2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
37 #ifdef CONFIG_UBIFS_FS_DEBUG
39 DEFINE_SPINLOCK(dbg_lock
);
41 static char dbg_key_buf0
[128];
42 static char dbg_key_buf1
[128];
44 static const char *get_key_fmt(int fmt
)
47 case UBIFS_SIMPLE_KEY_FMT
:
50 return "unknown/invalid format";
54 static const char *get_key_hash(int hash
)
57 case UBIFS_KEY_HASH_R5
:
59 case UBIFS_KEY_HASH_TEST
:
62 return "unknown/invalid name hash";
66 static const char *get_key_type(int type
)
80 return "unknown/invalid key";
84 static const char *get_dent_type(int type
)
97 case UBIFS_ITYPE_FIFO
:
99 case UBIFS_ITYPE_SOCK
:
102 return "unknown/invalid type";
106 static void sprintf_key(const struct ubifs_info
*c
, const union ubifs_key
*key
,
110 int type
= key_type(c
, key
);
112 if (c
->key_fmt
== UBIFS_SIMPLE_KEY_FMT
) {
115 sprintf(p
, "(%lu, %s)", (unsigned long)key_inum(c
, key
),
120 sprintf(p
, "(%lu, %s, %#08x)",
121 (unsigned long)key_inum(c
, key
),
122 get_key_type(type
), key_hash(c
, key
));
125 sprintf(p
, "(%lu, %s, %u)",
126 (unsigned long)key_inum(c
, key
),
127 get_key_type(type
), key_block(c
, key
));
130 sprintf(p
, "(%lu, %s)",
131 (unsigned long)key_inum(c
, key
),
135 sprintf(p
, "(bad key type: %#08x, %#08x)",
136 key
->u32
[0], key
->u32
[1]);
139 sprintf(p
, "bad key format %d", c
->key_fmt
);
142 const char *dbg_key_str0(const struct ubifs_info
*c
, const union ubifs_key
*key
)
144 /* dbg_lock must be held */
145 sprintf_key(c
, key
, dbg_key_buf0
);
149 const char *dbg_key_str1(const struct ubifs_info
*c
, const union ubifs_key
*key
)
151 /* dbg_lock must be held */
152 sprintf_key(c
, key
, dbg_key_buf1
);
156 const char *dbg_ntype(int type
)
160 return "padding node";
162 return "superblock node";
164 return "master node";
166 return "reference node";
169 case UBIFS_DENT_NODE
:
170 return "direntry node";
171 case UBIFS_XENT_NODE
:
172 return "xentry node";
173 case UBIFS_DATA_NODE
:
175 case UBIFS_TRUN_NODE
:
176 return "truncate node";
178 return "indexing node";
180 return "commit start node";
181 case UBIFS_ORPH_NODE
:
182 return "orphan node";
184 return "unknown node";
188 static const char *dbg_gtype(int type
)
191 case UBIFS_NO_NODE_GROUP
:
192 return "no node group";
193 case UBIFS_IN_NODE_GROUP
:
194 return "in node group";
195 case UBIFS_LAST_OF_NODE_GROUP
:
196 return "last of node group";
202 const char *dbg_cstate(int cmt_state
)
206 return "commit resting";
207 case COMMIT_BACKGROUND
:
208 return "background commit requested";
209 case COMMIT_REQUIRED
:
210 return "commit required";
211 case COMMIT_RUNNING_BACKGROUND
:
212 return "BACKGROUND commit running";
213 case COMMIT_RUNNING_REQUIRED
:
214 return "commit running and required";
216 return "broken commit";
218 return "unknown commit state";
222 const char *dbg_jhead(int jhead
)
232 return "unknown journal head";
236 static void dump_ch(const struct ubifs_ch
*ch
)
238 printk(KERN_DEBUG
"\tmagic %#x\n", le32_to_cpu(ch
->magic
));
239 printk(KERN_DEBUG
"\tcrc %#x\n", le32_to_cpu(ch
->crc
));
240 printk(KERN_DEBUG
"\tnode_type %d (%s)\n", ch
->node_type
,
241 dbg_ntype(ch
->node_type
));
242 printk(KERN_DEBUG
"\tgroup_type %d (%s)\n", ch
->group_type
,
243 dbg_gtype(ch
->group_type
));
244 printk(KERN_DEBUG
"\tsqnum %llu\n",
245 (unsigned long long)le64_to_cpu(ch
->sqnum
));
246 printk(KERN_DEBUG
"\tlen %u\n", le32_to_cpu(ch
->len
));
249 void dbg_dump_inode(struct ubifs_info
*c
, const struct inode
*inode
)
251 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
252 struct qstr nm
= { .name
= NULL
};
254 struct ubifs_dent_node
*dent
, *pdent
= NULL
;
257 printk(KERN_DEBUG
"Dump in-memory inode:");
258 printk(KERN_DEBUG
"\tinode %lu\n", inode
->i_ino
);
259 printk(KERN_DEBUG
"\tsize %llu\n",
260 (unsigned long long)i_size_read(inode
));
261 printk(KERN_DEBUG
"\tnlink %u\n", inode
->i_nlink
);
262 printk(KERN_DEBUG
"\tuid %u\n", (unsigned int)inode
->i_uid
);
263 printk(KERN_DEBUG
"\tgid %u\n", (unsigned int)inode
->i_gid
);
264 printk(KERN_DEBUG
"\tatime %u.%u\n",
265 (unsigned int)inode
->i_atime
.tv_sec
,
266 (unsigned int)inode
->i_atime
.tv_nsec
);
267 printk(KERN_DEBUG
"\tmtime %u.%u\n",
268 (unsigned int)inode
->i_mtime
.tv_sec
,
269 (unsigned int)inode
->i_mtime
.tv_nsec
);
270 printk(KERN_DEBUG
"\tctime %u.%u\n",
271 (unsigned int)inode
->i_ctime
.tv_sec
,
272 (unsigned int)inode
->i_ctime
.tv_nsec
);
273 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n", ui
->creat_sqnum
);
274 printk(KERN_DEBUG
"\txattr_size %u\n", ui
->xattr_size
);
275 printk(KERN_DEBUG
"\txattr_cnt %u\n", ui
->xattr_cnt
);
276 printk(KERN_DEBUG
"\txattr_names %u\n", ui
->xattr_names
);
277 printk(KERN_DEBUG
"\tdirty %u\n", ui
->dirty
);
278 printk(KERN_DEBUG
"\txattr %u\n", ui
->xattr
);
279 printk(KERN_DEBUG
"\tbulk_read %u\n", ui
->xattr
);
280 printk(KERN_DEBUG
"\tsynced_i_size %llu\n",
281 (unsigned long long)ui
->synced_i_size
);
282 printk(KERN_DEBUG
"\tui_size %llu\n",
283 (unsigned long long)ui
->ui_size
);
284 printk(KERN_DEBUG
"\tflags %d\n", ui
->flags
);
285 printk(KERN_DEBUG
"\tcompr_type %d\n", ui
->compr_type
);
286 printk(KERN_DEBUG
"\tlast_page_read %lu\n", ui
->last_page_read
);
287 printk(KERN_DEBUG
"\tread_in_a_row %lu\n", ui
->read_in_a_row
);
288 printk(KERN_DEBUG
"\tdata_len %d\n", ui
->data_len
);
290 if (!S_ISDIR(inode
->i_mode
))
293 printk(KERN_DEBUG
"List of directory entries:\n");
294 ubifs_assert(!mutex_is_locked(&c
->tnc_mutex
));
296 lowest_dent_key(c
, &key
, inode
->i_ino
);
298 dent
= ubifs_tnc_next_ent(c
, &key
, &nm
);
300 if (PTR_ERR(dent
) != -ENOENT
)
301 printk(KERN_DEBUG
"error %ld\n", PTR_ERR(dent
));
305 printk(KERN_DEBUG
"\t%d: %s (%s)\n",
306 count
++, dent
->name
, get_dent_type(dent
->type
));
308 nm
.name
= dent
->name
;
309 nm
.len
= le16_to_cpu(dent
->nlen
);
312 key_read(c
, &dent
->key
, &key
);
317 void dbg_dump_node(const struct ubifs_info
*c
, const void *node
)
321 const struct ubifs_ch
*ch
= node
;
323 if (dbg_is_tst_rcvry(c
))
326 /* If the magic is incorrect, just hexdump the first bytes */
327 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
) {
328 printk(KERN_DEBUG
"Not a node, first %zu bytes:", UBIFS_CH_SZ
);
329 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
330 (void *)node
, UBIFS_CH_SZ
, 1);
334 spin_lock(&dbg_lock
);
337 switch (ch
->node_type
) {
340 const struct ubifs_pad_node
*pad
= node
;
342 printk(KERN_DEBUG
"\tpad_len %u\n",
343 le32_to_cpu(pad
->pad_len
));
348 const struct ubifs_sb_node
*sup
= node
;
349 unsigned int sup_flags
= le32_to_cpu(sup
->flags
);
351 printk(KERN_DEBUG
"\tkey_hash %d (%s)\n",
352 (int)sup
->key_hash
, get_key_hash(sup
->key_hash
));
353 printk(KERN_DEBUG
"\tkey_fmt %d (%s)\n",
354 (int)sup
->key_fmt
, get_key_fmt(sup
->key_fmt
));
355 printk(KERN_DEBUG
"\tflags %#x\n", sup_flags
);
356 printk(KERN_DEBUG
"\t big_lpt %u\n",
357 !!(sup_flags
& UBIFS_FLG_BIGLPT
));
358 printk(KERN_DEBUG
"\t space_fixup %u\n",
359 !!(sup_flags
& UBIFS_FLG_SPACE_FIXUP
));
360 printk(KERN_DEBUG
"\tmin_io_size %u\n",
361 le32_to_cpu(sup
->min_io_size
));
362 printk(KERN_DEBUG
"\tleb_size %u\n",
363 le32_to_cpu(sup
->leb_size
));
364 printk(KERN_DEBUG
"\tleb_cnt %u\n",
365 le32_to_cpu(sup
->leb_cnt
));
366 printk(KERN_DEBUG
"\tmax_leb_cnt %u\n",
367 le32_to_cpu(sup
->max_leb_cnt
));
368 printk(KERN_DEBUG
"\tmax_bud_bytes %llu\n",
369 (unsigned long long)le64_to_cpu(sup
->max_bud_bytes
));
370 printk(KERN_DEBUG
"\tlog_lebs %u\n",
371 le32_to_cpu(sup
->log_lebs
));
372 printk(KERN_DEBUG
"\tlpt_lebs %u\n",
373 le32_to_cpu(sup
->lpt_lebs
));
374 printk(KERN_DEBUG
"\torph_lebs %u\n",
375 le32_to_cpu(sup
->orph_lebs
));
376 printk(KERN_DEBUG
"\tjhead_cnt %u\n",
377 le32_to_cpu(sup
->jhead_cnt
));
378 printk(KERN_DEBUG
"\tfanout %u\n",
379 le32_to_cpu(sup
->fanout
));
380 printk(KERN_DEBUG
"\tlsave_cnt %u\n",
381 le32_to_cpu(sup
->lsave_cnt
));
382 printk(KERN_DEBUG
"\tdefault_compr %u\n",
383 (int)le16_to_cpu(sup
->default_compr
));
384 printk(KERN_DEBUG
"\trp_size %llu\n",
385 (unsigned long long)le64_to_cpu(sup
->rp_size
));
386 printk(KERN_DEBUG
"\trp_uid %u\n",
387 le32_to_cpu(sup
->rp_uid
));
388 printk(KERN_DEBUG
"\trp_gid %u\n",
389 le32_to_cpu(sup
->rp_gid
));
390 printk(KERN_DEBUG
"\tfmt_version %u\n",
391 le32_to_cpu(sup
->fmt_version
));
392 printk(KERN_DEBUG
"\ttime_gran %u\n",
393 le32_to_cpu(sup
->time_gran
));
394 printk(KERN_DEBUG
"\tUUID %pUB\n",
400 const struct ubifs_mst_node
*mst
= node
;
402 printk(KERN_DEBUG
"\thighest_inum %llu\n",
403 (unsigned long long)le64_to_cpu(mst
->highest_inum
));
404 printk(KERN_DEBUG
"\tcommit number %llu\n",
405 (unsigned long long)le64_to_cpu(mst
->cmt_no
));
406 printk(KERN_DEBUG
"\tflags %#x\n",
407 le32_to_cpu(mst
->flags
));
408 printk(KERN_DEBUG
"\tlog_lnum %u\n",
409 le32_to_cpu(mst
->log_lnum
));
410 printk(KERN_DEBUG
"\troot_lnum %u\n",
411 le32_to_cpu(mst
->root_lnum
));
412 printk(KERN_DEBUG
"\troot_offs %u\n",
413 le32_to_cpu(mst
->root_offs
));
414 printk(KERN_DEBUG
"\troot_len %u\n",
415 le32_to_cpu(mst
->root_len
));
416 printk(KERN_DEBUG
"\tgc_lnum %u\n",
417 le32_to_cpu(mst
->gc_lnum
));
418 printk(KERN_DEBUG
"\tihead_lnum %u\n",
419 le32_to_cpu(mst
->ihead_lnum
));
420 printk(KERN_DEBUG
"\tihead_offs %u\n",
421 le32_to_cpu(mst
->ihead_offs
));
422 printk(KERN_DEBUG
"\tindex_size %llu\n",
423 (unsigned long long)le64_to_cpu(mst
->index_size
));
424 printk(KERN_DEBUG
"\tlpt_lnum %u\n",
425 le32_to_cpu(mst
->lpt_lnum
));
426 printk(KERN_DEBUG
"\tlpt_offs %u\n",
427 le32_to_cpu(mst
->lpt_offs
));
428 printk(KERN_DEBUG
"\tnhead_lnum %u\n",
429 le32_to_cpu(mst
->nhead_lnum
));
430 printk(KERN_DEBUG
"\tnhead_offs %u\n",
431 le32_to_cpu(mst
->nhead_offs
));
432 printk(KERN_DEBUG
"\tltab_lnum %u\n",
433 le32_to_cpu(mst
->ltab_lnum
));
434 printk(KERN_DEBUG
"\tltab_offs %u\n",
435 le32_to_cpu(mst
->ltab_offs
));
436 printk(KERN_DEBUG
"\tlsave_lnum %u\n",
437 le32_to_cpu(mst
->lsave_lnum
));
438 printk(KERN_DEBUG
"\tlsave_offs %u\n",
439 le32_to_cpu(mst
->lsave_offs
));
440 printk(KERN_DEBUG
"\tlscan_lnum %u\n",
441 le32_to_cpu(mst
->lscan_lnum
));
442 printk(KERN_DEBUG
"\tleb_cnt %u\n",
443 le32_to_cpu(mst
->leb_cnt
));
444 printk(KERN_DEBUG
"\tempty_lebs %u\n",
445 le32_to_cpu(mst
->empty_lebs
));
446 printk(KERN_DEBUG
"\tidx_lebs %u\n",
447 le32_to_cpu(mst
->idx_lebs
));
448 printk(KERN_DEBUG
"\ttotal_free %llu\n",
449 (unsigned long long)le64_to_cpu(mst
->total_free
));
450 printk(KERN_DEBUG
"\ttotal_dirty %llu\n",
451 (unsigned long long)le64_to_cpu(mst
->total_dirty
));
452 printk(KERN_DEBUG
"\ttotal_used %llu\n",
453 (unsigned long long)le64_to_cpu(mst
->total_used
));
454 printk(KERN_DEBUG
"\ttotal_dead %llu\n",
455 (unsigned long long)le64_to_cpu(mst
->total_dead
));
456 printk(KERN_DEBUG
"\ttotal_dark %llu\n",
457 (unsigned long long)le64_to_cpu(mst
->total_dark
));
462 const struct ubifs_ref_node
*ref
= node
;
464 printk(KERN_DEBUG
"\tlnum %u\n",
465 le32_to_cpu(ref
->lnum
));
466 printk(KERN_DEBUG
"\toffs %u\n",
467 le32_to_cpu(ref
->offs
));
468 printk(KERN_DEBUG
"\tjhead %u\n",
469 le32_to_cpu(ref
->jhead
));
474 const struct ubifs_ino_node
*ino
= node
;
476 key_read(c
, &ino
->key
, &key
);
477 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
478 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n",
479 (unsigned long long)le64_to_cpu(ino
->creat_sqnum
));
480 printk(KERN_DEBUG
"\tsize %llu\n",
481 (unsigned long long)le64_to_cpu(ino
->size
));
482 printk(KERN_DEBUG
"\tnlink %u\n",
483 le32_to_cpu(ino
->nlink
));
484 printk(KERN_DEBUG
"\tatime %lld.%u\n",
485 (long long)le64_to_cpu(ino
->atime_sec
),
486 le32_to_cpu(ino
->atime_nsec
));
487 printk(KERN_DEBUG
"\tmtime %lld.%u\n",
488 (long long)le64_to_cpu(ino
->mtime_sec
),
489 le32_to_cpu(ino
->mtime_nsec
));
490 printk(KERN_DEBUG
"\tctime %lld.%u\n",
491 (long long)le64_to_cpu(ino
->ctime_sec
),
492 le32_to_cpu(ino
->ctime_nsec
));
493 printk(KERN_DEBUG
"\tuid %u\n",
494 le32_to_cpu(ino
->uid
));
495 printk(KERN_DEBUG
"\tgid %u\n",
496 le32_to_cpu(ino
->gid
));
497 printk(KERN_DEBUG
"\tmode %u\n",
498 le32_to_cpu(ino
->mode
));
499 printk(KERN_DEBUG
"\tflags %#x\n",
500 le32_to_cpu(ino
->flags
));
501 printk(KERN_DEBUG
"\txattr_cnt %u\n",
502 le32_to_cpu(ino
->xattr_cnt
));
503 printk(KERN_DEBUG
"\txattr_size %u\n",
504 le32_to_cpu(ino
->xattr_size
));
505 printk(KERN_DEBUG
"\txattr_names %u\n",
506 le32_to_cpu(ino
->xattr_names
));
507 printk(KERN_DEBUG
"\tcompr_type %#x\n",
508 (int)le16_to_cpu(ino
->compr_type
));
509 printk(KERN_DEBUG
"\tdata len %u\n",
510 le32_to_cpu(ino
->data_len
));
513 case UBIFS_DENT_NODE
:
514 case UBIFS_XENT_NODE
:
516 const struct ubifs_dent_node
*dent
= node
;
517 int nlen
= le16_to_cpu(dent
->nlen
);
519 key_read(c
, &dent
->key
, &key
);
520 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
521 printk(KERN_DEBUG
"\tinum %llu\n",
522 (unsigned long long)le64_to_cpu(dent
->inum
));
523 printk(KERN_DEBUG
"\ttype %d\n", (int)dent
->type
);
524 printk(KERN_DEBUG
"\tnlen %d\n", nlen
);
525 printk(KERN_DEBUG
"\tname ");
527 if (nlen
> UBIFS_MAX_NLEN
)
528 printk(KERN_DEBUG
"(bad name length, not printing, "
529 "bad or corrupted node)");
531 for (i
= 0; i
< nlen
&& dent
->name
[i
]; i
++)
532 printk(KERN_CONT
"%c", dent
->name
[i
]);
534 printk(KERN_CONT
"\n");
538 case UBIFS_DATA_NODE
:
540 const struct ubifs_data_node
*dn
= node
;
541 int dlen
= le32_to_cpu(ch
->len
) - UBIFS_DATA_NODE_SZ
;
543 key_read(c
, &dn
->key
, &key
);
544 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
545 printk(KERN_DEBUG
"\tsize %u\n",
546 le32_to_cpu(dn
->size
));
547 printk(KERN_DEBUG
"\tcompr_typ %d\n",
548 (int)le16_to_cpu(dn
->compr_type
));
549 printk(KERN_DEBUG
"\tdata size %d\n",
551 printk(KERN_DEBUG
"\tdata:\n");
552 print_hex_dump(KERN_DEBUG
, "\t", DUMP_PREFIX_OFFSET
, 32, 1,
553 (void *)&dn
->data
, dlen
, 0);
556 case UBIFS_TRUN_NODE
:
558 const struct ubifs_trun_node
*trun
= node
;
560 printk(KERN_DEBUG
"\tinum %u\n",
561 le32_to_cpu(trun
->inum
));
562 printk(KERN_DEBUG
"\told_size %llu\n",
563 (unsigned long long)le64_to_cpu(trun
->old_size
));
564 printk(KERN_DEBUG
"\tnew_size %llu\n",
565 (unsigned long long)le64_to_cpu(trun
->new_size
));
570 const struct ubifs_idx_node
*idx
= node
;
572 n
= le16_to_cpu(idx
->child_cnt
);
573 printk(KERN_DEBUG
"\tchild_cnt %d\n", n
);
574 printk(KERN_DEBUG
"\tlevel %d\n",
575 (int)le16_to_cpu(idx
->level
));
576 printk(KERN_DEBUG
"\tBranches:\n");
578 for (i
= 0; i
< n
&& i
< c
->fanout
- 1; i
++) {
579 const struct ubifs_branch
*br
;
581 br
= ubifs_idx_branch(c
, idx
, i
);
582 key_read(c
, &br
->key
, &key
);
583 printk(KERN_DEBUG
"\t%d: LEB %d:%d len %d key %s\n",
584 i
, le32_to_cpu(br
->lnum
), le32_to_cpu(br
->offs
),
585 le32_to_cpu(br
->len
), DBGKEY(&key
));
591 case UBIFS_ORPH_NODE
:
593 const struct ubifs_orph_node
*orph
= node
;
595 printk(KERN_DEBUG
"\tcommit number %llu\n",
597 le64_to_cpu(orph
->cmt_no
) & LLONG_MAX
);
598 printk(KERN_DEBUG
"\tlast node flag %llu\n",
599 (unsigned long long)(le64_to_cpu(orph
->cmt_no
)) >> 63);
600 n
= (le32_to_cpu(ch
->len
) - UBIFS_ORPH_NODE_SZ
) >> 3;
601 printk(KERN_DEBUG
"\t%d orphan inode numbers:\n", n
);
602 for (i
= 0; i
< n
; i
++)
603 printk(KERN_DEBUG
"\t ino %llu\n",
604 (unsigned long long)le64_to_cpu(orph
->inos
[i
]));
608 printk(KERN_DEBUG
"node type %d was not recognized\n",
611 spin_unlock(&dbg_lock
);
614 void dbg_dump_budget_req(const struct ubifs_budget_req
*req
)
616 spin_lock(&dbg_lock
);
617 printk(KERN_DEBUG
"Budgeting request: new_ino %d, dirtied_ino %d\n",
618 req
->new_ino
, req
->dirtied_ino
);
619 printk(KERN_DEBUG
"\tnew_ino_d %d, dirtied_ino_d %d\n",
620 req
->new_ino_d
, req
->dirtied_ino_d
);
621 printk(KERN_DEBUG
"\tnew_page %d, dirtied_page %d\n",
622 req
->new_page
, req
->dirtied_page
);
623 printk(KERN_DEBUG
"\tnew_dent %d, mod_dent %d\n",
624 req
->new_dent
, req
->mod_dent
);
625 printk(KERN_DEBUG
"\tidx_growth %d\n", req
->idx_growth
);
626 printk(KERN_DEBUG
"\tdata_growth %d dd_growth %d\n",
627 req
->data_growth
, req
->dd_growth
);
628 spin_unlock(&dbg_lock
);
631 void dbg_dump_lstats(const struct ubifs_lp_stats
*lst
)
633 spin_lock(&dbg_lock
);
634 printk(KERN_DEBUG
"(pid %d) Lprops statistics: empty_lebs %d, "
635 "idx_lebs %d\n", current
->pid
, lst
->empty_lebs
, lst
->idx_lebs
);
636 printk(KERN_DEBUG
"\ttaken_empty_lebs %d, total_free %lld, "
637 "total_dirty %lld\n", lst
->taken_empty_lebs
, lst
->total_free
,
639 printk(KERN_DEBUG
"\ttotal_used %lld, total_dark %lld, "
640 "total_dead %lld\n", lst
->total_used
, lst
->total_dark
,
642 spin_unlock(&dbg_lock
);
645 void dbg_dump_budg(struct ubifs_info
*c
, const struct ubifs_budg_info
*bi
)
649 struct ubifs_bud
*bud
;
650 struct ubifs_gced_idx_leb
*idx_gc
;
651 long long available
, outstanding
, free
;
653 spin_lock(&c
->space_lock
);
654 spin_lock(&dbg_lock
);
655 printk(KERN_DEBUG
"(pid %d) Budgeting info: data budget sum %lld, "
656 "total budget sum %lld\n", current
->pid
,
657 bi
->data_growth
+ bi
->dd_growth
,
658 bi
->data_growth
+ bi
->dd_growth
+ bi
->idx_growth
);
659 printk(KERN_DEBUG
"\tbudg_data_growth %lld, budg_dd_growth %lld, "
660 "budg_idx_growth %lld\n", bi
->data_growth
, bi
->dd_growth
,
662 printk(KERN_DEBUG
"\tmin_idx_lebs %d, old_idx_sz %llu, "
663 "uncommitted_idx %lld\n", bi
->min_idx_lebs
, bi
->old_idx_sz
,
664 bi
->uncommitted_idx
);
665 printk(KERN_DEBUG
"\tpage_budget %d, inode_budget %d, dent_budget %d\n",
666 bi
->page_budget
, bi
->inode_budget
, bi
->dent_budget
);
667 printk(KERN_DEBUG
"\tnospace %u, nospace_rp %u\n",
668 bi
->nospace
, bi
->nospace_rp
);
669 printk(KERN_DEBUG
"\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
670 c
->dark_wm
, c
->dead_wm
, c
->max_idx_node_sz
);
674 * If we are dumping saved budgeting data, do not print
675 * additional information which is about the current state, not
676 * the old one which corresponded to the saved budgeting data.
680 printk(KERN_DEBUG
"\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
681 c
->freeable_cnt
, c
->calc_idx_sz
, c
->idx_gc_cnt
);
682 printk(KERN_DEBUG
"\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
683 "clean_zn_cnt %ld\n", atomic_long_read(&c
->dirty_pg_cnt
),
684 atomic_long_read(&c
->dirty_zn_cnt
),
685 atomic_long_read(&c
->clean_zn_cnt
));
686 printk(KERN_DEBUG
"\tgc_lnum %d, ihead_lnum %d\n",
687 c
->gc_lnum
, c
->ihead_lnum
);
689 /* If we are in R/O mode, journal heads do not exist */
691 for (i
= 0; i
< c
->jhead_cnt
; i
++)
692 printk(KERN_DEBUG
"\tjhead %s\t LEB %d\n",
693 dbg_jhead(c
->jheads
[i
].wbuf
.jhead
),
694 c
->jheads
[i
].wbuf
.lnum
);
695 for (rb
= rb_first(&c
->buds
); rb
; rb
= rb_next(rb
)) {
696 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
697 printk(KERN_DEBUG
"\tbud LEB %d\n", bud
->lnum
);
699 list_for_each_entry(bud
, &c
->old_buds
, list
)
700 printk(KERN_DEBUG
"\told bud LEB %d\n", bud
->lnum
);
701 list_for_each_entry(idx_gc
, &c
->idx_gc
, list
)
702 printk(KERN_DEBUG
"\tGC'ed idx LEB %d unmap %d\n",
703 idx_gc
->lnum
, idx_gc
->unmap
);
704 printk(KERN_DEBUG
"\tcommit state %d\n", c
->cmt_state
);
706 /* Print budgeting predictions */
707 available
= ubifs_calc_available(c
, c
->bi
.min_idx_lebs
);
708 outstanding
= c
->bi
.data_growth
+ c
->bi
.dd_growth
;
709 free
= ubifs_get_free_space_nolock(c
);
710 printk(KERN_DEBUG
"Budgeting predictions:\n");
711 printk(KERN_DEBUG
"\tavailable: %lld, outstanding %lld, free %lld\n",
712 available
, outstanding
, free
);
714 spin_unlock(&dbg_lock
);
715 spin_unlock(&c
->space_lock
);
718 void dbg_dump_lprop(const struct ubifs_info
*c
, const struct ubifs_lprops
*lp
)
720 int i
, spc
, dark
= 0, dead
= 0;
722 struct ubifs_bud
*bud
;
724 spc
= lp
->free
+ lp
->dirty
;
725 if (spc
< c
->dead_wm
)
728 dark
= ubifs_calc_dark(c
, spc
);
730 if (lp
->flags
& LPROPS_INDEX
)
731 printk(KERN_DEBUG
"LEB %-7d free %-8d dirty %-8d used %-8d "
732 "free + dirty %-8d flags %#x (", lp
->lnum
, lp
->free
,
733 lp
->dirty
, c
->leb_size
- spc
, spc
, lp
->flags
);
735 printk(KERN_DEBUG
"LEB %-7d free %-8d dirty %-8d used %-8d "
736 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
737 "flags %#-4x (", lp
->lnum
, lp
->free
, lp
->dirty
,
738 c
->leb_size
- spc
, spc
, dark
, dead
,
739 (int)(spc
/ UBIFS_MAX_NODE_SZ
), lp
->flags
);
741 if (lp
->flags
& LPROPS_TAKEN
) {
742 if (lp
->flags
& LPROPS_INDEX
)
743 printk(KERN_CONT
"index, taken");
745 printk(KERN_CONT
"taken");
749 if (lp
->flags
& LPROPS_INDEX
) {
750 switch (lp
->flags
& LPROPS_CAT_MASK
) {
751 case LPROPS_DIRTY_IDX
:
754 case LPROPS_FRDI_IDX
:
755 s
= "freeable index";
761 switch (lp
->flags
& LPROPS_CAT_MASK
) {
763 s
= "not categorized";
774 case LPROPS_FREEABLE
:
782 printk(KERN_CONT
"%s", s
);
785 for (rb
= rb_first((struct rb_root
*)&c
->buds
); rb
; rb
= rb_next(rb
)) {
786 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
787 if (bud
->lnum
== lp
->lnum
) {
789 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
791 * Note, if we are in R/O mode or in the middle
792 * of mounting/re-mounting, the write-buffers do
796 lp
->lnum
== c
->jheads
[i
].wbuf
.lnum
) {
797 printk(KERN_CONT
", jhead %s",
803 printk(KERN_CONT
", bud of jhead %s",
804 dbg_jhead(bud
->jhead
));
807 if (lp
->lnum
== c
->gc_lnum
)
808 printk(KERN_CONT
", GC LEB");
809 printk(KERN_CONT
")\n");
812 void dbg_dump_lprops(struct ubifs_info
*c
)
815 struct ubifs_lprops lp
;
816 struct ubifs_lp_stats lst
;
818 printk(KERN_DEBUG
"(pid %d) start dumping LEB properties\n",
820 ubifs_get_lp_stats(c
, &lst
);
821 dbg_dump_lstats(&lst
);
823 for (lnum
= c
->main_first
; lnum
< c
->leb_cnt
; lnum
++) {
824 err
= ubifs_read_one_lp(c
, lnum
, &lp
);
826 ubifs_err("cannot read lprops for LEB %d", lnum
);
828 dbg_dump_lprop(c
, &lp
);
830 printk(KERN_DEBUG
"(pid %d) finish dumping LEB properties\n",
834 void dbg_dump_lpt_info(struct ubifs_info
*c
)
838 spin_lock(&dbg_lock
);
839 printk(KERN_DEBUG
"(pid %d) dumping LPT information\n", current
->pid
);
840 printk(KERN_DEBUG
"\tlpt_sz: %lld\n", c
->lpt_sz
);
841 printk(KERN_DEBUG
"\tpnode_sz: %d\n", c
->pnode_sz
);
842 printk(KERN_DEBUG
"\tnnode_sz: %d\n", c
->nnode_sz
);
843 printk(KERN_DEBUG
"\tltab_sz: %d\n", c
->ltab_sz
);
844 printk(KERN_DEBUG
"\tlsave_sz: %d\n", c
->lsave_sz
);
845 printk(KERN_DEBUG
"\tbig_lpt: %d\n", c
->big_lpt
);
846 printk(KERN_DEBUG
"\tlpt_hght: %d\n", c
->lpt_hght
);
847 printk(KERN_DEBUG
"\tpnode_cnt: %d\n", c
->pnode_cnt
);
848 printk(KERN_DEBUG
"\tnnode_cnt: %d\n", c
->nnode_cnt
);
849 printk(KERN_DEBUG
"\tdirty_pn_cnt: %d\n", c
->dirty_pn_cnt
);
850 printk(KERN_DEBUG
"\tdirty_nn_cnt: %d\n", c
->dirty_nn_cnt
);
851 printk(KERN_DEBUG
"\tlsave_cnt: %d\n", c
->lsave_cnt
);
852 printk(KERN_DEBUG
"\tspace_bits: %d\n", c
->space_bits
);
853 printk(KERN_DEBUG
"\tlpt_lnum_bits: %d\n", c
->lpt_lnum_bits
);
854 printk(KERN_DEBUG
"\tlpt_offs_bits: %d\n", c
->lpt_offs_bits
);
855 printk(KERN_DEBUG
"\tlpt_spc_bits: %d\n", c
->lpt_spc_bits
);
856 printk(KERN_DEBUG
"\tpcnt_bits: %d\n", c
->pcnt_bits
);
857 printk(KERN_DEBUG
"\tlnum_bits: %d\n", c
->lnum_bits
);
858 printk(KERN_DEBUG
"\tLPT root is at %d:%d\n", c
->lpt_lnum
, c
->lpt_offs
);
859 printk(KERN_DEBUG
"\tLPT head is at %d:%d\n",
860 c
->nhead_lnum
, c
->nhead_offs
);
861 printk(KERN_DEBUG
"\tLPT ltab is at %d:%d\n",
862 c
->ltab_lnum
, c
->ltab_offs
);
864 printk(KERN_DEBUG
"\tLPT lsave is at %d:%d\n",
865 c
->lsave_lnum
, c
->lsave_offs
);
866 for (i
= 0; i
< c
->lpt_lebs
; i
++)
867 printk(KERN_DEBUG
"\tLPT LEB %d free %d dirty %d tgc %d "
868 "cmt %d\n", i
+ c
->lpt_first
, c
->ltab
[i
].free
,
869 c
->ltab
[i
].dirty
, c
->ltab
[i
].tgc
, c
->ltab
[i
].cmt
);
870 spin_unlock(&dbg_lock
);
873 void dbg_dump_sleb(const struct ubifs_info
*c
,
874 const struct ubifs_scan_leb
*sleb
, int offs
)
876 struct ubifs_scan_node
*snod
;
878 printk(KERN_DEBUG
"(pid %d) start dumping scanned data from LEB %d:%d\n",
879 current
->pid
, sleb
->lnum
, offs
);
881 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
883 printk(KERN_DEBUG
"Dumping node at LEB %d:%d len %d\n", sleb
->lnum
,
884 snod
->offs
, snod
->len
);
885 dbg_dump_node(c
, snod
->node
);
889 void dbg_dump_leb(const struct ubifs_info
*c
, int lnum
)
891 struct ubifs_scan_leb
*sleb
;
892 struct ubifs_scan_node
*snod
;
895 if (dbg_is_tst_rcvry(c
))
898 printk(KERN_DEBUG
"(pid %d) start dumping LEB %d\n",
901 buf
= __vmalloc(c
->leb_size
, GFP_NOFS
, PAGE_KERNEL
);
903 ubifs_err("cannot allocate memory for dumping LEB %d", lnum
);
907 sleb
= ubifs_scan(c
, lnum
, 0, buf
, 0);
909 ubifs_err("scan error %d", (int)PTR_ERR(sleb
));
913 printk(KERN_DEBUG
"LEB %d has %d nodes ending at %d\n", lnum
,
914 sleb
->nodes_cnt
, sleb
->endpt
);
916 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
918 printk(KERN_DEBUG
"Dumping node at LEB %d:%d len %d\n", lnum
,
919 snod
->offs
, snod
->len
);
920 dbg_dump_node(c
, snod
->node
);
923 printk(KERN_DEBUG
"(pid %d) finish dumping LEB %d\n",
925 ubifs_scan_destroy(sleb
);
932 void dbg_dump_znode(const struct ubifs_info
*c
,
933 const struct ubifs_znode
*znode
)
936 const struct ubifs_zbranch
*zbr
;
938 spin_lock(&dbg_lock
);
940 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
944 printk(KERN_DEBUG
"znode %p, LEB %d:%d len %d parent %p iip %d level %d"
945 " child_cnt %d flags %lx\n", znode
, zbr
->lnum
, zbr
->offs
,
946 zbr
->len
, znode
->parent
, znode
->iip
, znode
->level
,
947 znode
->child_cnt
, znode
->flags
);
949 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
950 spin_unlock(&dbg_lock
);
954 printk(KERN_DEBUG
"zbranches:\n");
955 for (n
= 0; n
< znode
->child_cnt
; n
++) {
956 zbr
= &znode
->zbranch
[n
];
957 if (znode
->level
> 0)
958 printk(KERN_DEBUG
"\t%d: znode %p LEB %d:%d len %d key "
959 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
963 printk(KERN_DEBUG
"\t%d: LNC %p LEB %d:%d len %d key "
964 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
968 spin_unlock(&dbg_lock
);
971 void dbg_dump_heap(struct ubifs_info
*c
, struct ubifs_lpt_heap
*heap
, int cat
)
975 printk(KERN_DEBUG
"(pid %d) start dumping heap cat %d (%d elements)\n",
976 current
->pid
, cat
, heap
->cnt
);
977 for (i
= 0; i
< heap
->cnt
; i
++) {
978 struct ubifs_lprops
*lprops
= heap
->arr
[i
];
980 printk(KERN_DEBUG
"\t%d. LEB %d hpos %d free %d dirty %d "
981 "flags %d\n", i
, lprops
->lnum
, lprops
->hpos
,
982 lprops
->free
, lprops
->dirty
, lprops
->flags
);
984 printk(KERN_DEBUG
"(pid %d) finish dumping heap\n", current
->pid
);
987 void dbg_dump_pnode(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
,
988 struct ubifs_nnode
*parent
, int iip
)
992 printk(KERN_DEBUG
"(pid %d) dumping pnode:\n", current
->pid
);
993 printk(KERN_DEBUG
"\taddress %zx parent %zx cnext %zx\n",
994 (size_t)pnode
, (size_t)parent
, (size_t)pnode
->cnext
);
995 printk(KERN_DEBUG
"\tflags %lu iip %d level %d num %d\n",
996 pnode
->flags
, iip
, pnode
->level
, pnode
->num
);
997 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
998 struct ubifs_lprops
*lp
= &pnode
->lprops
[i
];
1000 printk(KERN_DEBUG
"\t%d: free %d dirty %d flags %d lnum %d\n",
1001 i
, lp
->free
, lp
->dirty
, lp
->flags
, lp
->lnum
);
1005 void dbg_dump_tnc(struct ubifs_info
*c
)
1007 struct ubifs_znode
*znode
;
1010 printk(KERN_DEBUG
"\n");
1011 printk(KERN_DEBUG
"(pid %d) start dumping TNC tree\n", current
->pid
);
1012 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, NULL
);
1013 level
= znode
->level
;
1014 printk(KERN_DEBUG
"== Level %d ==\n", level
);
1016 if (level
!= znode
->level
) {
1017 level
= znode
->level
;
1018 printk(KERN_DEBUG
"== Level %d ==\n", level
);
1020 dbg_dump_znode(c
, znode
);
1021 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, znode
);
1023 printk(KERN_DEBUG
"(pid %d) finish dumping TNC tree\n", current
->pid
);
1026 static int dump_znode(struct ubifs_info
*c
, struct ubifs_znode
*znode
,
1029 dbg_dump_znode(c
, znode
);
1034 * dbg_dump_index - dump the on-flash index.
1035 * @c: UBIFS file-system description object
1037 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
1038 * which dumps only in-memory znodes and does not read znodes which from flash.
1040 void dbg_dump_index(struct ubifs_info
*c
)
1042 dbg_walk_index(c
, NULL
, dump_znode
, NULL
);
1046 * dbg_save_space_info - save information about flash space.
1047 * @c: UBIFS file-system description object
1049 * This function saves information about UBIFS free space, dirty space, etc, in
1050 * order to check it later.
1052 void dbg_save_space_info(struct ubifs_info
*c
)
1054 struct ubifs_debug_info
*d
= c
->dbg
;
1057 spin_lock(&c
->space_lock
);
1058 memcpy(&d
->saved_lst
, &c
->lst
, sizeof(struct ubifs_lp_stats
));
1059 memcpy(&d
->saved_bi
, &c
->bi
, sizeof(struct ubifs_budg_info
));
1060 d
->saved_idx_gc_cnt
= c
->idx_gc_cnt
;
1063 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1064 * affects the free space calculations, and UBIFS might not know about
1065 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1066 * only when we read their lprops, and we do this only lazily, upon the
1067 * need. So at any given point of time @c->freeable_cnt might be not
1070 * Just one example about the issue we hit when we did not zero
1072 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1073 * amount of free space in @d->saved_free
1074 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1075 * information from flash, where we cache LEBs from various
1076 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1077 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1078 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1079 * -> 'ubifs_add_to_cat()').
1080 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1082 * 4. We calculate the amount of free space when the re-mount is
1083 * finished in 'dbg_check_space_info()' and it does not match
1086 freeable_cnt
= c
->freeable_cnt
;
1087 c
->freeable_cnt
= 0;
1088 d
->saved_free
= ubifs_get_free_space_nolock(c
);
1089 c
->freeable_cnt
= freeable_cnt
;
1090 spin_unlock(&c
->space_lock
);
1094 * dbg_check_space_info - check flash space information.
1095 * @c: UBIFS file-system description object
1097 * This function compares current flash space information with the information
1098 * which was saved when the 'dbg_save_space_info()' function was called.
1099 * Returns zero if the information has not changed, and %-EINVAL it it has
1102 int dbg_check_space_info(struct ubifs_info
*c
)
1104 struct ubifs_debug_info
*d
= c
->dbg
;
1105 struct ubifs_lp_stats lst
;
1109 spin_lock(&c
->space_lock
);
1110 freeable_cnt
= c
->freeable_cnt
;
1111 c
->freeable_cnt
= 0;
1112 free
= ubifs_get_free_space_nolock(c
);
1113 c
->freeable_cnt
= freeable_cnt
;
1114 spin_unlock(&c
->space_lock
);
1116 if (free
!= d
->saved_free
) {
1117 ubifs_err("free space changed from %lld to %lld",
1118 d
->saved_free
, free
);
1125 ubifs_msg("saved lprops statistics dump");
1126 dbg_dump_lstats(&d
->saved_lst
);
1127 ubifs_msg("saved budgeting info dump");
1128 dbg_dump_budg(c
, &d
->saved_bi
);
1129 ubifs_msg("saved idx_gc_cnt %d", d
->saved_idx_gc_cnt
);
1130 ubifs_msg("current lprops statistics dump");
1131 ubifs_get_lp_stats(c
, &lst
);
1132 dbg_dump_lstats(&lst
);
1133 ubifs_msg("current budgeting info dump");
1134 dbg_dump_budg(c
, &c
->bi
);
1140 * dbg_check_synced_i_size - check synchronized inode size.
1141 * @c: UBIFS file-system description object
1142 * @inode: inode to check
1144 * If inode is clean, synchronized inode size has to be equivalent to current
1145 * inode size. This function has to be called only for locked inodes (@i_mutex
1146 * has to be locked). Returns %0 if synchronized inode size if correct, and
1149 int dbg_check_synced_i_size(const struct ubifs_info
*c
, struct inode
*inode
)
1152 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1154 if (!dbg_is_chk_gen(c
))
1156 if (!S_ISREG(inode
->i_mode
))
1159 mutex_lock(&ui
->ui_mutex
);
1160 spin_lock(&ui
->ui_lock
);
1161 if (ui
->ui_size
!= ui
->synced_i_size
&& !ui
->dirty
) {
1162 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1163 "is clean", ui
->ui_size
, ui
->synced_i_size
);
1164 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode
->i_ino
,
1165 inode
->i_mode
, i_size_read(inode
));
1169 spin_unlock(&ui
->ui_lock
);
1170 mutex_unlock(&ui
->ui_mutex
);
1175 * dbg_check_dir - check directory inode size and link count.
1176 * @c: UBIFS file-system description object
1177 * @dir: the directory to calculate size for
1178 * @size: the result is returned here
1180 * This function makes sure that directory size and link count are correct.
1181 * Returns zero in case of success and a negative error code in case of
1184 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1185 * calling this function.
1187 int dbg_check_dir(struct ubifs_info
*c
, const struct inode
*dir
)
1189 unsigned int nlink
= 2;
1190 union ubifs_key key
;
1191 struct ubifs_dent_node
*dent
, *pdent
= NULL
;
1192 struct qstr nm
= { .name
= NULL
};
1193 loff_t size
= UBIFS_INO_NODE_SZ
;
1195 if (!dbg_is_chk_gen(c
))
1198 if (!S_ISDIR(dir
->i_mode
))
1201 lowest_dent_key(c
, &key
, dir
->i_ino
);
1205 dent
= ubifs_tnc_next_ent(c
, &key
, &nm
);
1207 err
= PTR_ERR(dent
);
1213 nm
.name
= dent
->name
;
1214 nm
.len
= le16_to_cpu(dent
->nlen
);
1215 size
+= CALC_DENT_SIZE(nm
.len
);
1216 if (dent
->type
== UBIFS_ITYPE_DIR
)
1220 key_read(c
, &dent
->key
, &key
);
1224 if (i_size_read(dir
) != size
) {
1225 ubifs_err("directory inode %lu has size %llu, "
1226 "but calculated size is %llu", dir
->i_ino
,
1227 (unsigned long long)i_size_read(dir
),
1228 (unsigned long long)size
);
1229 dbg_dump_inode(c
, dir
);
1233 if (dir
->i_nlink
!= nlink
) {
1234 ubifs_err("directory inode %lu has nlink %u, but calculated "
1235 "nlink is %u", dir
->i_ino
, dir
->i_nlink
, nlink
);
1236 dbg_dump_inode(c
, dir
);
1245 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1246 * @c: UBIFS file-system description object
1247 * @zbr1: first zbranch
1248 * @zbr2: following zbranch
1250 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1251 * names of the direntries/xentries which are referred by the keys. This
1252 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1253 * sure the name of direntry/xentry referred by @zbr1 is less than
1254 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1255 * and a negative error code in case of failure.
1257 static int dbg_check_key_order(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr1
,
1258 struct ubifs_zbranch
*zbr2
)
1260 int err
, nlen1
, nlen2
, cmp
;
1261 struct ubifs_dent_node
*dent1
, *dent2
;
1262 union ubifs_key key
;
1264 ubifs_assert(!keys_cmp(c
, &zbr1
->key
, &zbr2
->key
));
1265 dent1
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1268 dent2
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1274 err
= ubifs_tnc_read_node(c
, zbr1
, dent1
);
1277 err
= ubifs_validate_entry(c
, dent1
);
1281 err
= ubifs_tnc_read_node(c
, zbr2
, dent2
);
1284 err
= ubifs_validate_entry(c
, dent2
);
1288 /* Make sure node keys are the same as in zbranch */
1290 key_read(c
, &dent1
->key
, &key
);
1291 if (keys_cmp(c
, &zbr1
->key
, &key
)) {
1292 dbg_err("1st entry at %d:%d has key %s", zbr1
->lnum
,
1293 zbr1
->offs
, DBGKEY(&key
));
1294 dbg_err("but it should have key %s according to tnc",
1295 DBGKEY(&zbr1
->key
));
1296 dbg_dump_node(c
, dent1
);
1300 key_read(c
, &dent2
->key
, &key
);
1301 if (keys_cmp(c
, &zbr2
->key
, &key
)) {
1302 dbg_err("2nd entry at %d:%d has key %s", zbr1
->lnum
,
1303 zbr1
->offs
, DBGKEY(&key
));
1304 dbg_err("but it should have key %s according to tnc",
1305 DBGKEY(&zbr2
->key
));
1306 dbg_dump_node(c
, dent2
);
1310 nlen1
= le16_to_cpu(dent1
->nlen
);
1311 nlen2
= le16_to_cpu(dent2
->nlen
);
1313 cmp
= memcmp(dent1
->name
, dent2
->name
, min_t(int, nlen1
, nlen2
));
1314 if (cmp
< 0 || (cmp
== 0 && nlen1
< nlen2
)) {
1318 if (cmp
== 0 && nlen1
== nlen2
)
1319 dbg_err("2 xent/dent nodes with the same name");
1321 dbg_err("bad order of colliding key %s",
1324 ubifs_msg("first node at %d:%d\n", zbr1
->lnum
, zbr1
->offs
);
1325 dbg_dump_node(c
, dent1
);
1326 ubifs_msg("second node at %d:%d\n", zbr2
->lnum
, zbr2
->offs
);
1327 dbg_dump_node(c
, dent2
);
1336 * dbg_check_znode - check if znode is all right.
1337 * @c: UBIFS file-system description object
1338 * @zbr: zbranch which points to this znode
1340 * This function makes sure that znode referred to by @zbr is all right.
1341 * Returns zero if it is, and %-EINVAL if it is not.
1343 static int dbg_check_znode(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
)
1345 struct ubifs_znode
*znode
= zbr
->znode
;
1346 struct ubifs_znode
*zp
= znode
->parent
;
1349 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
1353 if (znode
->level
< 0) {
1357 if (znode
->iip
< 0 || znode
->iip
>= c
->fanout
) {
1363 /* Only dirty zbranch may have no on-flash nodes */
1364 if (!ubifs_zn_dirty(znode
)) {
1369 if (ubifs_zn_dirty(znode
)) {
1371 * If znode is dirty, its parent has to be dirty as well. The
1372 * order of the operation is important, so we have to have
1376 if (zp
&& !ubifs_zn_dirty(zp
)) {
1378 * The dirty flag is atomic and is cleared outside the
1379 * TNC mutex, so znode's dirty flag may now have
1380 * been cleared. The child is always cleared before the
1381 * parent, so we just need to check again.
1384 if (ubifs_zn_dirty(znode
)) {
1392 const union ubifs_key
*min
, *max
;
1394 if (znode
->level
!= zp
->level
- 1) {
1399 /* Make sure the 'parent' pointer in our znode is correct */
1400 err
= ubifs_search_zbranch(c
, zp
, &zbr
->key
, &n
);
1402 /* This zbranch does not exist in the parent */
1407 if (znode
->iip
>= zp
->child_cnt
) {
1412 if (znode
->iip
!= n
) {
1413 /* This may happen only in case of collisions */
1414 if (keys_cmp(c
, &zp
->zbranch
[n
].key
,
1415 &zp
->zbranch
[znode
->iip
].key
)) {
1423 * Make sure that the first key in our znode is greater than or
1424 * equal to the key in the pointing zbranch.
1427 cmp
= keys_cmp(c
, min
, &znode
->zbranch
[0].key
);
1433 if (n
+ 1 < zp
->child_cnt
) {
1434 max
= &zp
->zbranch
[n
+ 1].key
;
1437 * Make sure the last key in our znode is less or
1438 * equivalent than the key in the zbranch which goes
1439 * after our pointing zbranch.
1441 cmp
= keys_cmp(c
, max
,
1442 &znode
->zbranch
[znode
->child_cnt
- 1].key
);
1449 /* This may only be root znode */
1450 if (zbr
!= &c
->zroot
) {
1457 * Make sure that next key is greater or equivalent then the previous
1460 for (n
= 1; n
< znode
->child_cnt
; n
++) {
1461 cmp
= keys_cmp(c
, &znode
->zbranch
[n
- 1].key
,
1462 &znode
->zbranch
[n
].key
);
1468 /* This can only be keys with colliding hash */
1469 if (!is_hash_key(c
, &znode
->zbranch
[n
].key
)) {
1474 if (znode
->level
!= 0 || c
->replaying
)
1478 * Colliding keys should follow binary order of
1479 * corresponding xentry/dentry names.
1481 err
= dbg_check_key_order(c
, &znode
->zbranch
[n
- 1],
1482 &znode
->zbranch
[n
]);
1492 for (n
= 0; n
< znode
->child_cnt
; n
++) {
1493 if (!znode
->zbranch
[n
].znode
&&
1494 (znode
->zbranch
[n
].lnum
== 0 ||
1495 znode
->zbranch
[n
].len
== 0)) {
1500 if (znode
->zbranch
[n
].lnum
!= 0 &&
1501 znode
->zbranch
[n
].len
== 0) {
1506 if (znode
->zbranch
[n
].lnum
== 0 &&
1507 znode
->zbranch
[n
].len
!= 0) {
1512 if (znode
->zbranch
[n
].lnum
== 0 &&
1513 znode
->zbranch
[n
].offs
!= 0) {
1518 if (znode
->level
!= 0 && znode
->zbranch
[n
].znode
)
1519 if (znode
->zbranch
[n
].znode
->parent
!= znode
) {
1528 ubifs_err("failed, error %d", err
);
1529 ubifs_msg("dump of the znode");
1530 dbg_dump_znode(c
, znode
);
1532 ubifs_msg("dump of the parent znode");
1533 dbg_dump_znode(c
, zp
);
1540 * dbg_check_tnc - check TNC tree.
1541 * @c: UBIFS file-system description object
1542 * @extra: do extra checks that are possible at start commit
1544 * This function traverses whole TNC tree and checks every znode. Returns zero
1545 * if everything is all right and %-EINVAL if something is wrong with TNC.
1547 int dbg_check_tnc(struct ubifs_info
*c
, int extra
)
1549 struct ubifs_znode
*znode
;
1550 long clean_cnt
= 0, dirty_cnt
= 0;
1553 if (!dbg_is_chk_index(c
))
1556 ubifs_assert(mutex_is_locked(&c
->tnc_mutex
));
1557 if (!c
->zroot
.znode
)
1560 znode
= ubifs_tnc_postorder_first(c
->zroot
.znode
);
1562 struct ubifs_znode
*prev
;
1563 struct ubifs_zbranch
*zbr
;
1568 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1570 err
= dbg_check_znode(c
, zbr
);
1575 if (ubifs_zn_dirty(znode
))
1582 znode
= ubifs_tnc_postorder_next(znode
);
1587 * If the last key of this znode is equivalent to the first key
1588 * of the next znode (collision), then check order of the keys.
1590 last
= prev
->child_cnt
- 1;
1591 if (prev
->level
== 0 && znode
->level
== 0 && !c
->replaying
&&
1592 !keys_cmp(c
, &prev
->zbranch
[last
].key
,
1593 &znode
->zbranch
[0].key
)) {
1594 err
= dbg_check_key_order(c
, &prev
->zbranch
[last
],
1595 &znode
->zbranch
[0]);
1599 ubifs_msg("first znode");
1600 dbg_dump_znode(c
, prev
);
1601 ubifs_msg("second znode");
1602 dbg_dump_znode(c
, znode
);
1609 if (clean_cnt
!= atomic_long_read(&c
->clean_zn_cnt
)) {
1610 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1611 atomic_long_read(&c
->clean_zn_cnt
),
1615 if (dirty_cnt
!= atomic_long_read(&c
->dirty_zn_cnt
)) {
1616 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1617 atomic_long_read(&c
->dirty_zn_cnt
),
1627 * dbg_walk_index - walk the on-flash index.
1628 * @c: UBIFS file-system description object
1629 * @leaf_cb: called for each leaf node
1630 * @znode_cb: called for each indexing node
1631 * @priv: private data which is passed to callbacks
1633 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1634 * node and @znode_cb for each indexing node. Returns zero in case of success
1635 * and a negative error code in case of failure.
1637 * It would be better if this function removed every znode it pulled to into
1638 * the TNC, so that the behavior more closely matched the non-debugging
1641 int dbg_walk_index(struct ubifs_info
*c
, dbg_leaf_callback leaf_cb
,
1642 dbg_znode_callback znode_cb
, void *priv
)
1645 struct ubifs_zbranch
*zbr
;
1646 struct ubifs_znode
*znode
, *child
;
1648 mutex_lock(&c
->tnc_mutex
);
1649 /* If the root indexing node is not in TNC - pull it */
1650 if (!c
->zroot
.znode
) {
1651 c
->zroot
.znode
= ubifs_load_znode(c
, &c
->zroot
, NULL
, 0);
1652 if (IS_ERR(c
->zroot
.znode
)) {
1653 err
= PTR_ERR(c
->zroot
.znode
);
1654 c
->zroot
.znode
= NULL
;
1660 * We are going to traverse the indexing tree in the postorder manner.
1661 * Go down and find the leftmost indexing node where we are going to
1664 znode
= c
->zroot
.znode
;
1665 while (znode
->level
> 0) {
1666 zbr
= &znode
->zbranch
[0];
1669 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1670 if (IS_ERR(child
)) {
1671 err
= PTR_ERR(child
);
1680 /* Iterate over all indexing nodes */
1687 err
= znode_cb(c
, znode
, priv
);
1689 ubifs_err("znode checking function returned "
1691 dbg_dump_znode(c
, znode
);
1695 if (leaf_cb
&& znode
->level
== 0) {
1696 for (idx
= 0; idx
< znode
->child_cnt
; idx
++) {
1697 zbr
= &znode
->zbranch
[idx
];
1698 err
= leaf_cb(c
, zbr
, priv
);
1700 ubifs_err("leaf checking function "
1701 "returned error %d, for leaf "
1703 err
, zbr
->lnum
, zbr
->offs
);
1712 idx
= znode
->iip
+ 1;
1713 znode
= znode
->parent
;
1714 if (idx
< znode
->child_cnt
) {
1715 /* Switch to the next index in the parent */
1716 zbr
= &znode
->zbranch
[idx
];
1719 child
= ubifs_load_znode(c
, zbr
, znode
, idx
);
1720 if (IS_ERR(child
)) {
1721 err
= PTR_ERR(child
);
1729 * This is the last child, switch to the parent and
1734 /* Go to the lowest leftmost znode in the new sub-tree */
1735 while (znode
->level
> 0) {
1736 zbr
= &znode
->zbranch
[0];
1739 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1740 if (IS_ERR(child
)) {
1741 err
= PTR_ERR(child
);
1750 mutex_unlock(&c
->tnc_mutex
);
1755 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1758 ubifs_msg("dump of znode at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
1759 dbg_dump_znode(c
, znode
);
1761 mutex_unlock(&c
->tnc_mutex
);
1766 * add_size - add znode size to partially calculated index size.
1767 * @c: UBIFS file-system description object
1768 * @znode: znode to add size for
1769 * @priv: partially calculated index size
1771 * This is a helper function for 'dbg_check_idx_size()' which is called for
1772 * every indexing node and adds its size to the 'long long' variable pointed to
1775 static int add_size(struct ubifs_info
*c
, struct ubifs_znode
*znode
, void *priv
)
1777 long long *idx_size
= priv
;
1780 add
= ubifs_idx_node_sz(c
, znode
->child_cnt
);
1781 add
= ALIGN(add
, 8);
1787 * dbg_check_idx_size - check index size.
1788 * @c: UBIFS file-system description object
1789 * @idx_size: size to check
1791 * This function walks the UBIFS index, calculates its size and checks that the
1792 * size is equivalent to @idx_size. Returns zero in case of success and a
1793 * negative error code in case of failure.
1795 int dbg_check_idx_size(struct ubifs_info
*c
, long long idx_size
)
1800 if (!dbg_is_chk_index(c
))
1803 err
= dbg_walk_index(c
, NULL
, add_size
, &calc
);
1805 ubifs_err("error %d while walking the index", err
);
1809 if (calc
!= idx_size
) {
1810 ubifs_err("index size check failed: calculated size is %lld, "
1811 "should be %lld", calc
, idx_size
);
1820 * struct fsck_inode - information about an inode used when checking the file-system.
1821 * @rb: link in the RB-tree of inodes
1822 * @inum: inode number
1823 * @mode: inode type, permissions, etc
1824 * @nlink: inode link count
1825 * @xattr_cnt: count of extended attributes
1826 * @references: how many directory/xattr entries refer this inode (calculated
1827 * while walking the index)
1828 * @calc_cnt: for directory inode count of child directories
1829 * @size: inode size (read from on-flash inode)
1830 * @xattr_sz: summary size of all extended attributes (read from on-flash
1832 * @calc_sz: for directories calculated directory size
1833 * @calc_xcnt: count of extended attributes
1834 * @calc_xsz: calculated summary size of all extended attributes
1835 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1836 * inode (read from on-flash inode)
1837 * @calc_xnms: calculated sum of lengths of all extended attribute names
1844 unsigned int xattr_cnt
;
1848 unsigned int xattr_sz
;
1850 long long calc_xcnt
;
1852 unsigned int xattr_nms
;
1853 long long calc_xnms
;
1857 * struct fsck_data - private FS checking information.
1858 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1861 struct rb_root inodes
;
1865 * add_inode - add inode information to RB-tree of inodes.
1866 * @c: UBIFS file-system description object
1867 * @fsckd: FS checking information
1868 * @ino: raw UBIFS inode to add
1870 * This is a helper function for 'check_leaf()' which adds information about
1871 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1872 * case of success and a negative error code in case of failure.
1874 static struct fsck_inode
*add_inode(struct ubifs_info
*c
,
1875 struct fsck_data
*fsckd
,
1876 struct ubifs_ino_node
*ino
)
1878 struct rb_node
**p
, *parent
= NULL
;
1879 struct fsck_inode
*fscki
;
1880 ino_t inum
= key_inum_flash(c
, &ino
->key
);
1881 struct inode
*inode
;
1882 struct ubifs_inode
*ui
;
1884 p
= &fsckd
->inodes
.rb_node
;
1887 fscki
= rb_entry(parent
, struct fsck_inode
, rb
);
1888 if (inum
< fscki
->inum
)
1890 else if (inum
> fscki
->inum
)
1891 p
= &(*p
)->rb_right
;
1896 if (inum
> c
->highest_inum
) {
1897 ubifs_err("too high inode number, max. is %lu",
1898 (unsigned long)c
->highest_inum
);
1899 return ERR_PTR(-EINVAL
);
1902 fscki
= kzalloc(sizeof(struct fsck_inode
), GFP_NOFS
);
1904 return ERR_PTR(-ENOMEM
);
1906 inode
= ilookup(c
->vfs_sb
, inum
);
1910 * If the inode is present in the VFS inode cache, use it instead of
1911 * the on-flash inode which might be out-of-date. E.g., the size might
1912 * be out-of-date. If we do not do this, the following may happen, for
1914 * 1. A power cut happens
1915 * 2. We mount the file-system R/O, the replay process fixes up the
1916 * inode size in the VFS cache, but on on-flash.
1917 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1921 fscki
->nlink
= le32_to_cpu(ino
->nlink
);
1922 fscki
->size
= le64_to_cpu(ino
->size
);
1923 fscki
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
1924 fscki
->xattr_sz
= le32_to_cpu(ino
->xattr_size
);
1925 fscki
->xattr_nms
= le32_to_cpu(ino
->xattr_names
);
1926 fscki
->mode
= le32_to_cpu(ino
->mode
);
1928 ui
= ubifs_inode(inode
);
1929 fscki
->nlink
= inode
->i_nlink
;
1930 fscki
->size
= inode
->i_size
;
1931 fscki
->xattr_cnt
= ui
->xattr_cnt
;
1932 fscki
->xattr_sz
= ui
->xattr_size
;
1933 fscki
->xattr_nms
= ui
->xattr_names
;
1934 fscki
->mode
= inode
->i_mode
;
1938 if (S_ISDIR(fscki
->mode
)) {
1939 fscki
->calc_sz
= UBIFS_INO_NODE_SZ
;
1940 fscki
->calc_cnt
= 2;
1943 rb_link_node(&fscki
->rb
, parent
, p
);
1944 rb_insert_color(&fscki
->rb
, &fsckd
->inodes
);
1950 * search_inode - search inode in the RB-tree of inodes.
1951 * @fsckd: FS checking information
1952 * @inum: inode number to search
1954 * This is a helper function for 'check_leaf()' which searches inode @inum in
1955 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1956 * the inode was not found.
1958 static struct fsck_inode
*search_inode(struct fsck_data
*fsckd
, ino_t inum
)
1961 struct fsck_inode
*fscki
;
1963 p
= fsckd
->inodes
.rb_node
;
1965 fscki
= rb_entry(p
, struct fsck_inode
, rb
);
1966 if (inum
< fscki
->inum
)
1968 else if (inum
> fscki
->inum
)
1977 * read_add_inode - read inode node and add it to RB-tree of inodes.
1978 * @c: UBIFS file-system description object
1979 * @fsckd: FS checking information
1980 * @inum: inode number to read
1982 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1983 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1984 * information pointer in case of success and a negative error code in case of
1987 static struct fsck_inode
*read_add_inode(struct ubifs_info
*c
,
1988 struct fsck_data
*fsckd
, ino_t inum
)
1991 union ubifs_key key
;
1992 struct ubifs_znode
*znode
;
1993 struct ubifs_zbranch
*zbr
;
1994 struct ubifs_ino_node
*ino
;
1995 struct fsck_inode
*fscki
;
1997 fscki
= search_inode(fsckd
, inum
);
2001 ino_key_init(c
, &key
, inum
);
2002 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
2004 ubifs_err("inode %lu not found in index", (unsigned long)inum
);
2005 return ERR_PTR(-ENOENT
);
2006 } else if (err
< 0) {
2007 ubifs_err("error %d while looking up inode %lu",
2008 err
, (unsigned long)inum
);
2009 return ERR_PTR(err
);
2012 zbr
= &znode
->zbranch
[n
];
2013 if (zbr
->len
< UBIFS_INO_NODE_SZ
) {
2014 ubifs_err("bad node %lu node length %d",
2015 (unsigned long)inum
, zbr
->len
);
2016 return ERR_PTR(-EINVAL
);
2019 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
2021 return ERR_PTR(-ENOMEM
);
2023 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
2025 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2026 zbr
->lnum
, zbr
->offs
, err
);
2028 return ERR_PTR(err
);
2031 fscki
= add_inode(c
, fsckd
, ino
);
2033 if (IS_ERR(fscki
)) {
2034 ubifs_err("error %ld while adding inode %lu node",
2035 PTR_ERR(fscki
), (unsigned long)inum
);
2043 * check_leaf - check leaf node.
2044 * @c: UBIFS file-system description object
2045 * @zbr: zbranch of the leaf node to check
2046 * @priv: FS checking information
2048 * This is a helper function for 'dbg_check_filesystem()' which is called for
2049 * every single leaf node while walking the indexing tree. It checks that the
2050 * leaf node referred from the indexing tree exists, has correct CRC, and does
2051 * some other basic validation. This function is also responsible for building
2052 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2053 * calculates reference count, size, etc for each inode in order to later
2054 * compare them to the information stored inside the inodes and detect possible
2055 * inconsistencies. Returns zero in case of success and a negative error code
2056 * in case of failure.
2058 static int check_leaf(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
2063 struct ubifs_ch
*ch
;
2064 int err
, type
= key_type(c
, &zbr
->key
);
2065 struct fsck_inode
*fscki
;
2067 if (zbr
->len
< UBIFS_CH_SZ
) {
2068 ubifs_err("bad leaf length %d (LEB %d:%d)",
2069 zbr
->len
, zbr
->lnum
, zbr
->offs
);
2073 node
= kmalloc(zbr
->len
, GFP_NOFS
);
2077 err
= ubifs_tnc_read_node(c
, zbr
, node
);
2079 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2080 zbr
->lnum
, zbr
->offs
, err
);
2084 /* If this is an inode node, add it to RB-tree of inodes */
2085 if (type
== UBIFS_INO_KEY
) {
2086 fscki
= add_inode(c
, priv
, node
);
2087 if (IS_ERR(fscki
)) {
2088 err
= PTR_ERR(fscki
);
2089 ubifs_err("error %d while adding inode node", err
);
2095 if (type
!= UBIFS_DENT_KEY
&& type
!= UBIFS_XENT_KEY
&&
2096 type
!= UBIFS_DATA_KEY
) {
2097 ubifs_err("unexpected node type %d at LEB %d:%d",
2098 type
, zbr
->lnum
, zbr
->offs
);
2104 if (le64_to_cpu(ch
->sqnum
) > c
->max_sqnum
) {
2105 ubifs_err("too high sequence number, max. is %llu",
2111 if (type
== UBIFS_DATA_KEY
) {
2113 struct ubifs_data_node
*dn
= node
;
2116 * Search the inode node this data node belongs to and insert
2117 * it to the RB-tree of inodes.
2119 inum
= key_inum_flash(c
, &dn
->key
);
2120 fscki
= read_add_inode(c
, priv
, inum
);
2121 if (IS_ERR(fscki
)) {
2122 err
= PTR_ERR(fscki
);
2123 ubifs_err("error %d while processing data node and "
2124 "trying to find inode node %lu",
2125 err
, (unsigned long)inum
);
2129 /* Make sure the data node is within inode size */
2130 blk_offs
= key_block_flash(c
, &dn
->key
);
2131 blk_offs
<<= UBIFS_BLOCK_SHIFT
;
2132 blk_offs
+= le32_to_cpu(dn
->size
);
2133 if (blk_offs
> fscki
->size
) {
2134 ubifs_err("data node at LEB %d:%d is not within inode "
2135 "size %lld", zbr
->lnum
, zbr
->offs
,
2142 struct ubifs_dent_node
*dent
= node
;
2143 struct fsck_inode
*fscki1
;
2145 err
= ubifs_validate_entry(c
, dent
);
2150 * Search the inode node this entry refers to and the parent
2151 * inode node and insert them to the RB-tree of inodes.
2153 inum
= le64_to_cpu(dent
->inum
);
2154 fscki
= read_add_inode(c
, priv
, inum
);
2155 if (IS_ERR(fscki
)) {
2156 err
= PTR_ERR(fscki
);
2157 ubifs_err("error %d while processing entry node and "
2158 "trying to find inode node %lu",
2159 err
, (unsigned long)inum
);
2163 /* Count how many direntries or xentries refers this inode */
2164 fscki
->references
+= 1;
2166 inum
= key_inum_flash(c
, &dent
->key
);
2167 fscki1
= read_add_inode(c
, priv
, inum
);
2168 if (IS_ERR(fscki1
)) {
2169 err
= PTR_ERR(fscki1
);
2170 ubifs_err("error %d while processing entry node and "
2171 "trying to find parent inode node %lu",
2172 err
, (unsigned long)inum
);
2176 nlen
= le16_to_cpu(dent
->nlen
);
2177 if (type
== UBIFS_XENT_KEY
) {
2178 fscki1
->calc_xcnt
+= 1;
2179 fscki1
->calc_xsz
+= CALC_DENT_SIZE(nlen
);
2180 fscki1
->calc_xsz
+= CALC_XATTR_BYTES(fscki
->size
);
2181 fscki1
->calc_xnms
+= nlen
;
2183 fscki1
->calc_sz
+= CALC_DENT_SIZE(nlen
);
2184 if (dent
->type
== UBIFS_ITYPE_DIR
)
2185 fscki1
->calc_cnt
+= 1;
2194 ubifs_msg("dump of node at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
2195 dbg_dump_node(c
, node
);
2202 * free_inodes - free RB-tree of inodes.
2203 * @fsckd: FS checking information
2205 static void free_inodes(struct fsck_data
*fsckd
)
2207 struct rb_node
*this = fsckd
->inodes
.rb_node
;
2208 struct fsck_inode
*fscki
;
2212 this = this->rb_left
;
2213 else if (this->rb_right
)
2214 this = this->rb_right
;
2216 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2217 this = rb_parent(this);
2219 if (this->rb_left
== &fscki
->rb
)
2220 this->rb_left
= NULL
;
2222 this->rb_right
= NULL
;
2230 * check_inodes - checks all inodes.
2231 * @c: UBIFS file-system description object
2232 * @fsckd: FS checking information
2234 * This is a helper function for 'dbg_check_filesystem()' which walks the
2235 * RB-tree of inodes after the index scan has been finished, and checks that
2236 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2237 * %-EINVAL if not, and a negative error code in case of failure.
2239 static int check_inodes(struct ubifs_info
*c
, struct fsck_data
*fsckd
)
2242 union ubifs_key key
;
2243 struct ubifs_znode
*znode
;
2244 struct ubifs_zbranch
*zbr
;
2245 struct ubifs_ino_node
*ino
;
2246 struct fsck_inode
*fscki
;
2247 struct rb_node
*this = rb_first(&fsckd
->inodes
);
2250 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2251 this = rb_next(this);
2253 if (S_ISDIR(fscki
->mode
)) {
2255 * Directories have to have exactly one reference (they
2256 * cannot have hardlinks), although root inode is an
2259 if (fscki
->inum
!= UBIFS_ROOT_INO
&&
2260 fscki
->references
!= 1) {
2261 ubifs_err("directory inode %lu has %d "
2262 "direntries which refer it, but "
2264 (unsigned long)fscki
->inum
,
2268 if (fscki
->inum
== UBIFS_ROOT_INO
&&
2269 fscki
->references
!= 0) {
2270 ubifs_err("root inode %lu has non-zero (%d) "
2271 "direntries which refer it",
2272 (unsigned long)fscki
->inum
,
2276 if (fscki
->calc_sz
!= fscki
->size
) {
2277 ubifs_err("directory inode %lu size is %lld, "
2278 "but calculated size is %lld",
2279 (unsigned long)fscki
->inum
,
2280 fscki
->size
, fscki
->calc_sz
);
2283 if (fscki
->calc_cnt
!= fscki
->nlink
) {
2284 ubifs_err("directory inode %lu nlink is %d, "
2285 "but calculated nlink is %d",
2286 (unsigned long)fscki
->inum
,
2287 fscki
->nlink
, fscki
->calc_cnt
);
2291 if (fscki
->references
!= fscki
->nlink
) {
2292 ubifs_err("inode %lu nlink is %d, but "
2293 "calculated nlink is %d",
2294 (unsigned long)fscki
->inum
,
2295 fscki
->nlink
, fscki
->references
);
2299 if (fscki
->xattr_sz
!= fscki
->calc_xsz
) {
2300 ubifs_err("inode %lu has xattr size %u, but "
2301 "calculated size is %lld",
2302 (unsigned long)fscki
->inum
, fscki
->xattr_sz
,
2306 if (fscki
->xattr_cnt
!= fscki
->calc_xcnt
) {
2307 ubifs_err("inode %lu has %u xattrs, but "
2308 "calculated count is %lld",
2309 (unsigned long)fscki
->inum
,
2310 fscki
->xattr_cnt
, fscki
->calc_xcnt
);
2313 if (fscki
->xattr_nms
!= fscki
->calc_xnms
) {
2314 ubifs_err("inode %lu has xattr names' size %u, but "
2315 "calculated names' size is %lld",
2316 (unsigned long)fscki
->inum
, fscki
->xattr_nms
,
2325 /* Read the bad inode and dump it */
2326 ino_key_init(c
, &key
, fscki
->inum
);
2327 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
2329 ubifs_err("inode %lu not found in index",
2330 (unsigned long)fscki
->inum
);
2332 } else if (err
< 0) {
2333 ubifs_err("error %d while looking up inode %lu",
2334 err
, (unsigned long)fscki
->inum
);
2338 zbr
= &znode
->zbranch
[n
];
2339 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
2343 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
2345 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2346 zbr
->lnum
, zbr
->offs
, err
);
2351 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2352 (unsigned long)fscki
->inum
, zbr
->lnum
, zbr
->offs
);
2353 dbg_dump_node(c
, ino
);
2359 * dbg_check_filesystem - check the file-system.
2360 * @c: UBIFS file-system description object
2362 * This function checks the file system, namely:
2363 * o makes sure that all leaf nodes exist and their CRCs are correct;
2364 * o makes sure inode nlink, size, xattr size/count are correct (for all
2367 * The function reads whole indexing tree and all nodes, so it is pretty
2368 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2369 * not, and a negative error code in case of failure.
2371 int dbg_check_filesystem(struct ubifs_info
*c
)
2374 struct fsck_data fsckd
;
2376 if (!dbg_is_chk_fs(c
))
2379 fsckd
.inodes
= RB_ROOT
;
2380 err
= dbg_walk_index(c
, check_leaf
, NULL
, &fsckd
);
2384 err
= check_inodes(c
, &fsckd
);
2388 free_inodes(&fsckd
);
2392 ubifs_err("file-system check failed with error %d", err
);
2394 free_inodes(&fsckd
);
2399 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2400 * @c: UBIFS file-system description object
2401 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2403 * This function returns zero if the list of data nodes is sorted correctly,
2404 * and %-EINVAL if not.
2406 int dbg_check_data_nodes_order(struct ubifs_info
*c
, struct list_head
*head
)
2408 struct list_head
*cur
;
2409 struct ubifs_scan_node
*sa
, *sb
;
2411 if (!dbg_is_chk_gen(c
))
2414 for (cur
= head
->next
; cur
->next
!= head
; cur
= cur
->next
) {
2416 uint32_t blka
, blkb
;
2419 sa
= container_of(cur
, struct ubifs_scan_node
, list
);
2420 sb
= container_of(cur
->next
, struct ubifs_scan_node
, list
);
2422 if (sa
->type
!= UBIFS_DATA_NODE
) {
2423 ubifs_err("bad node type %d", sa
->type
);
2424 dbg_dump_node(c
, sa
->node
);
2427 if (sb
->type
!= UBIFS_DATA_NODE
) {
2428 ubifs_err("bad node type %d", sb
->type
);
2429 dbg_dump_node(c
, sb
->node
);
2433 inuma
= key_inum(c
, &sa
->key
);
2434 inumb
= key_inum(c
, &sb
->key
);
2438 if (inuma
> inumb
) {
2439 ubifs_err("larger inum %lu goes before inum %lu",
2440 (unsigned long)inuma
, (unsigned long)inumb
);
2444 blka
= key_block(c
, &sa
->key
);
2445 blkb
= key_block(c
, &sb
->key
);
2448 ubifs_err("larger block %u goes before %u", blka
, blkb
);
2452 ubifs_err("two data nodes for the same block");
2460 dbg_dump_node(c
, sa
->node
);
2461 dbg_dump_node(c
, sb
->node
);
2466 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2467 * @c: UBIFS file-system description object
2468 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2470 * This function returns zero if the list of non-data nodes is sorted correctly,
2471 * and %-EINVAL if not.
2473 int dbg_check_nondata_nodes_order(struct ubifs_info
*c
, struct list_head
*head
)
2475 struct list_head
*cur
;
2476 struct ubifs_scan_node
*sa
, *sb
;
2478 if (!dbg_is_chk_gen(c
))
2481 for (cur
= head
->next
; cur
->next
!= head
; cur
= cur
->next
) {
2483 uint32_t hasha
, hashb
;
2486 sa
= container_of(cur
, struct ubifs_scan_node
, list
);
2487 sb
= container_of(cur
->next
, struct ubifs_scan_node
, list
);
2489 if (sa
->type
!= UBIFS_INO_NODE
&& sa
->type
!= UBIFS_DENT_NODE
&&
2490 sa
->type
!= UBIFS_XENT_NODE
) {
2491 ubifs_err("bad node type %d", sa
->type
);
2492 dbg_dump_node(c
, sa
->node
);
2495 if (sa
->type
!= UBIFS_INO_NODE
&& sa
->type
!= UBIFS_DENT_NODE
&&
2496 sa
->type
!= UBIFS_XENT_NODE
) {
2497 ubifs_err("bad node type %d", sb
->type
);
2498 dbg_dump_node(c
, sb
->node
);
2502 if (sa
->type
!= UBIFS_INO_NODE
&& sb
->type
== UBIFS_INO_NODE
) {
2503 ubifs_err("non-inode node goes before inode node");
2507 if (sa
->type
== UBIFS_INO_NODE
&& sb
->type
!= UBIFS_INO_NODE
)
2510 if (sa
->type
== UBIFS_INO_NODE
&& sb
->type
== UBIFS_INO_NODE
) {
2511 /* Inode nodes are sorted in descending size order */
2512 if (sa
->len
< sb
->len
) {
2513 ubifs_err("smaller inode node goes first");
2520 * This is either a dentry or xentry, which should be sorted in
2521 * ascending (parent ino, hash) order.
2523 inuma
= key_inum(c
, &sa
->key
);
2524 inumb
= key_inum(c
, &sb
->key
);
2528 if (inuma
> inumb
) {
2529 ubifs_err("larger inum %lu goes before inum %lu",
2530 (unsigned long)inuma
, (unsigned long)inumb
);
2534 hasha
= key_block(c
, &sa
->key
);
2535 hashb
= key_block(c
, &sb
->key
);
2537 if (hasha
> hashb
) {
2538 ubifs_err("larger hash %u goes before %u",
2547 ubifs_msg("dumping first node");
2548 dbg_dump_node(c
, sa
->node
);
2549 ubifs_msg("dumping second node");
2550 dbg_dump_node(c
, sb
->node
);
2555 static inline int chance(unsigned int n
, unsigned int out_of
)
2557 return !!((random32() % out_of
) + 1 <= n
);
2561 static int power_cut_emulated(struct ubifs_info
*c
, int lnum
, int write
)
2563 struct ubifs_debug_info
*d
= c
->dbg
;
2565 ubifs_assert(dbg_is_tst_rcvry(c
));
2568 /* First call - decide delay to the power cut */
2570 unsigned long delay
;
2574 /* Fail withing 1 minute */
2575 delay
= random32() % 60000;
2576 d
->pc_timeout
= jiffies
;
2577 d
->pc_timeout
+= msecs_to_jiffies(delay
);
2578 ubifs_warn("failing after %lums", delay
);
2581 delay
= random32() % 10000;
2582 /* Fail within 10000 operations */
2583 d
->pc_cnt_max
= delay
;
2584 ubifs_warn("failing after %lu calls", delay
);
2591 /* Determine if failure delay has expired */
2592 if (d
->pc_delay
== 1 && time_before(jiffies
, d
->pc_timeout
))
2594 if (d
->pc_delay
== 2 && d
->pc_cnt
++ < d
->pc_cnt_max
)
2597 if (lnum
== UBIFS_SB_LNUM
) {
2598 if (write
&& chance(1, 2))
2602 ubifs_warn("failing in super block LEB %d", lnum
);
2603 } else if (lnum
== UBIFS_MST_LNUM
|| lnum
== UBIFS_MST_LNUM
+ 1) {
2606 ubifs_warn("failing in master LEB %d", lnum
);
2607 } else if (lnum
>= UBIFS_LOG_LNUM
&& lnum
<= c
->log_last
) {
2608 if (write
&& chance(99, 100))
2610 if (chance(399, 400))
2612 ubifs_warn("failing in log LEB %d", lnum
);
2613 } else if (lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
) {
2614 if (write
&& chance(7, 8))
2618 ubifs_warn("failing in LPT LEB %d", lnum
);
2619 } else if (lnum
>= c
->orph_first
&& lnum
<= c
->orph_last
) {
2620 if (write
&& chance(1, 2))
2624 ubifs_warn("failing in orphan LEB %d", lnum
);
2625 } else if (lnum
== c
->ihead_lnum
) {
2626 if (chance(99, 100))
2628 ubifs_warn("failing in index head LEB %d", lnum
);
2629 } else if (c
->jheads
&& lnum
== c
->jheads
[GCHD
].wbuf
.lnum
) {
2632 ubifs_warn("failing in GC head LEB %d", lnum
);
2633 } else if (write
&& !RB_EMPTY_ROOT(&c
->buds
) &&
2634 !ubifs_search_bud(c
, lnum
)) {
2637 ubifs_warn("failing in non-bud LEB %d", lnum
);
2638 } else if (c
->cmt_state
== COMMIT_RUNNING_BACKGROUND
||
2639 c
->cmt_state
== COMMIT_RUNNING_REQUIRED
) {
2640 if (chance(999, 1000))
2642 ubifs_warn("failing in bud LEB %d commit running", lnum
);
2644 if (chance(9999, 10000))
2646 ubifs_warn("failing in bud LEB %d commit not running", lnum
);
2650 ubifs_warn("========== Power cut emulated ==========");
2655 static void cut_data(const void *buf
, unsigned int len
)
2657 unsigned int from
, to
, i
, ffs
= chance(1, 2);
2658 unsigned char *p
= (void *)buf
;
2660 from
= random32() % (len
+ 1);
2662 to
= random32() % (len
- from
+ 1);
2667 ubifs_warn("filled bytes %u-%u with %s", from
, to
- 1,
2668 ffs
? "0xFFs" : "random data");
2671 for (i
= from
; i
< to
; i
++)
2674 for (i
= from
; i
< to
; i
++)
2675 p
[i
] = random32() % 0x100;
2678 int dbg_leb_write(struct ubifs_info
*c
, int lnum
, const void *buf
,
2679 int offs
, int len
, int dtype
)
2683 if (c
->dbg
->pc_happened
)
2686 failing
= power_cut_emulated(c
, lnum
, 1);
2689 err
= ubi_leb_write(c
->ubi
, lnum
, buf
, offs
, len
, dtype
);
2697 int dbg_leb_change(struct ubifs_info
*c
, int lnum
, const void *buf
,
2702 if (c
->dbg
->pc_happened
)
2704 if (power_cut_emulated(c
, lnum
, 1))
2706 err
= ubi_leb_change(c
->ubi
, lnum
, buf
, len
, dtype
);
2709 if (power_cut_emulated(c
, lnum
, 1))
2714 int dbg_leb_unmap(struct ubifs_info
*c
, int lnum
)
2718 if (c
->dbg
->pc_happened
)
2720 if (power_cut_emulated(c
, lnum
, 0))
2722 err
= ubi_leb_unmap(c
->ubi
, lnum
);
2725 if (power_cut_emulated(c
, lnum
, 0))
2730 int dbg_leb_map(struct ubifs_info
*c
, int lnum
, int dtype
)
2734 if (c
->dbg
->pc_happened
)
2736 if (power_cut_emulated(c
, lnum
, 0))
2738 err
= ubi_leb_map(c
->ubi
, lnum
, dtype
);
2741 if (power_cut_emulated(c
, lnum
, 0))
2747 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2748 * contain the stuff specific to particular file-system mounts.
2750 static struct dentry
*dfs_rootdir
;
2752 static int dfs_file_open(struct inode
*inode
, struct file
*file
)
2754 file
->private_data
= inode
->i_private
;
2755 return nonseekable_open(inode
, file
);
2759 * provide_user_output - provide output to the user reading a debugfs file.
2760 * @val: boolean value for the answer
2761 * @u: the buffer to store the answer at
2762 * @count: size of the buffer
2763 * @ppos: position in the @u output buffer
2765 * This is a simple helper function which stores @val boolean value in the user
2766 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2767 * bytes written to @u in case of success and a negative error code in case of
2770 static int provide_user_output(int val
, char __user
*u
, size_t count
,
2782 return simple_read_from_buffer(u
, count
, ppos
, buf
, 2);
2785 static ssize_t
dfs_file_read(struct file
*file
, char __user
*u
, size_t count
,
2788 struct dentry
*dent
= file
->f_path
.dentry
;
2789 struct ubifs_info
*c
= file
->private_data
;
2790 struct ubifs_debug_info
*d
= c
->dbg
;
2793 if (dent
== d
->dfs_chk_gen
)
2795 else if (dent
== d
->dfs_chk_index
)
2797 else if (dent
== d
->dfs_chk_orph
)
2799 else if (dent
== d
->dfs_chk_lprops
)
2800 val
= d
->chk_lprops
;
2801 else if (dent
== d
->dfs_chk_fs
)
2803 else if (dent
== d
->dfs_tst_rcvry
)
2808 return provide_user_output(val
, u
, count
, ppos
);
2812 * interpret_user_input - interpret user debugfs file input.
2813 * @u: user-provided buffer with the input
2814 * @count: buffer size
2816 * This is a helper function which interpret user input to a boolean UBIFS
2817 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2818 * in case of failure.
2820 static int interpret_user_input(const char __user
*u
, size_t count
)
2825 buf_size
= min_t(size_t, count
, (sizeof(buf
) - 1));
2826 if (copy_from_user(buf
, u
, buf_size
))
2831 else if (buf
[0] == '0')
2837 static ssize_t
dfs_file_write(struct file
*file
, const char __user
*u
,
2838 size_t count
, loff_t
*ppos
)
2840 struct ubifs_info
*c
= file
->private_data
;
2841 struct ubifs_debug_info
*d
= c
->dbg
;
2842 struct dentry
*dent
= file
->f_path
.dentry
;
2846 * TODO: this is racy - the file-system might have already been
2847 * unmounted and we'd oops in this case. The plan is to fix it with
2848 * help of 'iterate_supers_type()' which we should have in v3.0: when
2849 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2850 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2851 * superblocks and fine the one with the same UUID, and take the
2854 * The other way to go suggested by Al Viro is to create a separate
2855 * 'ubifs-debug' file-system instead.
2857 if (file
->f_path
.dentry
== d
->dfs_dump_lprops
) {
2861 if (file
->f_path
.dentry
== d
->dfs_dump_budg
) {
2862 dbg_dump_budg(c
, &c
->bi
);
2865 if (file
->f_path
.dentry
== d
->dfs_dump_tnc
) {
2866 mutex_lock(&c
->tnc_mutex
);
2868 mutex_unlock(&c
->tnc_mutex
);
2872 val
= interpret_user_input(u
, count
);
2876 if (dent
== d
->dfs_chk_gen
)
2878 else if (dent
== d
->dfs_chk_index
)
2880 else if (dent
== d
->dfs_chk_orph
)
2882 else if (dent
== d
->dfs_chk_lprops
)
2883 d
->chk_lprops
= val
;
2884 else if (dent
== d
->dfs_chk_fs
)
2886 else if (dent
== d
->dfs_tst_rcvry
)
2894 static const struct file_operations dfs_fops
= {
2895 .open
= dfs_file_open
,
2896 .read
= dfs_file_read
,
2897 .write
= dfs_file_write
,
2898 .owner
= THIS_MODULE
,
2899 .llseek
= no_llseek
,
2903 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2904 * @c: UBIFS file-system description object
2906 * This function creates all debugfs files for this instance of UBIFS. Returns
2907 * zero in case of success and a negative error code in case of failure.
2909 * Note, the only reason we have not merged this function with the
2910 * 'ubifs_debugging_init()' function is because it is better to initialize
2911 * debugfs interfaces at the very end of the mount process, and remove them at
2912 * the very beginning of the mount process.
2914 int dbg_debugfs_init_fs(struct ubifs_info
*c
)
2918 struct dentry
*dent
;
2919 struct ubifs_debug_info
*d
= c
->dbg
;
2921 n
= snprintf(d
->dfs_dir_name
, UBIFS_DFS_DIR_LEN
+ 1, UBIFS_DFS_DIR_NAME
,
2922 c
->vi
.ubi_num
, c
->vi
.vol_id
);
2923 if (n
== UBIFS_DFS_DIR_LEN
) {
2924 /* The array size is too small */
2925 fname
= UBIFS_DFS_DIR_NAME
;
2926 dent
= ERR_PTR(-EINVAL
);
2930 fname
= d
->dfs_dir_name
;
2931 dent
= debugfs_create_dir(fname
, dfs_rootdir
);
2932 if (IS_ERR_OR_NULL(dent
))
2936 fname
= "dump_lprops";
2937 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2938 if (IS_ERR_OR_NULL(dent
))
2940 d
->dfs_dump_lprops
= dent
;
2942 fname
= "dump_budg";
2943 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2944 if (IS_ERR_OR_NULL(dent
))
2946 d
->dfs_dump_budg
= dent
;
2949 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2950 if (IS_ERR_OR_NULL(dent
))
2952 d
->dfs_dump_tnc
= dent
;
2954 fname
= "chk_general";
2955 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2957 if (IS_ERR_OR_NULL(dent
))
2959 d
->dfs_chk_gen
= dent
;
2961 fname
= "chk_index";
2962 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2964 if (IS_ERR_OR_NULL(dent
))
2966 d
->dfs_chk_index
= dent
;
2968 fname
= "chk_orphans";
2969 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2971 if (IS_ERR_OR_NULL(dent
))
2973 d
->dfs_chk_orph
= dent
;
2975 fname
= "chk_lprops";
2976 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2978 if (IS_ERR_OR_NULL(dent
))
2980 d
->dfs_chk_lprops
= dent
;
2983 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2985 if (IS_ERR_OR_NULL(dent
))
2987 d
->dfs_chk_fs
= dent
;
2989 fname
= "tst_recovery";
2990 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2992 if (IS_ERR_OR_NULL(dent
))
2994 d
->dfs_tst_rcvry
= dent
;
2999 debugfs_remove_recursive(d
->dfs_dir
);
3001 err
= dent
? PTR_ERR(dent
) : -ENODEV
;
3002 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3008 * dbg_debugfs_exit_fs - remove all debugfs files.
3009 * @c: UBIFS file-system description object
3011 void dbg_debugfs_exit_fs(struct ubifs_info
*c
)
3013 debugfs_remove_recursive(c
->dbg
->dfs_dir
);
3016 struct ubifs_global_debug_info ubifs_dbg
;
3018 static struct dentry
*dfs_chk_gen
;
3019 static struct dentry
*dfs_chk_index
;
3020 static struct dentry
*dfs_chk_orph
;
3021 static struct dentry
*dfs_chk_lprops
;
3022 static struct dentry
*dfs_chk_fs
;
3023 static struct dentry
*dfs_tst_rcvry
;
3025 static ssize_t
dfs_global_file_read(struct file
*file
, char __user
*u
,
3026 size_t count
, loff_t
*ppos
)
3028 struct dentry
*dent
= file
->f_path
.dentry
;
3031 if (dent
== dfs_chk_gen
)
3032 val
= ubifs_dbg
.chk_gen
;
3033 else if (dent
== dfs_chk_index
)
3034 val
= ubifs_dbg
.chk_index
;
3035 else if (dent
== dfs_chk_orph
)
3036 val
= ubifs_dbg
.chk_orph
;
3037 else if (dent
== dfs_chk_lprops
)
3038 val
= ubifs_dbg
.chk_lprops
;
3039 else if (dent
== dfs_chk_fs
)
3040 val
= ubifs_dbg
.chk_fs
;
3041 else if (dent
== dfs_tst_rcvry
)
3042 val
= ubifs_dbg
.tst_rcvry
;
3046 return provide_user_output(val
, u
, count
, ppos
);
3049 static ssize_t
dfs_global_file_write(struct file
*file
, const char __user
*u
,
3050 size_t count
, loff_t
*ppos
)
3052 struct dentry
*dent
= file
->f_path
.dentry
;
3055 val
= interpret_user_input(u
, count
);
3059 if (dent
== dfs_chk_gen
)
3060 ubifs_dbg
.chk_gen
= val
;
3061 else if (dent
== dfs_chk_index
)
3062 ubifs_dbg
.chk_index
= val
;
3063 else if (dent
== dfs_chk_orph
)
3064 ubifs_dbg
.chk_orph
= val
;
3065 else if (dent
== dfs_chk_lprops
)
3066 ubifs_dbg
.chk_lprops
= val
;
3067 else if (dent
== dfs_chk_fs
)
3068 ubifs_dbg
.chk_fs
= val
;
3069 else if (dent
== dfs_tst_rcvry
)
3070 ubifs_dbg
.tst_rcvry
= val
;
3077 static const struct file_operations dfs_global_fops
= {
3078 .read
= dfs_global_file_read
,
3079 .write
= dfs_global_file_write
,
3080 .owner
= THIS_MODULE
,
3081 .llseek
= no_llseek
,
3085 * dbg_debugfs_init - initialize debugfs file-system.
3087 * UBIFS uses debugfs file-system to expose various debugging knobs to
3088 * user-space. This function creates "ubifs" directory in the debugfs
3089 * file-system. Returns zero in case of success and a negative error code in
3092 int dbg_debugfs_init(void)
3096 struct dentry
*dent
;
3099 dent
= debugfs_create_dir(fname
, NULL
);
3100 if (IS_ERR_OR_NULL(dent
))
3104 fname
= "chk_general";
3105 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3107 if (IS_ERR_OR_NULL(dent
))
3111 fname
= "chk_index";
3112 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3114 if (IS_ERR_OR_NULL(dent
))
3116 dfs_chk_index
= dent
;
3118 fname
= "chk_orphans";
3119 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3121 if (IS_ERR_OR_NULL(dent
))
3123 dfs_chk_orph
= dent
;
3125 fname
= "chk_lprops";
3126 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3128 if (IS_ERR_OR_NULL(dent
))
3130 dfs_chk_lprops
= dent
;
3133 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3135 if (IS_ERR_OR_NULL(dent
))
3139 fname
= "tst_recovery";
3140 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3142 if (IS_ERR_OR_NULL(dent
))
3144 dfs_tst_rcvry
= dent
;
3149 debugfs_remove_recursive(dfs_rootdir
);
3151 err
= dent
? PTR_ERR(dent
) : -ENODEV
;
3152 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3158 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3160 void dbg_debugfs_exit(void)
3162 debugfs_remove_recursive(dfs_rootdir
);
3166 * ubifs_debugging_init - initialize UBIFS debugging.
3167 * @c: UBIFS file-system description object
3169 * This function initializes debugging-related data for the file system.
3170 * Returns zero in case of success and a negative error code in case of
3173 int ubifs_debugging_init(struct ubifs_info
*c
)
3175 c
->dbg
= kzalloc(sizeof(struct ubifs_debug_info
), GFP_KERNEL
);
3183 * ubifs_debugging_exit - free debugging data.
3184 * @c: UBIFS file-system description object
3186 void ubifs_debugging_exit(struct ubifs_info
*c
)
3191 #endif /* CONFIG_UBIFS_FS_DEBUG */