
, pun
, lun
,
1677 dsp
, dsp
- hostdata
->pScript
);
1678 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1679 } else if(dstat
& (WATCH_DOG_INTERRUPT
|ABORTED
)) {
1680 printk(KERN_ERR
"scsi%d: (%d:%d) serious DMA problem, dstat=%02x\n",
1681 host
->host_no
, pun
, lun
, dstat
);
1682 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1686 /* NOTE: selection interrupt processing MUST occur
1687 * after script interrupt processing to correctly cope
1688 * with the case where we process a disconnect and
1689 * then get reselected before we process the
1691 if(sstat0
& SELECTED
) {
1692 /* FIXME: It currently takes at least FOUR
1693 * interrupts to complete a command that
1694 * disconnects: one for the disconnect, one
1695 * for the reselection, one to get the
1696 * reselection data and one to complete the
1697 * command. If we guess the reselected
1698 * command here and prepare it, we only need
1699 * to get a reselection data interrupt if we
1700 * guessed wrongly. Since the interrupt
1701 * overhead is much greater than the command
1702 * setup, this would be an efficient
1703 * optimisation particularly as we probably
1704 * only have one outstanding command on a
1705 * target most of the time */
1707 resume_offset
= process_selection(host
, dsp
);
1714 if(hostdata
->state
!= NCR_700_HOST_BUSY
) {
1715 printk(KERN_ERR
"scsi%d: Driver error: resume at 0x%08x [0x%04x] with non busy host!\n",
1716 host
->host_no
, resume_offset
, resume_offset
- hostdata
->pScript
);
1717 hostdata
->state
= NCR_700_HOST_BUSY
;
1720 DEBUG(("Attempting to resume at %x\n", resume_offset
));
1721 NCR_700_clear_fifo(host
);
1722 NCR_700_writel(resume_offset
, host
, DSP_REG
);
1724 /* There is probably a technical no-no about this: If we're a
1725 * shared interrupt and we got this interrupt because the
1726 * other device needs servicing not us, we're still going to
1727 * check our queued commands here---of course, there shouldn't
1728 * be any outstanding.... */
1729 if(hostdata
->state
== NCR_700_HOST_FREE
) {
1732 for(i
= 0; i
< NCR_700_COMMAND_SLOTS_PER_HOST
; i
++) {
1733 /* fairness: always run the queue from the last
1734 * position we left off */
1735 int j
= (i
+ hostdata
->saved_slot_position
)
1736 % NCR_700_COMMAND_SLOTS_PER_HOST
;
1738 if(hostdata
->slots
[j
].state
!= NCR_700_SLOT_QUEUED
)
1740 if(NCR_700_start_command(hostdata
->slots
[j
].cmnd
)) {
1741 DEBUG(("scsi%d: Issuing saved command slot %p, cmd %p\t\n",
1742 host
->host_no
, &hostdata
->slots
[j
],
1743 hostdata
->slots
[j
].cmnd
));
1744 hostdata
->saved_slot_position
= j
+ 1;
1751 spin_unlock_irqrestore(host
->host_lock
, flags
);
1752 return IRQ_RETVAL(handled
);
1756 NCR_700_queuecommand(struct scsi_cmnd
*SCp
, void (*done
)(struct scsi_cmnd
*))
1758 struct NCR_700_Host_Parameters
*hostdata
=
1759 (struct NCR_700_Host_Parameters
*)SCp
->device
->host
->hostdata
[0];
1761 enum dma_data_direction direction
;
1762 struct NCR_700_command_slot
*slot
;
1764 if(hostdata
->command_slot_count
>= NCR_700_COMMAND_SLOTS_PER_HOST
) {
1765 /* We're over our allocation, this should never happen
1766 * since we report the max allocation to the mid layer */
1767 printk(KERN_WARNING
"scsi%d: Command depth has gone over queue depth\n", SCp
->device
->host
->host_no
);
1770 /* check for untagged commands. We cannot have any outstanding
1771 * commands if we accept them. Commands could be untagged because:
1773 * - The tag negotiated bitmap is clear
1774 * - The blk layer sent and untagged command
1776 if(NCR_700_get_depth(SCp
->device
) != 0
1777 && (!(hostdata
->tag_negotiated
& (1<<scmd_id(SCp
)))
1778 || !blk_rq_tagged(SCp
->request
))) {
1779 CDEBUG(KERN_ERR
, SCp
, "has non zero depth %d\n",
1780 NCR_700_get_depth(SCp
->device
));
1781 return SCSI_MLQUEUE_DEVICE_BUSY
;
1783 if(NCR_700_get_depth(SCp
->device
) >= SCp
->device
->queue_depth
) {
1784 CDEBUG(KERN_ERR
, SCp
, "has max tag depth %d\n",
1785 NCR_700_get_depth(SCp
->device
));
1786 return SCSI_MLQUEUE_DEVICE_BUSY
;
1788 NCR_700_set_depth(SCp
->device
, NCR_700_get_depth(SCp
->device
) + 1);
1790 /* begin the command here */
1791 /* no need to check for NULL, test for command_slot_count above
1792 * ensures a slot is free */
1793 slot
= find_empty_slot(hostdata
);
1797 SCp
->scsi_done
= done
;
1798 SCp
->host_scribble
= (unsigned char *)slot
;
1799 SCp
->SCp
.ptr
= NULL
;
1800 SCp
->SCp
.buffer
= NULL
;
1802 #ifdef NCR_700_DEBUG
1803 printk("53c700: scsi%d, command ", SCp
->device
->host
->host_no
);
1804 scsi_print_command(SCp
);
1806 if(blk_rq_tagged(SCp
->request
)
1807 && (hostdata
->tag_negotiated
&(1<<scmd_id(SCp
))) == 0
1808 && NCR_700_get_tag_neg_state(SCp
->device
) == NCR_700_START_TAG_NEGOTIATION
) {
1809 scmd_printk(KERN_ERR
, SCp
, "Enabling Tag Command Queuing\n");
1810 hostdata
->tag_negotiated
|= (1<<scmd_id(SCp
));
1811 NCR_700_set_tag_neg_state(SCp
->device
, NCR_700_DURING_TAG_NEGOTIATION
);
1814 /* here we may have to process an untagged command. The gate
1815 * above ensures that this will be the only one outstanding,
1816 * so clear the tag negotiated bit.
1818 * FIXME: This will royally screw up on multiple LUN devices
1820 if(!blk_rq_tagged(SCp
->request
)
1821 && (hostdata
->tag_negotiated
&(1<<scmd_id(SCp
)))) {
1822 scmd_printk(KERN_INFO
, SCp
, "Disabling Tag Command Queuing\n");
1823 hostdata
->tag_negotiated
&= ~(1<<scmd_id(SCp
));
1826 if((hostdata
->tag_negotiated
&(1<<scmd_id(SCp
)))
1827 && scsi_get_tag_type(SCp
->device
)) {
1828 slot
->tag
= SCp
->request
->tag
;
1829 CDEBUG(KERN_DEBUG
, SCp
, "sending out tag %d, slot %p\n",
1832 slot
->tag
= SCSI_NO_TAG
;
1833 /* must populate current_cmnd for scsi_find_tag to work */
1834 SCp
->device
->current_cmnd
= SCp
;
1836 /* sanity check: some of the commands generated by the mid-layer
1837 * have an eccentric idea of their sc_data_direction */
1838 if(!scsi_sg_count(SCp
) && !scsi_bufflen(SCp
) &&
1839 SCp
->sc_data_direction
!= DMA_NONE
) {
1840 #ifdef NCR_700_DEBUG
1841 printk("53c700: Command");
1842 scsi_print_command(SCp
);
1843 printk("Has wrong data direction %d\n", SCp
->sc_data_direction
);
1845 SCp
->sc_data_direction
= DMA_NONE
;
1848 switch (SCp
->cmnd
[0]) {
1850 /* clear the internal sense magic */
1854 /* OK, get it from the command */
1855 switch(SCp
->sc_data_direction
) {
1856 case DMA_BIDIRECTIONAL
:
1858 printk(KERN_ERR
"53c700: Unknown command for data direction ");
1859 scsi_print_command(SCp
);
1866 case DMA_FROM_DEVICE
:
1867 move_ins
= SCRIPT_MOVE_DATA_IN
;
1870 move_ins
= SCRIPT_MOVE_DATA_OUT
;
1875 /* now build the scatter gather list */
1876 direction
= SCp
->sc_data_direction
;
1880 dma_addr_t vPtr
= 0;
1881 struct scatterlist
*sg
;
1884 sg_count
= scsi_dma_map(SCp
);
1885 BUG_ON(sg_count
< 0);
1887 scsi_for_each_sg(SCp
, sg
, sg_count
, i
) {
1888 vPtr
= sg_dma_address(sg
);
1889 count
= sg_dma_len(sg
);
1891 slot
->SG
[i
].ins
= bS_to_host(move_ins
| count
);
1892 DEBUG((" scatter block %d: move %d[%08x] from 0x%lx\n",
1893 i
, count
, slot
->SG
[i
].ins
, (unsigned long)vPtr
));
1894 slot
->SG
[i
].pAddr
= bS_to_host(vPtr
);
1896 slot
->SG
[i
].ins
= bS_to_host(SCRIPT_RETURN
);
1897 slot
->SG
[i
].pAddr
= 0;
1898 dma_cache_sync(hostdata
->dev
, slot
->SG
, sizeof(slot
->SG
), DMA_TO_DEVICE
);
1899 DEBUG((" SETTING %08lx to %x\n",
1900 (&slot
->pSG
[i
].ins
),
1903 slot
->resume_offset
= 0;
1904 slot
->pCmd
= dma_map_single(hostdata
->dev
, SCp
->cmnd
,
1905 MAX_COMMAND_SIZE
, DMA_TO_DEVICE
);
1906 NCR_700_start_command(SCp
);
1911 NCR_700_abort(struct scsi_cmnd
* SCp
)
1913 struct NCR_700_command_slot
*slot
;
1915 scmd_printk(KERN_INFO
, SCp
,
1916 "New error handler wants to abort command\n\t");
1917 scsi_print_command(SCp
);
1919 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1922 /* no outstanding command to abort */
1924 if(SCp
->cmnd
[0] == TEST_UNIT_READY
) {
1925 /* FIXME: This is because of a problem in the new
1926 * error handler. When it is in error recovery, it
1927 * will send a TUR to a device it thinks may still be
1928 * showing a problem. If the TUR isn't responded to,
1929 * it will abort it and mark the device off line.
1930 * Unfortunately, it does no other error recovery, so
1931 * this would leave us with an outstanding command
1932 * occupying a slot. Rather than allow this to
1933 * happen, we issue a bus reset to force all
1934 * outstanding commands to terminate here. */
1935 NCR_700_internal_bus_reset(SCp
->device
->host
);
1936 /* still drop through and return failed */
1943 NCR_700_bus_reset(struct scsi_cmnd
* SCp
)
1945 DECLARE_COMPLETION_ONSTACK(complete
);
1946 struct NCR_700_Host_Parameters
*hostdata
=
1947 (struct NCR_700_Host_Parameters
*)SCp
->device
->host
->hostdata
[0];
1949 scmd_printk(KERN_INFO
, SCp
,
1950 "New error handler wants BUS reset, cmd %p\n\t", SCp
);
1951 scsi_print_command(SCp
);
1953 /* In theory, eh_complete should always be null because the
1954 * eh is single threaded, but just in case we're handling a
1955 * reset via sg or something */
1956 spin_lock_irq(SCp
->device
->host
->host_lock
);
1957 while (hostdata
->eh_complete
!= NULL
) {
1958 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1959 msleep_interruptible(100);
1960 spin_lock_irq(SCp
->device
->host
->host_lock
);
1963 hostdata
->eh_complete
= &complete
;
1964 NCR_700_internal_bus_reset(SCp
->device
->host
);
1966 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1967 wait_for_completion(&complete
);
1968 spin_lock_irq(SCp
->device
->host
->host_lock
);
1970 hostdata
->eh_complete
= NULL
;
1971 /* Revalidate the transport parameters of the failing device */
1973 spi_schedule_dv_device(SCp
->device
);
1975 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1980 NCR_700_host_reset(struct scsi_cmnd
* SCp
)
1982 scmd_printk(KERN_INFO
, SCp
, "New error handler wants HOST reset\n\t");
1983 scsi_print_command(SCp
);
1985 spin_lock_irq(SCp
->device
->host
->host_lock
);
1987 NCR_700_internal_bus_reset(SCp
->device
->host
);
1988 NCR_700_chip_reset(SCp
->device
->host
);
1990 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1996 NCR_700_set_period(struct scsi_target
*STp
, int period
)
1998 struct Scsi_Host
*SHp
= dev_to_shost(STp
->dev
.parent
);
1999 struct NCR_700_Host_Parameters
*hostdata
=
2000 (struct NCR_700_Host_Parameters
*)SHp
->hostdata
[0];
2005 if(period
< hostdata
->min_period
)
2006 period
= hostdata
->min_period
;
2008 spi_period(STp
) = period
;
2009 spi_flags(STp
) &= ~(NCR_700_DEV_NEGOTIATED_SYNC
|
2010 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
2011 spi_flags(STp
) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION
;
2015 NCR_700_set_offset(struct scsi_target
*STp
, int offset
)
2017 struct Scsi_Host
*SHp
= dev_to_shost(STp
->dev
.parent
);
2018 struct NCR_700_Host_Parameters
*hostdata
=
2019 (struct NCR_700_Host_Parameters
*)SHp
->hostdata
[0];
2020 int max_offset
= hostdata
->chip710
2021 ? NCR_710_MAX_OFFSET
: NCR_700_MAX_OFFSET
;
2026 if(offset
> max_offset
)
2027 offset
= max_offset
;
2029 /* if we're currently async, make sure the period is reasonable */
2030 if(spi_offset(STp
) == 0 && (spi_period(STp
) < hostdata
->min_period
||
2031 spi_period(STp
) > 0xff))
2032 spi_period(STp
) = hostdata
->min_period
;
2034 spi_offset(STp
) = offset
;
2035 spi_flags(STp
) &= ~(NCR_700_DEV_NEGOTIATED_SYNC
|
2036 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
2037 spi_flags(STp
) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION
;
2041 NCR_700_slave_alloc(struct scsi_device
*SDp
)
2043 SDp
->hostdata
= kzalloc(sizeof(struct NCR_700_Device_Parameters
),
2053 NCR_700_slave_configure(struct scsi_device
*SDp
)
2055 struct NCR_700_Host_Parameters
*hostdata
=
2056 (struct NCR_700_Host_Parameters
*)SDp
->host
->hostdata
[0];
2058 /* to do here: allocate memory; build a queue_full list */
2059 if(SDp
->tagged_supported
) {
2060 scsi_set_tag_type(SDp
, MSG_ORDERED_TAG
);
2061 scsi_activate_tcq(SDp
, NCR_700_DEFAULT_TAGS
);
2062 NCR_700_set_tag_neg_state(SDp
, NCR_700_START_TAG_NEGOTIATION
);
2064 /* initialise to default depth */
2065 scsi_adjust_queue_depth(SDp
, 0, SDp
->host
->cmd_per_lun
);
2067 if(hostdata
->fast
) {
2068 /* Find the correct offset and period via domain validation */
2069 if (!spi_initial_dv(SDp
->sdev_target
))
2072 spi_offset(SDp
->sdev_target
) = 0;
2073 spi_period(SDp
->sdev_target
) = 0;
2079 NCR_700_slave_destroy(struct scsi_device
*SDp
)
2081 kfree(SDp
->hostdata
);
2082 SDp
->hostdata
= NULL
;
2086 NCR_700_change_queue_depth(struct scsi_device
*SDp
, int depth
, int reason
)
2088 if (reason
!= SCSI_QDEPTH_DEFAULT
)
2091 if (depth
> NCR_700_MAX_TAGS
)
2092 depth
= NCR_700_MAX_TAGS
;
2094 scsi_adjust_queue_depth(SDp
, scsi_get_tag_type(SDp
), depth
);
2098 static int NCR_700_change_queue_type(struct scsi_device
*SDp
, int tag_type
)
2100 int change_tag
= ((tag_type
==0 && scsi_get_tag_type(SDp
) != 0)
2101 || (tag_type
!= 0 && scsi_get_tag_type(SDp
) == 0));
2102 struct NCR_700_Host_Parameters
*hostdata
=
2103 (struct NCR_700_Host_Parameters
*)SDp
->host
->hostdata
[0];
2105 scsi_set_tag_type(SDp
, tag_type
);
2107 /* We have a global (per target) flag to track whether TCQ is
2108 * enabled, so we'll be turning it off for the entire target here.
2109 * our tag algorithm will fail if we mix tagged and untagged commands,
2110 * so quiesce the device before doing this */
2112 scsi_target_quiesce(SDp
->sdev_target
);
2115 /* shift back to the default unqueued number of commands
2116 * (the user can still raise this) */
2117 scsi_deactivate_tcq(SDp
, SDp
->host
->cmd_per_lun
);
2118 hostdata
->tag_negotiated
&= ~(1 << sdev_id(SDp
));
2120 /* Here, we cleared the negotiation flag above, so this
2121 * will force the driver to renegotiate */
2122 scsi_activate_tcq(SDp
, SDp
->queue_depth
);
2124 NCR_700_set_tag_neg_state(SDp
, NCR_700_START_TAG_NEGOTIATION
);
2127 scsi_target_resume(SDp
->sdev_target
);
2133 NCR_700_show_active_tags(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2135 struct scsi_device
*SDp
= to_scsi_device(dev
);
2137 return snprintf(buf
, 20, "%d\n", NCR_700_get_depth(SDp
));
2140 static struct device_attribute NCR_700_active_tags_attr
= {
2142 .name
= "active_tags",
2145 .show
= NCR_700_show_active_tags
,
2148 STATIC
struct device_attribute
*NCR_700_dev_attrs
[] = {
2149 &NCR_700_active_tags_attr
,
2153 EXPORT_SYMBOL(NCR_700_detect
);
2154 EXPORT_SYMBOL(NCR_700_release
);
2155 EXPORT_SYMBOL(NCR_700_intr
);
2157 static struct spi_function_template NCR_700_transport_functions
= {
2158 .set_period
= NCR_700_set_period
,
2160 .set_offset
= NCR_700_set_offset
,
2164 static int __init
NCR_700_init(void)
2166 NCR_700_transport_template
= spi_attach_transport(&NCR_700_transport_functions
);
2167 if(!NCR_700_transport_template
)
2172 static void __exit
NCR_700_exit(void)
2174 spi_release_transport(NCR_700_transport_template
);
2177 module_init(NCR_700_init
);
2178 module_exit(NCR_700_exit
);