ARM: perf: separate PMU backends into multiple files
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / arm / kernel / perf_event.c
blob421a4bb88fede2cffeacdd2ede4214c12e946711
1 #undef DEBUG
3 /*
4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11 * code.
13 #define pr_fmt(fmt) "hw perfevents: " fmt
15 #include <linux/interrupt.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/perf_event.h>
19 #include <linux/platform_device.h>
20 #include <linux/spinlock.h>
21 #include <linux/uaccess.h>
23 #include <asm/cputype.h>
24 #include <asm/irq.h>
25 #include <asm/irq_regs.h>
26 #include <asm/pmu.h>
27 #include <asm/stacktrace.h>
29 static struct platform_device *pmu_device;
32 * Hardware lock to serialize accesses to PMU registers. Needed for the
33 * read/modify/write sequences.
35 DEFINE_SPINLOCK(pmu_lock);
38 * ARMv6 supports a maximum of 3 events, starting from index 1. If we add
39 * another platform that supports more, we need to increase this to be the
40 * largest of all platforms.
42 * ARMv7 supports up to 32 events:
43 * cycle counter CCNT + 31 events counters CNT0..30.
44 * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
46 #define ARMPMU_MAX_HWEVENTS 33
48 /* The events for a given CPU. */
49 struct cpu_hw_events {
51 * The events that are active on the CPU for the given index. Index 0
52 * is reserved.
54 struct perf_event *events[ARMPMU_MAX_HWEVENTS];
57 * A 1 bit for an index indicates that the counter is being used for
58 * an event. A 0 means that the counter can be used.
60 unsigned long used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
63 * A 1 bit for an index indicates that the counter is actively being
64 * used.
66 unsigned long active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
68 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
70 struct arm_pmu {
71 enum arm_perf_pmu_ids id;
72 const char *name;
73 irqreturn_t (*handle_irq)(int irq_num, void *dev);
74 void (*enable)(struct hw_perf_event *evt, int idx);
75 void (*disable)(struct hw_perf_event *evt, int idx);
76 int (*get_event_idx)(struct cpu_hw_events *cpuc,
77 struct hw_perf_event *hwc);
78 u32 (*read_counter)(int idx);
79 void (*write_counter)(int idx, u32 val);
80 void (*start)(void);
81 void (*stop)(void);
82 const unsigned (*cache_map)[PERF_COUNT_HW_CACHE_MAX]
83 [PERF_COUNT_HW_CACHE_OP_MAX]
84 [PERF_COUNT_HW_CACHE_RESULT_MAX];
85 const unsigned (*event_map)[PERF_COUNT_HW_MAX];
86 u32 raw_event_mask;
87 int num_events;
88 u64 max_period;
91 /* Set at runtime when we know what CPU type we are. */
92 static const struct arm_pmu *armpmu;
94 enum arm_perf_pmu_ids
95 armpmu_get_pmu_id(void)
97 int id = -ENODEV;
99 if (armpmu != NULL)
100 id = armpmu->id;
102 return id;
104 EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
107 armpmu_get_max_events(void)
109 int max_events = 0;
111 if (armpmu != NULL)
112 max_events = armpmu->num_events;
114 return max_events;
116 EXPORT_SYMBOL_GPL(armpmu_get_max_events);
118 int perf_num_counters(void)
120 return armpmu_get_max_events();
122 EXPORT_SYMBOL_GPL(perf_num_counters);
124 #define HW_OP_UNSUPPORTED 0xFFFF
126 #define C(_x) \
127 PERF_COUNT_HW_CACHE_##_x
129 #define CACHE_OP_UNSUPPORTED 0xFFFF
131 static int
132 armpmu_map_cache_event(u64 config)
134 unsigned int cache_type, cache_op, cache_result, ret;
136 cache_type = (config >> 0) & 0xff;
137 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
138 return -EINVAL;
140 cache_op = (config >> 8) & 0xff;
141 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
142 return -EINVAL;
144 cache_result = (config >> 16) & 0xff;
145 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
146 return -EINVAL;
148 ret = (int)(*armpmu->cache_map)[cache_type][cache_op][cache_result];
150 if (ret == CACHE_OP_UNSUPPORTED)
151 return -ENOENT;
153 return ret;
156 static int
157 armpmu_map_event(u64 config)
159 int mapping = (*armpmu->event_map)[config];
160 return mapping == HW_OP_UNSUPPORTED ? -EOPNOTSUPP : mapping;
163 static int
164 armpmu_map_raw_event(u64 config)
166 return (int)(config & armpmu->raw_event_mask);
169 static int
170 armpmu_event_set_period(struct perf_event *event,
171 struct hw_perf_event *hwc,
172 int idx)
174 s64 left = local64_read(&hwc->period_left);
175 s64 period = hwc->sample_period;
176 int ret = 0;
178 if (unlikely(left <= -period)) {
179 left = period;
180 local64_set(&hwc->period_left, left);
181 hwc->last_period = period;
182 ret = 1;
185 if (unlikely(left <= 0)) {
186 left += period;
187 local64_set(&hwc->period_left, left);
188 hwc->last_period = period;
189 ret = 1;
192 if (left > (s64)armpmu->max_period)
193 left = armpmu->max_period;
195 local64_set(&hwc->prev_count, (u64)-left);
197 armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
199 perf_event_update_userpage(event);
201 return ret;
204 static u64
205 armpmu_event_update(struct perf_event *event,
206 struct hw_perf_event *hwc,
207 int idx)
209 int shift = 64 - 32;
210 s64 prev_raw_count, new_raw_count;
211 u64 delta;
213 again:
214 prev_raw_count = local64_read(&hwc->prev_count);
215 new_raw_count = armpmu->read_counter(idx);
217 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
218 new_raw_count) != prev_raw_count)
219 goto again;
221 delta = (new_raw_count << shift) - (prev_raw_count << shift);
222 delta >>= shift;
224 local64_add(delta, &event->count);
225 local64_sub(delta, &hwc->period_left);
227 return new_raw_count;
230 static void
231 armpmu_read(struct perf_event *event)
233 struct hw_perf_event *hwc = &event->hw;
235 /* Don't read disabled counters! */
236 if (hwc->idx < 0)
237 return;
239 armpmu_event_update(event, hwc, hwc->idx);
242 static void
243 armpmu_stop(struct perf_event *event, int flags)
245 struct hw_perf_event *hwc = &event->hw;
247 if (!armpmu)
248 return;
251 * ARM pmu always has to update the counter, so ignore
252 * PERF_EF_UPDATE, see comments in armpmu_start().
254 if (!(hwc->state & PERF_HES_STOPPED)) {
255 armpmu->disable(hwc, hwc->idx);
256 barrier(); /* why? */
257 armpmu_event_update(event, hwc, hwc->idx);
258 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
262 static void
263 armpmu_start(struct perf_event *event, int flags)
265 struct hw_perf_event *hwc = &event->hw;
267 if (!armpmu)
268 return;
271 * ARM pmu always has to reprogram the period, so ignore
272 * PERF_EF_RELOAD, see the comment below.
274 if (flags & PERF_EF_RELOAD)
275 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
277 hwc->state = 0;
279 * Set the period again. Some counters can't be stopped, so when we
280 * were stopped we simply disabled the IRQ source and the counter
281 * may have been left counting. If we don't do this step then we may
282 * get an interrupt too soon or *way* too late if the overflow has
283 * happened since disabling.
285 armpmu_event_set_period(event, hwc, hwc->idx);
286 armpmu->enable(hwc, hwc->idx);
289 static void
290 armpmu_del(struct perf_event *event, int flags)
292 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
293 struct hw_perf_event *hwc = &event->hw;
294 int idx = hwc->idx;
296 WARN_ON(idx < 0);
298 clear_bit(idx, cpuc->active_mask);
299 armpmu_stop(event, PERF_EF_UPDATE);
300 cpuc->events[idx] = NULL;
301 clear_bit(idx, cpuc->used_mask);
303 perf_event_update_userpage(event);
306 static int
307 armpmu_add(struct perf_event *event, int flags)
309 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
310 struct hw_perf_event *hwc = &event->hw;
311 int idx;
312 int err = 0;
314 perf_pmu_disable(event->pmu);
316 /* If we don't have a space for the counter then finish early. */
317 idx = armpmu->get_event_idx(cpuc, hwc);
318 if (idx < 0) {
319 err = idx;
320 goto out;
324 * If there is an event in the counter we are going to use then make
325 * sure it is disabled.
327 event->hw.idx = idx;
328 armpmu->disable(hwc, idx);
329 cpuc->events[idx] = event;
330 set_bit(idx, cpuc->active_mask);
332 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
333 if (flags & PERF_EF_START)
334 armpmu_start(event, PERF_EF_RELOAD);
336 /* Propagate our changes to the userspace mapping. */
337 perf_event_update_userpage(event);
339 out:
340 perf_pmu_enable(event->pmu);
341 return err;
344 static struct pmu pmu;
346 static int
347 validate_event(struct cpu_hw_events *cpuc,
348 struct perf_event *event)
350 struct hw_perf_event fake_event = event->hw;
352 if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF)
353 return 1;
355 return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
358 static int
359 validate_group(struct perf_event *event)
361 struct perf_event *sibling, *leader = event->group_leader;
362 struct cpu_hw_events fake_pmu;
364 memset(&fake_pmu, 0, sizeof(fake_pmu));
366 if (!validate_event(&fake_pmu, leader))
367 return -ENOSPC;
369 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
370 if (!validate_event(&fake_pmu, sibling))
371 return -ENOSPC;
374 if (!validate_event(&fake_pmu, event))
375 return -ENOSPC;
377 return 0;
380 static int
381 armpmu_reserve_hardware(void)
383 int i, err = -ENODEV, irq;
385 pmu_device = reserve_pmu(ARM_PMU_DEVICE_CPU);
386 if (IS_ERR(pmu_device)) {
387 pr_warning("unable to reserve pmu\n");
388 return PTR_ERR(pmu_device);
391 init_pmu(ARM_PMU_DEVICE_CPU);
393 if (pmu_device->num_resources < 1) {
394 pr_err("no irqs for PMUs defined\n");
395 return -ENODEV;
398 for (i = 0; i < pmu_device->num_resources; ++i) {
399 irq = platform_get_irq(pmu_device, i);
400 if (irq < 0)
401 continue;
403 err = request_irq(irq, armpmu->handle_irq,
404 IRQF_DISABLED | IRQF_NOBALANCING,
405 "armpmu", NULL);
406 if (err) {
407 pr_warning("unable to request IRQ%d for ARM perf "
408 "counters\n", irq);
409 break;
413 if (err) {
414 for (i = i - 1; i >= 0; --i) {
415 irq = platform_get_irq(pmu_device, i);
416 if (irq >= 0)
417 free_irq(irq, NULL);
419 release_pmu(pmu_device);
420 pmu_device = NULL;
423 return err;
426 static void
427 armpmu_release_hardware(void)
429 int i, irq;
431 for (i = pmu_device->num_resources - 1; i >= 0; --i) {
432 irq = platform_get_irq(pmu_device, i);
433 if (irq >= 0)
434 free_irq(irq, NULL);
436 armpmu->stop();
438 release_pmu(pmu_device);
439 pmu_device = NULL;
442 static atomic_t active_events = ATOMIC_INIT(0);
443 static DEFINE_MUTEX(pmu_reserve_mutex);
445 static void
446 hw_perf_event_destroy(struct perf_event *event)
448 if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) {
449 armpmu_release_hardware();
450 mutex_unlock(&pmu_reserve_mutex);
454 static int
455 __hw_perf_event_init(struct perf_event *event)
457 struct hw_perf_event *hwc = &event->hw;
458 int mapping, err;
460 /* Decode the generic type into an ARM event identifier. */
461 if (PERF_TYPE_HARDWARE == event->attr.type) {
462 mapping = armpmu_map_event(event->attr.config);
463 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
464 mapping = armpmu_map_cache_event(event->attr.config);
465 } else if (PERF_TYPE_RAW == event->attr.type) {
466 mapping = armpmu_map_raw_event(event->attr.config);
467 } else {
468 pr_debug("event type %x not supported\n", event->attr.type);
469 return -EOPNOTSUPP;
472 if (mapping < 0) {
473 pr_debug("event %x:%llx not supported\n", event->attr.type,
474 event->attr.config);
475 return mapping;
479 * Check whether we need to exclude the counter from certain modes.
480 * The ARM performance counters are on all of the time so if someone
481 * has asked us for some excludes then we have to fail.
483 if (event->attr.exclude_kernel || event->attr.exclude_user ||
484 event->attr.exclude_hv || event->attr.exclude_idle) {
485 pr_debug("ARM performance counters do not support "
486 "mode exclusion\n");
487 return -EPERM;
491 * We don't assign an index until we actually place the event onto
492 * hardware. Use -1 to signify that we haven't decided where to put it
493 * yet. For SMP systems, each core has it's own PMU so we can't do any
494 * clever allocation or constraints checking at this point.
496 hwc->idx = -1;
499 * Store the event encoding into the config_base field. config and
500 * event_base are unused as the only 2 things we need to know are
501 * the event mapping and the counter to use. The counter to use is
502 * also the indx and the config_base is the event type.
504 hwc->config_base = (unsigned long)mapping;
505 hwc->config = 0;
506 hwc->event_base = 0;
508 if (!hwc->sample_period) {
509 hwc->sample_period = armpmu->max_period;
510 hwc->last_period = hwc->sample_period;
511 local64_set(&hwc->period_left, hwc->sample_period);
514 err = 0;
515 if (event->group_leader != event) {
516 err = validate_group(event);
517 if (err)
518 return -EINVAL;
521 return err;
524 static int armpmu_event_init(struct perf_event *event)
526 int err = 0;
528 switch (event->attr.type) {
529 case PERF_TYPE_RAW:
530 case PERF_TYPE_HARDWARE:
531 case PERF_TYPE_HW_CACHE:
532 break;
534 default:
535 return -ENOENT;
538 if (!armpmu)
539 return -ENODEV;
541 event->destroy = hw_perf_event_destroy;
543 if (!atomic_inc_not_zero(&active_events)) {
544 if (atomic_read(&active_events) > armpmu->num_events) {
545 atomic_dec(&active_events);
546 return -ENOSPC;
549 mutex_lock(&pmu_reserve_mutex);
550 if (atomic_read(&active_events) == 0) {
551 err = armpmu_reserve_hardware();
554 if (!err)
555 atomic_inc(&active_events);
556 mutex_unlock(&pmu_reserve_mutex);
559 if (err)
560 return err;
562 err = __hw_perf_event_init(event);
563 if (err)
564 hw_perf_event_destroy(event);
566 return err;
569 static void armpmu_enable(struct pmu *pmu)
571 /* Enable all of the perf events on hardware. */
572 int idx;
573 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
575 if (!armpmu)
576 return;
578 for (idx = 0; idx <= armpmu->num_events; ++idx) {
579 struct perf_event *event = cpuc->events[idx];
581 if (!event)
582 continue;
584 armpmu->enable(&event->hw, idx);
587 armpmu->start();
590 static void armpmu_disable(struct pmu *pmu)
592 if (armpmu)
593 armpmu->stop();
596 static struct pmu pmu = {
597 .pmu_enable = armpmu_enable,
598 .pmu_disable = armpmu_disable,
599 .event_init = armpmu_event_init,
600 .add = armpmu_add,
601 .del = armpmu_del,
602 .start = armpmu_start,
603 .stop = armpmu_stop,
604 .read = armpmu_read,
607 /* Include the PMU-specific implementations. */
608 #include "perf_event_xscale.c"
609 #include "perf_event_v6.c"
610 #include "perf_event_v7.c"
612 static int __init
613 init_hw_perf_events(void)
615 unsigned long cpuid = read_cpuid_id();
616 unsigned long implementor = (cpuid & 0xFF000000) >> 24;
617 unsigned long part_number = (cpuid & 0xFFF0);
619 /* ARM Ltd CPUs. */
620 if (0x41 == implementor) {
621 switch (part_number) {
622 case 0xB360: /* ARM1136 */
623 case 0xB560: /* ARM1156 */
624 case 0xB760: /* ARM1176 */
625 armpmu = armv6pmu_init();
626 break;
627 case 0xB020: /* ARM11mpcore */
628 armpmu = armv6mpcore_pmu_init();
629 break;
630 case 0xC080: /* Cortex-A8 */
631 armpmu = armv7_a8_pmu_init();
632 break;
633 case 0xC090: /* Cortex-A9 */
634 armpmu = armv7_a9_pmu_init();
635 break;
637 /* Intel CPUs [xscale]. */
638 } else if (0x69 == implementor) {
639 part_number = (cpuid >> 13) & 0x7;
640 switch (part_number) {
641 case 1:
642 armpmu = xscale1pmu_init();
643 break;
644 case 2:
645 armpmu = xscale2pmu_init();
646 break;
650 if (armpmu) {
651 pr_info("enabled with %s PMU driver, %d counters available\n",
652 armpmu->name, armpmu->num_events);
653 } else {
654 pr_info("no hardware support available\n");
657 perf_pmu_register(&pmu);
659 return 0;
661 arch_initcall(init_hw_perf_events);
664 * Callchain handling code.
668 * The registers we're interested in are at the end of the variable
669 * length saved register structure. The fp points at the end of this
670 * structure so the address of this struct is:
671 * (struct frame_tail *)(xxx->fp)-1
673 * This code has been adapted from the ARM OProfile support.
675 struct frame_tail {
676 struct frame_tail *fp;
677 unsigned long sp;
678 unsigned long lr;
679 } __attribute__((packed));
682 * Get the return address for a single stackframe and return a pointer to the
683 * next frame tail.
685 static struct frame_tail *
686 user_backtrace(struct frame_tail *tail,
687 struct perf_callchain_entry *entry)
689 struct frame_tail buftail;
691 /* Also check accessibility of one struct frame_tail beyond */
692 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
693 return NULL;
694 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
695 return NULL;
697 perf_callchain_store(entry, buftail.lr);
700 * Frame pointers should strictly progress back up the stack
701 * (towards higher addresses).
703 if (tail >= buftail.fp)
704 return NULL;
706 return buftail.fp - 1;
709 void
710 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
712 struct frame_tail *tail;
715 tail = (struct frame_tail *)regs->ARM_fp - 1;
717 while (tail && !((unsigned long)tail & 0x3))
718 tail = user_backtrace(tail, entry);
722 * Gets called by walk_stackframe() for every stackframe. This will be called
723 * whist unwinding the stackframe and is like a subroutine return so we use
724 * the PC.
726 static int
727 callchain_trace(struct stackframe *fr,
728 void *data)
730 struct perf_callchain_entry *entry = data;
731 perf_callchain_store(entry, fr->pc);
732 return 0;
735 void
736 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
738 struct stackframe fr;
740 fr.fp = regs->ARM_fp;
741 fr.sp = regs->ARM_sp;
742 fr.lr = regs->ARM_lr;
743 fr.pc = regs->ARM_pc;
744 walk_stackframe(&fr, callchain_trace, entry);