2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
44 static kmem_zone_t
*xfs_buf_zone
;
45 STATIC
int xfsbufd(void *);
46 STATIC
void xfs_buf_delwri_queue(xfs_buf_t
*, int);
48 static struct workqueue_struct
*xfslogd_workqueue
;
49 struct workqueue_struct
*xfsdatad_workqueue
;
50 struct workqueue_struct
*xfsconvertd_workqueue
;
52 #ifdef XFS_BUF_LOCK_TRACKING
53 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
54 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
55 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
57 # define XB_SET_OWNER(bp) do { } while (0)
58 # define XB_CLEAR_OWNER(bp) do { } while (0)
59 # define XB_GET_OWNER(bp) do { } while (0)
62 #define xb_to_gfp(flags) \
63 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
64 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
66 #define xb_to_km(flags) \
67 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
69 #define xfs_buf_allocate(flags) \
70 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
71 #define xfs_buf_deallocate(bp) \
72 kmem_zone_free(xfs_buf_zone, (bp));
79 * Return true if the buffer is vmapped.
81 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
82 * code is clever enough to know it doesn't have to map a single page,
83 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
85 return (bp
->b_flags
& XBF_MAPPED
) && bp
->b_page_count
> 1;
92 return (bp
->b_page_count
* PAGE_SIZE
) - bp
->b_offset
;
96 * xfs_buf_lru_add - add a buffer to the LRU.
98 * The LRU takes a new reference to the buffer so that it will only be freed
99 * once the shrinker takes the buffer off the LRU.
105 struct xfs_buftarg
*btp
= bp
->b_target
;
107 spin_lock(&btp
->bt_lru_lock
);
108 if (list_empty(&bp
->b_lru
)) {
109 atomic_inc(&bp
->b_hold
);
110 list_add_tail(&bp
->b_lru
, &btp
->bt_lru
);
113 spin_unlock(&btp
->bt_lru_lock
);
117 * xfs_buf_lru_del - remove a buffer from the LRU
119 * The unlocked check is safe here because it only occurs when there are not
120 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
121 * to optimise the shrinker removing the buffer from the LRU and calling
122 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
129 struct xfs_buftarg
*btp
= bp
->b_target
;
131 if (list_empty(&bp
->b_lru
))
134 spin_lock(&btp
->bt_lru_lock
);
135 if (!list_empty(&bp
->b_lru
)) {
136 list_del_init(&bp
->b_lru
);
139 spin_unlock(&btp
->bt_lru_lock
);
143 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144 * b_lru_ref count so that the buffer is freed immediately when the buffer
145 * reference count falls to zero. If the buffer is already on the LRU, we need
146 * to remove the reference that LRU holds on the buffer.
148 * This prevents build-up of stale buffers on the LRU.
154 bp
->b_flags
|= XBF_STALE
;
155 atomic_set(&(bp
)->b_lru_ref
, 0);
156 if (!list_empty(&bp
->b_lru
)) {
157 struct xfs_buftarg
*btp
= bp
->b_target
;
159 spin_lock(&btp
->bt_lru_lock
);
160 if (!list_empty(&bp
->b_lru
)) {
161 list_del_init(&bp
->b_lru
);
163 atomic_dec(&bp
->b_hold
);
165 spin_unlock(&btp
->bt_lru_lock
);
167 ASSERT(atomic_read(&bp
->b_hold
) >= 1);
173 xfs_buftarg_t
*target
,
174 xfs_off_t range_base
,
176 xfs_buf_flags_t flags
)
179 * We don't want certain flags to appear in b_flags.
181 flags
&= ~(XBF_LOCK
|XBF_MAPPED
|XBF_DONT_BLOCK
|XBF_READ_AHEAD
);
183 memset(bp
, 0, sizeof(xfs_buf_t
));
184 atomic_set(&bp
->b_hold
, 1);
185 atomic_set(&bp
->b_lru_ref
, 1);
186 init_completion(&bp
->b_iowait
);
187 INIT_LIST_HEAD(&bp
->b_lru
);
188 INIT_LIST_HEAD(&bp
->b_list
);
189 RB_CLEAR_NODE(&bp
->b_rbnode
);
190 sema_init(&bp
->b_sema
, 0); /* held, no waiters */
192 bp
->b_target
= target
;
193 bp
->b_file_offset
= range_base
;
195 * Set buffer_length and count_desired to the same value initially.
196 * I/O routines should use count_desired, which will be the same in
197 * most cases but may be reset (e.g. XFS recovery).
199 bp
->b_buffer_length
= bp
->b_count_desired
= range_length
;
201 bp
->b_bn
= XFS_BUF_DADDR_NULL
;
202 atomic_set(&bp
->b_pin_count
, 0);
203 init_waitqueue_head(&bp
->b_waiters
);
205 XFS_STATS_INC(xb_create
);
207 trace_xfs_buf_init(bp
, _RET_IP_
);
211 * Allocate a page array capable of holding a specified number
212 * of pages, and point the page buf at it.
218 xfs_buf_flags_t flags
)
220 /* Make sure that we have a page list */
221 if (bp
->b_pages
== NULL
) {
222 bp
->b_offset
= xfs_buf_poff(bp
->b_file_offset
);
223 bp
->b_page_count
= page_count
;
224 if (page_count
<= XB_PAGES
) {
225 bp
->b_pages
= bp
->b_page_array
;
227 bp
->b_pages
= kmem_alloc(sizeof(struct page
*) *
228 page_count
, xb_to_km(flags
));
229 if (bp
->b_pages
== NULL
)
232 memset(bp
->b_pages
, 0, sizeof(struct page
*) * page_count
);
238 * Frees b_pages if it was allocated.
244 if (bp
->b_pages
!= bp
->b_page_array
) {
245 kmem_free(bp
->b_pages
);
251 * Releases the specified buffer.
253 * The modification state of any associated pages is left unchanged.
254 * The buffer most not be on any hash - use xfs_buf_rele instead for
255 * hashed and refcounted buffers
261 trace_xfs_buf_free(bp
, _RET_IP_
);
263 ASSERT(list_empty(&bp
->b_lru
));
265 if (bp
->b_flags
& _XBF_PAGES
) {
268 if (xfs_buf_is_vmapped(bp
))
269 vm_unmap_ram(bp
->b_addr
- bp
->b_offset
,
272 for (i
= 0; i
< bp
->b_page_count
; i
++) {
273 struct page
*page
= bp
->b_pages
[i
];
277 } else if (bp
->b_flags
& _XBF_KMEM
)
278 kmem_free(bp
->b_addr
);
279 _xfs_buf_free_pages(bp
);
280 xfs_buf_deallocate(bp
);
284 * Allocates all the pages for buffer in question and builds it's page list.
287 xfs_buf_allocate_memory(
291 size_t size
= bp
->b_count_desired
;
292 size_t nbytes
, offset
;
293 gfp_t gfp_mask
= xb_to_gfp(flags
);
294 unsigned short page_count
, i
;
299 * for buffers that are contained within a single page, just allocate
300 * the memory from the heap - there's no need for the complexity of
301 * page arrays to keep allocation down to order 0.
303 if (bp
->b_buffer_length
< PAGE_SIZE
) {
304 bp
->b_addr
= kmem_alloc(bp
->b_buffer_length
, xb_to_km(flags
));
306 /* low memory - use alloc_page loop instead */
310 if (((unsigned long)(bp
->b_addr
+ bp
->b_buffer_length
- 1) &
312 ((unsigned long)bp
->b_addr
& PAGE_MASK
)) {
313 /* b_addr spans two pages - use alloc_page instead */
314 kmem_free(bp
->b_addr
);
318 bp
->b_offset
= offset_in_page(bp
->b_addr
);
319 bp
->b_pages
= bp
->b_page_array
;
320 bp
->b_pages
[0] = virt_to_page(bp
->b_addr
);
321 bp
->b_page_count
= 1;
322 bp
->b_flags
|= XBF_MAPPED
| _XBF_KMEM
;
327 end
= bp
->b_file_offset
+ bp
->b_buffer_length
;
328 page_count
= xfs_buf_btoc(end
) - xfs_buf_btoct(bp
->b_file_offset
);
329 error
= _xfs_buf_get_pages(bp
, page_count
, flags
);
333 offset
= bp
->b_offset
;
334 bp
->b_flags
|= _XBF_PAGES
;
336 for (i
= 0; i
< bp
->b_page_count
; i
++) {
340 page
= alloc_page(gfp_mask
);
341 if (unlikely(page
== NULL
)) {
342 if (flags
& XBF_READ_AHEAD
) {
343 bp
->b_page_count
= i
;
349 * This could deadlock.
351 * But until all the XFS lowlevel code is revamped to
352 * handle buffer allocation failures we can't do much.
354 if (!(++retries
% 100))
356 "possible memory allocation deadlock in %s (mode:0x%x)",
359 XFS_STATS_INC(xb_page_retries
);
360 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
364 XFS_STATS_INC(xb_page_found
);
366 nbytes
= min_t(size_t, size
, PAGE_SIZE
- offset
);
368 bp
->b_pages
[i
] = page
;
374 for (i
= 0; i
< bp
->b_page_count
; i
++)
375 __free_page(bp
->b_pages
[i
]);
380 * Map buffer into kernel address-space if necessary.
387 ASSERT(bp
->b_flags
& _XBF_PAGES
);
388 if (bp
->b_page_count
== 1) {
389 /* A single page buffer is always mappable */
390 bp
->b_addr
= page_address(bp
->b_pages
[0]) + bp
->b_offset
;
391 bp
->b_flags
|= XBF_MAPPED
;
392 } else if (flags
& XBF_MAPPED
) {
396 bp
->b_addr
= vm_map_ram(bp
->b_pages
, bp
->b_page_count
,
401 } while (retried
++ <= 1);
405 bp
->b_addr
+= bp
->b_offset
;
406 bp
->b_flags
|= XBF_MAPPED
;
413 * Finding and Reading Buffers
417 * Look up, and creates if absent, a lockable buffer for
418 * a given range of an inode. The buffer is returned
419 * locked. If other overlapping buffers exist, they are
420 * released before the new buffer is created and locked,
421 * which may imply that this call will block until those buffers
422 * are unlocked. No I/O is implied by this call.
426 xfs_buftarg_t
*btp
, /* block device target */
427 xfs_off_t ioff
, /* starting offset of range */
428 size_t isize
, /* length of range */
429 xfs_buf_flags_t flags
,
432 xfs_off_t range_base
;
434 struct xfs_perag
*pag
;
435 struct rb_node
**rbp
;
436 struct rb_node
*parent
;
439 range_base
= (ioff
<< BBSHIFT
);
440 range_length
= (isize
<< BBSHIFT
);
442 /* Check for IOs smaller than the sector size / not sector aligned */
443 ASSERT(!(range_length
< (1 << btp
->bt_sshift
)));
444 ASSERT(!(range_base
& (xfs_off_t
)btp
->bt_smask
));
447 pag
= xfs_perag_get(btp
->bt_mount
,
448 xfs_daddr_to_agno(btp
->bt_mount
, ioff
));
451 spin_lock(&pag
->pag_buf_lock
);
452 rbp
= &pag
->pag_buf_tree
.rb_node
;
457 bp
= rb_entry(parent
, struct xfs_buf
, b_rbnode
);
459 if (range_base
< bp
->b_file_offset
)
460 rbp
= &(*rbp
)->rb_left
;
461 else if (range_base
> bp
->b_file_offset
)
462 rbp
= &(*rbp
)->rb_right
;
465 * found a block offset match. If the range doesn't
466 * match, the only way this is allowed is if the buffer
467 * in the cache is stale and the transaction that made
468 * it stale has not yet committed. i.e. we are
469 * reallocating a busy extent. Skip this buffer and
470 * continue searching to the right for an exact match.
472 if (bp
->b_buffer_length
!= range_length
) {
473 ASSERT(bp
->b_flags
& XBF_STALE
);
474 rbp
= &(*rbp
)->rb_right
;
477 atomic_inc(&bp
->b_hold
);
484 _xfs_buf_initialize(new_bp
, btp
, range_base
,
485 range_length
, flags
);
486 rb_link_node(&new_bp
->b_rbnode
, parent
, rbp
);
487 rb_insert_color(&new_bp
->b_rbnode
, &pag
->pag_buf_tree
);
488 /* the buffer keeps the perag reference until it is freed */
490 spin_unlock(&pag
->pag_buf_lock
);
492 XFS_STATS_INC(xb_miss_locked
);
493 spin_unlock(&pag
->pag_buf_lock
);
499 spin_unlock(&pag
->pag_buf_lock
);
502 if (xfs_buf_cond_lock(bp
)) {
503 /* failed, so wait for the lock if requested. */
504 if (!(flags
& XBF_TRYLOCK
)) {
506 XFS_STATS_INC(xb_get_locked_waited
);
509 XFS_STATS_INC(xb_busy_locked
);
515 * if the buffer is stale, clear all the external state associated with
516 * it. We need to keep flags such as how we allocated the buffer memory
519 if (bp
->b_flags
& XBF_STALE
) {
520 ASSERT((bp
->b_flags
& _XBF_DELWRI_Q
) == 0);
521 bp
->b_flags
&= XBF_MAPPED
| _XBF_KMEM
| _XBF_PAGES
;
524 trace_xfs_buf_find(bp
, flags
, _RET_IP_
);
525 XFS_STATS_INC(xb_get_locked
);
530 * Assembles a buffer covering the specified range.
531 * Storage in memory for all portions of the buffer will be allocated,
532 * although backing storage may not be.
536 xfs_buftarg_t
*target
,/* target for buffer */
537 xfs_off_t ioff
, /* starting offset of range */
538 size_t isize
, /* length of range */
539 xfs_buf_flags_t flags
)
541 xfs_buf_t
*bp
, *new_bp
;
544 new_bp
= xfs_buf_allocate(flags
);
545 if (unlikely(!new_bp
))
548 bp
= _xfs_buf_find(target
, ioff
, isize
, flags
, new_bp
);
550 error
= xfs_buf_allocate_memory(bp
, flags
);
554 xfs_buf_deallocate(new_bp
);
555 if (unlikely(bp
== NULL
))
559 if (!(bp
->b_flags
& XBF_MAPPED
)) {
560 error
= _xfs_buf_map_pages(bp
, flags
);
561 if (unlikely(error
)) {
562 xfs_warn(target
->bt_mount
,
563 "%s: failed to map pages\n", __func__
);
568 XFS_STATS_INC(xb_get
);
571 * Always fill in the block number now, the mapped cases can do
572 * their own overlay of this later.
575 bp
->b_count_desired
= bp
->b_buffer_length
;
577 trace_xfs_buf_get(bp
, flags
, _RET_IP_
);
581 if (flags
& (XBF_LOCK
| XBF_TRYLOCK
))
590 xfs_buf_flags_t flags
)
594 ASSERT(!(flags
& (XBF_DELWRI
|XBF_WRITE
)));
595 ASSERT(bp
->b_bn
!= XFS_BUF_DADDR_NULL
);
597 bp
->b_flags
&= ~(XBF_WRITE
| XBF_ASYNC
| XBF_DELWRI
| \
598 XBF_READ_AHEAD
| _XBF_RUN_QUEUES
);
599 bp
->b_flags
|= flags
& (XBF_READ
| XBF_ASYNC
| \
600 XBF_READ_AHEAD
| _XBF_RUN_QUEUES
);
602 status
= xfs_buf_iorequest(bp
);
603 if (status
|| XFS_BUF_ISERROR(bp
) || (flags
& XBF_ASYNC
))
605 return xfs_buf_iowait(bp
);
610 xfs_buftarg_t
*target
,
613 xfs_buf_flags_t flags
)
619 bp
= xfs_buf_get(target
, ioff
, isize
, flags
);
621 trace_xfs_buf_read(bp
, flags
, _RET_IP_
);
623 if (!XFS_BUF_ISDONE(bp
)) {
624 XFS_STATS_INC(xb_get_read
);
625 _xfs_buf_read(bp
, flags
);
626 } else if (flags
& XBF_ASYNC
) {
628 * Read ahead call which is already satisfied,
633 /* We do not want read in the flags */
634 bp
->b_flags
&= ~XBF_READ
;
641 if (flags
& (XBF_LOCK
| XBF_TRYLOCK
))
648 * If we are not low on memory then do the readahead in a deadlock
653 xfs_buftarg_t
*target
,
657 if (bdi_read_congested(target
->bt_bdi
))
660 xfs_buf_read(target
, ioff
, isize
,
661 XBF_TRYLOCK
|XBF_ASYNC
|XBF_READ_AHEAD
|XBF_DONT_BLOCK
);
665 * Read an uncached buffer from disk. Allocates and returns a locked
666 * buffer containing the disk contents or nothing.
669 xfs_buf_read_uncached(
670 struct xfs_mount
*mp
,
671 struct xfs_buftarg
*target
,
679 bp
= xfs_buf_get_uncached(target
, length
, flags
);
683 /* set up the buffer for a read IO */
685 XFS_BUF_SET_ADDR(bp
, daddr
);
690 error
= xfs_buf_iowait(bp
);
691 if (error
|| bp
->b_error
) {
701 xfs_buftarg_t
*target
)
705 bp
= xfs_buf_allocate(0);
707 _xfs_buf_initialize(bp
, target
, 0, len
, 0);
712 * Return a buffer allocated as an empty buffer and associated to external
713 * memory via xfs_buf_associate_memory() back to it's empty state.
721 _xfs_buf_free_pages(bp
);
724 bp
->b_page_count
= 0;
726 bp
->b_file_offset
= 0;
727 bp
->b_buffer_length
= bp
->b_count_desired
= len
;
728 bp
->b_bn
= XFS_BUF_DADDR_NULL
;
729 bp
->b_flags
&= ~XBF_MAPPED
;
732 static inline struct page
*
736 if ((!is_vmalloc_addr(addr
))) {
737 return virt_to_page(addr
);
739 return vmalloc_to_page(addr
);
744 xfs_buf_associate_memory(
751 unsigned long pageaddr
;
752 unsigned long offset
;
756 pageaddr
= (unsigned long)mem
& PAGE_MASK
;
757 offset
= (unsigned long)mem
- pageaddr
;
758 buflen
= PAGE_ALIGN(len
+ offset
);
759 page_count
= buflen
>> PAGE_SHIFT
;
761 /* Free any previous set of page pointers */
763 _xfs_buf_free_pages(bp
);
768 rval
= _xfs_buf_get_pages(bp
, page_count
, XBF_DONT_BLOCK
);
772 bp
->b_offset
= offset
;
774 for (i
= 0; i
< bp
->b_page_count
; i
++) {
775 bp
->b_pages
[i
] = mem_to_page((void *)pageaddr
);
776 pageaddr
+= PAGE_SIZE
;
779 bp
->b_count_desired
= len
;
780 bp
->b_buffer_length
= buflen
;
781 bp
->b_flags
|= XBF_MAPPED
;
787 xfs_buf_get_uncached(
788 struct xfs_buftarg
*target
,
792 unsigned long page_count
= PAGE_ALIGN(len
) >> PAGE_SHIFT
;
796 bp
= xfs_buf_allocate(0);
797 if (unlikely(bp
== NULL
))
799 _xfs_buf_initialize(bp
, target
, 0, len
, 0);
801 error
= _xfs_buf_get_pages(bp
, page_count
, 0);
805 for (i
= 0; i
< page_count
; i
++) {
806 bp
->b_pages
[i
] = alloc_page(xb_to_gfp(flags
));
810 bp
->b_flags
|= _XBF_PAGES
;
812 error
= _xfs_buf_map_pages(bp
, XBF_MAPPED
);
813 if (unlikely(error
)) {
814 xfs_warn(target
->bt_mount
,
815 "%s: failed to map pages\n", __func__
);
821 trace_xfs_buf_get_uncached(bp
, _RET_IP_
);
826 __free_page(bp
->b_pages
[i
]);
827 _xfs_buf_free_pages(bp
);
829 xfs_buf_deallocate(bp
);
835 * Increment reference count on buffer, to hold the buffer concurrently
836 * with another thread which may release (free) the buffer asynchronously.
837 * Must hold the buffer already to call this function.
843 trace_xfs_buf_hold(bp
, _RET_IP_
);
844 atomic_inc(&bp
->b_hold
);
848 * Releases a hold on the specified buffer. If the
849 * the hold count is 1, calls xfs_buf_free.
855 struct xfs_perag
*pag
= bp
->b_pag
;
857 trace_xfs_buf_rele(bp
, _RET_IP_
);
860 ASSERT(list_empty(&bp
->b_lru
));
861 ASSERT(RB_EMPTY_NODE(&bp
->b_rbnode
));
862 if (atomic_dec_and_test(&bp
->b_hold
))
867 ASSERT(!RB_EMPTY_NODE(&bp
->b_rbnode
));
869 ASSERT(atomic_read(&bp
->b_hold
) > 0);
870 if (atomic_dec_and_lock(&bp
->b_hold
, &pag
->pag_buf_lock
)) {
871 if (!(bp
->b_flags
& XBF_STALE
) &&
872 atomic_read(&bp
->b_lru_ref
)) {
874 spin_unlock(&pag
->pag_buf_lock
);
877 ASSERT(!(bp
->b_flags
& (XBF_DELWRI
|_XBF_DELWRI_Q
)));
878 rb_erase(&bp
->b_rbnode
, &pag
->pag_buf_tree
);
879 spin_unlock(&pag
->pag_buf_lock
);
888 * Lock a buffer object, if it is not already locked.
890 * If we come across a stale, pinned, locked buffer, we know that we are
891 * being asked to lock a buffer that has been reallocated. Because it is
892 * pinned, we know that the log has not been pushed to disk and hence it
893 * will still be locked. Rather than continuing to have trylock attempts
894 * fail until someone else pushes the log, push it ourselves before
895 * returning. This means that the xfsaild will not get stuck trying
896 * to push on stale inode buffers.
904 locked
= down_trylock(&bp
->b_sema
) == 0;
907 else if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
908 xfs_log_force(bp
->b_target
->bt_mount
, 0);
910 trace_xfs_buf_cond_lock(bp
, _RET_IP_
);
911 return locked
? 0 : -EBUSY
;
918 return bp
->b_sema
.count
;
922 * Lock a buffer object.
924 * If we come across a stale, pinned, locked buffer, we know that we
925 * are being asked to lock a buffer that has been reallocated. Because
926 * it is pinned, we know that the log has not been pushed to disk and
927 * hence it will still be locked. Rather than sleeping until someone
928 * else pushes the log, push it ourselves before trying to get the lock.
934 trace_xfs_buf_lock(bp
, _RET_IP_
);
936 if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
937 xfs_log_force(bp
->b_target
->bt_mount
, 0);
941 trace_xfs_buf_lock_done(bp
, _RET_IP_
);
945 * Releases the lock on the buffer object.
946 * If the buffer is marked delwri but is not queued, do so before we
947 * unlock the buffer as we need to set flags correctly. We also need to
948 * take a reference for the delwri queue because the unlocker is going to
949 * drop their's and they don't know we just queued it.
955 if ((bp
->b_flags
& (XBF_DELWRI
|_XBF_DELWRI_Q
)) == XBF_DELWRI
) {
956 atomic_inc(&bp
->b_hold
);
957 bp
->b_flags
|= XBF_ASYNC
;
958 xfs_buf_delwri_queue(bp
, 0);
964 trace_xfs_buf_unlock(bp
, _RET_IP_
);
971 DECLARE_WAITQUEUE (wait
, current
);
973 if (atomic_read(&bp
->b_pin_count
) == 0)
976 add_wait_queue(&bp
->b_waiters
, &wait
);
978 set_current_state(TASK_UNINTERRUPTIBLE
);
979 if (atomic_read(&bp
->b_pin_count
) == 0)
983 remove_wait_queue(&bp
->b_waiters
, &wait
);
984 set_current_state(TASK_RUNNING
);
988 * Buffer Utility Routines
993 struct work_struct
*work
)
996 container_of(work
, xfs_buf_t
, b_iodone_work
);
999 (*(bp
->b_iodone
))(bp
);
1000 else if (bp
->b_flags
& XBF_ASYNC
)
1009 trace_xfs_buf_iodone(bp
, _RET_IP_
);
1011 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
);
1012 if (bp
->b_error
== 0)
1013 bp
->b_flags
|= XBF_DONE
;
1015 if ((bp
->b_iodone
) || (bp
->b_flags
& XBF_ASYNC
)) {
1017 INIT_WORK(&bp
->b_iodone_work
, xfs_buf_iodone_work
);
1018 queue_work(xfslogd_workqueue
, &bp
->b_iodone_work
);
1020 xfs_buf_iodone_work(&bp
->b_iodone_work
);
1023 complete(&bp
->b_iowait
);
1032 ASSERT(error
>= 0 && error
<= 0xffff);
1033 bp
->b_error
= (unsigned short)error
;
1034 trace_xfs_buf_ioerror(bp
, error
, _RET_IP_
);
1039 struct xfs_mount
*mp
,
1044 bp
->b_flags
|= XBF_WRITE
;
1045 bp
->b_flags
&= ~(XBF_ASYNC
| XBF_READ
);
1047 xfs_buf_delwri_dequeue(bp
);
1050 error
= xfs_buf_iowait(bp
);
1052 xfs_force_shutdown(mp
, SHUTDOWN_META_IO_ERROR
);
1062 trace_xfs_buf_bdwrite(bp
, _RET_IP_
);
1064 bp
->b_flags
&= ~XBF_READ
;
1065 bp
->b_flags
|= (XBF_DELWRI
| XBF_ASYNC
);
1067 xfs_buf_delwri_queue(bp
, 1);
1071 * Called when we want to stop a buffer from getting written or read.
1072 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1073 * so that the proper iodone callbacks get called.
1079 #ifdef XFSERRORDEBUG
1080 ASSERT(XFS_BUF_ISREAD(bp
) || bp
->b_iodone
);
1084 * No need to wait until the buffer is unpinned, we aren't flushing it.
1086 XFS_BUF_ERROR(bp
, EIO
);
1089 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1092 XFS_BUF_UNDELAYWRITE(bp
);
1096 xfs_buf_ioend(bp
, 0);
1102 * Same as xfs_bioerror, except that we are releasing the buffer
1103 * here ourselves, and avoiding the xfs_buf_ioend call.
1104 * This is meant for userdata errors; metadata bufs come with
1105 * iodone functions attached, so that we can track down errors.
1111 int64_t fl
= XFS_BUF_BFLAGS(bp
);
1113 * No need to wait until the buffer is unpinned.
1114 * We aren't flushing it.
1116 * chunkhold expects B_DONE to be set, whether
1117 * we actually finish the I/O or not. We don't want to
1118 * change that interface.
1121 XFS_BUF_UNDELAYWRITE(bp
);
1124 XFS_BUF_CLR_IODONE_FUNC(bp
);
1125 if (!(fl
& XBF_ASYNC
)) {
1127 * Mark b_error and B_ERROR _both_.
1128 * Lot's of chunkcache code assumes that.
1129 * There's no reason to mark error for
1132 XFS_BUF_ERROR(bp
, EIO
);
1133 XFS_BUF_FINISH_IOWAIT(bp
);
1143 * All xfs metadata buffers except log state machine buffers
1144 * get this attached as their b_bdstrat callback function.
1145 * This is so that we can catch a buffer
1146 * after prematurely unpinning it to forcibly shutdown the filesystem.
1152 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1153 trace_xfs_bdstrat_shut(bp
, _RET_IP_
);
1155 * Metadata write that didn't get logged but
1156 * written delayed anyway. These aren't associated
1157 * with a transaction, and can be ignored.
1159 if (!bp
->b_iodone
&& !XFS_BUF_ISREAD(bp
))
1160 return xfs_bioerror_relse(bp
);
1162 return xfs_bioerror(bp
);
1165 xfs_buf_iorequest(bp
);
1170 * Wrapper around bdstrat so that we can stop data from going to disk in case
1171 * we are shutting down the filesystem. Typically user data goes thru this
1172 * path; one of the exceptions is the superblock.
1176 struct xfs_mount
*mp
,
1179 if (XFS_FORCED_SHUTDOWN(mp
)) {
1180 trace_xfs_bdstrat_shut(bp
, _RET_IP_
);
1181 xfs_bioerror_relse(bp
);
1185 xfs_buf_iorequest(bp
);
1193 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1194 xfs_buf_ioend(bp
, schedule
);
1202 xfs_buf_t
*bp
= (xfs_buf_t
*)bio
->bi_private
;
1204 xfs_buf_ioerror(bp
, -error
);
1206 if (!error
&& xfs_buf_is_vmapped(bp
) && (bp
->b_flags
& XBF_READ
))
1207 invalidate_kernel_vmap_range(bp
->b_addr
, xfs_buf_vmap_len(bp
));
1209 _xfs_buf_ioend(bp
, 1);
1217 int rw
, map_i
, total_nr_pages
, nr_pages
;
1219 int offset
= bp
->b_offset
;
1220 int size
= bp
->b_count_desired
;
1221 sector_t sector
= bp
->b_bn
;
1223 total_nr_pages
= bp
->b_page_count
;
1226 if (bp
->b_flags
& XBF_ORDERED
) {
1227 ASSERT(!(bp
->b_flags
& XBF_READ
));
1228 rw
= WRITE_FLUSH_FUA
;
1229 } else if (bp
->b_flags
& XBF_LOG_BUFFER
) {
1230 ASSERT(!(bp
->b_flags
& XBF_READ_AHEAD
));
1231 bp
->b_flags
&= ~_XBF_RUN_QUEUES
;
1232 rw
= (bp
->b_flags
& XBF_WRITE
) ? WRITE_SYNC
: READ_SYNC
;
1233 } else if (bp
->b_flags
& _XBF_RUN_QUEUES
) {
1234 ASSERT(!(bp
->b_flags
& XBF_READ_AHEAD
));
1235 bp
->b_flags
&= ~_XBF_RUN_QUEUES
;
1236 rw
= (bp
->b_flags
& XBF_WRITE
) ? WRITE_META
: READ_META
;
1238 rw
= (bp
->b_flags
& XBF_WRITE
) ? WRITE
:
1239 (bp
->b_flags
& XBF_READ_AHEAD
) ? READA
: READ
;
1244 atomic_inc(&bp
->b_io_remaining
);
1245 nr_pages
= BIO_MAX_SECTORS
>> (PAGE_SHIFT
- BBSHIFT
);
1246 if (nr_pages
> total_nr_pages
)
1247 nr_pages
= total_nr_pages
;
1249 bio
= bio_alloc(GFP_NOIO
, nr_pages
);
1250 bio
->bi_bdev
= bp
->b_target
->bt_bdev
;
1251 bio
->bi_sector
= sector
;
1252 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1253 bio
->bi_private
= bp
;
1256 for (; size
&& nr_pages
; nr_pages
--, map_i
++) {
1257 int rbytes
, nbytes
= PAGE_SIZE
- offset
;
1262 rbytes
= bio_add_page(bio
, bp
->b_pages
[map_i
], nbytes
, offset
);
1263 if (rbytes
< nbytes
)
1267 sector
+= nbytes
>> BBSHIFT
;
1272 if (likely(bio
->bi_size
)) {
1273 if (xfs_buf_is_vmapped(bp
)) {
1274 flush_kernel_vmap_range(bp
->b_addr
,
1275 xfs_buf_vmap_len(bp
));
1277 submit_bio(rw
, bio
);
1281 xfs_buf_ioerror(bp
, EIO
);
1290 trace_xfs_buf_iorequest(bp
, _RET_IP_
);
1292 if (bp
->b_flags
& XBF_DELWRI
) {
1293 xfs_buf_delwri_queue(bp
, 1);
1297 if (bp
->b_flags
& XBF_WRITE
) {
1298 xfs_buf_wait_unpin(bp
);
1303 /* Set the count to 1 initially, this will stop an I/O
1304 * completion callout which happens before we have started
1305 * all the I/O from calling xfs_buf_ioend too early.
1307 atomic_set(&bp
->b_io_remaining
, 1);
1308 _xfs_buf_ioapply(bp
);
1309 _xfs_buf_ioend(bp
, 0);
1316 * Waits for I/O to complete on the buffer supplied.
1317 * It returns immediately if no I/O is pending.
1318 * It returns the I/O error code, if any, or 0 if there was no error.
1324 trace_xfs_buf_iowait(bp
, _RET_IP_
);
1326 wait_for_completion(&bp
->b_iowait
);
1328 trace_xfs_buf_iowait_done(bp
, _RET_IP_
);
1339 if (bp
->b_flags
& XBF_MAPPED
)
1340 return XFS_BUF_PTR(bp
) + offset
;
1342 offset
+= bp
->b_offset
;
1343 page
= bp
->b_pages
[offset
>> PAGE_SHIFT
];
1344 return (xfs_caddr_t
)page_address(page
) + (offset
& (PAGE_SIZE
-1));
1348 * Move data into or out of a buffer.
1352 xfs_buf_t
*bp
, /* buffer to process */
1353 size_t boff
, /* starting buffer offset */
1354 size_t bsize
, /* length to copy */
1355 void *data
, /* data address */
1356 xfs_buf_rw_t mode
) /* read/write/zero flag */
1358 size_t bend
, cpoff
, csize
;
1361 bend
= boff
+ bsize
;
1362 while (boff
< bend
) {
1363 page
= bp
->b_pages
[xfs_buf_btoct(boff
+ bp
->b_offset
)];
1364 cpoff
= xfs_buf_poff(boff
+ bp
->b_offset
);
1365 csize
= min_t(size_t,
1366 PAGE_SIZE
-cpoff
, bp
->b_count_desired
-boff
);
1368 ASSERT(((csize
+ cpoff
) <= PAGE_SIZE
));
1372 memset(page_address(page
) + cpoff
, 0, csize
);
1375 memcpy(data
, page_address(page
) + cpoff
, csize
);
1378 memcpy(page_address(page
) + cpoff
, data
, csize
);
1387 * Handling of buffer targets (buftargs).
1391 * Wait for any bufs with callbacks that have been submitted but have not yet
1392 * returned. These buffers will have an elevated hold count, so wait on those
1393 * while freeing all the buffers only held by the LRU.
1397 struct xfs_buftarg
*btp
)
1402 spin_lock(&btp
->bt_lru_lock
);
1403 while (!list_empty(&btp
->bt_lru
)) {
1404 bp
= list_first_entry(&btp
->bt_lru
, struct xfs_buf
, b_lru
);
1405 if (atomic_read(&bp
->b_hold
) > 1) {
1406 spin_unlock(&btp
->bt_lru_lock
);
1411 * clear the LRU reference count so the bufer doesn't get
1412 * ignored in xfs_buf_rele().
1414 atomic_set(&bp
->b_lru_ref
, 0);
1415 spin_unlock(&btp
->bt_lru_lock
);
1417 spin_lock(&btp
->bt_lru_lock
);
1419 spin_unlock(&btp
->bt_lru_lock
);
1424 struct shrinker
*shrink
,
1428 struct xfs_buftarg
*btp
= container_of(shrink
,
1429 struct xfs_buftarg
, bt_shrinker
);
1434 return btp
->bt_lru_nr
;
1436 spin_lock(&btp
->bt_lru_lock
);
1437 while (!list_empty(&btp
->bt_lru
)) {
1438 if (nr_to_scan
-- <= 0)
1441 bp
= list_first_entry(&btp
->bt_lru
, struct xfs_buf
, b_lru
);
1444 * Decrement the b_lru_ref count unless the value is already
1445 * zero. If the value is already zero, we need to reclaim the
1446 * buffer, otherwise it gets another trip through the LRU.
1448 if (!atomic_add_unless(&bp
->b_lru_ref
, -1, 0)) {
1449 list_move_tail(&bp
->b_lru
, &btp
->bt_lru
);
1454 * remove the buffer from the LRU now to avoid needing another
1455 * lock round trip inside xfs_buf_rele().
1457 list_move(&bp
->b_lru
, &dispose
);
1460 spin_unlock(&btp
->bt_lru_lock
);
1462 while (!list_empty(&dispose
)) {
1463 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1464 list_del_init(&bp
->b_lru
);
1468 return btp
->bt_lru_nr
;
1473 struct xfs_mount
*mp
,
1474 struct xfs_buftarg
*btp
)
1476 unregister_shrinker(&btp
->bt_shrinker
);
1478 xfs_flush_buftarg(btp
, 1);
1479 if (mp
->m_flags
& XFS_MOUNT_BARRIER
)
1480 xfs_blkdev_issue_flush(btp
);
1482 kthread_stop(btp
->bt_task
);
1487 xfs_setsize_buftarg_flags(
1489 unsigned int blocksize
,
1490 unsigned int sectorsize
,
1493 btp
->bt_bsize
= blocksize
;
1494 btp
->bt_sshift
= ffs(sectorsize
) - 1;
1495 btp
->bt_smask
= sectorsize
- 1;
1497 if (set_blocksize(btp
->bt_bdev
, sectorsize
)) {
1498 xfs_warn(btp
->bt_mount
,
1499 "Cannot set_blocksize to %u on device %s\n",
1500 sectorsize
, XFS_BUFTARG_NAME(btp
));
1508 * When allocating the initial buffer target we have not yet
1509 * read in the superblock, so don't know what sized sectors
1510 * are being used is at this early stage. Play safe.
1513 xfs_setsize_buftarg_early(
1515 struct block_device
*bdev
)
1517 return xfs_setsize_buftarg_flags(btp
,
1518 PAGE_SIZE
, bdev_logical_block_size(bdev
), 0);
1522 xfs_setsize_buftarg(
1524 unsigned int blocksize
,
1525 unsigned int sectorsize
)
1527 return xfs_setsize_buftarg_flags(btp
, blocksize
, sectorsize
, 1);
1531 xfs_alloc_delwrite_queue(
1535 INIT_LIST_HEAD(&btp
->bt_delwrite_queue
);
1536 spin_lock_init(&btp
->bt_delwrite_lock
);
1538 btp
->bt_task
= kthread_run(xfsbufd
, btp
, "xfsbufd/%s", fsname
);
1539 if (IS_ERR(btp
->bt_task
))
1540 return PTR_ERR(btp
->bt_task
);
1546 struct xfs_mount
*mp
,
1547 struct block_device
*bdev
,
1553 btp
= kmem_zalloc(sizeof(*btp
), KM_SLEEP
);
1556 btp
->bt_dev
= bdev
->bd_dev
;
1557 btp
->bt_bdev
= bdev
;
1558 btp
->bt_bdi
= blk_get_backing_dev_info(bdev
);
1562 INIT_LIST_HEAD(&btp
->bt_lru
);
1563 spin_lock_init(&btp
->bt_lru_lock
);
1564 if (xfs_setsize_buftarg_early(btp
, bdev
))
1566 if (xfs_alloc_delwrite_queue(btp
, fsname
))
1568 btp
->bt_shrinker
.shrink
= xfs_buftarg_shrink
;
1569 btp
->bt_shrinker
.seeks
= DEFAULT_SEEKS
;
1570 register_shrinker(&btp
->bt_shrinker
);
1580 * Delayed write buffer handling
1583 xfs_buf_delwri_queue(
1587 struct list_head
*dwq
= &bp
->b_target
->bt_delwrite_queue
;
1588 spinlock_t
*dwlk
= &bp
->b_target
->bt_delwrite_lock
;
1590 trace_xfs_buf_delwri_queue(bp
, _RET_IP_
);
1592 ASSERT((bp
->b_flags
&(XBF_DELWRI
|XBF_ASYNC
)) == (XBF_DELWRI
|XBF_ASYNC
));
1595 /* If already in the queue, dequeue and place at tail */
1596 if (!list_empty(&bp
->b_list
)) {
1597 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
1599 atomic_dec(&bp
->b_hold
);
1600 list_del(&bp
->b_list
);
1603 if (list_empty(dwq
)) {
1604 /* start xfsbufd as it is about to have something to do */
1605 wake_up_process(bp
->b_target
->bt_task
);
1608 bp
->b_flags
|= _XBF_DELWRI_Q
;
1609 list_add_tail(&bp
->b_list
, dwq
);
1610 bp
->b_queuetime
= jiffies
;
1618 xfs_buf_delwri_dequeue(
1621 spinlock_t
*dwlk
= &bp
->b_target
->bt_delwrite_lock
;
1625 if ((bp
->b_flags
& XBF_DELWRI
) && !list_empty(&bp
->b_list
)) {
1626 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
1627 list_del_init(&bp
->b_list
);
1630 bp
->b_flags
&= ~(XBF_DELWRI
|_XBF_DELWRI_Q
);
1636 trace_xfs_buf_delwri_dequeue(bp
, _RET_IP_
);
1640 * If a delwri buffer needs to be pushed before it has aged out, then promote
1641 * it to the head of the delwri queue so that it will be flushed on the next
1642 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1643 * than the age currently needed to flush the buffer. Hence the next time the
1644 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1647 xfs_buf_delwri_promote(
1650 struct xfs_buftarg
*btp
= bp
->b_target
;
1651 long age
= xfs_buf_age_centisecs
* msecs_to_jiffies(10) + 1;
1653 ASSERT(bp
->b_flags
& XBF_DELWRI
);
1654 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
1657 * Check the buffer age before locking the delayed write queue as we
1658 * don't need to promote buffers that are already past the flush age.
1660 if (bp
->b_queuetime
< jiffies
- age
)
1662 bp
->b_queuetime
= jiffies
- age
;
1663 spin_lock(&btp
->bt_delwrite_lock
);
1664 list_move(&bp
->b_list
, &btp
->bt_delwrite_queue
);
1665 spin_unlock(&btp
->bt_delwrite_lock
);
1669 xfs_buf_runall_queues(
1670 struct workqueue_struct
*queue
)
1672 flush_workqueue(queue
);
1676 * Move as many buffers as specified to the supplied list
1677 * idicating if we skipped any buffers to prevent deadlocks.
1680 xfs_buf_delwri_split(
1681 xfs_buftarg_t
*target
,
1682 struct list_head
*list
,
1686 struct list_head
*dwq
= &target
->bt_delwrite_queue
;
1687 spinlock_t
*dwlk
= &target
->bt_delwrite_lock
;
1691 force
= test_and_clear_bit(XBT_FORCE_FLUSH
, &target
->bt_flags
);
1692 INIT_LIST_HEAD(list
);
1694 list_for_each_entry_safe(bp
, n
, dwq
, b_list
) {
1695 ASSERT(bp
->b_flags
& XBF_DELWRI
);
1697 if (!XFS_BUF_ISPINNED(bp
) && !xfs_buf_cond_lock(bp
)) {
1699 time_before(jiffies
, bp
->b_queuetime
+ age
)) {
1704 bp
->b_flags
&= ~(XBF_DELWRI
|_XBF_DELWRI_Q
|
1706 bp
->b_flags
|= XBF_WRITE
;
1707 list_move_tail(&bp
->b_list
, list
);
1708 trace_xfs_buf_delwri_split(bp
, _RET_IP_
);
1719 * Compare function is more complex than it needs to be because
1720 * the return value is only 32 bits and we are doing comparisons
1726 struct list_head
*a
,
1727 struct list_head
*b
)
1729 struct xfs_buf
*ap
= container_of(a
, struct xfs_buf
, b_list
);
1730 struct xfs_buf
*bp
= container_of(b
, struct xfs_buf
, b_list
);
1733 diff
= ap
->b_bn
- bp
->b_bn
;
1742 xfs_buf_delwri_sort(
1743 xfs_buftarg_t
*target
,
1744 struct list_head
*list
)
1746 list_sort(NULL
, list
, xfs_buf_cmp
);
1753 xfs_buftarg_t
*target
= (xfs_buftarg_t
*)data
;
1755 current
->flags
|= PF_MEMALLOC
;
1760 long age
= xfs_buf_age_centisecs
* msecs_to_jiffies(10);
1761 long tout
= xfs_buf_timer_centisecs
* msecs_to_jiffies(10);
1762 struct list_head tmp
;
1763 struct blk_plug plug
;
1765 if (unlikely(freezing(current
))) {
1766 set_bit(XBT_FORCE_SLEEP
, &target
->bt_flags
);
1769 clear_bit(XBT_FORCE_SLEEP
, &target
->bt_flags
);
1772 /* sleep for a long time if there is nothing to do. */
1773 if (list_empty(&target
->bt_delwrite_queue
))
1774 tout
= MAX_SCHEDULE_TIMEOUT
;
1775 schedule_timeout_interruptible(tout
);
1777 xfs_buf_delwri_split(target
, &tmp
, age
);
1778 list_sort(NULL
, &tmp
, xfs_buf_cmp
);
1780 blk_start_plug(&plug
);
1781 while (!list_empty(&tmp
)) {
1783 bp
= list_first_entry(&tmp
, struct xfs_buf
, b_list
);
1784 list_del_init(&bp
->b_list
);
1787 blk_finish_plug(&plug
);
1788 } while (!kthread_should_stop());
1794 * Go through all incore buffers, and release buffers if they belong to
1795 * the given device. This is used in filesystem error handling to
1796 * preserve the consistency of its metadata.
1800 xfs_buftarg_t
*target
,
1805 LIST_HEAD(tmp_list
);
1806 LIST_HEAD(wait_list
);
1807 struct blk_plug plug
;
1809 xfs_buf_runall_queues(xfsconvertd_workqueue
);
1810 xfs_buf_runall_queues(xfsdatad_workqueue
);
1811 xfs_buf_runall_queues(xfslogd_workqueue
);
1813 set_bit(XBT_FORCE_FLUSH
, &target
->bt_flags
);
1814 pincount
= xfs_buf_delwri_split(target
, &tmp_list
, 0);
1817 * Dropped the delayed write list lock, now walk the temporary list.
1818 * All I/O is issued async and then if we need to wait for completion
1819 * we do that after issuing all the IO.
1821 list_sort(NULL
, &tmp_list
, xfs_buf_cmp
);
1823 blk_start_plug(&plug
);
1824 while (!list_empty(&tmp_list
)) {
1825 bp
= list_first_entry(&tmp_list
, struct xfs_buf
, b_list
);
1826 ASSERT(target
== bp
->b_target
);
1827 list_del_init(&bp
->b_list
);
1829 bp
->b_flags
&= ~XBF_ASYNC
;
1830 list_add(&bp
->b_list
, &wait_list
);
1834 blk_finish_plug(&plug
);
1837 /* Wait for IO to complete. */
1838 while (!list_empty(&wait_list
)) {
1839 bp
= list_first_entry(&wait_list
, struct xfs_buf
, b_list
);
1841 list_del_init(&bp
->b_list
);
1853 xfs_buf_zone
= kmem_zone_init_flags(sizeof(xfs_buf_t
), "xfs_buf",
1854 KM_ZONE_HWALIGN
, NULL
);
1858 xfslogd_workqueue
= alloc_workqueue("xfslogd",
1859 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 1);
1860 if (!xfslogd_workqueue
)
1861 goto out_free_buf_zone
;
1863 xfsdatad_workqueue
= alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM
, 1);
1864 if (!xfsdatad_workqueue
)
1865 goto out_destroy_xfslogd_workqueue
;
1867 xfsconvertd_workqueue
= alloc_workqueue("xfsconvertd",
1869 if (!xfsconvertd_workqueue
)
1870 goto out_destroy_xfsdatad_workqueue
;
1874 out_destroy_xfsdatad_workqueue
:
1875 destroy_workqueue(xfsdatad_workqueue
);
1876 out_destroy_xfslogd_workqueue
:
1877 destroy_workqueue(xfslogd_workqueue
);
1879 kmem_zone_destroy(xfs_buf_zone
);
1885 xfs_buf_terminate(void)
1887 destroy_workqueue(xfsconvertd_workqueue
);
1888 destroy_workqueue(xfsdatad_workqueue
);
1889 destroy_workqueue(xfslogd_workqueue
);
1890 kmem_zone_destroy(xfs_buf_zone
);
1893 #ifdef CONFIG_KDB_MODULES
1895 xfs_get_buftarg_list(void)
1897 return &xfs_buftarg_list
;