char: Mark /dev/zero and /dev/kmem as not capable of writeback
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / core / sock.c
blob5779f315919fdc5efd315d47dcc882b3e7893c06
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
83 * To Fix:
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
127 #include <linux/filter.h>
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
143 * locks is fast):
145 static const char *const af_family_key_strings[AF_MAX+1] = {
146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
158 "sk_lock-AF_IEEE802154",
159 "sk_lock-AF_MAX"
161 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
174 "slock-AF_IEEE802154",
175 "slock-AF_MAX"
177 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
187 "clock-27" , "clock-28" , "clock-AF_CAN" ,
188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
190 "clock-AF_IEEE802154",
191 "clock-AF_MAX"
195 * sk_callback_lock locking rules are per-address-family,
196 * so split the lock classes by using a per-AF key:
198 static struct lock_class_key af_callback_keys[AF_MAX];
200 /* Take into consideration the size of the struct sk_buff overhead in the
201 * determination of these values, since that is non-constant across
202 * platforms. This makes socket queueing behavior and performance
203 * not depend upon such differences.
205 #define _SK_MEM_PACKETS 256
206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
222 struct timeval tv;
224 if (optlen < sizeof(tv))
225 return -EINVAL;
226 if (copy_from_user(&tv, optval, sizeof(tv)))
227 return -EFAULT;
228 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
229 return -EDOM;
231 if (tv.tv_sec < 0) {
232 static int warned __read_mostly;
234 *timeo_p = 0;
235 if (warned < 10 && net_ratelimit()) {
236 warned++;
237 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238 "tries to set negative timeout\n",
239 current->comm, task_pid_nr(current));
241 return 0;
243 *timeo_p = MAX_SCHEDULE_TIMEOUT;
244 if (tv.tv_sec == 0 && tv.tv_usec == 0)
245 return 0;
246 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
248 return 0;
251 static void sock_warn_obsolete_bsdism(const char *name)
253 static int warned;
254 static char warncomm[TASK_COMM_LEN];
255 if (strcmp(warncomm, current->comm) && warned < 5) {
256 strcpy(warncomm, current->comm);
257 printk(KERN_WARNING "process `%s' is using obsolete "
258 "%s SO_BSDCOMPAT\n", warncomm, name);
259 warned++;
263 static void sock_disable_timestamp(struct sock *sk, int flag)
265 if (sock_flag(sk, flag)) {
266 sock_reset_flag(sk, flag);
267 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269 net_disable_timestamp();
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
277 int err;
278 int skb_len;
279 unsigned long flags;
280 struct sk_buff_head *list = &sk->sk_receive_queue;
282 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
283 number of warnings when compiling with -W --ANK
285 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
286 (unsigned)sk->sk_rcvbuf) {
287 atomic_inc(&sk->sk_drops);
288 return -ENOMEM;
291 err = sk_filter(sk, skb);
292 if (err)
293 return err;
295 if (!sk_rmem_schedule(sk, skb->truesize)) {
296 atomic_inc(&sk->sk_drops);
297 return -ENOBUFS;
300 skb->dev = NULL;
301 skb_set_owner_r(skb, sk);
303 /* Cache the SKB length before we tack it onto the receive
304 * queue. Once it is added it no longer belongs to us and
305 * may be freed by other threads of control pulling packets
306 * from the queue.
308 skb_len = skb->len;
310 spin_lock_irqsave(&list->lock, flags);
311 skb->dropcount = atomic_read(&sk->sk_drops);
312 __skb_queue_tail(list, skb);
313 spin_unlock_irqrestore(&list->lock, flags);
315 if (!sock_flag(sk, SOCK_DEAD))
316 sk->sk_data_ready(sk, skb_len);
317 return 0;
319 EXPORT_SYMBOL(sock_queue_rcv_skb);
321 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
323 int rc = NET_RX_SUCCESS;
325 if (sk_filter(sk, skb))
326 goto discard_and_relse;
328 skb->dev = NULL;
330 if (nested)
331 bh_lock_sock_nested(sk);
332 else
333 bh_lock_sock(sk);
334 if (!sock_owned_by_user(sk)) {
336 * trylock + unlock semantics:
338 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
340 rc = sk_backlog_rcv(sk, skb);
342 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
343 } else if (sk_add_backlog(sk, skb)) {
344 bh_unlock_sock(sk);
345 atomic_inc(&sk->sk_drops);
346 goto discard_and_relse;
349 bh_unlock_sock(sk);
350 out:
351 sock_put(sk);
352 return rc;
353 discard_and_relse:
354 kfree_skb(skb);
355 goto out;
357 EXPORT_SYMBOL(sk_receive_skb);
359 void sk_reset_txq(struct sock *sk)
361 sk_tx_queue_clear(sk);
363 EXPORT_SYMBOL(sk_reset_txq);
365 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
367 struct dst_entry *dst = sk->sk_dst_cache;
369 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
370 sk_tx_queue_clear(sk);
371 sk->sk_dst_cache = NULL;
372 dst_release(dst);
373 return NULL;
376 return dst;
378 EXPORT_SYMBOL(__sk_dst_check);
380 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
382 struct dst_entry *dst = sk_dst_get(sk);
384 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
385 sk_dst_reset(sk);
386 dst_release(dst);
387 return NULL;
390 return dst;
392 EXPORT_SYMBOL(sk_dst_check);
394 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
396 int ret = -ENOPROTOOPT;
397 #ifdef CONFIG_NETDEVICES
398 struct net *net = sock_net(sk);
399 char devname[IFNAMSIZ];
400 int index;
402 /* Sorry... */
403 ret = -EPERM;
404 if (!capable(CAP_NET_RAW))
405 goto out;
407 ret = -EINVAL;
408 if (optlen < 0)
409 goto out;
411 /* Bind this socket to a particular device like "eth0",
412 * as specified in the passed interface name. If the
413 * name is "" or the option length is zero the socket
414 * is not bound.
416 if (optlen > IFNAMSIZ - 1)
417 optlen = IFNAMSIZ - 1;
418 memset(devname, 0, sizeof(devname));
420 ret = -EFAULT;
421 if (copy_from_user(devname, optval, optlen))
422 goto out;
424 index = 0;
425 if (devname[0] != '\0') {
426 struct net_device *dev;
428 rcu_read_lock();
429 dev = dev_get_by_name_rcu(net, devname);
430 if (dev)
431 index = dev->ifindex;
432 rcu_read_unlock();
433 ret = -ENODEV;
434 if (!dev)
435 goto out;
438 lock_sock(sk);
439 sk->sk_bound_dev_if = index;
440 sk_dst_reset(sk);
441 release_sock(sk);
443 ret = 0;
445 out:
446 #endif
448 return ret;
451 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
453 if (valbool)
454 sock_set_flag(sk, bit);
455 else
456 sock_reset_flag(sk, bit);
460 * This is meant for all protocols to use and covers goings on
461 * at the socket level. Everything here is generic.
464 int sock_setsockopt(struct socket *sock, int level, int optname,
465 char __user *optval, unsigned int optlen)
467 struct sock *sk = sock->sk;
468 int val;
469 int valbool;
470 struct linger ling;
471 int ret = 0;
474 * Options without arguments
477 if (optname == SO_BINDTODEVICE)
478 return sock_bindtodevice(sk, optval, optlen);
480 if (optlen < sizeof(int))
481 return -EINVAL;
483 if (get_user(val, (int __user *)optval))
484 return -EFAULT;
486 valbool = val ? 1 : 0;
488 lock_sock(sk);
490 switch (optname) {
491 case SO_DEBUG:
492 if (val && !capable(CAP_NET_ADMIN))
493 ret = -EACCES;
494 else
495 sock_valbool_flag(sk, SOCK_DBG, valbool);
496 break;
497 case SO_REUSEADDR:
498 sk->sk_reuse = valbool;
499 break;
500 case SO_TYPE:
501 case SO_PROTOCOL:
502 case SO_DOMAIN:
503 case SO_ERROR:
504 ret = -ENOPROTOOPT;
505 break;
506 case SO_DONTROUTE:
507 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
508 break;
509 case SO_BROADCAST:
510 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
511 break;
512 case SO_SNDBUF:
513 /* Don't error on this BSD doesn't and if you think
514 about it this is right. Otherwise apps have to
515 play 'guess the biggest size' games. RCVBUF/SNDBUF
516 are treated in BSD as hints */
518 if (val > sysctl_wmem_max)
519 val = sysctl_wmem_max;
520 set_sndbuf:
521 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
522 if ((val * 2) < SOCK_MIN_SNDBUF)
523 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
524 else
525 sk->sk_sndbuf = val * 2;
528 * Wake up sending tasks if we
529 * upped the value.
531 sk->sk_write_space(sk);
532 break;
534 case SO_SNDBUFFORCE:
535 if (!capable(CAP_NET_ADMIN)) {
536 ret = -EPERM;
537 break;
539 goto set_sndbuf;
541 case SO_RCVBUF:
542 /* Don't error on this BSD doesn't and if you think
543 about it this is right. Otherwise apps have to
544 play 'guess the biggest size' games. RCVBUF/SNDBUF
545 are treated in BSD as hints */
547 if (val > sysctl_rmem_max)
548 val = sysctl_rmem_max;
549 set_rcvbuf:
550 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
552 * We double it on the way in to account for
553 * "struct sk_buff" etc. overhead. Applications
554 * assume that the SO_RCVBUF setting they make will
555 * allow that much actual data to be received on that
556 * socket.
558 * Applications are unaware that "struct sk_buff" and
559 * other overheads allocate from the receive buffer
560 * during socket buffer allocation.
562 * And after considering the possible alternatives,
563 * returning the value we actually used in getsockopt
564 * is the most desirable behavior.
566 if ((val * 2) < SOCK_MIN_RCVBUF)
567 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
568 else
569 sk->sk_rcvbuf = val * 2;
570 break;
572 case SO_RCVBUFFORCE:
573 if (!capable(CAP_NET_ADMIN)) {
574 ret = -EPERM;
575 break;
577 goto set_rcvbuf;
579 case SO_KEEPALIVE:
580 #ifdef CONFIG_INET
581 if (sk->sk_protocol == IPPROTO_TCP)
582 tcp_set_keepalive(sk, valbool);
583 #endif
584 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
585 break;
587 case SO_OOBINLINE:
588 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
589 break;
591 case SO_NO_CHECK:
592 sk->sk_no_check = valbool;
593 break;
595 case SO_PRIORITY:
596 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
597 sk->sk_priority = val;
598 else
599 ret = -EPERM;
600 break;
602 case SO_LINGER:
603 if (optlen < sizeof(ling)) {
604 ret = -EINVAL; /* 1003.1g */
605 break;
607 if (copy_from_user(&ling, optval, sizeof(ling))) {
608 ret = -EFAULT;
609 break;
611 if (!ling.l_onoff)
612 sock_reset_flag(sk, SOCK_LINGER);
613 else {
614 #if (BITS_PER_LONG == 32)
615 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
616 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
617 else
618 #endif
619 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
620 sock_set_flag(sk, SOCK_LINGER);
622 break;
624 case SO_BSDCOMPAT:
625 sock_warn_obsolete_bsdism("setsockopt");
626 break;
628 case SO_PASSCRED:
629 if (valbool)
630 set_bit(SOCK_PASSCRED, &sock->flags);
631 else
632 clear_bit(SOCK_PASSCRED, &sock->flags);
633 break;
635 case SO_TIMESTAMP:
636 case SO_TIMESTAMPNS:
637 if (valbool) {
638 if (optname == SO_TIMESTAMP)
639 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
640 else
641 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
642 sock_set_flag(sk, SOCK_RCVTSTAMP);
643 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
644 } else {
645 sock_reset_flag(sk, SOCK_RCVTSTAMP);
646 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
648 break;
650 case SO_TIMESTAMPING:
651 if (val & ~SOF_TIMESTAMPING_MASK) {
652 ret = -EINVAL;
653 break;
655 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
656 val & SOF_TIMESTAMPING_TX_HARDWARE);
657 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
658 val & SOF_TIMESTAMPING_TX_SOFTWARE);
659 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
660 val & SOF_TIMESTAMPING_RX_HARDWARE);
661 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
662 sock_enable_timestamp(sk,
663 SOCK_TIMESTAMPING_RX_SOFTWARE);
664 else
665 sock_disable_timestamp(sk,
666 SOCK_TIMESTAMPING_RX_SOFTWARE);
667 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
668 val & SOF_TIMESTAMPING_SOFTWARE);
669 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
670 val & SOF_TIMESTAMPING_SYS_HARDWARE);
671 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
672 val & SOF_TIMESTAMPING_RAW_HARDWARE);
673 break;
675 case SO_RCVLOWAT:
676 if (val < 0)
677 val = INT_MAX;
678 sk->sk_rcvlowat = val ? : 1;
679 break;
681 case SO_RCVTIMEO:
682 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
683 break;
685 case SO_SNDTIMEO:
686 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
687 break;
689 case SO_ATTACH_FILTER:
690 ret = -EINVAL;
691 if (optlen == sizeof(struct sock_fprog)) {
692 struct sock_fprog fprog;
694 ret = -EFAULT;
695 if (copy_from_user(&fprog, optval, sizeof(fprog)))
696 break;
698 ret = sk_attach_filter(&fprog, sk);
700 break;
702 case SO_DETACH_FILTER:
703 ret = sk_detach_filter(sk);
704 break;
706 case SO_PASSSEC:
707 if (valbool)
708 set_bit(SOCK_PASSSEC, &sock->flags);
709 else
710 clear_bit(SOCK_PASSSEC, &sock->flags);
711 break;
712 case SO_MARK:
713 if (!capable(CAP_NET_ADMIN))
714 ret = -EPERM;
715 else
716 sk->sk_mark = val;
717 break;
719 /* We implement the SO_SNDLOWAT etc to
720 not be settable (1003.1g 5.3) */
721 case SO_RXQ_OVFL:
722 if (valbool)
723 sock_set_flag(sk, SOCK_RXQ_OVFL);
724 else
725 sock_reset_flag(sk, SOCK_RXQ_OVFL);
726 break;
727 default:
728 ret = -ENOPROTOOPT;
729 break;
731 release_sock(sk);
732 return ret;
734 EXPORT_SYMBOL(sock_setsockopt);
737 int sock_getsockopt(struct socket *sock, int level, int optname,
738 char __user *optval, int __user *optlen)
740 struct sock *sk = sock->sk;
742 union {
743 int val;
744 struct linger ling;
745 struct timeval tm;
746 } v;
748 unsigned int lv = sizeof(int);
749 int len;
751 if (get_user(len, optlen))
752 return -EFAULT;
753 if (len < 0)
754 return -EINVAL;
756 memset(&v, 0, sizeof(v));
758 switch (optname) {
759 case SO_DEBUG:
760 v.val = sock_flag(sk, SOCK_DBG);
761 break;
763 case SO_DONTROUTE:
764 v.val = sock_flag(sk, SOCK_LOCALROUTE);
765 break;
767 case SO_BROADCAST:
768 v.val = !!sock_flag(sk, SOCK_BROADCAST);
769 break;
771 case SO_SNDBUF:
772 v.val = sk->sk_sndbuf;
773 break;
775 case SO_RCVBUF:
776 v.val = sk->sk_rcvbuf;
777 break;
779 case SO_REUSEADDR:
780 v.val = sk->sk_reuse;
781 break;
783 case SO_KEEPALIVE:
784 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
785 break;
787 case SO_TYPE:
788 v.val = sk->sk_type;
789 break;
791 case SO_PROTOCOL:
792 v.val = sk->sk_protocol;
793 break;
795 case SO_DOMAIN:
796 v.val = sk->sk_family;
797 break;
799 case SO_ERROR:
800 v.val = -sock_error(sk);
801 if (v.val == 0)
802 v.val = xchg(&sk->sk_err_soft, 0);
803 break;
805 case SO_OOBINLINE:
806 v.val = !!sock_flag(sk, SOCK_URGINLINE);
807 break;
809 case SO_NO_CHECK:
810 v.val = sk->sk_no_check;
811 break;
813 case SO_PRIORITY:
814 v.val = sk->sk_priority;
815 break;
817 case SO_LINGER:
818 lv = sizeof(v.ling);
819 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
820 v.ling.l_linger = sk->sk_lingertime / HZ;
821 break;
823 case SO_BSDCOMPAT:
824 sock_warn_obsolete_bsdism("getsockopt");
825 break;
827 case SO_TIMESTAMP:
828 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
829 !sock_flag(sk, SOCK_RCVTSTAMPNS);
830 break;
832 case SO_TIMESTAMPNS:
833 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
834 break;
836 case SO_TIMESTAMPING:
837 v.val = 0;
838 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
839 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
840 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
841 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
842 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
843 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
844 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
845 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
846 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
847 v.val |= SOF_TIMESTAMPING_SOFTWARE;
848 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
849 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
850 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
851 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
852 break;
854 case SO_RCVTIMEO:
855 lv = sizeof(struct timeval);
856 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
857 v.tm.tv_sec = 0;
858 v.tm.tv_usec = 0;
859 } else {
860 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
861 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
863 break;
865 case SO_SNDTIMEO:
866 lv = sizeof(struct timeval);
867 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
868 v.tm.tv_sec = 0;
869 v.tm.tv_usec = 0;
870 } else {
871 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
872 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
874 break;
876 case SO_RCVLOWAT:
877 v.val = sk->sk_rcvlowat;
878 break;
880 case SO_SNDLOWAT:
881 v.val = 1;
882 break;
884 case SO_PASSCRED:
885 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
886 break;
888 case SO_PEERCRED:
889 if (len > sizeof(sk->sk_peercred))
890 len = sizeof(sk->sk_peercred);
891 if (copy_to_user(optval, &sk->sk_peercred, len))
892 return -EFAULT;
893 goto lenout;
895 case SO_PEERNAME:
897 char address[128];
899 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
900 return -ENOTCONN;
901 if (lv < len)
902 return -EINVAL;
903 if (copy_to_user(optval, address, len))
904 return -EFAULT;
905 goto lenout;
908 /* Dubious BSD thing... Probably nobody even uses it, but
909 * the UNIX standard wants it for whatever reason... -DaveM
911 case SO_ACCEPTCONN:
912 v.val = sk->sk_state == TCP_LISTEN;
913 break;
915 case SO_PASSSEC:
916 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
917 break;
919 case SO_PEERSEC:
920 return security_socket_getpeersec_stream(sock, optval, optlen, len);
922 case SO_MARK:
923 v.val = sk->sk_mark;
924 break;
926 case SO_RXQ_OVFL:
927 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
928 break;
930 default:
931 return -ENOPROTOOPT;
934 if (len > lv)
935 len = lv;
936 if (copy_to_user(optval, &v, len))
937 return -EFAULT;
938 lenout:
939 if (put_user(len, optlen))
940 return -EFAULT;
941 return 0;
945 * Initialize an sk_lock.
947 * (We also register the sk_lock with the lock validator.)
949 static inline void sock_lock_init(struct sock *sk)
951 sock_lock_init_class_and_name(sk,
952 af_family_slock_key_strings[sk->sk_family],
953 af_family_slock_keys + sk->sk_family,
954 af_family_key_strings[sk->sk_family],
955 af_family_keys + sk->sk_family);
959 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
960 * even temporarly, because of RCU lookups. sk_node should also be left as is.
962 static void sock_copy(struct sock *nsk, const struct sock *osk)
964 #ifdef CONFIG_SECURITY_NETWORK
965 void *sptr = nsk->sk_security;
966 #endif
967 BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
968 sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) +
969 sizeof(osk->sk_tx_queue_mapping));
970 memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
971 osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
972 #ifdef CONFIG_SECURITY_NETWORK
973 nsk->sk_security = sptr;
974 security_sk_clone(osk, nsk);
975 #endif
978 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
979 int family)
981 struct sock *sk;
982 struct kmem_cache *slab;
984 slab = prot->slab;
985 if (slab != NULL) {
986 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
987 if (!sk)
988 return sk;
989 if (priority & __GFP_ZERO) {
991 * caches using SLAB_DESTROY_BY_RCU should let
992 * sk_node.next un-modified. Special care is taken
993 * when initializing object to zero.
995 if (offsetof(struct sock, sk_node.next) != 0)
996 memset(sk, 0, offsetof(struct sock, sk_node.next));
997 memset(&sk->sk_node.pprev, 0,
998 prot->obj_size - offsetof(struct sock,
999 sk_node.pprev));
1002 else
1003 sk = kmalloc(prot->obj_size, priority);
1005 if (sk != NULL) {
1006 kmemcheck_annotate_bitfield(sk, flags);
1008 if (security_sk_alloc(sk, family, priority))
1009 goto out_free;
1011 if (!try_module_get(prot->owner))
1012 goto out_free_sec;
1013 sk_tx_queue_clear(sk);
1016 return sk;
1018 out_free_sec:
1019 security_sk_free(sk);
1020 out_free:
1021 if (slab != NULL)
1022 kmem_cache_free(slab, sk);
1023 else
1024 kfree(sk);
1025 return NULL;
1028 static void sk_prot_free(struct proto *prot, struct sock *sk)
1030 struct kmem_cache *slab;
1031 struct module *owner;
1033 owner = prot->owner;
1034 slab = prot->slab;
1036 security_sk_free(sk);
1037 if (slab != NULL)
1038 kmem_cache_free(slab, sk);
1039 else
1040 kfree(sk);
1041 module_put(owner);
1045 * sk_alloc - All socket objects are allocated here
1046 * @net: the applicable net namespace
1047 * @family: protocol family
1048 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1049 * @prot: struct proto associated with this new sock instance
1051 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1052 struct proto *prot)
1054 struct sock *sk;
1056 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1057 if (sk) {
1058 sk->sk_family = family;
1060 * See comment in struct sock definition to understand
1061 * why we need sk_prot_creator -acme
1063 sk->sk_prot = sk->sk_prot_creator = prot;
1064 sock_lock_init(sk);
1065 sock_net_set(sk, get_net(net));
1066 atomic_set(&sk->sk_wmem_alloc, 1);
1069 return sk;
1071 EXPORT_SYMBOL(sk_alloc);
1073 static void __sk_free(struct sock *sk)
1075 struct sk_filter *filter;
1077 if (sk->sk_destruct)
1078 sk->sk_destruct(sk);
1080 filter = rcu_dereference(sk->sk_filter);
1081 if (filter) {
1082 sk_filter_uncharge(sk, filter);
1083 rcu_assign_pointer(sk->sk_filter, NULL);
1086 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1087 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1089 if (atomic_read(&sk->sk_omem_alloc))
1090 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1091 __func__, atomic_read(&sk->sk_omem_alloc));
1093 put_net(sock_net(sk));
1094 sk_prot_free(sk->sk_prot_creator, sk);
1097 void sk_free(struct sock *sk)
1100 * We substract one from sk_wmem_alloc and can know if
1101 * some packets are still in some tx queue.
1102 * If not null, sock_wfree() will call __sk_free(sk) later
1104 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1105 __sk_free(sk);
1107 EXPORT_SYMBOL(sk_free);
1110 * Last sock_put should drop referrence to sk->sk_net. It has already
1111 * been dropped in sk_change_net. Taking referrence to stopping namespace
1112 * is not an option.
1113 * Take referrence to a socket to remove it from hash _alive_ and after that
1114 * destroy it in the context of init_net.
1116 void sk_release_kernel(struct sock *sk)
1118 if (sk == NULL || sk->sk_socket == NULL)
1119 return;
1121 sock_hold(sk);
1122 sock_release(sk->sk_socket);
1123 release_net(sock_net(sk));
1124 sock_net_set(sk, get_net(&init_net));
1125 sock_put(sk);
1127 EXPORT_SYMBOL(sk_release_kernel);
1129 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1131 struct sock *newsk;
1133 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1134 if (newsk != NULL) {
1135 struct sk_filter *filter;
1137 sock_copy(newsk, sk);
1139 /* SANITY */
1140 get_net(sock_net(newsk));
1141 sk_node_init(&newsk->sk_node);
1142 sock_lock_init(newsk);
1143 bh_lock_sock(newsk);
1144 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1145 newsk->sk_backlog.len = 0;
1147 atomic_set(&newsk->sk_rmem_alloc, 0);
1149 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1151 atomic_set(&newsk->sk_wmem_alloc, 1);
1152 atomic_set(&newsk->sk_omem_alloc, 0);
1153 skb_queue_head_init(&newsk->sk_receive_queue);
1154 skb_queue_head_init(&newsk->sk_write_queue);
1155 #ifdef CONFIG_NET_DMA
1156 skb_queue_head_init(&newsk->sk_async_wait_queue);
1157 #endif
1159 rwlock_init(&newsk->sk_dst_lock);
1160 rwlock_init(&newsk->sk_callback_lock);
1161 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1162 af_callback_keys + newsk->sk_family,
1163 af_family_clock_key_strings[newsk->sk_family]);
1165 newsk->sk_dst_cache = NULL;
1166 newsk->sk_wmem_queued = 0;
1167 newsk->sk_forward_alloc = 0;
1168 newsk->sk_send_head = NULL;
1169 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1171 sock_reset_flag(newsk, SOCK_DONE);
1172 skb_queue_head_init(&newsk->sk_error_queue);
1174 filter = newsk->sk_filter;
1175 if (filter != NULL)
1176 sk_filter_charge(newsk, filter);
1178 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1179 /* It is still raw copy of parent, so invalidate
1180 * destructor and make plain sk_free() */
1181 newsk->sk_destruct = NULL;
1182 sk_free(newsk);
1183 newsk = NULL;
1184 goto out;
1187 newsk->sk_err = 0;
1188 newsk->sk_priority = 0;
1190 * Before updating sk_refcnt, we must commit prior changes to memory
1191 * (Documentation/RCU/rculist_nulls.txt for details)
1193 smp_wmb();
1194 atomic_set(&newsk->sk_refcnt, 2);
1197 * Increment the counter in the same struct proto as the master
1198 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1199 * is the same as sk->sk_prot->socks, as this field was copied
1200 * with memcpy).
1202 * This _changes_ the previous behaviour, where
1203 * tcp_create_openreq_child always was incrementing the
1204 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1205 * to be taken into account in all callers. -acme
1207 sk_refcnt_debug_inc(newsk);
1208 sk_set_socket(newsk, NULL);
1209 newsk->sk_sleep = NULL;
1211 if (newsk->sk_prot->sockets_allocated)
1212 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1214 if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1215 sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1216 net_enable_timestamp();
1218 out:
1219 return newsk;
1221 EXPORT_SYMBOL_GPL(sk_clone);
1223 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1225 __sk_dst_set(sk, dst);
1226 sk->sk_route_caps = dst->dev->features;
1227 if (sk->sk_route_caps & NETIF_F_GSO)
1228 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1229 if (sk_can_gso(sk)) {
1230 if (dst->header_len) {
1231 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1232 } else {
1233 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1234 sk->sk_gso_max_size = dst->dev->gso_max_size;
1238 EXPORT_SYMBOL_GPL(sk_setup_caps);
1240 void __init sk_init(void)
1242 if (totalram_pages <= 4096) {
1243 sysctl_wmem_max = 32767;
1244 sysctl_rmem_max = 32767;
1245 sysctl_wmem_default = 32767;
1246 sysctl_rmem_default = 32767;
1247 } else if (totalram_pages >= 131072) {
1248 sysctl_wmem_max = 131071;
1249 sysctl_rmem_max = 131071;
1254 * Simple resource managers for sockets.
1259 * Write buffer destructor automatically called from kfree_skb.
1261 void sock_wfree(struct sk_buff *skb)
1263 struct sock *sk = skb->sk;
1264 unsigned int len = skb->truesize;
1266 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1268 * Keep a reference on sk_wmem_alloc, this will be released
1269 * after sk_write_space() call
1271 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1272 sk->sk_write_space(sk);
1273 len = 1;
1276 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1277 * could not do because of in-flight packets
1279 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1280 __sk_free(sk);
1282 EXPORT_SYMBOL(sock_wfree);
1285 * Read buffer destructor automatically called from kfree_skb.
1287 void sock_rfree(struct sk_buff *skb)
1289 struct sock *sk = skb->sk;
1291 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1292 sk_mem_uncharge(skb->sk, skb->truesize);
1294 EXPORT_SYMBOL(sock_rfree);
1297 int sock_i_uid(struct sock *sk)
1299 int uid;
1301 read_lock(&sk->sk_callback_lock);
1302 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1303 read_unlock(&sk->sk_callback_lock);
1304 return uid;
1306 EXPORT_SYMBOL(sock_i_uid);
1308 unsigned long sock_i_ino(struct sock *sk)
1310 unsigned long ino;
1312 read_lock(&sk->sk_callback_lock);
1313 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1314 read_unlock(&sk->sk_callback_lock);
1315 return ino;
1317 EXPORT_SYMBOL(sock_i_ino);
1320 * Allocate a skb from the socket's send buffer.
1322 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1323 gfp_t priority)
1325 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1326 struct sk_buff *skb = alloc_skb(size, priority);
1327 if (skb) {
1328 skb_set_owner_w(skb, sk);
1329 return skb;
1332 return NULL;
1334 EXPORT_SYMBOL(sock_wmalloc);
1337 * Allocate a skb from the socket's receive buffer.
1339 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1340 gfp_t priority)
1342 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1343 struct sk_buff *skb = alloc_skb(size, priority);
1344 if (skb) {
1345 skb_set_owner_r(skb, sk);
1346 return skb;
1349 return NULL;
1353 * Allocate a memory block from the socket's option memory buffer.
1355 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1357 if ((unsigned)size <= sysctl_optmem_max &&
1358 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1359 void *mem;
1360 /* First do the add, to avoid the race if kmalloc
1361 * might sleep.
1363 atomic_add(size, &sk->sk_omem_alloc);
1364 mem = kmalloc(size, priority);
1365 if (mem)
1366 return mem;
1367 atomic_sub(size, &sk->sk_omem_alloc);
1369 return NULL;
1371 EXPORT_SYMBOL(sock_kmalloc);
1374 * Free an option memory block.
1376 void sock_kfree_s(struct sock *sk, void *mem, int size)
1378 kfree(mem);
1379 atomic_sub(size, &sk->sk_omem_alloc);
1381 EXPORT_SYMBOL(sock_kfree_s);
1383 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1384 I think, these locks should be removed for datagram sockets.
1386 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1388 DEFINE_WAIT(wait);
1390 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1391 for (;;) {
1392 if (!timeo)
1393 break;
1394 if (signal_pending(current))
1395 break;
1396 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1397 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1398 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1399 break;
1400 if (sk->sk_shutdown & SEND_SHUTDOWN)
1401 break;
1402 if (sk->sk_err)
1403 break;
1404 timeo = schedule_timeout(timeo);
1406 finish_wait(sk->sk_sleep, &wait);
1407 return timeo;
1412 * Generic send/receive buffer handlers
1415 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1416 unsigned long data_len, int noblock,
1417 int *errcode)
1419 struct sk_buff *skb;
1420 gfp_t gfp_mask;
1421 long timeo;
1422 int err;
1424 gfp_mask = sk->sk_allocation;
1425 if (gfp_mask & __GFP_WAIT)
1426 gfp_mask |= __GFP_REPEAT;
1428 timeo = sock_sndtimeo(sk, noblock);
1429 while (1) {
1430 err = sock_error(sk);
1431 if (err != 0)
1432 goto failure;
1434 err = -EPIPE;
1435 if (sk->sk_shutdown & SEND_SHUTDOWN)
1436 goto failure;
1438 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1439 skb = alloc_skb(header_len, gfp_mask);
1440 if (skb) {
1441 int npages;
1442 int i;
1444 /* No pages, we're done... */
1445 if (!data_len)
1446 break;
1448 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1449 skb->truesize += data_len;
1450 skb_shinfo(skb)->nr_frags = npages;
1451 for (i = 0; i < npages; i++) {
1452 struct page *page;
1453 skb_frag_t *frag;
1455 page = alloc_pages(sk->sk_allocation, 0);
1456 if (!page) {
1457 err = -ENOBUFS;
1458 skb_shinfo(skb)->nr_frags = i;
1459 kfree_skb(skb);
1460 goto failure;
1463 frag = &skb_shinfo(skb)->frags[i];
1464 frag->page = page;
1465 frag->page_offset = 0;
1466 frag->size = (data_len >= PAGE_SIZE ?
1467 PAGE_SIZE :
1468 data_len);
1469 data_len -= PAGE_SIZE;
1472 /* Full success... */
1473 break;
1475 err = -ENOBUFS;
1476 goto failure;
1478 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1479 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1480 err = -EAGAIN;
1481 if (!timeo)
1482 goto failure;
1483 if (signal_pending(current))
1484 goto interrupted;
1485 timeo = sock_wait_for_wmem(sk, timeo);
1488 skb_set_owner_w(skb, sk);
1489 return skb;
1491 interrupted:
1492 err = sock_intr_errno(timeo);
1493 failure:
1494 *errcode = err;
1495 return NULL;
1497 EXPORT_SYMBOL(sock_alloc_send_pskb);
1499 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1500 int noblock, int *errcode)
1502 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1504 EXPORT_SYMBOL(sock_alloc_send_skb);
1506 static void __lock_sock(struct sock *sk)
1508 DEFINE_WAIT(wait);
1510 for (;;) {
1511 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1512 TASK_UNINTERRUPTIBLE);
1513 spin_unlock_bh(&sk->sk_lock.slock);
1514 schedule();
1515 spin_lock_bh(&sk->sk_lock.slock);
1516 if (!sock_owned_by_user(sk))
1517 break;
1519 finish_wait(&sk->sk_lock.wq, &wait);
1522 static void __release_sock(struct sock *sk)
1524 struct sk_buff *skb = sk->sk_backlog.head;
1526 do {
1527 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1528 bh_unlock_sock(sk);
1530 do {
1531 struct sk_buff *next = skb->next;
1533 skb->next = NULL;
1534 sk_backlog_rcv(sk, skb);
1537 * We are in process context here with softirqs
1538 * disabled, use cond_resched_softirq() to preempt.
1539 * This is safe to do because we've taken the backlog
1540 * queue private:
1542 cond_resched_softirq();
1544 skb = next;
1545 } while (skb != NULL);
1547 bh_lock_sock(sk);
1548 } while ((skb = sk->sk_backlog.head) != NULL);
1551 * Doing the zeroing here guarantee we can not loop forever
1552 * while a wild producer attempts to flood us.
1554 sk->sk_backlog.len = 0;
1558 * sk_wait_data - wait for data to arrive at sk_receive_queue
1559 * @sk: sock to wait on
1560 * @timeo: for how long
1562 * Now socket state including sk->sk_err is changed only under lock,
1563 * hence we may omit checks after joining wait queue.
1564 * We check receive queue before schedule() only as optimization;
1565 * it is very likely that release_sock() added new data.
1567 int sk_wait_data(struct sock *sk, long *timeo)
1569 int rc;
1570 DEFINE_WAIT(wait);
1572 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1573 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1574 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1575 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1576 finish_wait(sk->sk_sleep, &wait);
1577 return rc;
1579 EXPORT_SYMBOL(sk_wait_data);
1582 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1583 * @sk: socket
1584 * @size: memory size to allocate
1585 * @kind: allocation type
1587 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1588 * rmem allocation. This function assumes that protocols which have
1589 * memory_pressure use sk_wmem_queued as write buffer accounting.
1591 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1593 struct proto *prot = sk->sk_prot;
1594 int amt = sk_mem_pages(size);
1595 int allocated;
1597 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1598 allocated = atomic_add_return(amt, prot->memory_allocated);
1600 /* Under limit. */
1601 if (allocated <= prot->sysctl_mem[0]) {
1602 if (prot->memory_pressure && *prot->memory_pressure)
1603 *prot->memory_pressure = 0;
1604 return 1;
1607 /* Under pressure. */
1608 if (allocated > prot->sysctl_mem[1])
1609 if (prot->enter_memory_pressure)
1610 prot->enter_memory_pressure(sk);
1612 /* Over hard limit. */
1613 if (allocated > prot->sysctl_mem[2])
1614 goto suppress_allocation;
1616 /* guarantee minimum buffer size under pressure */
1617 if (kind == SK_MEM_RECV) {
1618 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1619 return 1;
1620 } else { /* SK_MEM_SEND */
1621 if (sk->sk_type == SOCK_STREAM) {
1622 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1623 return 1;
1624 } else if (atomic_read(&sk->sk_wmem_alloc) <
1625 prot->sysctl_wmem[0])
1626 return 1;
1629 if (prot->memory_pressure) {
1630 int alloc;
1632 if (!*prot->memory_pressure)
1633 return 1;
1634 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1635 if (prot->sysctl_mem[2] > alloc *
1636 sk_mem_pages(sk->sk_wmem_queued +
1637 atomic_read(&sk->sk_rmem_alloc) +
1638 sk->sk_forward_alloc))
1639 return 1;
1642 suppress_allocation:
1644 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1645 sk_stream_moderate_sndbuf(sk);
1647 /* Fail only if socket is _under_ its sndbuf.
1648 * In this case we cannot block, so that we have to fail.
1650 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1651 return 1;
1654 /* Alas. Undo changes. */
1655 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1656 atomic_sub(amt, prot->memory_allocated);
1657 return 0;
1659 EXPORT_SYMBOL(__sk_mem_schedule);
1662 * __sk_reclaim - reclaim memory_allocated
1663 * @sk: socket
1665 void __sk_mem_reclaim(struct sock *sk)
1667 struct proto *prot = sk->sk_prot;
1669 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1670 prot->memory_allocated);
1671 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1673 if (prot->memory_pressure && *prot->memory_pressure &&
1674 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1675 *prot->memory_pressure = 0;
1677 EXPORT_SYMBOL(__sk_mem_reclaim);
1681 * Set of default routines for initialising struct proto_ops when
1682 * the protocol does not support a particular function. In certain
1683 * cases where it makes no sense for a protocol to have a "do nothing"
1684 * function, some default processing is provided.
1687 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1689 return -EOPNOTSUPP;
1691 EXPORT_SYMBOL(sock_no_bind);
1693 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1694 int len, int flags)
1696 return -EOPNOTSUPP;
1698 EXPORT_SYMBOL(sock_no_connect);
1700 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1702 return -EOPNOTSUPP;
1704 EXPORT_SYMBOL(sock_no_socketpair);
1706 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1708 return -EOPNOTSUPP;
1710 EXPORT_SYMBOL(sock_no_accept);
1712 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1713 int *len, int peer)
1715 return -EOPNOTSUPP;
1717 EXPORT_SYMBOL(sock_no_getname);
1719 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1721 return 0;
1723 EXPORT_SYMBOL(sock_no_poll);
1725 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1727 return -EOPNOTSUPP;
1729 EXPORT_SYMBOL(sock_no_ioctl);
1731 int sock_no_listen(struct socket *sock, int backlog)
1733 return -EOPNOTSUPP;
1735 EXPORT_SYMBOL(sock_no_listen);
1737 int sock_no_shutdown(struct socket *sock, int how)
1739 return -EOPNOTSUPP;
1741 EXPORT_SYMBOL(sock_no_shutdown);
1743 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1744 char __user *optval, unsigned int optlen)
1746 return -EOPNOTSUPP;
1748 EXPORT_SYMBOL(sock_no_setsockopt);
1750 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1751 char __user *optval, int __user *optlen)
1753 return -EOPNOTSUPP;
1755 EXPORT_SYMBOL(sock_no_getsockopt);
1757 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1758 size_t len)
1760 return -EOPNOTSUPP;
1762 EXPORT_SYMBOL(sock_no_sendmsg);
1764 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1765 size_t len, int flags)
1767 return -EOPNOTSUPP;
1769 EXPORT_SYMBOL(sock_no_recvmsg);
1771 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1773 /* Mirror missing mmap method error code */
1774 return -ENODEV;
1776 EXPORT_SYMBOL(sock_no_mmap);
1778 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1780 ssize_t res;
1781 struct msghdr msg = {.msg_flags = flags};
1782 struct kvec iov;
1783 char *kaddr = kmap(page);
1784 iov.iov_base = kaddr + offset;
1785 iov.iov_len = size;
1786 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1787 kunmap(page);
1788 return res;
1790 EXPORT_SYMBOL(sock_no_sendpage);
1793 * Default Socket Callbacks
1796 static void sock_def_wakeup(struct sock *sk)
1798 read_lock(&sk->sk_callback_lock);
1799 if (sk_has_sleeper(sk))
1800 wake_up_interruptible_all(sk->sk_sleep);
1801 read_unlock(&sk->sk_callback_lock);
1804 static void sock_def_error_report(struct sock *sk)
1806 read_lock(&sk->sk_callback_lock);
1807 if (sk_has_sleeper(sk))
1808 wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1809 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1810 read_unlock(&sk->sk_callback_lock);
1813 static void sock_def_readable(struct sock *sk, int len)
1815 read_lock(&sk->sk_callback_lock);
1816 if (sk_has_sleeper(sk))
1817 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1818 POLLRDNORM | POLLRDBAND);
1819 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1820 read_unlock(&sk->sk_callback_lock);
1823 static void sock_def_write_space(struct sock *sk)
1825 read_lock(&sk->sk_callback_lock);
1827 /* Do not wake up a writer until he can make "significant"
1828 * progress. --DaveM
1830 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1831 if (sk_has_sleeper(sk))
1832 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1833 POLLWRNORM | POLLWRBAND);
1835 /* Should agree with poll, otherwise some programs break */
1836 if (sock_writeable(sk))
1837 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1840 read_unlock(&sk->sk_callback_lock);
1843 static void sock_def_destruct(struct sock *sk)
1845 kfree(sk->sk_protinfo);
1848 void sk_send_sigurg(struct sock *sk)
1850 if (sk->sk_socket && sk->sk_socket->file)
1851 if (send_sigurg(&sk->sk_socket->file->f_owner))
1852 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1854 EXPORT_SYMBOL(sk_send_sigurg);
1856 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1857 unsigned long expires)
1859 if (!mod_timer(timer, expires))
1860 sock_hold(sk);
1862 EXPORT_SYMBOL(sk_reset_timer);
1864 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1866 if (timer_pending(timer) && del_timer(timer))
1867 __sock_put(sk);
1869 EXPORT_SYMBOL(sk_stop_timer);
1871 void sock_init_data(struct socket *sock, struct sock *sk)
1873 skb_queue_head_init(&sk->sk_receive_queue);
1874 skb_queue_head_init(&sk->sk_write_queue);
1875 skb_queue_head_init(&sk->sk_error_queue);
1876 #ifdef CONFIG_NET_DMA
1877 skb_queue_head_init(&sk->sk_async_wait_queue);
1878 #endif
1880 sk->sk_send_head = NULL;
1882 init_timer(&sk->sk_timer);
1884 sk->sk_allocation = GFP_KERNEL;
1885 sk->sk_rcvbuf = sysctl_rmem_default;
1886 sk->sk_sndbuf = sysctl_wmem_default;
1887 sk->sk_backlog.limit = sk->sk_rcvbuf << 1;
1888 sk->sk_state = TCP_CLOSE;
1889 sk_set_socket(sk, sock);
1891 sock_set_flag(sk, SOCK_ZAPPED);
1893 if (sock) {
1894 sk->sk_type = sock->type;
1895 sk->sk_sleep = &sock->wait;
1896 sock->sk = sk;
1897 } else
1898 sk->sk_sleep = NULL;
1900 rwlock_init(&sk->sk_dst_lock);
1901 rwlock_init(&sk->sk_callback_lock);
1902 lockdep_set_class_and_name(&sk->sk_callback_lock,
1903 af_callback_keys + sk->sk_family,
1904 af_family_clock_key_strings[sk->sk_family]);
1906 sk->sk_state_change = sock_def_wakeup;
1907 sk->sk_data_ready = sock_def_readable;
1908 sk->sk_write_space = sock_def_write_space;
1909 sk->sk_error_report = sock_def_error_report;
1910 sk->sk_destruct = sock_def_destruct;
1912 sk->sk_sndmsg_page = NULL;
1913 sk->sk_sndmsg_off = 0;
1915 sk->sk_peercred.pid = 0;
1916 sk->sk_peercred.uid = -1;
1917 sk->sk_peercred.gid = -1;
1918 sk->sk_write_pending = 0;
1919 sk->sk_rcvlowat = 1;
1920 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1921 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1923 sk->sk_stamp = ktime_set(-1L, 0);
1926 * Before updating sk_refcnt, we must commit prior changes to memory
1927 * (Documentation/RCU/rculist_nulls.txt for details)
1929 smp_wmb();
1930 atomic_set(&sk->sk_refcnt, 1);
1931 atomic_set(&sk->sk_drops, 0);
1933 EXPORT_SYMBOL(sock_init_data);
1935 void lock_sock_nested(struct sock *sk, int subclass)
1937 might_sleep();
1938 spin_lock_bh(&sk->sk_lock.slock);
1939 if (sk->sk_lock.owned)
1940 __lock_sock(sk);
1941 sk->sk_lock.owned = 1;
1942 spin_unlock(&sk->sk_lock.slock);
1944 * The sk_lock has mutex_lock() semantics here:
1946 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1947 local_bh_enable();
1949 EXPORT_SYMBOL(lock_sock_nested);
1951 void release_sock(struct sock *sk)
1954 * The sk_lock has mutex_unlock() semantics:
1956 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1958 spin_lock_bh(&sk->sk_lock.slock);
1959 if (sk->sk_backlog.tail)
1960 __release_sock(sk);
1961 sk->sk_lock.owned = 0;
1962 if (waitqueue_active(&sk->sk_lock.wq))
1963 wake_up(&sk->sk_lock.wq);
1964 spin_unlock_bh(&sk->sk_lock.slock);
1966 EXPORT_SYMBOL(release_sock);
1968 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1970 struct timeval tv;
1971 if (!sock_flag(sk, SOCK_TIMESTAMP))
1972 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1973 tv = ktime_to_timeval(sk->sk_stamp);
1974 if (tv.tv_sec == -1)
1975 return -ENOENT;
1976 if (tv.tv_sec == 0) {
1977 sk->sk_stamp = ktime_get_real();
1978 tv = ktime_to_timeval(sk->sk_stamp);
1980 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1982 EXPORT_SYMBOL(sock_get_timestamp);
1984 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1986 struct timespec ts;
1987 if (!sock_flag(sk, SOCK_TIMESTAMP))
1988 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1989 ts = ktime_to_timespec(sk->sk_stamp);
1990 if (ts.tv_sec == -1)
1991 return -ENOENT;
1992 if (ts.tv_sec == 0) {
1993 sk->sk_stamp = ktime_get_real();
1994 ts = ktime_to_timespec(sk->sk_stamp);
1996 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1998 EXPORT_SYMBOL(sock_get_timestampns);
2000 void sock_enable_timestamp(struct sock *sk, int flag)
2002 if (!sock_flag(sk, flag)) {
2003 sock_set_flag(sk, flag);
2005 * we just set one of the two flags which require net
2006 * time stamping, but time stamping might have been on
2007 * already because of the other one
2009 if (!sock_flag(sk,
2010 flag == SOCK_TIMESTAMP ?
2011 SOCK_TIMESTAMPING_RX_SOFTWARE :
2012 SOCK_TIMESTAMP))
2013 net_enable_timestamp();
2018 * Get a socket option on an socket.
2020 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2021 * asynchronous errors should be reported by getsockopt. We assume
2022 * this means if you specify SO_ERROR (otherwise whats the point of it).
2024 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2025 char __user *optval, int __user *optlen)
2027 struct sock *sk = sock->sk;
2029 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2031 EXPORT_SYMBOL(sock_common_getsockopt);
2033 #ifdef CONFIG_COMPAT
2034 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2035 char __user *optval, int __user *optlen)
2037 struct sock *sk = sock->sk;
2039 if (sk->sk_prot->compat_getsockopt != NULL)
2040 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2041 optval, optlen);
2042 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2044 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2045 #endif
2047 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2048 struct msghdr *msg, size_t size, int flags)
2050 struct sock *sk = sock->sk;
2051 int addr_len = 0;
2052 int err;
2054 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2055 flags & ~MSG_DONTWAIT, &addr_len);
2056 if (err >= 0)
2057 msg->msg_namelen = addr_len;
2058 return err;
2060 EXPORT_SYMBOL(sock_common_recvmsg);
2063 * Set socket options on an inet socket.
2065 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2066 char __user *optval, unsigned int optlen)
2068 struct sock *sk = sock->sk;
2070 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2072 EXPORT_SYMBOL(sock_common_setsockopt);
2074 #ifdef CONFIG_COMPAT
2075 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2076 char __user *optval, unsigned int optlen)
2078 struct sock *sk = sock->sk;
2080 if (sk->sk_prot->compat_setsockopt != NULL)
2081 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2082 optval, optlen);
2083 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2085 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2086 #endif
2088 void sk_common_release(struct sock *sk)
2090 if (sk->sk_prot->destroy)
2091 sk->sk_prot->destroy(sk);
2094 * Observation: when sock_common_release is called, processes have
2095 * no access to socket. But net still has.
2096 * Step one, detach it from networking:
2098 * A. Remove from hash tables.
2101 sk->sk_prot->unhash(sk);
2104 * In this point socket cannot receive new packets, but it is possible
2105 * that some packets are in flight because some CPU runs receiver and
2106 * did hash table lookup before we unhashed socket. They will achieve
2107 * receive queue and will be purged by socket destructor.
2109 * Also we still have packets pending on receive queue and probably,
2110 * our own packets waiting in device queues. sock_destroy will drain
2111 * receive queue, but transmitted packets will delay socket destruction
2112 * until the last reference will be released.
2115 sock_orphan(sk);
2117 xfrm_sk_free_policy(sk);
2119 sk_refcnt_debug_release(sk);
2120 sock_put(sk);
2122 EXPORT_SYMBOL(sk_common_release);
2124 static DEFINE_RWLOCK(proto_list_lock);
2125 static LIST_HEAD(proto_list);
2127 #ifdef CONFIG_PROC_FS
2128 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2129 struct prot_inuse {
2130 int val[PROTO_INUSE_NR];
2133 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2135 #ifdef CONFIG_NET_NS
2136 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2138 int cpu = smp_processor_id();
2139 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2141 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2143 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2145 int cpu, idx = prot->inuse_idx;
2146 int res = 0;
2148 for_each_possible_cpu(cpu)
2149 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2151 return res >= 0 ? res : 0;
2153 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2155 static int sock_inuse_init_net(struct net *net)
2157 net->core.inuse = alloc_percpu(struct prot_inuse);
2158 return net->core.inuse ? 0 : -ENOMEM;
2161 static void sock_inuse_exit_net(struct net *net)
2163 free_percpu(net->core.inuse);
2166 static struct pernet_operations net_inuse_ops = {
2167 .init = sock_inuse_init_net,
2168 .exit = sock_inuse_exit_net,
2171 static __init int net_inuse_init(void)
2173 if (register_pernet_subsys(&net_inuse_ops))
2174 panic("Cannot initialize net inuse counters");
2176 return 0;
2179 core_initcall(net_inuse_init);
2180 #else
2181 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2183 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2185 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2187 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2189 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2191 int cpu, idx = prot->inuse_idx;
2192 int res = 0;
2194 for_each_possible_cpu(cpu)
2195 res += per_cpu(prot_inuse, cpu).val[idx];
2197 return res >= 0 ? res : 0;
2199 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2200 #endif
2202 static void assign_proto_idx(struct proto *prot)
2204 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2206 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2207 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2208 return;
2211 set_bit(prot->inuse_idx, proto_inuse_idx);
2214 static void release_proto_idx(struct proto *prot)
2216 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2217 clear_bit(prot->inuse_idx, proto_inuse_idx);
2219 #else
2220 static inline void assign_proto_idx(struct proto *prot)
2224 static inline void release_proto_idx(struct proto *prot)
2227 #endif
2229 int proto_register(struct proto *prot, int alloc_slab)
2231 if (alloc_slab) {
2232 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2233 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2234 NULL);
2236 if (prot->slab == NULL) {
2237 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2238 prot->name);
2239 goto out;
2242 if (prot->rsk_prot != NULL) {
2243 static const char mask[] = "request_sock_%s";
2245 prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2246 if (prot->rsk_prot->slab_name == NULL)
2247 goto out_free_sock_slab;
2249 sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2250 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2251 prot->rsk_prot->obj_size, 0,
2252 SLAB_HWCACHE_ALIGN, NULL);
2254 if (prot->rsk_prot->slab == NULL) {
2255 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2256 prot->name);
2257 goto out_free_request_sock_slab_name;
2261 if (prot->twsk_prot != NULL) {
2262 static const char mask[] = "tw_sock_%s";
2264 prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2266 if (prot->twsk_prot->twsk_slab_name == NULL)
2267 goto out_free_request_sock_slab;
2269 sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2270 prot->twsk_prot->twsk_slab =
2271 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2272 prot->twsk_prot->twsk_obj_size,
2274 SLAB_HWCACHE_ALIGN |
2275 prot->slab_flags,
2276 NULL);
2277 if (prot->twsk_prot->twsk_slab == NULL)
2278 goto out_free_timewait_sock_slab_name;
2282 write_lock(&proto_list_lock);
2283 list_add(&prot->node, &proto_list);
2284 assign_proto_idx(prot);
2285 write_unlock(&proto_list_lock);
2286 return 0;
2288 out_free_timewait_sock_slab_name:
2289 kfree(prot->twsk_prot->twsk_slab_name);
2290 out_free_request_sock_slab:
2291 if (prot->rsk_prot && prot->rsk_prot->slab) {
2292 kmem_cache_destroy(prot->rsk_prot->slab);
2293 prot->rsk_prot->slab = NULL;
2295 out_free_request_sock_slab_name:
2296 kfree(prot->rsk_prot->slab_name);
2297 out_free_sock_slab:
2298 kmem_cache_destroy(prot->slab);
2299 prot->slab = NULL;
2300 out:
2301 return -ENOBUFS;
2303 EXPORT_SYMBOL(proto_register);
2305 void proto_unregister(struct proto *prot)
2307 write_lock(&proto_list_lock);
2308 release_proto_idx(prot);
2309 list_del(&prot->node);
2310 write_unlock(&proto_list_lock);
2312 if (prot->slab != NULL) {
2313 kmem_cache_destroy(prot->slab);
2314 prot->slab = NULL;
2317 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2318 kmem_cache_destroy(prot->rsk_prot->slab);
2319 kfree(prot->rsk_prot->slab_name);
2320 prot->rsk_prot->slab = NULL;
2323 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2324 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2325 kfree(prot->twsk_prot->twsk_slab_name);
2326 prot->twsk_prot->twsk_slab = NULL;
2329 EXPORT_SYMBOL(proto_unregister);
2331 #ifdef CONFIG_PROC_FS
2332 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2333 __acquires(proto_list_lock)
2335 read_lock(&proto_list_lock);
2336 return seq_list_start_head(&proto_list, *pos);
2339 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2341 return seq_list_next(v, &proto_list, pos);
2344 static void proto_seq_stop(struct seq_file *seq, void *v)
2345 __releases(proto_list_lock)
2347 read_unlock(&proto_list_lock);
2350 static char proto_method_implemented(const void *method)
2352 return method == NULL ? 'n' : 'y';
2355 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2357 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2358 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2359 proto->name,
2360 proto->obj_size,
2361 sock_prot_inuse_get(seq_file_net(seq), proto),
2362 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2363 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2364 proto->max_header,
2365 proto->slab == NULL ? "no" : "yes",
2366 module_name(proto->owner),
2367 proto_method_implemented(proto->close),
2368 proto_method_implemented(proto->connect),
2369 proto_method_implemented(proto->disconnect),
2370 proto_method_implemented(proto->accept),
2371 proto_method_implemented(proto->ioctl),
2372 proto_method_implemented(proto->init),
2373 proto_method_implemented(proto->destroy),
2374 proto_method_implemented(proto->shutdown),
2375 proto_method_implemented(proto->setsockopt),
2376 proto_method_implemented(proto->getsockopt),
2377 proto_method_implemented(proto->sendmsg),
2378 proto_method_implemented(proto->recvmsg),
2379 proto_method_implemented(proto->sendpage),
2380 proto_method_implemented(proto->bind),
2381 proto_method_implemented(proto->backlog_rcv),
2382 proto_method_implemented(proto->hash),
2383 proto_method_implemented(proto->unhash),
2384 proto_method_implemented(proto->get_port),
2385 proto_method_implemented(proto->enter_memory_pressure));
2388 static int proto_seq_show(struct seq_file *seq, void *v)
2390 if (v == &proto_list)
2391 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2392 "protocol",
2393 "size",
2394 "sockets",
2395 "memory",
2396 "press",
2397 "maxhdr",
2398 "slab",
2399 "module",
2400 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2401 else
2402 proto_seq_printf(seq, list_entry(v, struct proto, node));
2403 return 0;
2406 static const struct seq_operations proto_seq_ops = {
2407 .start = proto_seq_start,
2408 .next = proto_seq_next,
2409 .stop = proto_seq_stop,
2410 .show = proto_seq_show,
2413 static int proto_seq_open(struct inode *inode, struct file *file)
2415 return seq_open_net(inode, file, &proto_seq_ops,
2416 sizeof(struct seq_net_private));
2419 static const struct file_operations proto_seq_fops = {
2420 .owner = THIS_MODULE,
2421 .open = proto_seq_open,
2422 .read = seq_read,
2423 .llseek = seq_lseek,
2424 .release = seq_release_net,
2427 static __net_init int proto_init_net(struct net *net)
2429 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2430 return -ENOMEM;
2432 return 0;
2435 static __net_exit void proto_exit_net(struct net *net)
2437 proc_net_remove(net, "protocols");
2441 static __net_initdata struct pernet_operations proto_net_ops = {
2442 .init = proto_init_net,
2443 .exit = proto_exit_net,
2446 static int __init proto_init(void)
2448 return register_pernet_subsys(&proto_net_ops);
2451 subsys_initcall(proto_init);
2453 #endif /* PROC_FS */