2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
41 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static int __ext4_journalled_writepage(struct page
*page
,
51 struct writeback_control
*wbc
,
54 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
57 return jbd2_journal_begin_ordered_truncate(
58 EXT4_SB(inode
->i_sb
)->s_journal
,
59 &EXT4_I(inode
)->jinode
,
63 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
66 * Test whether an inode is a fast symlink.
68 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
70 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
71 (inode
->i_sb
->s_blocksize
>> 9) : 0;
73 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
77 * The ext4 forget function must perform a revoke if we are freeing data
78 * which has been journaled. Metadata (eg. indirect blocks) must be
79 * revoked in all cases.
81 * "bh" may be NULL: a metadata block may have been freed from memory
82 * but there may still be a record of it in the journal, and that record
83 * still needs to be revoked.
85 * If the handle isn't valid we're not journaling so there's nothing to do.
87 int ext4_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
88 struct buffer_head
*bh
, ext4_fsblk_t blocknr
)
92 if (!ext4_handle_valid(handle
))
97 BUFFER_TRACE(bh
, "enter");
99 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
101 bh
, is_metadata
, inode
->i_mode
,
102 test_opt(inode
->i_sb
, DATA_FLAGS
));
104 /* Never use the revoke function if we are doing full data
105 * journaling: there is no need to, and a V1 superblock won't
106 * support it. Otherwise, only skip the revoke on un-journaled
109 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT4_MOUNT_JOURNAL_DATA
||
110 (!is_metadata
&& !ext4_should_journal_data(inode
))) {
112 BUFFER_TRACE(bh
, "call jbd2_journal_forget");
113 return ext4_journal_forget(handle
, bh
);
119 * data!=journal && (is_metadata || should_journal_data(inode))
121 BUFFER_TRACE(bh
, "call ext4_journal_revoke");
122 err
= ext4_journal_revoke(handle
, blocknr
, bh
);
124 ext4_abort(inode
->i_sb
, __func__
,
125 "error %d when attempting revoke", err
);
126 BUFFER_TRACE(bh
, "exit");
131 * Work out how many blocks we need to proceed with the next chunk of a
132 * truncate transaction.
134 static unsigned long blocks_for_truncate(struct inode
*inode
)
138 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
140 /* Give ourselves just enough room to cope with inodes in which
141 * i_blocks is corrupt: we've seen disk corruptions in the past
142 * which resulted in random data in an inode which looked enough
143 * like a regular file for ext4 to try to delete it. Things
144 * will go a bit crazy if that happens, but at least we should
145 * try not to panic the whole kernel. */
149 /* But we need to bound the transaction so we don't overflow the
151 if (needed
> EXT4_MAX_TRANS_DATA
)
152 needed
= EXT4_MAX_TRANS_DATA
;
154 return EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
158 * Truncate transactions can be complex and absolutely huge. So we need to
159 * be able to restart the transaction at a conventient checkpoint to make
160 * sure we don't overflow the journal.
162 * start_transaction gets us a new handle for a truncate transaction,
163 * and extend_transaction tries to extend the existing one a bit. If
164 * extend fails, we need to propagate the failure up and restart the
165 * transaction in the top-level truncate loop. --sct
167 static handle_t
*start_transaction(struct inode
*inode
)
171 result
= ext4_journal_start(inode
, blocks_for_truncate(inode
));
175 ext4_std_error(inode
->i_sb
, PTR_ERR(result
));
180 * Try to extend this transaction for the purposes of truncation.
182 * Returns 0 if we managed to create more room. If we can't create more
183 * room, and the transaction must be restarted we return 1.
185 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
187 if (!ext4_handle_valid(handle
))
189 if (ext4_handle_has_enough_credits(handle
, EXT4_RESERVE_TRANS_BLOCKS
+1))
191 if (!ext4_journal_extend(handle
, blocks_for_truncate(inode
)))
197 * Restart the transaction associated with *handle. This does a commit,
198 * so before we call here everything must be consistently dirtied against
201 static int ext4_journal_test_restart(handle_t
*handle
, struct inode
*inode
)
203 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
204 jbd_debug(2, "restarting handle %p\n", handle
);
205 return ext4_journal_restart(handle
, blocks_for_truncate(inode
));
209 * Called at the last iput() if i_nlink is zero.
211 void ext4_delete_inode(struct inode
*inode
)
216 if (ext4_should_order_data(inode
))
217 ext4_begin_ordered_truncate(inode
, 0);
218 truncate_inode_pages(&inode
->i_data
, 0);
220 if (is_bad_inode(inode
))
223 handle
= ext4_journal_start(inode
, blocks_for_truncate(inode
)+3);
224 if (IS_ERR(handle
)) {
225 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
227 * If we're going to skip the normal cleanup, we still need to
228 * make sure that the in-core orphan linked list is properly
231 ext4_orphan_del(NULL
, inode
);
236 ext4_handle_sync(handle
);
238 err
= ext4_mark_inode_dirty(handle
, inode
);
240 ext4_warning(inode
->i_sb
, __func__
,
241 "couldn't mark inode dirty (err %d)", err
);
245 ext4_truncate(inode
);
248 * ext4_ext_truncate() doesn't reserve any slop when it
249 * restarts journal transactions; therefore there may not be
250 * enough credits left in the handle to remove the inode from
251 * the orphan list and set the dtime field.
253 if (!ext4_handle_has_enough_credits(handle
, 3)) {
254 err
= ext4_journal_extend(handle
, 3);
256 err
= ext4_journal_restart(handle
, 3);
258 ext4_warning(inode
->i_sb
, __func__
,
259 "couldn't extend journal (err %d)", err
);
261 ext4_journal_stop(handle
);
267 * Kill off the orphan record which ext4_truncate created.
268 * AKPM: I think this can be inside the above `if'.
269 * Note that ext4_orphan_del() has to be able to cope with the
270 * deletion of a non-existent orphan - this is because we don't
271 * know if ext4_truncate() actually created an orphan record.
272 * (Well, we could do this if we need to, but heck - it works)
274 ext4_orphan_del(handle
, inode
);
275 EXT4_I(inode
)->i_dtime
= get_seconds();
278 * One subtle ordering requirement: if anything has gone wrong
279 * (transaction abort, IO errors, whatever), then we can still
280 * do these next steps (the fs will already have been marked as
281 * having errors), but we can't free the inode if the mark_dirty
284 if (ext4_mark_inode_dirty(handle
, inode
))
285 /* If that failed, just do the required in-core inode clear. */
288 ext4_free_inode(handle
, inode
);
289 ext4_journal_stop(handle
);
292 clear_inode(inode
); /* We must guarantee clearing of inode... */
298 struct buffer_head
*bh
;
301 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
303 p
->key
= *(p
->p
= v
);
308 * ext4_block_to_path - parse the block number into array of offsets
309 * @inode: inode in question (we are only interested in its superblock)
310 * @i_block: block number to be parsed
311 * @offsets: array to store the offsets in
312 * @boundary: set this non-zero if the referred-to block is likely to be
313 * followed (on disk) by an indirect block.
315 * To store the locations of file's data ext4 uses a data structure common
316 * for UNIX filesystems - tree of pointers anchored in the inode, with
317 * data blocks at leaves and indirect blocks in intermediate nodes.
318 * This function translates the block number into path in that tree -
319 * return value is the path length and @offsets[n] is the offset of
320 * pointer to (n+1)th node in the nth one. If @block is out of range
321 * (negative or too large) warning is printed and zero returned.
323 * Note: function doesn't find node addresses, so no IO is needed. All
324 * we need to know is the capacity of indirect blocks (taken from the
329 * Portability note: the last comparison (check that we fit into triple
330 * indirect block) is spelled differently, because otherwise on an
331 * architecture with 32-bit longs and 8Kb pages we might get into trouble
332 * if our filesystem had 8Kb blocks. We might use long long, but that would
333 * kill us on x86. Oh, well, at least the sign propagation does not matter -
334 * i_block would have to be negative in the very beginning, so we would not
338 static int ext4_block_to_path(struct inode
*inode
,
340 ext4_lblk_t offsets
[4], int *boundary
)
342 int ptrs
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
343 int ptrs_bits
= EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
344 const long direct_blocks
= EXT4_NDIR_BLOCKS
,
345 indirect_blocks
= ptrs
,
346 double_blocks
= (1 << (ptrs_bits
* 2));
351 ext4_warning(inode
->i_sb
, "ext4_block_to_path", "block < 0");
352 } else if (i_block
< direct_blocks
) {
353 offsets
[n
++] = i_block
;
354 final
= direct_blocks
;
355 } else if ((i_block
-= direct_blocks
) < indirect_blocks
) {
356 offsets
[n
++] = EXT4_IND_BLOCK
;
357 offsets
[n
++] = i_block
;
359 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
360 offsets
[n
++] = EXT4_DIND_BLOCK
;
361 offsets
[n
++] = i_block
>> ptrs_bits
;
362 offsets
[n
++] = i_block
& (ptrs
- 1);
364 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
365 offsets
[n
++] = EXT4_TIND_BLOCK
;
366 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
367 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
368 offsets
[n
++] = i_block
& (ptrs
- 1);
371 ext4_warning(inode
->i_sb
, "ext4_block_to_path",
372 "block %lu > max in inode %lu",
373 i_block
+ direct_blocks
+
374 indirect_blocks
+ double_blocks
, inode
->i_ino
);
377 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
381 static int __ext4_check_blockref(const char *function
, struct inode
*inode
,
382 __le32
*p
, unsigned int max
)
387 while (bref
< p
+max
) {
388 blk
= le32_to_cpu(*bref
++);
390 unlikely(!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
392 ext4_error(inode
->i_sb
, function
,
393 "invalid block reference %u "
394 "in inode #%lu", blk
, inode
->i_ino
);
402 #define ext4_check_indirect_blockref(inode, bh) \
403 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
404 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
406 #define ext4_check_inode_blockref(inode) \
407 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
411 * ext4_get_branch - read the chain of indirect blocks leading to data
412 * @inode: inode in question
413 * @depth: depth of the chain (1 - direct pointer, etc.)
414 * @offsets: offsets of pointers in inode/indirect blocks
415 * @chain: place to store the result
416 * @err: here we store the error value
418 * Function fills the array of triples <key, p, bh> and returns %NULL
419 * if everything went OK or the pointer to the last filled triple
420 * (incomplete one) otherwise. Upon the return chain[i].key contains
421 * the number of (i+1)-th block in the chain (as it is stored in memory,
422 * i.e. little-endian 32-bit), chain[i].p contains the address of that
423 * number (it points into struct inode for i==0 and into the bh->b_data
424 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
425 * block for i>0 and NULL for i==0. In other words, it holds the block
426 * numbers of the chain, addresses they were taken from (and where we can
427 * verify that chain did not change) and buffer_heads hosting these
430 * Function stops when it stumbles upon zero pointer (absent block)
431 * (pointer to last triple returned, *@err == 0)
432 * or when it gets an IO error reading an indirect block
433 * (ditto, *@err == -EIO)
434 * or when it reads all @depth-1 indirect blocks successfully and finds
435 * the whole chain, all way to the data (returns %NULL, *err == 0).
437 * Need to be called with
438 * down_read(&EXT4_I(inode)->i_data_sem)
440 static Indirect
*ext4_get_branch(struct inode
*inode
, int depth
,
441 ext4_lblk_t
*offsets
,
442 Indirect chain
[4], int *err
)
444 struct super_block
*sb
= inode
->i_sb
;
446 struct buffer_head
*bh
;
449 /* i_data is not going away, no lock needed */
450 add_chain(chain
, NULL
, EXT4_I(inode
)->i_data
+ *offsets
);
454 bh
= sb_getblk(sb
, le32_to_cpu(p
->key
));
458 if (!bh_uptodate_or_lock(bh
)) {
459 if (bh_submit_read(bh
) < 0) {
463 /* validate block references */
464 if (ext4_check_indirect_blockref(inode
, bh
)) {
470 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
484 * ext4_find_near - find a place for allocation with sufficient locality
486 * @ind: descriptor of indirect block.
488 * This function returns the preferred place for block allocation.
489 * It is used when heuristic for sequential allocation fails.
491 * + if there is a block to the left of our position - allocate near it.
492 * + if pointer will live in indirect block - allocate near that block.
493 * + if pointer will live in inode - allocate in the same
496 * In the latter case we colour the starting block by the callers PID to
497 * prevent it from clashing with concurrent allocations for a different inode
498 * in the same block group. The PID is used here so that functionally related
499 * files will be close-by on-disk.
501 * Caller must make sure that @ind is valid and will stay that way.
503 static ext4_fsblk_t
ext4_find_near(struct inode
*inode
, Indirect
*ind
)
505 struct ext4_inode_info
*ei
= EXT4_I(inode
);
506 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
508 ext4_fsblk_t bg_start
;
509 ext4_fsblk_t last_block
;
510 ext4_grpblk_t colour
;
511 ext4_group_t block_group
;
512 int flex_size
= ext4_flex_bg_size(EXT4_SB(inode
->i_sb
));
514 /* Try to find previous block */
515 for (p
= ind
->p
- 1; p
>= start
; p
--) {
517 return le32_to_cpu(*p
);
520 /* No such thing, so let's try location of indirect block */
522 return ind
->bh
->b_blocknr
;
525 * It is going to be referred to from the inode itself? OK, just put it
526 * into the same cylinder group then.
528 block_group
= ei
->i_block_group
;
529 if (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) {
530 block_group
&= ~(flex_size
-1);
531 if (S_ISREG(inode
->i_mode
))
534 bg_start
= ext4_group_first_block_no(inode
->i_sb
, block_group
);
535 last_block
= ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
) - 1;
538 * If we are doing delayed allocation, we don't need take
539 * colour into account.
541 if (test_opt(inode
->i_sb
, DELALLOC
))
544 if (bg_start
+ EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) <= last_block
)
545 colour
= (current
->pid
% 16) *
546 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
548 colour
= (current
->pid
% 16) * ((last_block
- bg_start
) / 16);
549 return bg_start
+ colour
;
553 * ext4_find_goal - find a preferred place for allocation.
555 * @block: block we want
556 * @partial: pointer to the last triple within a chain
558 * Normally this function find the preferred place for block allocation,
561 static ext4_fsblk_t
ext4_find_goal(struct inode
*inode
, ext4_lblk_t block
,
565 * XXX need to get goal block from mballoc's data structures
568 return ext4_find_near(inode
, partial
);
572 * ext4_blks_to_allocate: Look up the block map and count the number
573 * of direct blocks need to be allocated for the given branch.
575 * @branch: chain of indirect blocks
576 * @k: number of blocks need for indirect blocks
577 * @blks: number of data blocks to be mapped.
578 * @blocks_to_boundary: the offset in the indirect block
580 * return the total number of blocks to be allocate, including the
581 * direct and indirect blocks.
583 static int ext4_blks_to_allocate(Indirect
*branch
, int k
, unsigned int blks
,
584 int blocks_to_boundary
)
586 unsigned int count
= 0;
589 * Simple case, [t,d]Indirect block(s) has not allocated yet
590 * then it's clear blocks on that path have not allocated
593 /* right now we don't handle cross boundary allocation */
594 if (blks
< blocks_to_boundary
+ 1)
597 count
+= blocks_to_boundary
+ 1;
602 while (count
< blks
&& count
<= blocks_to_boundary
&&
603 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
610 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
611 * @indirect_blks: the number of blocks need to allocate for indirect
614 * @new_blocks: on return it will store the new block numbers for
615 * the indirect blocks(if needed) and the first direct block,
616 * @blks: on return it will store the total number of allocated
619 static int ext4_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
620 ext4_lblk_t iblock
, ext4_fsblk_t goal
,
621 int indirect_blks
, int blks
,
622 ext4_fsblk_t new_blocks
[4], int *err
)
624 struct ext4_allocation_request ar
;
626 unsigned long count
= 0, blk_allocated
= 0;
628 ext4_fsblk_t current_block
= 0;
632 * Here we try to allocate the requested multiple blocks at once,
633 * on a best-effort basis.
634 * To build a branch, we should allocate blocks for
635 * the indirect blocks(if not allocated yet), and at least
636 * the first direct block of this branch. That's the
637 * minimum number of blocks need to allocate(required)
639 /* first we try to allocate the indirect blocks */
640 target
= indirect_blks
;
643 /* allocating blocks for indirect blocks and direct blocks */
644 current_block
= ext4_new_meta_blocks(handle
, inode
,
650 /* allocate blocks for indirect blocks */
651 while (index
< indirect_blks
&& count
) {
652 new_blocks
[index
++] = current_block
++;
657 * save the new block number
658 * for the first direct block
660 new_blocks
[index
] = current_block
;
661 printk(KERN_INFO
"%s returned more blocks than "
662 "requested\n", __func__
);
668 target
= blks
- count
;
669 blk_allocated
= count
;
672 /* Now allocate data blocks */
673 memset(&ar
, 0, sizeof(ar
));
678 if (S_ISREG(inode
->i_mode
))
679 /* enable in-core preallocation only for regular files */
680 ar
.flags
= EXT4_MB_HINT_DATA
;
682 current_block
= ext4_mb_new_blocks(handle
, &ar
, err
);
684 if (*err
&& (target
== blks
)) {
686 * if the allocation failed and we didn't allocate
692 if (target
== blks
) {
694 * save the new block number
695 * for the first direct block
697 new_blocks
[index
] = current_block
;
699 blk_allocated
+= ar
.len
;
702 /* total number of blocks allocated for direct blocks */
707 for (i
= 0; i
< index
; i
++)
708 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
713 * ext4_alloc_branch - allocate and set up a chain of blocks.
715 * @indirect_blks: number of allocated indirect blocks
716 * @blks: number of allocated direct blocks
717 * @offsets: offsets (in the blocks) to store the pointers to next.
718 * @branch: place to store the chain in.
720 * This function allocates blocks, zeroes out all but the last one,
721 * links them into chain and (if we are synchronous) writes them to disk.
722 * In other words, it prepares a branch that can be spliced onto the
723 * inode. It stores the information about that chain in the branch[], in
724 * the same format as ext4_get_branch() would do. We are calling it after
725 * we had read the existing part of chain and partial points to the last
726 * triple of that (one with zero ->key). Upon the exit we have the same
727 * picture as after the successful ext4_get_block(), except that in one
728 * place chain is disconnected - *branch->p is still zero (we did not
729 * set the last link), but branch->key contains the number that should
730 * be placed into *branch->p to fill that gap.
732 * If allocation fails we free all blocks we've allocated (and forget
733 * their buffer_heads) and return the error value the from failed
734 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
735 * as described above and return 0.
737 static int ext4_alloc_branch(handle_t
*handle
, struct inode
*inode
,
738 ext4_lblk_t iblock
, int indirect_blks
,
739 int *blks
, ext4_fsblk_t goal
,
740 ext4_lblk_t
*offsets
, Indirect
*branch
)
742 int blocksize
= inode
->i_sb
->s_blocksize
;
745 struct buffer_head
*bh
;
747 ext4_fsblk_t new_blocks
[4];
748 ext4_fsblk_t current_block
;
750 num
= ext4_alloc_blocks(handle
, inode
, iblock
, goal
, indirect_blks
,
751 *blks
, new_blocks
, &err
);
755 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
757 * metadata blocks and data blocks are allocated.
759 for (n
= 1; n
<= indirect_blks
; n
++) {
761 * Get buffer_head for parent block, zero it out
762 * and set the pointer to new one, then send
765 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
768 BUFFER_TRACE(bh
, "call get_create_access");
769 err
= ext4_journal_get_create_access(handle
, bh
);
776 memset(bh
->b_data
, 0, blocksize
);
777 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
778 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
779 *branch
[n
].p
= branch
[n
].key
;
780 if (n
== indirect_blks
) {
781 current_block
= new_blocks
[n
];
783 * End of chain, update the last new metablock of
784 * the chain to point to the new allocated
785 * data blocks numbers
787 for (i
= 1; i
< num
; i
++)
788 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
790 BUFFER_TRACE(bh
, "marking uptodate");
791 set_buffer_uptodate(bh
);
794 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
795 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
802 /* Allocation failed, free what we already allocated */
803 for (i
= 1; i
<= n
; i
++) {
804 BUFFER_TRACE(branch
[i
].bh
, "call jbd2_journal_forget");
805 ext4_journal_forget(handle
, branch
[i
].bh
);
807 for (i
= 0; i
< indirect_blks
; i
++)
808 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
810 ext4_free_blocks(handle
, inode
, new_blocks
[i
], num
, 0);
816 * ext4_splice_branch - splice the allocated branch onto inode.
818 * @block: (logical) number of block we are adding
819 * @chain: chain of indirect blocks (with a missing link - see
821 * @where: location of missing link
822 * @num: number of indirect blocks we are adding
823 * @blks: number of direct blocks we are adding
825 * This function fills the missing link and does all housekeeping needed in
826 * inode (->i_blocks, etc.). In case of success we end up with the full
827 * chain to new block and return 0.
829 static int ext4_splice_branch(handle_t
*handle
, struct inode
*inode
,
830 ext4_lblk_t block
, Indirect
*where
, int num
,
835 ext4_fsblk_t current_block
;
838 * If we're splicing into a [td]indirect block (as opposed to the
839 * inode) then we need to get write access to the [td]indirect block
843 BUFFER_TRACE(where
->bh
, "get_write_access");
844 err
= ext4_journal_get_write_access(handle
, where
->bh
);
850 *where
->p
= where
->key
;
853 * Update the host buffer_head or inode to point to more just allocated
854 * direct blocks blocks
856 if (num
== 0 && blks
> 1) {
857 current_block
= le32_to_cpu(where
->key
) + 1;
858 for (i
= 1; i
< blks
; i
++)
859 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
862 /* We are done with atomic stuff, now do the rest of housekeeping */
863 /* had we spliced it onto indirect block? */
866 * If we spliced it onto an indirect block, we haven't
867 * altered the inode. Note however that if it is being spliced
868 * onto an indirect block at the very end of the file (the
869 * file is growing) then we *will* alter the inode to reflect
870 * the new i_size. But that is not done here - it is done in
871 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
873 jbd_debug(5, "splicing indirect only\n");
874 BUFFER_TRACE(where
->bh
, "call ext4_handle_dirty_metadata");
875 err
= ext4_handle_dirty_metadata(handle
, inode
, where
->bh
);
880 * OK, we spliced it into the inode itself on a direct block.
882 ext4_mark_inode_dirty(handle
, inode
);
883 jbd_debug(5, "splicing direct\n");
888 for (i
= 1; i
<= num
; i
++) {
889 BUFFER_TRACE(where
[i
].bh
, "call jbd2_journal_forget");
890 ext4_journal_forget(handle
, where
[i
].bh
);
891 ext4_free_blocks(handle
, inode
,
892 le32_to_cpu(where
[i
-1].key
), 1, 0);
894 ext4_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
, 0);
900 * The ext4_ind_get_blocks() function handles non-extents inodes
901 * (i.e., using the traditional indirect/double-indirect i_blocks
902 * scheme) for ext4_get_blocks().
904 * Allocation strategy is simple: if we have to allocate something, we will
905 * have to go the whole way to leaf. So let's do it before attaching anything
906 * to tree, set linkage between the newborn blocks, write them if sync is
907 * required, recheck the path, free and repeat if check fails, otherwise
908 * set the last missing link (that will protect us from any truncate-generated
909 * removals - all blocks on the path are immune now) and possibly force the
910 * write on the parent block.
911 * That has a nice additional property: no special recovery from the failed
912 * allocations is needed - we simply release blocks and do not touch anything
913 * reachable from inode.
915 * `handle' can be NULL if create == 0.
917 * return > 0, # of blocks mapped or allocated.
918 * return = 0, if plain lookup failed.
919 * return < 0, error case.
921 * The ext4_ind_get_blocks() function should be called with
922 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
923 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
924 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
927 static int ext4_ind_get_blocks(handle_t
*handle
, struct inode
*inode
,
928 ext4_lblk_t iblock
, unsigned int maxblocks
,
929 struct buffer_head
*bh_result
,
933 ext4_lblk_t offsets
[4];
938 int blocks_to_boundary
= 0;
941 ext4_fsblk_t first_block
= 0;
943 J_ASSERT(!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
));
944 J_ASSERT(handle
!= NULL
|| (flags
& EXT4_GET_BLOCKS_CREATE
) == 0);
945 depth
= ext4_block_to_path(inode
, iblock
, offsets
,
946 &blocks_to_boundary
);
951 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
953 /* Simplest case - block found, no allocation needed */
955 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
956 clear_buffer_new(bh_result
);
959 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
962 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
964 if (blk
== first_block
+ count
)
972 /* Next simple case - plain lookup or failed read of indirect block */
973 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0 || err
== -EIO
)
977 * Okay, we need to do block allocation.
979 goal
= ext4_find_goal(inode
, iblock
, partial
);
981 /* the number of blocks need to allocate for [d,t]indirect blocks */
982 indirect_blks
= (chain
+ depth
) - partial
- 1;
985 * Next look up the indirect map to count the totoal number of
986 * direct blocks to allocate for this branch.
988 count
= ext4_blks_to_allocate(partial
, indirect_blks
,
989 maxblocks
, blocks_to_boundary
);
991 * Block out ext4_truncate while we alter the tree
993 err
= ext4_alloc_branch(handle
, inode
, iblock
, indirect_blks
,
995 offsets
+ (partial
- chain
), partial
);
998 * The ext4_splice_branch call will free and forget any buffers
999 * on the new chain if there is a failure, but that risks using
1000 * up transaction credits, especially for bitmaps where the
1001 * credits cannot be returned. Can we handle this somehow? We
1002 * may need to return -EAGAIN upwards in the worst case. --sct
1005 err
= ext4_splice_branch(handle
, inode
, iblock
,
1006 partial
, indirect_blks
, count
);
1010 set_buffer_new(bh_result
);
1012 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
1013 if (count
> blocks_to_boundary
)
1014 set_buffer_boundary(bh_result
);
1016 /* Clean up and exit */
1017 partial
= chain
+ depth
- 1; /* the whole chain */
1019 while (partial
> chain
) {
1020 BUFFER_TRACE(partial
->bh
, "call brelse");
1021 brelse(partial
->bh
);
1024 BUFFER_TRACE(bh_result
, "returned");
1029 qsize_t
ext4_get_reserved_space(struct inode
*inode
)
1031 unsigned long long total
;
1033 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1034 total
= EXT4_I(inode
)->i_reserved_data_blocks
+
1035 EXT4_I(inode
)->i_reserved_meta_blocks
;
1036 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1041 * Calculate the number of metadata blocks need to reserve
1042 * to allocate @blocks for non extent file based file
1044 static int ext4_indirect_calc_metadata_amount(struct inode
*inode
, int blocks
)
1046 int icap
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
1047 int ind_blks
, dind_blks
, tind_blks
;
1049 /* number of new indirect blocks needed */
1050 ind_blks
= (blocks
+ icap
- 1) / icap
;
1052 dind_blks
= (ind_blks
+ icap
- 1) / icap
;
1056 return ind_blks
+ dind_blks
+ tind_blks
;
1060 * Calculate the number of metadata blocks need to reserve
1061 * to allocate given number of blocks
1063 static int ext4_calc_metadata_amount(struct inode
*inode
, int blocks
)
1068 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
1069 return ext4_ext_calc_metadata_amount(inode
, blocks
);
1071 return ext4_indirect_calc_metadata_amount(inode
, blocks
);
1074 static void ext4_da_update_reserve_space(struct inode
*inode
, int used
)
1076 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1077 int total
, mdb
, mdb_free
;
1079 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1080 /* recalculate the number of metablocks still need to be reserved */
1081 total
= EXT4_I(inode
)->i_reserved_data_blocks
- used
;
1082 mdb
= ext4_calc_metadata_amount(inode
, total
);
1084 /* figure out how many metablocks to release */
1085 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1086 mdb_free
= EXT4_I(inode
)->i_reserved_meta_blocks
- mdb
;
1089 /* Account for allocated meta_blocks */
1090 mdb_free
-= EXT4_I(inode
)->i_allocated_meta_blocks
;
1092 /* update fs dirty blocks counter */
1093 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, mdb_free
);
1094 EXT4_I(inode
)->i_allocated_meta_blocks
= 0;
1095 EXT4_I(inode
)->i_reserved_meta_blocks
= mdb
;
1098 /* update per-inode reservations */
1099 BUG_ON(used
> EXT4_I(inode
)->i_reserved_data_blocks
);
1100 EXT4_I(inode
)->i_reserved_data_blocks
-= used
;
1101 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1104 * free those over-booking quota for metadata blocks
1107 vfs_dq_release_reservation_block(inode
, mdb_free
);
1110 * If we have done all the pending block allocations and if
1111 * there aren't any writers on the inode, we can discard the
1112 * inode's preallocations.
1114 if (!total
&& (atomic_read(&inode
->i_writecount
) == 0))
1115 ext4_discard_preallocations(inode
);
1118 static int check_block_validity(struct inode
*inode
, sector_t logical
,
1119 sector_t phys
, int len
)
1121 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), phys
, len
)) {
1122 ext4_error(inode
->i_sb
, "check_block_validity",
1123 "inode #%lu logical block %llu mapped to %llu "
1124 "(size %d)", inode
->i_ino
,
1125 (unsigned long long) logical
,
1126 (unsigned long long) phys
, len
);
1134 * The ext4_get_blocks() function tries to look up the requested blocks,
1135 * and returns if the blocks are already mapped.
1137 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1138 * and store the allocated blocks in the result buffer head and mark it
1141 * If file type is extents based, it will call ext4_ext_get_blocks(),
1142 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1145 * On success, it returns the number of blocks being mapped or allocate.
1146 * if create==0 and the blocks are pre-allocated and uninitialized block,
1147 * the result buffer head is unmapped. If the create ==1, it will make sure
1148 * the buffer head is mapped.
1150 * It returns 0 if plain look up failed (blocks have not been allocated), in
1151 * that casem, buffer head is unmapped
1153 * It returns the error in case of allocation failure.
1155 int ext4_get_blocks(handle_t
*handle
, struct inode
*inode
, sector_t block
,
1156 unsigned int max_blocks
, struct buffer_head
*bh
,
1161 clear_buffer_mapped(bh
);
1162 clear_buffer_unwritten(bh
);
1165 * Try to see if we can get the block without requesting a new
1166 * file system block.
1168 down_read((&EXT4_I(inode
)->i_data_sem
));
1169 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1170 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1173 retval
= ext4_ind_get_blocks(handle
, inode
, block
, max_blocks
,
1176 up_read((&EXT4_I(inode
)->i_data_sem
));
1178 if (retval
> 0 && buffer_mapped(bh
)) {
1179 int ret
= check_block_validity(inode
, block
,
1180 bh
->b_blocknr
, retval
);
1185 /* If it is only a block(s) look up */
1186 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
1190 * Returns if the blocks have already allocated
1192 * Note that if blocks have been preallocated
1193 * ext4_ext_get_block() returns th create = 0
1194 * with buffer head unmapped.
1196 if (retval
> 0 && buffer_mapped(bh
))
1200 * When we call get_blocks without the create flag, the
1201 * BH_Unwritten flag could have gotten set if the blocks
1202 * requested were part of a uninitialized extent. We need to
1203 * clear this flag now that we are committed to convert all or
1204 * part of the uninitialized extent to be an initialized
1205 * extent. This is because we need to avoid the combination
1206 * of BH_Unwritten and BH_Mapped flags being simultaneously
1207 * set on the buffer_head.
1209 clear_buffer_unwritten(bh
);
1212 * New blocks allocate and/or writing to uninitialized extent
1213 * will possibly result in updating i_data, so we take
1214 * the write lock of i_data_sem, and call get_blocks()
1215 * with create == 1 flag.
1217 down_write((&EXT4_I(inode
)->i_data_sem
));
1220 * if the caller is from delayed allocation writeout path
1221 * we have already reserved fs blocks for allocation
1222 * let the underlying get_block() function know to
1223 * avoid double accounting
1225 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1226 EXT4_I(inode
)->i_delalloc_reserved_flag
= 1;
1228 * We need to check for EXT4 here because migrate
1229 * could have changed the inode type in between
1231 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1232 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1235 retval
= ext4_ind_get_blocks(handle
, inode
, block
,
1236 max_blocks
, bh
, flags
);
1238 if (retval
> 0 && buffer_new(bh
)) {
1240 * We allocated new blocks which will result in
1241 * i_data's format changing. Force the migrate
1242 * to fail by clearing migrate flags
1244 EXT4_I(inode
)->i_flags
= EXT4_I(inode
)->i_flags
&
1249 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1250 EXT4_I(inode
)->i_delalloc_reserved_flag
= 0;
1253 * Update reserved blocks/metadata blocks after successful
1254 * block allocation which had been deferred till now.
1256 if ((retval
> 0) && (flags
& EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE
))
1257 ext4_da_update_reserve_space(inode
, retval
);
1259 up_write((&EXT4_I(inode
)->i_data_sem
));
1260 if (retval
> 0 && buffer_mapped(bh
)) {
1261 int ret
= check_block_validity(inode
, block
,
1262 bh
->b_blocknr
, retval
);
1269 /* Maximum number of blocks we map for direct IO at once. */
1270 #define DIO_MAX_BLOCKS 4096
1272 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
1273 struct buffer_head
*bh_result
, int create
)
1275 handle_t
*handle
= ext4_journal_current_handle();
1276 int ret
= 0, started
= 0;
1277 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
1280 if (create
&& !handle
) {
1281 /* Direct IO write... */
1282 if (max_blocks
> DIO_MAX_BLOCKS
)
1283 max_blocks
= DIO_MAX_BLOCKS
;
1284 dio_credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
1285 handle
= ext4_journal_start(inode
, dio_credits
);
1286 if (IS_ERR(handle
)) {
1287 ret
= PTR_ERR(handle
);
1293 ret
= ext4_get_blocks(handle
, inode
, iblock
, max_blocks
, bh_result
,
1294 create
? EXT4_GET_BLOCKS_CREATE
: 0);
1296 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
1300 ext4_journal_stop(handle
);
1306 * `handle' can be NULL if create is zero
1308 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
1309 ext4_lblk_t block
, int create
, int *errp
)
1311 struct buffer_head dummy
;
1315 J_ASSERT(handle
!= NULL
|| create
== 0);
1318 dummy
.b_blocknr
= -1000;
1319 buffer_trace_init(&dummy
.b_history
);
1321 flags
|= EXT4_GET_BLOCKS_CREATE
;
1322 err
= ext4_get_blocks(handle
, inode
, block
, 1, &dummy
, flags
);
1324 * ext4_get_blocks() returns number of blocks mapped. 0 in
1333 if (!err
&& buffer_mapped(&dummy
)) {
1334 struct buffer_head
*bh
;
1335 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1340 if (buffer_new(&dummy
)) {
1341 J_ASSERT(create
!= 0);
1342 J_ASSERT(handle
!= NULL
);
1345 * Now that we do not always journal data, we should
1346 * keep in mind whether this should always journal the
1347 * new buffer as metadata. For now, regular file
1348 * writes use ext4_get_block instead, so it's not a
1352 BUFFER_TRACE(bh
, "call get_create_access");
1353 fatal
= ext4_journal_get_create_access(handle
, bh
);
1354 if (!fatal
&& !buffer_uptodate(bh
)) {
1355 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
1356 set_buffer_uptodate(bh
);
1359 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
1360 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1364 BUFFER_TRACE(bh
, "not a new buffer");
1377 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
1378 ext4_lblk_t block
, int create
, int *err
)
1380 struct buffer_head
*bh
;
1382 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
1385 if (buffer_uptodate(bh
))
1387 ll_rw_block(READ_META
, 1, &bh
);
1389 if (buffer_uptodate(bh
))
1396 static int walk_page_buffers(handle_t
*handle
,
1397 struct buffer_head
*head
,
1401 int (*fn
)(handle_t
*handle
,
1402 struct buffer_head
*bh
))
1404 struct buffer_head
*bh
;
1405 unsigned block_start
, block_end
;
1406 unsigned blocksize
= head
->b_size
;
1408 struct buffer_head
*next
;
1410 for (bh
= head
, block_start
= 0;
1411 ret
== 0 && (bh
!= head
|| !block_start
);
1412 block_start
= block_end
, bh
= next
) {
1413 next
= bh
->b_this_page
;
1414 block_end
= block_start
+ blocksize
;
1415 if (block_end
<= from
|| block_start
>= to
) {
1416 if (partial
&& !buffer_uptodate(bh
))
1420 err
= (*fn
)(handle
, bh
);
1428 * To preserve ordering, it is essential that the hole instantiation and
1429 * the data write be encapsulated in a single transaction. We cannot
1430 * close off a transaction and start a new one between the ext4_get_block()
1431 * and the commit_write(). So doing the jbd2_journal_start at the start of
1432 * prepare_write() is the right place.
1434 * Also, this function can nest inside ext4_writepage() ->
1435 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1436 * has generated enough buffer credits to do the whole page. So we won't
1437 * block on the journal in that case, which is good, because the caller may
1440 * By accident, ext4 can be reentered when a transaction is open via
1441 * quota file writes. If we were to commit the transaction while thus
1442 * reentered, there can be a deadlock - we would be holding a quota
1443 * lock, and the commit would never complete if another thread had a
1444 * transaction open and was blocking on the quota lock - a ranking
1447 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1448 * will _not_ run commit under these circumstances because handle->h_ref
1449 * is elevated. We'll still have enough credits for the tiny quotafile
1452 static int do_journal_get_write_access(handle_t
*handle
,
1453 struct buffer_head
*bh
)
1455 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1457 return ext4_journal_get_write_access(handle
, bh
);
1460 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1461 loff_t pos
, unsigned len
, unsigned flags
,
1462 struct page
**pagep
, void **fsdata
)
1464 struct inode
*inode
= mapping
->host
;
1465 int ret
, needed_blocks
;
1472 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1474 * Reserve one block more for addition to orphan list in case
1475 * we allocate blocks but write fails for some reason
1477 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1478 index
= pos
>> PAGE_CACHE_SHIFT
;
1479 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1483 handle
= ext4_journal_start(inode
, needed_blocks
);
1484 if (IS_ERR(handle
)) {
1485 ret
= PTR_ERR(handle
);
1489 /* We cannot recurse into the filesystem as the transaction is already
1491 flags
|= AOP_FLAG_NOFS
;
1493 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1495 ext4_journal_stop(handle
);
1501 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1504 if (!ret
&& ext4_should_journal_data(inode
)) {
1505 ret
= walk_page_buffers(handle
, page_buffers(page
),
1506 from
, to
, NULL
, do_journal_get_write_access
);
1511 page_cache_release(page
);
1513 * block_write_begin may have instantiated a few blocks
1514 * outside i_size. Trim these off again. Don't need
1515 * i_size_read because we hold i_mutex.
1517 * Add inode to orphan list in case we crash before
1520 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1521 ext4_orphan_add(handle
, inode
);
1523 ext4_journal_stop(handle
);
1524 if (pos
+ len
> inode
->i_size
) {
1525 ext4_truncate(inode
);
1527 * If truncate failed early the inode might
1528 * still be on the orphan list; we need to
1529 * make sure the inode is removed from the
1530 * orphan list in that case.
1533 ext4_orphan_del(NULL
, inode
);
1537 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1543 /* For write_end() in data=journal mode */
1544 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1546 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1548 set_buffer_uptodate(bh
);
1549 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1552 static int ext4_generic_write_end(struct file
*file
,
1553 struct address_space
*mapping
,
1554 loff_t pos
, unsigned len
, unsigned copied
,
1555 struct page
*page
, void *fsdata
)
1557 int i_size_changed
= 0;
1558 struct inode
*inode
= mapping
->host
;
1559 handle_t
*handle
= ext4_journal_current_handle();
1561 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1564 * No need to use i_size_read() here, the i_size
1565 * cannot change under us because we hold i_mutex.
1567 * But it's important to update i_size while still holding page lock:
1568 * page writeout could otherwise come in and zero beyond i_size.
1570 if (pos
+ copied
> inode
->i_size
) {
1571 i_size_write(inode
, pos
+ copied
);
1575 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
1576 /* We need to mark inode dirty even if
1577 * new_i_size is less that inode->i_size
1578 * bu greater than i_disksize.(hint delalloc)
1580 ext4_update_i_disksize(inode
, (pos
+ copied
));
1584 page_cache_release(page
);
1587 * Don't mark the inode dirty under page lock. First, it unnecessarily
1588 * makes the holding time of page lock longer. Second, it forces lock
1589 * ordering of page lock and transaction start for journaling
1593 ext4_mark_inode_dirty(handle
, inode
);
1599 * We need to pick up the new inode size which generic_commit_write gave us
1600 * `file' can be NULL - eg, when called from page_symlink().
1602 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1603 * buffers are managed internally.
1605 static int ext4_ordered_write_end(struct file
*file
,
1606 struct address_space
*mapping
,
1607 loff_t pos
, unsigned len
, unsigned copied
,
1608 struct page
*page
, void *fsdata
)
1610 handle_t
*handle
= ext4_journal_current_handle();
1611 struct inode
*inode
= mapping
->host
;
1614 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
1615 ret
= ext4_jbd2_file_inode(handle
, inode
);
1618 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1621 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1622 /* if we have allocated more blocks and copied
1623 * less. We will have blocks allocated outside
1624 * inode->i_size. So truncate them
1626 ext4_orphan_add(handle
, inode
);
1630 ret2
= ext4_journal_stop(handle
);
1634 if (pos
+ len
> inode
->i_size
) {
1635 ext4_truncate(inode
);
1637 * If truncate failed early the inode might still be
1638 * on the orphan list; we need to make sure the inode
1639 * is removed from the orphan list in that case.
1642 ext4_orphan_del(NULL
, inode
);
1646 return ret
? ret
: copied
;
1649 static int ext4_writeback_write_end(struct file
*file
,
1650 struct address_space
*mapping
,
1651 loff_t pos
, unsigned len
, unsigned copied
,
1652 struct page
*page
, void *fsdata
)
1654 handle_t
*handle
= ext4_journal_current_handle();
1655 struct inode
*inode
= mapping
->host
;
1658 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
1659 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1662 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1663 /* if we have allocated more blocks and copied
1664 * less. We will have blocks allocated outside
1665 * inode->i_size. So truncate them
1667 ext4_orphan_add(handle
, inode
);
1672 ret2
= ext4_journal_stop(handle
);
1676 if (pos
+ len
> inode
->i_size
) {
1677 ext4_truncate(inode
);
1679 * If truncate failed early the inode might still be
1680 * on the orphan list; we need to make sure the inode
1681 * is removed from the orphan list in that case.
1684 ext4_orphan_del(NULL
, inode
);
1687 return ret
? ret
: copied
;
1690 static int ext4_journalled_write_end(struct file
*file
,
1691 struct address_space
*mapping
,
1692 loff_t pos
, unsigned len
, unsigned copied
,
1693 struct page
*page
, void *fsdata
)
1695 handle_t
*handle
= ext4_journal_current_handle();
1696 struct inode
*inode
= mapping
->host
;
1702 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1703 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1707 if (!PageUptodate(page
))
1709 page_zero_new_buffers(page
, from
+copied
, to
);
1712 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1713 to
, &partial
, write_end_fn
);
1715 SetPageUptodate(page
);
1716 new_i_size
= pos
+ copied
;
1717 if (new_i_size
> inode
->i_size
)
1718 i_size_write(inode
, pos
+copied
);
1719 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
1720 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1721 ext4_update_i_disksize(inode
, new_i_size
);
1722 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1728 page_cache_release(page
);
1729 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1730 /* if we have allocated more blocks and copied
1731 * less. We will have blocks allocated outside
1732 * inode->i_size. So truncate them
1734 ext4_orphan_add(handle
, inode
);
1736 ret2
= ext4_journal_stop(handle
);
1739 if (pos
+ len
> inode
->i_size
) {
1740 ext4_truncate(inode
);
1742 * If truncate failed early the inode might still be
1743 * on the orphan list; we need to make sure the inode
1744 * is removed from the orphan list in that case.
1747 ext4_orphan_del(NULL
, inode
);
1750 return ret
? ret
: copied
;
1753 static int ext4_da_reserve_space(struct inode
*inode
, int nrblocks
)
1756 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1757 unsigned long md_needed
, mdblocks
, total
= 0;
1760 * recalculate the amount of metadata blocks to reserve
1761 * in order to allocate nrblocks
1762 * worse case is one extent per block
1765 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1766 total
= EXT4_I(inode
)->i_reserved_data_blocks
+ nrblocks
;
1767 mdblocks
= ext4_calc_metadata_amount(inode
, total
);
1768 BUG_ON(mdblocks
< EXT4_I(inode
)->i_reserved_meta_blocks
);
1770 md_needed
= mdblocks
- EXT4_I(inode
)->i_reserved_meta_blocks
;
1771 total
= md_needed
+ nrblocks
;
1774 * Make quota reservation here to prevent quota overflow
1775 * later. Real quota accounting is done at pages writeout
1778 if (vfs_dq_reserve_block(inode
, total
)) {
1779 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1783 if (ext4_claim_free_blocks(sbi
, total
)) {
1784 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1785 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1789 vfs_dq_release_reservation_block(inode
, total
);
1792 EXT4_I(inode
)->i_reserved_data_blocks
+= nrblocks
;
1793 EXT4_I(inode
)->i_reserved_meta_blocks
= mdblocks
;
1795 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1796 return 0; /* success */
1799 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1801 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1802 int total
, mdb
, mdb_free
, release
;
1805 return; /* Nothing to release, exit */
1807 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1809 if (!EXT4_I(inode
)->i_reserved_data_blocks
) {
1811 * if there is no reserved blocks, but we try to free some
1812 * then the counter is messed up somewhere.
1813 * but since this function is called from invalidate
1814 * page, it's harmless to return without any action
1816 printk(KERN_INFO
"ext4 delalloc try to release %d reserved "
1817 "blocks for inode %lu, but there is no reserved "
1818 "data blocks\n", to_free
, inode
->i_ino
);
1819 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1823 /* recalculate the number of metablocks still need to be reserved */
1824 total
= EXT4_I(inode
)->i_reserved_data_blocks
- to_free
;
1825 mdb
= ext4_calc_metadata_amount(inode
, total
);
1827 /* figure out how many metablocks to release */
1828 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1829 mdb_free
= EXT4_I(inode
)->i_reserved_meta_blocks
- mdb
;
1831 release
= to_free
+ mdb_free
;
1833 /* update fs dirty blocks counter for truncate case */
1834 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, release
);
1836 /* update per-inode reservations */
1837 BUG_ON(to_free
> EXT4_I(inode
)->i_reserved_data_blocks
);
1838 EXT4_I(inode
)->i_reserved_data_blocks
-= to_free
;
1840 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1841 EXT4_I(inode
)->i_reserved_meta_blocks
= mdb
;
1842 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1844 vfs_dq_release_reservation_block(inode
, release
);
1847 static void ext4_da_page_release_reservation(struct page
*page
,
1848 unsigned long offset
)
1851 struct buffer_head
*head
, *bh
;
1852 unsigned int curr_off
= 0;
1854 head
= page_buffers(page
);
1857 unsigned int next_off
= curr_off
+ bh
->b_size
;
1859 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1861 clear_buffer_delay(bh
);
1863 curr_off
= next_off
;
1864 } while ((bh
= bh
->b_this_page
) != head
);
1865 ext4_da_release_space(page
->mapping
->host
, to_release
);
1869 * Delayed allocation stuff
1872 struct mpage_da_data
{
1873 struct inode
*inode
;
1874 sector_t b_blocknr
; /* start block number of extent */
1875 size_t b_size
; /* size of extent */
1876 unsigned long b_state
; /* state of the extent */
1877 unsigned long first_page
, next_page
; /* extent of pages */
1878 struct writeback_control
*wbc
;
1885 * mpage_da_submit_io - walks through extent of pages and try to write
1886 * them with writepage() call back
1888 * @mpd->inode: inode
1889 * @mpd->first_page: first page of the extent
1890 * @mpd->next_page: page after the last page of the extent
1892 * By the time mpage_da_submit_io() is called we expect all blocks
1893 * to be allocated. this may be wrong if allocation failed.
1895 * As pages are already locked by write_cache_pages(), we can't use it
1897 static int mpage_da_submit_io(struct mpage_da_data
*mpd
)
1900 struct pagevec pvec
;
1901 unsigned long index
, end
;
1902 int ret
= 0, err
, nr_pages
, i
;
1903 struct inode
*inode
= mpd
->inode
;
1904 struct address_space
*mapping
= inode
->i_mapping
;
1906 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1908 * We need to start from the first_page to the next_page - 1
1909 * to make sure we also write the mapped dirty buffer_heads.
1910 * If we look at mpd->b_blocknr we would only be looking
1911 * at the currently mapped buffer_heads.
1913 index
= mpd
->first_page
;
1914 end
= mpd
->next_page
- 1;
1916 pagevec_init(&pvec
, 0);
1917 while (index
<= end
) {
1918 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1921 for (i
= 0; i
< nr_pages
; i
++) {
1922 struct page
*page
= pvec
.pages
[i
];
1924 index
= page
->index
;
1929 BUG_ON(!PageLocked(page
));
1930 BUG_ON(PageWriteback(page
));
1932 pages_skipped
= mpd
->wbc
->pages_skipped
;
1933 err
= mapping
->a_ops
->writepage(page
, mpd
->wbc
);
1934 if (!err
&& (pages_skipped
== mpd
->wbc
->pages_skipped
))
1936 * have successfully written the page
1937 * without skipping the same
1939 mpd
->pages_written
++;
1941 * In error case, we have to continue because
1942 * remaining pages are still locked
1943 * XXX: unlock and re-dirty them?
1948 pagevec_release(&pvec
);
1954 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1956 * @mpd->inode - inode to walk through
1957 * @exbh->b_blocknr - first block on a disk
1958 * @exbh->b_size - amount of space in bytes
1959 * @logical - first logical block to start assignment with
1961 * the function goes through all passed space and put actual disk
1962 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1964 static void mpage_put_bnr_to_bhs(struct mpage_da_data
*mpd
, sector_t logical
,
1965 struct buffer_head
*exbh
)
1967 struct inode
*inode
= mpd
->inode
;
1968 struct address_space
*mapping
= inode
->i_mapping
;
1969 int blocks
= exbh
->b_size
>> inode
->i_blkbits
;
1970 sector_t pblock
= exbh
->b_blocknr
, cur_logical
;
1971 struct buffer_head
*head
, *bh
;
1973 struct pagevec pvec
;
1976 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1977 end
= (logical
+ blocks
- 1) >> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1978 cur_logical
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1980 pagevec_init(&pvec
, 0);
1982 while (index
<= end
) {
1983 /* XXX: optimize tail */
1984 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1987 for (i
= 0; i
< nr_pages
; i
++) {
1988 struct page
*page
= pvec
.pages
[i
];
1990 index
= page
->index
;
1995 BUG_ON(!PageLocked(page
));
1996 BUG_ON(PageWriteback(page
));
1997 BUG_ON(!page_has_buffers(page
));
1999 bh
= page_buffers(page
);
2002 /* skip blocks out of the range */
2004 if (cur_logical
>= logical
)
2007 } while ((bh
= bh
->b_this_page
) != head
);
2010 if (cur_logical
>= logical
+ blocks
)
2013 if (buffer_delay(bh
) ||
2014 buffer_unwritten(bh
)) {
2016 BUG_ON(bh
->b_bdev
!= inode
->i_sb
->s_bdev
);
2018 if (buffer_delay(bh
)) {
2019 clear_buffer_delay(bh
);
2020 bh
->b_blocknr
= pblock
;
2023 * unwritten already should have
2024 * blocknr assigned. Verify that
2026 clear_buffer_unwritten(bh
);
2027 BUG_ON(bh
->b_blocknr
!= pblock
);
2030 } else if (buffer_mapped(bh
))
2031 BUG_ON(bh
->b_blocknr
!= pblock
);
2035 } while ((bh
= bh
->b_this_page
) != head
);
2037 pagevec_release(&pvec
);
2043 * __unmap_underlying_blocks - just a helper function to unmap
2044 * set of blocks described by @bh
2046 static inline void __unmap_underlying_blocks(struct inode
*inode
,
2047 struct buffer_head
*bh
)
2049 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
2052 blocks
= bh
->b_size
>> inode
->i_blkbits
;
2053 for (i
= 0; i
< blocks
; i
++)
2054 unmap_underlying_metadata(bdev
, bh
->b_blocknr
+ i
);
2057 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
,
2058 sector_t logical
, long blk_cnt
)
2062 struct pagevec pvec
;
2063 struct inode
*inode
= mpd
->inode
;
2064 struct address_space
*mapping
= inode
->i_mapping
;
2066 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2067 end
= (logical
+ blk_cnt
- 1) >>
2068 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2069 while (index
<= end
) {
2070 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2073 for (i
= 0; i
< nr_pages
; i
++) {
2074 struct page
*page
= pvec
.pages
[i
];
2075 index
= page
->index
;
2080 BUG_ON(!PageLocked(page
));
2081 BUG_ON(PageWriteback(page
));
2082 block_invalidatepage(page
, 0);
2083 ClearPageUptodate(page
);
2090 static void ext4_print_free_blocks(struct inode
*inode
)
2092 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2093 printk(KERN_EMERG
"Total free blocks count %lld\n",
2094 ext4_count_free_blocks(inode
->i_sb
));
2095 printk(KERN_EMERG
"Free/Dirty block details\n");
2096 printk(KERN_EMERG
"free_blocks=%lld\n",
2097 (long long)percpu_counter_sum(&sbi
->s_freeblocks_counter
));
2098 printk(KERN_EMERG
"dirty_blocks=%lld\n",
2099 (long long)percpu_counter_sum(&sbi
->s_dirtyblocks_counter
));
2100 printk(KERN_EMERG
"Block reservation details\n");
2101 printk(KERN_EMERG
"i_reserved_data_blocks=%u\n",
2102 EXT4_I(inode
)->i_reserved_data_blocks
);
2103 printk(KERN_EMERG
"i_reserved_meta_blocks=%u\n",
2104 EXT4_I(inode
)->i_reserved_meta_blocks
);
2109 * mpage_da_map_blocks - go through given space
2111 * @mpd - bh describing space
2113 * The function skips space we know is already mapped to disk blocks.
2116 static int mpage_da_map_blocks(struct mpage_da_data
*mpd
)
2118 int err
, blks
, get_blocks_flags
;
2119 struct buffer_head
new;
2120 sector_t next
= mpd
->b_blocknr
;
2121 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2122 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
2123 handle_t
*handle
= NULL
;
2126 * We consider only non-mapped and non-allocated blocks
2128 if ((mpd
->b_state
& (1 << BH_Mapped
)) &&
2129 !(mpd
->b_state
& (1 << BH_Delay
)) &&
2130 !(mpd
->b_state
& (1 << BH_Unwritten
)))
2134 * If we didn't accumulate anything to write simply return
2139 handle
= ext4_journal_current_handle();
2143 * Call ext4_get_blocks() to allocate any delayed allocation
2144 * blocks, or to convert an uninitialized extent to be
2145 * initialized (in the case where we have written into
2146 * one or more preallocated blocks).
2148 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2149 * indicate that we are on the delayed allocation path. This
2150 * affects functions in many different parts of the allocation
2151 * call path. This flag exists primarily because we don't
2152 * want to change *many* call functions, so ext4_get_blocks()
2153 * will set the magic i_delalloc_reserved_flag once the
2154 * inode's allocation semaphore is taken.
2156 * If the blocks in questions were delalloc blocks, set
2157 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2158 * variables are updated after the blocks have been allocated.
2161 get_blocks_flags
= (EXT4_GET_BLOCKS_CREATE
|
2162 EXT4_GET_BLOCKS_DELALLOC_RESERVE
);
2163 if (mpd
->b_state
& (1 << BH_Delay
))
2164 get_blocks_flags
|= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE
;
2165 blks
= ext4_get_blocks(handle
, mpd
->inode
, next
, max_blocks
,
2166 &new, get_blocks_flags
);
2170 * If get block returns with error we simply
2171 * return. Later writepage will redirty the page and
2172 * writepages will find the dirty page again
2177 if (err
== -ENOSPC
&&
2178 ext4_count_free_blocks(mpd
->inode
->i_sb
)) {
2184 * get block failure will cause us to loop in
2185 * writepages, because a_ops->writepage won't be able
2186 * to make progress. The page will be redirtied by
2187 * writepage and writepages will again try to write
2190 printk(KERN_EMERG
"%s block allocation failed for inode %lu "
2191 "at logical offset %llu with max blocks "
2192 "%zd with error %d\n",
2193 __func__
, mpd
->inode
->i_ino
,
2194 (unsigned long long)next
,
2195 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
2196 printk(KERN_EMERG
"This should not happen.!! "
2197 "Data will be lost\n");
2198 if (err
== -ENOSPC
) {
2199 ext4_print_free_blocks(mpd
->inode
);
2201 /* invalidate all the pages */
2202 ext4_da_block_invalidatepages(mpd
, next
,
2203 mpd
->b_size
>> mpd
->inode
->i_blkbits
);
2208 new.b_size
= (blks
<< mpd
->inode
->i_blkbits
);
2210 if (buffer_new(&new))
2211 __unmap_underlying_blocks(mpd
->inode
, &new);
2214 * If blocks are delayed marked, we need to
2215 * put actual blocknr and drop delayed bit
2217 if ((mpd
->b_state
& (1 << BH_Delay
)) ||
2218 (mpd
->b_state
& (1 << BH_Unwritten
)))
2219 mpage_put_bnr_to_bhs(mpd
, next
, &new);
2221 if (ext4_should_order_data(mpd
->inode
)) {
2222 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
2228 * Update on-disk size along with block allocation.
2230 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
2231 if (disksize
> i_size_read(mpd
->inode
))
2232 disksize
= i_size_read(mpd
->inode
);
2233 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
2234 ext4_update_i_disksize(mpd
->inode
, disksize
);
2235 return ext4_mark_inode_dirty(handle
, mpd
->inode
);
2241 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2242 (1 << BH_Delay) | (1 << BH_Unwritten))
2245 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2247 * @mpd->lbh - extent of blocks
2248 * @logical - logical number of the block in the file
2249 * @bh - bh of the block (used to access block's state)
2251 * the function is used to collect contig. blocks in same state
2253 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
2254 sector_t logical
, size_t b_size
,
2255 unsigned long b_state
)
2258 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2260 /* check if thereserved journal credits might overflow */
2261 if (!(EXT4_I(mpd
->inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
2262 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
2264 * With non-extent format we are limited by the journal
2265 * credit available. Total credit needed to insert
2266 * nrblocks contiguous blocks is dependent on the
2267 * nrblocks. So limit nrblocks.
2270 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
2271 EXT4_MAX_TRANS_DATA
) {
2273 * Adding the new buffer_head would make it cross the
2274 * allowed limit for which we have journal credit
2275 * reserved. So limit the new bh->b_size
2277 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
2278 mpd
->inode
->i_blkbits
;
2279 /* we will do mpage_da_submit_io in the next loop */
2283 * First block in the extent
2285 if (mpd
->b_size
== 0) {
2286 mpd
->b_blocknr
= logical
;
2287 mpd
->b_size
= b_size
;
2288 mpd
->b_state
= b_state
& BH_FLAGS
;
2292 next
= mpd
->b_blocknr
+ nrblocks
;
2294 * Can we merge the block to our big extent?
2296 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
2297 mpd
->b_size
+= b_size
;
2303 * We couldn't merge the block to our extent, so we
2304 * need to flush current extent and start new one
2306 if (mpage_da_map_blocks(mpd
) == 0)
2307 mpage_da_submit_io(mpd
);
2312 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
2314 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
2318 * __mpage_da_writepage - finds extent of pages and blocks
2320 * @page: page to consider
2321 * @wbc: not used, we just follow rules
2324 * The function finds extents of pages and scan them for all blocks.
2326 static int __mpage_da_writepage(struct page
*page
,
2327 struct writeback_control
*wbc
, void *data
)
2329 struct mpage_da_data
*mpd
= data
;
2330 struct inode
*inode
= mpd
->inode
;
2331 struct buffer_head
*bh
, *head
;
2336 * Rest of the page in the page_vec
2337 * redirty then and skip then. We will
2338 * try to to write them again after
2339 * starting a new transaction
2341 redirty_page_for_writepage(wbc
, page
);
2343 return MPAGE_DA_EXTENT_TAIL
;
2346 * Can we merge this page to current extent?
2348 if (mpd
->next_page
!= page
->index
) {
2350 * Nope, we can't. So, we map non-allocated blocks
2351 * and start IO on them using writepage()
2353 if (mpd
->next_page
!= mpd
->first_page
) {
2354 if (mpage_da_map_blocks(mpd
) == 0)
2355 mpage_da_submit_io(mpd
);
2357 * skip rest of the page in the page_vec
2360 redirty_page_for_writepage(wbc
, page
);
2362 return MPAGE_DA_EXTENT_TAIL
;
2366 * Start next extent of pages ...
2368 mpd
->first_page
= page
->index
;
2378 mpd
->next_page
= page
->index
+ 1;
2379 logical
= (sector_t
) page
->index
<<
2380 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2382 if (!page_has_buffers(page
)) {
2383 mpage_add_bh_to_extent(mpd
, logical
, PAGE_CACHE_SIZE
,
2384 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
2386 return MPAGE_DA_EXTENT_TAIL
;
2389 * Page with regular buffer heads, just add all dirty ones
2391 head
= page_buffers(page
);
2394 BUG_ON(buffer_locked(bh
));
2396 * We need to try to allocate
2397 * unmapped blocks in the same page.
2398 * Otherwise we won't make progress
2399 * with the page in ext4_writepage
2401 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2402 mpage_add_bh_to_extent(mpd
, logical
,
2406 return MPAGE_DA_EXTENT_TAIL
;
2407 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2409 * mapped dirty buffer. We need to update
2410 * the b_state because we look at
2411 * b_state in mpage_da_map_blocks. We don't
2412 * update b_size because if we find an
2413 * unmapped buffer_head later we need to
2414 * use the b_state flag of that buffer_head.
2416 if (mpd
->b_size
== 0)
2417 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2420 } while ((bh
= bh
->b_this_page
) != head
);
2427 * This is a special get_blocks_t callback which is used by
2428 * ext4_da_write_begin(). It will either return mapped block or
2429 * reserve space for a single block.
2431 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2432 * We also have b_blocknr = -1 and b_bdev initialized properly
2434 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2435 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2436 * initialized properly.
2438 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
2439 struct buffer_head
*bh_result
, int create
)
2442 sector_t invalid_block
= ~((sector_t
) 0xffff);
2444 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
2447 BUG_ON(create
== 0);
2448 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2451 * first, we need to know whether the block is allocated already
2452 * preallocated blocks are unmapped but should treated
2453 * the same as allocated blocks.
2455 ret
= ext4_get_blocks(NULL
, inode
, iblock
, 1, bh_result
, 0);
2456 if ((ret
== 0) && !buffer_delay(bh_result
)) {
2457 /* the block isn't (pre)allocated yet, let's reserve space */
2459 * XXX: __block_prepare_write() unmaps passed block,
2462 ret
= ext4_da_reserve_space(inode
, 1);
2464 /* not enough space to reserve */
2467 map_bh(bh_result
, inode
->i_sb
, invalid_block
);
2468 set_buffer_new(bh_result
);
2469 set_buffer_delay(bh_result
);
2470 } else if (ret
> 0) {
2471 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2472 if (buffer_unwritten(bh_result
)) {
2473 /* A delayed write to unwritten bh should
2474 * be marked new and mapped. Mapped ensures
2475 * that we don't do get_block multiple times
2476 * when we write to the same offset and new
2477 * ensures that we do proper zero out for
2480 set_buffer_new(bh_result
);
2481 set_buffer_mapped(bh_result
);
2490 * This function is used as a standard get_block_t calback function
2491 * when there is no desire to allocate any blocks. It is used as a
2492 * callback function for block_prepare_write(), nobh_writepage(), and
2493 * block_write_full_page(). These functions should only try to map a
2494 * single block at a time.
2496 * Since this function doesn't do block allocations even if the caller
2497 * requests it by passing in create=1, it is critically important that
2498 * any caller checks to make sure that any buffer heads are returned
2499 * by this function are either all already mapped or marked for
2500 * delayed allocation before calling nobh_writepage() or
2501 * block_write_full_page(). Otherwise, b_blocknr could be left
2502 * unitialized, and the page write functions will be taken by
2505 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
2506 struct buffer_head
*bh_result
, int create
)
2509 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
2511 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2514 * we don't want to do block allocation in writepage
2515 * so call get_block_wrap with create = 0
2517 ret
= ext4_get_blocks(NULL
, inode
, iblock
, max_blocks
, bh_result
, 0);
2519 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2526 * Note that we don't need to start a transaction unless we're journaling data
2527 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2528 * need to file the inode to the transaction's list in ordered mode because if
2529 * we are writing back data added by write(), the inode is already there and if
2530 * we are writing back data modified via mmap(), noone guarantees in which
2531 * transaction the data will hit the disk. In case we are journaling data, we
2532 * cannot start transaction directly because transaction start ranks above page
2533 * lock so we have to do some magic.
2535 * This function can get called via...
2536 * - ext4_da_writepages after taking page lock (have journal handle)
2537 * - journal_submit_inode_data_buffers (no journal handle)
2538 * - shrink_page_list via pdflush (no journal handle)
2539 * - grab_page_cache when doing write_begin (have journal handle)
2541 * We don't do any block allocation in this function. If we have page with
2542 * multiple blocks we need to write those buffer_heads that are mapped. This
2543 * is important for mmaped based write. So if we do with blocksize 1K
2544 * truncate(f, 1024);
2545 * a = mmap(f, 0, 4096);
2547 * truncate(f, 4096);
2548 * we have in the page first buffer_head mapped via page_mkwrite call back
2549 * but other bufer_heads would be unmapped but dirty(dirty done via the
2550 * do_wp_page). So writepage should write the first block. If we modify
2551 * the mmap area beyond 1024 we will again get a page_fault and the
2552 * page_mkwrite callback will do the block allocation and mark the
2553 * buffer_heads mapped.
2555 * We redirty the page if we have any buffer_heads that is either delay or
2556 * unwritten in the page.
2558 * We can get recursively called as show below.
2560 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2563 * But since we don't do any block allocation we should not deadlock.
2564 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2566 static int ext4_writepage(struct page
*page
,
2567 struct writeback_control
*wbc
)
2572 struct buffer_head
*page_bufs
;
2573 struct inode
*inode
= page
->mapping
->host
;
2575 trace_ext4_writepage(inode
, page
);
2576 size
= i_size_read(inode
);
2577 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2578 len
= size
& ~PAGE_CACHE_MASK
;
2580 len
= PAGE_CACHE_SIZE
;
2582 if (page_has_buffers(page
)) {
2583 page_bufs
= page_buffers(page
);
2584 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2585 ext4_bh_delay_or_unwritten
)) {
2587 * We don't want to do block allocation
2588 * So redirty the page and return
2589 * We may reach here when we do a journal commit
2590 * via journal_submit_inode_data_buffers.
2591 * If we don't have mapping block we just ignore
2592 * them. We can also reach here via shrink_page_list
2594 redirty_page_for_writepage(wbc
, page
);
2600 * The test for page_has_buffers() is subtle:
2601 * We know the page is dirty but it lost buffers. That means
2602 * that at some moment in time after write_begin()/write_end()
2603 * has been called all buffers have been clean and thus they
2604 * must have been written at least once. So they are all
2605 * mapped and we can happily proceed with mapping them
2606 * and writing the page.
2608 * Try to initialize the buffer_heads and check whether
2609 * all are mapped and non delay. We don't want to
2610 * do block allocation here.
2612 ret
= block_prepare_write(page
, 0, len
,
2613 noalloc_get_block_write
);
2615 page_bufs
= page_buffers(page
);
2616 /* check whether all are mapped and non delay */
2617 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2618 ext4_bh_delay_or_unwritten
)) {
2619 redirty_page_for_writepage(wbc
, page
);
2625 * We can't do block allocation here
2626 * so just redity the page and unlock
2629 redirty_page_for_writepage(wbc
, page
);
2633 /* now mark the buffer_heads as dirty and uptodate */
2634 block_commit_write(page
, 0, len
);
2637 if (PageChecked(page
) && ext4_should_journal_data(inode
)) {
2639 * It's mmapped pagecache. Add buffers and journal it. There
2640 * doesn't seem much point in redirtying the page here.
2642 ClearPageChecked(page
);
2643 return __ext4_journalled_writepage(page
, wbc
, len
);
2646 if (test_opt(inode
->i_sb
, NOBH
) && ext4_should_writeback_data(inode
))
2647 ret
= nobh_writepage(page
, noalloc_get_block_write
, wbc
);
2649 ret
= block_write_full_page(page
, noalloc_get_block_write
,
2656 * This is called via ext4_da_writepages() to
2657 * calulate the total number of credits to reserve to fit
2658 * a single extent allocation into a single transaction,
2659 * ext4_da_writpeages() will loop calling this before
2660 * the block allocation.
2663 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2665 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
2668 * With non-extent format the journal credit needed to
2669 * insert nrblocks contiguous block is dependent on
2670 * number of contiguous block. So we will limit
2671 * number of contiguous block to a sane value
2673 if (!(inode
->i_flags
& EXT4_EXTENTS_FL
) &&
2674 (max_blocks
> EXT4_MAX_TRANS_DATA
))
2675 max_blocks
= EXT4_MAX_TRANS_DATA
;
2677 return ext4_chunk_trans_blocks(inode
, max_blocks
);
2680 static int ext4_da_writepages(struct address_space
*mapping
,
2681 struct writeback_control
*wbc
)
2684 int range_whole
= 0;
2685 handle_t
*handle
= NULL
;
2686 struct mpage_da_data mpd
;
2687 struct inode
*inode
= mapping
->host
;
2688 int no_nrwrite_index_update
;
2689 int pages_written
= 0;
2691 int range_cyclic
, cycled
= 1, io_done
= 0;
2692 int needed_blocks
, ret
= 0, nr_to_writebump
= 0;
2693 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2695 trace_ext4_da_writepages(inode
, wbc
);
2698 * No pages to write? This is mainly a kludge to avoid starting
2699 * a transaction for special inodes like journal inode on last iput()
2700 * because that could violate lock ordering on umount
2702 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2706 * If the filesystem has aborted, it is read-only, so return
2707 * right away instead of dumping stack traces later on that
2708 * will obscure the real source of the problem. We test
2709 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2710 * the latter could be true if the filesystem is mounted
2711 * read-only, and in that case, ext4_da_writepages should
2712 * *never* be called, so if that ever happens, we would want
2715 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2719 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2720 * This make sure small files blocks are allocated in
2721 * single attempt. This ensure that small files
2722 * get less fragmented.
2724 if (wbc
->nr_to_write
< sbi
->s_mb_stream_request
) {
2725 nr_to_writebump
= sbi
->s_mb_stream_request
- wbc
->nr_to_write
;
2726 wbc
->nr_to_write
= sbi
->s_mb_stream_request
;
2728 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2731 range_cyclic
= wbc
->range_cyclic
;
2732 if (wbc
->range_cyclic
) {
2733 index
= mapping
->writeback_index
;
2736 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2737 wbc
->range_end
= LLONG_MAX
;
2738 wbc
->range_cyclic
= 0;
2740 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2743 mpd
.inode
= mapping
->host
;
2746 * we don't want write_cache_pages to update
2747 * nr_to_write and writeback_index
2749 no_nrwrite_index_update
= wbc
->no_nrwrite_index_update
;
2750 wbc
->no_nrwrite_index_update
= 1;
2751 pages_skipped
= wbc
->pages_skipped
;
2754 while (!ret
&& wbc
->nr_to_write
> 0) {
2757 * we insert one extent at a time. So we need
2758 * credit needed for single extent allocation.
2759 * journalled mode is currently not supported
2762 BUG_ON(ext4_should_journal_data(inode
));
2763 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2765 /* start a new transaction*/
2766 handle
= ext4_journal_start(inode
, needed_blocks
);
2767 if (IS_ERR(handle
)) {
2768 ret
= PTR_ERR(handle
);
2769 printk(KERN_CRIT
"%s: jbd2_start: "
2770 "%ld pages, ino %lu; err %d\n", __func__
,
2771 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2773 goto out_writepages
;
2777 * Now call __mpage_da_writepage to find the next
2778 * contiguous region of logical blocks that need
2779 * blocks to be allocated by ext4. We don't actually
2780 * submit the blocks for I/O here, even though
2781 * write_cache_pages thinks it will, and will set the
2782 * pages as clean for write before calling
2783 * __mpage_da_writepage().
2791 mpd
.pages_written
= 0;
2793 ret
= write_cache_pages(mapping
, wbc
, __mpage_da_writepage
,
2796 * If we have a contigous extent of pages and we
2797 * haven't done the I/O yet, map the blocks and submit
2800 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2801 if (mpage_da_map_blocks(&mpd
) == 0)
2802 mpage_da_submit_io(&mpd
);
2804 ret
= MPAGE_DA_EXTENT_TAIL
;
2806 wbc
->nr_to_write
-= mpd
.pages_written
;
2808 ext4_journal_stop(handle
);
2810 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
2811 /* commit the transaction which would
2812 * free blocks released in the transaction
2815 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2816 wbc
->pages_skipped
= pages_skipped
;
2818 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
2820 * got one extent now try with
2823 pages_written
+= mpd
.pages_written
;
2824 wbc
->pages_skipped
= pages_skipped
;
2827 } else if (wbc
->nr_to_write
)
2829 * There is no more writeout needed
2830 * or we requested for a noblocking writeout
2831 * and we found the device congested
2835 if (!io_done
&& !cycled
) {
2838 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2839 wbc
->range_end
= mapping
->writeback_index
- 1;
2842 if (pages_skipped
!= wbc
->pages_skipped
)
2843 printk(KERN_EMERG
"This should not happen leaving %s "
2844 "with nr_to_write = %ld ret = %d\n",
2845 __func__
, wbc
->nr_to_write
, ret
);
2848 index
+= pages_written
;
2849 wbc
->range_cyclic
= range_cyclic
;
2850 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2852 * set the writeback_index so that range_cyclic
2853 * mode will write it back later
2855 mapping
->writeback_index
= index
;
2858 if (!no_nrwrite_index_update
)
2859 wbc
->no_nrwrite_index_update
= 0;
2860 wbc
->nr_to_write
-= nr_to_writebump
;
2861 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
2865 #define FALL_BACK_TO_NONDELALLOC 1
2866 static int ext4_nonda_switch(struct super_block
*sb
)
2868 s64 free_blocks
, dirty_blocks
;
2869 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2872 * switch to non delalloc mode if we are running low
2873 * on free block. The free block accounting via percpu
2874 * counters can get slightly wrong with percpu_counter_batch getting
2875 * accumulated on each CPU without updating global counters
2876 * Delalloc need an accurate free block accounting. So switch
2877 * to non delalloc when we are near to error range.
2879 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
2880 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyblocks_counter
);
2881 if (2 * free_blocks
< 3 * dirty_blocks
||
2882 free_blocks
< (dirty_blocks
+ EXT4_FREEBLOCKS_WATERMARK
)) {
2884 * free block count is less that 150% of dirty blocks
2885 * or free blocks is less that watermark
2892 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2893 loff_t pos
, unsigned len
, unsigned flags
,
2894 struct page
**pagep
, void **fsdata
)
2896 int ret
, retries
= 0;
2900 struct inode
*inode
= mapping
->host
;
2903 index
= pos
>> PAGE_CACHE_SHIFT
;
2904 from
= pos
& (PAGE_CACHE_SIZE
- 1);
2907 if (ext4_nonda_switch(inode
->i_sb
)) {
2908 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2909 return ext4_write_begin(file
, mapping
, pos
,
2910 len
, flags
, pagep
, fsdata
);
2912 *fsdata
= (void *)0;
2913 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2916 * With delayed allocation, we don't log the i_disksize update
2917 * if there is delayed block allocation. But we still need
2918 * to journalling the i_disksize update if writes to the end
2919 * of file which has an already mapped buffer.
2921 handle
= ext4_journal_start(inode
, 1);
2922 if (IS_ERR(handle
)) {
2923 ret
= PTR_ERR(handle
);
2926 /* We cannot recurse into the filesystem as the transaction is already
2928 flags
|= AOP_FLAG_NOFS
;
2930 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2932 ext4_journal_stop(handle
);
2938 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
2939 ext4_da_get_block_prep
);
2942 ext4_journal_stop(handle
);
2943 page_cache_release(page
);
2945 * block_write_begin may have instantiated a few blocks
2946 * outside i_size. Trim these off again. Don't need
2947 * i_size_read because we hold i_mutex.
2949 if (pos
+ len
> inode
->i_size
)
2950 ext4_truncate(inode
);
2953 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2960 * Check if we should update i_disksize
2961 * when write to the end of file but not require block allocation
2963 static int ext4_da_should_update_i_disksize(struct page
*page
,
2964 unsigned long offset
)
2966 struct buffer_head
*bh
;
2967 struct inode
*inode
= page
->mapping
->host
;
2971 bh
= page_buffers(page
);
2972 idx
= offset
>> inode
->i_blkbits
;
2974 for (i
= 0; i
< idx
; i
++)
2975 bh
= bh
->b_this_page
;
2977 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
2982 static int ext4_da_write_end(struct file
*file
,
2983 struct address_space
*mapping
,
2984 loff_t pos
, unsigned len
, unsigned copied
,
2985 struct page
*page
, void *fsdata
)
2987 struct inode
*inode
= mapping
->host
;
2989 handle_t
*handle
= ext4_journal_current_handle();
2991 unsigned long start
, end
;
2992 int write_mode
= (int)(unsigned long)fsdata
;
2994 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
2995 if (ext4_should_order_data(inode
)) {
2996 return ext4_ordered_write_end(file
, mapping
, pos
,
2997 len
, copied
, page
, fsdata
);
2998 } else if (ext4_should_writeback_data(inode
)) {
2999 return ext4_writeback_write_end(file
, mapping
, pos
,
3000 len
, copied
, page
, fsdata
);
3006 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
3007 start
= pos
& (PAGE_CACHE_SIZE
- 1);
3008 end
= start
+ copied
- 1;
3011 * generic_write_end() will run mark_inode_dirty() if i_size
3012 * changes. So let's piggyback the i_disksize mark_inode_dirty
3016 new_i_size
= pos
+ copied
;
3017 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3018 if (ext4_da_should_update_i_disksize(page
, end
)) {
3019 down_write(&EXT4_I(inode
)->i_data_sem
);
3020 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3022 * Updating i_disksize when extending file
3023 * without needing block allocation
3025 if (ext4_should_order_data(inode
))
3026 ret
= ext4_jbd2_file_inode(handle
,
3029 EXT4_I(inode
)->i_disksize
= new_i_size
;
3031 up_write(&EXT4_I(inode
)->i_data_sem
);
3032 /* We need to mark inode dirty even if
3033 * new_i_size is less that inode->i_size
3034 * bu greater than i_disksize.(hint delalloc)
3036 ext4_mark_inode_dirty(handle
, inode
);
3039 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
3044 ret2
= ext4_journal_stop(handle
);
3048 return ret
? ret
: copied
;
3051 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
3054 * Drop reserved blocks
3056 BUG_ON(!PageLocked(page
));
3057 if (!page_has_buffers(page
))
3060 ext4_da_page_release_reservation(page
, offset
);
3063 ext4_invalidatepage(page
, offset
);
3069 * Force all delayed allocation blocks to be allocated for a given inode.
3071 int ext4_alloc_da_blocks(struct inode
*inode
)
3073 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
3074 !EXT4_I(inode
)->i_reserved_meta_blocks
)
3078 * We do something simple for now. The filemap_flush() will
3079 * also start triggering a write of the data blocks, which is
3080 * not strictly speaking necessary (and for users of
3081 * laptop_mode, not even desirable). However, to do otherwise
3082 * would require replicating code paths in:
3084 * ext4_da_writepages() ->
3085 * write_cache_pages() ---> (via passed in callback function)
3086 * __mpage_da_writepage() -->
3087 * mpage_add_bh_to_extent()
3088 * mpage_da_map_blocks()
3090 * The problem is that write_cache_pages(), located in
3091 * mm/page-writeback.c, marks pages clean in preparation for
3092 * doing I/O, which is not desirable if we're not planning on
3095 * We could call write_cache_pages(), and then redirty all of
3096 * the pages by calling redirty_page_for_writeback() but that
3097 * would be ugly in the extreme. So instead we would need to
3098 * replicate parts of the code in the above functions,
3099 * simplifying them becuase we wouldn't actually intend to
3100 * write out the pages, but rather only collect contiguous
3101 * logical block extents, call the multi-block allocator, and
3102 * then update the buffer heads with the block allocations.
3104 * For now, though, we'll cheat by calling filemap_flush(),
3105 * which will map the blocks, and start the I/O, but not
3106 * actually wait for the I/O to complete.
3108 return filemap_flush(inode
->i_mapping
);
3112 * bmap() is special. It gets used by applications such as lilo and by
3113 * the swapper to find the on-disk block of a specific piece of data.
3115 * Naturally, this is dangerous if the block concerned is still in the
3116 * journal. If somebody makes a swapfile on an ext4 data-journaling
3117 * filesystem and enables swap, then they may get a nasty shock when the
3118 * data getting swapped to that swapfile suddenly gets overwritten by
3119 * the original zero's written out previously to the journal and
3120 * awaiting writeback in the kernel's buffer cache.
3122 * So, if we see any bmap calls here on a modified, data-journaled file,
3123 * take extra steps to flush any blocks which might be in the cache.
3125 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
3127 struct inode
*inode
= mapping
->host
;
3131 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
3132 test_opt(inode
->i_sb
, DELALLOC
)) {
3134 * With delalloc we want to sync the file
3135 * so that we can make sure we allocate
3138 filemap_write_and_wait(mapping
);
3141 if (EXT4_JOURNAL(inode
) && EXT4_I(inode
)->i_state
& EXT4_STATE_JDATA
) {
3143 * This is a REALLY heavyweight approach, but the use of
3144 * bmap on dirty files is expected to be extremely rare:
3145 * only if we run lilo or swapon on a freshly made file
3146 * do we expect this to happen.
3148 * (bmap requires CAP_SYS_RAWIO so this does not
3149 * represent an unprivileged user DOS attack --- we'd be
3150 * in trouble if mortal users could trigger this path at
3153 * NB. EXT4_STATE_JDATA is not set on files other than
3154 * regular files. If somebody wants to bmap a directory
3155 * or symlink and gets confused because the buffer
3156 * hasn't yet been flushed to disk, they deserve
3157 * everything they get.
3160 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_JDATA
;
3161 journal
= EXT4_JOURNAL(inode
);
3162 jbd2_journal_lock_updates(journal
);
3163 err
= jbd2_journal_flush(journal
);
3164 jbd2_journal_unlock_updates(journal
);
3170 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3173 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
3179 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
3185 static int __ext4_journalled_writepage(struct page
*page
,
3186 struct writeback_control
*wbc
,
3189 struct address_space
*mapping
= page
->mapping
;
3190 struct inode
*inode
= mapping
->host
;
3191 struct buffer_head
*page_bufs
;
3192 handle_t
*handle
= NULL
;
3196 page_bufs
= page_buffers(page
);
3198 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
3199 /* As soon as we unlock the page, it can go away, but we have
3200 * references to buffers so we are safe */
3203 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
3204 if (IS_ERR(handle
)) {
3205 ret
= PTR_ERR(handle
);
3209 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
3210 do_journal_get_write_access
);
3212 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
3216 err
= ext4_journal_stop(handle
);
3220 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
3221 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
3226 static int ext4_readpage(struct file
*file
, struct page
*page
)
3228 return mpage_readpage(page
, ext4_get_block
);
3232 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3233 struct list_head
*pages
, unsigned nr_pages
)
3235 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
3238 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
3240 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3243 * If it's a full truncate we just forget about the pending dirtying
3246 ClearPageChecked(page
);
3249 jbd2_journal_invalidatepage(journal
, page
, offset
);
3251 block_invalidatepage(page
, offset
);
3254 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3256 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3258 WARN_ON(PageChecked(page
));
3259 if (!page_has_buffers(page
))
3262 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3264 return try_to_free_buffers(page
);
3268 * If the O_DIRECT write will extend the file then add this inode to the
3269 * orphan list. So recovery will truncate it back to the original size
3270 * if the machine crashes during the write.
3272 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3273 * crashes then stale disk data _may_ be exposed inside the file. But current
3274 * VFS code falls back into buffered path in that case so we are safe.
3276 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3277 const struct iovec
*iov
, loff_t offset
,
3278 unsigned long nr_segs
)
3280 struct file
*file
= iocb
->ki_filp
;
3281 struct inode
*inode
= file
->f_mapping
->host
;
3282 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3286 size_t count
= iov_length(iov
, nr_segs
);
3289 loff_t final_size
= offset
+ count
;
3291 if (final_size
> inode
->i_size
) {
3292 /* Credits for sb + inode write */
3293 handle
= ext4_journal_start(inode
, 2);
3294 if (IS_ERR(handle
)) {
3295 ret
= PTR_ERR(handle
);
3298 ret
= ext4_orphan_add(handle
, inode
);
3300 ext4_journal_stop(handle
);
3304 ei
->i_disksize
= inode
->i_size
;
3305 ext4_journal_stop(handle
);
3309 ret
= blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
3311 ext4_get_block
, NULL
);
3316 /* Credits for sb + inode write */
3317 handle
= ext4_journal_start(inode
, 2);
3318 if (IS_ERR(handle
)) {
3319 /* This is really bad luck. We've written the data
3320 * but cannot extend i_size. Bail out and pretend
3321 * the write failed... */
3322 ret
= PTR_ERR(handle
);
3326 ext4_orphan_del(handle
, inode
);
3328 loff_t end
= offset
+ ret
;
3329 if (end
> inode
->i_size
) {
3330 ei
->i_disksize
= end
;
3331 i_size_write(inode
, end
);
3333 * We're going to return a positive `ret'
3334 * here due to non-zero-length I/O, so there's
3335 * no way of reporting error returns from
3336 * ext4_mark_inode_dirty() to userspace. So
3339 ext4_mark_inode_dirty(handle
, inode
);
3342 err
= ext4_journal_stop(handle
);
3351 * Pages can be marked dirty completely asynchronously from ext4's journalling
3352 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3353 * much here because ->set_page_dirty is called under VFS locks. The page is
3354 * not necessarily locked.
3356 * We cannot just dirty the page and leave attached buffers clean, because the
3357 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3358 * or jbddirty because all the journalling code will explode.
3360 * So what we do is to mark the page "pending dirty" and next time writepage
3361 * is called, propagate that into the buffers appropriately.
3363 static int ext4_journalled_set_page_dirty(struct page
*page
)
3365 SetPageChecked(page
);
3366 return __set_page_dirty_nobuffers(page
);
3369 static const struct address_space_operations ext4_ordered_aops
= {
3370 .readpage
= ext4_readpage
,
3371 .readpages
= ext4_readpages
,
3372 .writepage
= ext4_writepage
,
3373 .sync_page
= block_sync_page
,
3374 .write_begin
= ext4_write_begin
,
3375 .write_end
= ext4_ordered_write_end
,
3377 .invalidatepage
= ext4_invalidatepage
,
3378 .releasepage
= ext4_releasepage
,
3379 .direct_IO
= ext4_direct_IO
,
3380 .migratepage
= buffer_migrate_page
,
3381 .is_partially_uptodate
= block_is_partially_uptodate
,
3384 static const struct address_space_operations ext4_writeback_aops
= {
3385 .readpage
= ext4_readpage
,
3386 .readpages
= ext4_readpages
,
3387 .writepage
= ext4_writepage
,
3388 .sync_page
= block_sync_page
,
3389 .write_begin
= ext4_write_begin
,
3390 .write_end
= ext4_writeback_write_end
,
3392 .invalidatepage
= ext4_invalidatepage
,
3393 .releasepage
= ext4_releasepage
,
3394 .direct_IO
= ext4_direct_IO
,
3395 .migratepage
= buffer_migrate_page
,
3396 .is_partially_uptodate
= block_is_partially_uptodate
,
3399 static const struct address_space_operations ext4_journalled_aops
= {
3400 .readpage
= ext4_readpage
,
3401 .readpages
= ext4_readpages
,
3402 .writepage
= ext4_writepage
,
3403 .sync_page
= block_sync_page
,
3404 .write_begin
= ext4_write_begin
,
3405 .write_end
= ext4_journalled_write_end
,
3406 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3408 .invalidatepage
= ext4_invalidatepage
,
3409 .releasepage
= ext4_releasepage
,
3410 .is_partially_uptodate
= block_is_partially_uptodate
,
3413 static const struct address_space_operations ext4_da_aops
= {
3414 .readpage
= ext4_readpage
,
3415 .readpages
= ext4_readpages
,
3416 .writepage
= ext4_writepage
,
3417 .writepages
= ext4_da_writepages
,
3418 .sync_page
= block_sync_page
,
3419 .write_begin
= ext4_da_write_begin
,
3420 .write_end
= ext4_da_write_end
,
3422 .invalidatepage
= ext4_da_invalidatepage
,
3423 .releasepage
= ext4_releasepage
,
3424 .direct_IO
= ext4_direct_IO
,
3425 .migratepage
= buffer_migrate_page
,
3426 .is_partially_uptodate
= block_is_partially_uptodate
,
3429 void ext4_set_aops(struct inode
*inode
)
3431 if (ext4_should_order_data(inode
) &&
3432 test_opt(inode
->i_sb
, DELALLOC
))
3433 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3434 else if (ext4_should_order_data(inode
))
3435 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
3436 else if (ext4_should_writeback_data(inode
) &&
3437 test_opt(inode
->i_sb
, DELALLOC
))
3438 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3439 else if (ext4_should_writeback_data(inode
))
3440 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
3442 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3446 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3447 * up to the end of the block which corresponds to `from'.
3448 * This required during truncate. We need to physically zero the tail end
3449 * of that block so it doesn't yield old data if the file is later grown.
3451 int ext4_block_truncate_page(handle_t
*handle
,
3452 struct address_space
*mapping
, loff_t from
)
3454 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3455 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3456 unsigned blocksize
, length
, pos
;
3458 struct inode
*inode
= mapping
->host
;
3459 struct buffer_head
*bh
;
3463 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3464 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3468 blocksize
= inode
->i_sb
->s_blocksize
;
3469 length
= blocksize
- (offset
& (blocksize
- 1));
3470 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3473 * For "nobh" option, we can only work if we don't need to
3474 * read-in the page - otherwise we create buffers to do the IO.
3476 if (!page_has_buffers(page
) && test_opt(inode
->i_sb
, NOBH
) &&
3477 ext4_should_writeback_data(inode
) && PageUptodate(page
)) {
3478 zero_user(page
, offset
, length
);
3479 set_page_dirty(page
);
3483 if (!page_has_buffers(page
))
3484 create_empty_buffers(page
, blocksize
, 0);
3486 /* Find the buffer that contains "offset" */
3487 bh
= page_buffers(page
);
3489 while (offset
>= pos
) {
3490 bh
= bh
->b_this_page
;
3496 if (buffer_freed(bh
)) {
3497 BUFFER_TRACE(bh
, "freed: skip");
3501 if (!buffer_mapped(bh
)) {
3502 BUFFER_TRACE(bh
, "unmapped");
3503 ext4_get_block(inode
, iblock
, bh
, 0);
3504 /* unmapped? It's a hole - nothing to do */
3505 if (!buffer_mapped(bh
)) {
3506 BUFFER_TRACE(bh
, "still unmapped");
3511 /* Ok, it's mapped. Make sure it's up-to-date */
3512 if (PageUptodate(page
))
3513 set_buffer_uptodate(bh
);
3515 if (!buffer_uptodate(bh
)) {
3517 ll_rw_block(READ
, 1, &bh
);
3519 /* Uhhuh. Read error. Complain and punt. */
3520 if (!buffer_uptodate(bh
))
3524 if (ext4_should_journal_data(inode
)) {
3525 BUFFER_TRACE(bh
, "get write access");
3526 err
= ext4_journal_get_write_access(handle
, bh
);
3531 zero_user(page
, offset
, length
);
3533 BUFFER_TRACE(bh
, "zeroed end of block");
3536 if (ext4_should_journal_data(inode
)) {
3537 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3539 if (ext4_should_order_data(inode
))
3540 err
= ext4_jbd2_file_inode(handle
, inode
);
3541 mark_buffer_dirty(bh
);
3546 page_cache_release(page
);
3551 * Probably it should be a library function... search for first non-zero word
3552 * or memcmp with zero_page, whatever is better for particular architecture.
3555 static inline int all_zeroes(__le32
*p
, __le32
*q
)
3564 * ext4_find_shared - find the indirect blocks for partial truncation.
3565 * @inode: inode in question
3566 * @depth: depth of the affected branch
3567 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3568 * @chain: place to store the pointers to partial indirect blocks
3569 * @top: place to the (detached) top of branch
3571 * This is a helper function used by ext4_truncate().
3573 * When we do truncate() we may have to clean the ends of several
3574 * indirect blocks but leave the blocks themselves alive. Block is
3575 * partially truncated if some data below the new i_size is refered
3576 * from it (and it is on the path to the first completely truncated
3577 * data block, indeed). We have to free the top of that path along
3578 * with everything to the right of the path. Since no allocation
3579 * past the truncation point is possible until ext4_truncate()
3580 * finishes, we may safely do the latter, but top of branch may
3581 * require special attention - pageout below the truncation point
3582 * might try to populate it.
3584 * We atomically detach the top of branch from the tree, store the
3585 * block number of its root in *@top, pointers to buffer_heads of
3586 * partially truncated blocks - in @chain[].bh and pointers to
3587 * their last elements that should not be removed - in
3588 * @chain[].p. Return value is the pointer to last filled element
3591 * The work left to caller to do the actual freeing of subtrees:
3592 * a) free the subtree starting from *@top
3593 * b) free the subtrees whose roots are stored in
3594 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3595 * c) free the subtrees growing from the inode past the @chain[0].
3596 * (no partially truncated stuff there). */
3598 static Indirect
*ext4_find_shared(struct inode
*inode
, int depth
,
3599 ext4_lblk_t offsets
[4], Indirect chain
[4],
3602 Indirect
*partial
, *p
;
3606 /* Make k index the deepest non-null offest + 1 */
3607 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
3609 partial
= ext4_get_branch(inode
, k
, offsets
, chain
, &err
);
3610 /* Writer: pointers */
3612 partial
= chain
+ k
-1;
3614 * If the branch acquired continuation since we've looked at it -
3615 * fine, it should all survive and (new) top doesn't belong to us.
3617 if (!partial
->key
&& *partial
->p
)
3620 for (p
= partial
; (p
> chain
) && all_zeroes((__le32
*) p
->bh
->b_data
, p
->p
); p
--)
3623 * OK, we've found the last block that must survive. The rest of our
3624 * branch should be detached before unlocking. However, if that rest
3625 * of branch is all ours and does not grow immediately from the inode
3626 * it's easier to cheat and just decrement partial->p.
3628 if (p
== chain
+ k
- 1 && p
> chain
) {
3632 /* Nope, don't do this in ext4. Must leave the tree intact */
3639 while (partial
> p
) {
3640 brelse(partial
->bh
);
3648 * Zero a number of block pointers in either an inode or an indirect block.
3649 * If we restart the transaction we must again get write access to the
3650 * indirect block for further modification.
3652 * We release `count' blocks on disk, but (last - first) may be greater
3653 * than `count' because there can be holes in there.
3655 static void ext4_clear_blocks(handle_t
*handle
, struct inode
*inode
,
3656 struct buffer_head
*bh
,
3657 ext4_fsblk_t block_to_free
,
3658 unsigned long count
, __le32
*first
,
3662 if (try_to_extend_transaction(handle
, inode
)) {
3664 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
3665 ext4_handle_dirty_metadata(handle
, inode
, bh
);
3667 ext4_mark_inode_dirty(handle
, inode
);
3668 ext4_journal_test_restart(handle
, inode
);
3670 BUFFER_TRACE(bh
, "retaking write access");
3671 ext4_journal_get_write_access(handle
, bh
);
3676 * Any buffers which are on the journal will be in memory. We
3677 * find them on the hash table so jbd2_journal_revoke() will
3678 * run jbd2_journal_forget() on them. We've already detached
3679 * each block from the file, so bforget() in
3680 * jbd2_journal_forget() should be safe.
3682 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3684 for (p
= first
; p
< last
; p
++) {
3685 u32 nr
= le32_to_cpu(*p
);
3687 struct buffer_head
*tbh
;
3690 tbh
= sb_find_get_block(inode
->i_sb
, nr
);
3691 ext4_forget(handle
, 0, inode
, tbh
, nr
);
3695 ext4_free_blocks(handle
, inode
, block_to_free
, count
, 0);
3699 * ext4_free_data - free a list of data blocks
3700 * @handle: handle for this transaction
3701 * @inode: inode we are dealing with
3702 * @this_bh: indirect buffer_head which contains *@first and *@last
3703 * @first: array of block numbers
3704 * @last: points immediately past the end of array
3706 * We are freeing all blocks refered from that array (numbers are stored as
3707 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3709 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3710 * blocks are contiguous then releasing them at one time will only affect one
3711 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3712 * actually use a lot of journal space.
3714 * @this_bh will be %NULL if @first and @last point into the inode's direct
3717 static void ext4_free_data(handle_t
*handle
, struct inode
*inode
,
3718 struct buffer_head
*this_bh
,
3719 __le32
*first
, __le32
*last
)
3721 ext4_fsblk_t block_to_free
= 0; /* Starting block # of a run */
3722 unsigned long count
= 0; /* Number of blocks in the run */
3723 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
3726 ext4_fsblk_t nr
; /* Current block # */
3727 __le32
*p
; /* Pointer into inode/ind
3728 for current block */
3731 if (this_bh
) { /* For indirect block */
3732 BUFFER_TRACE(this_bh
, "get_write_access");
3733 err
= ext4_journal_get_write_access(handle
, this_bh
);
3734 /* Important: if we can't update the indirect pointers
3735 * to the blocks, we can't free them. */
3740 for (p
= first
; p
< last
; p
++) {
3741 nr
= le32_to_cpu(*p
);
3743 /* accumulate blocks to free if they're contiguous */
3746 block_to_free_p
= p
;
3748 } else if (nr
== block_to_free
+ count
) {
3751 ext4_clear_blocks(handle
, inode
, this_bh
,
3753 count
, block_to_free_p
, p
);
3755 block_to_free_p
= p
;
3762 ext4_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
3763 count
, block_to_free_p
, p
);
3766 BUFFER_TRACE(this_bh
, "call ext4_handle_dirty_metadata");
3769 * The buffer head should have an attached journal head at this
3770 * point. However, if the data is corrupted and an indirect
3771 * block pointed to itself, it would have been detached when
3772 * the block was cleared. Check for this instead of OOPSing.
3774 if ((EXT4_JOURNAL(inode
) == NULL
) || bh2jh(this_bh
))
3775 ext4_handle_dirty_metadata(handle
, inode
, this_bh
);
3777 ext4_error(inode
->i_sb
, __func__
,
3778 "circular indirect block detected, "
3779 "inode=%lu, block=%llu",
3781 (unsigned long long) this_bh
->b_blocknr
);
3786 * ext4_free_branches - free an array of branches
3787 * @handle: JBD handle for this transaction
3788 * @inode: inode we are dealing with
3789 * @parent_bh: the buffer_head which contains *@first and *@last
3790 * @first: array of block numbers
3791 * @last: pointer immediately past the end of array
3792 * @depth: depth of the branches to free
3794 * We are freeing all blocks refered from these branches (numbers are
3795 * stored as little-endian 32-bit) and updating @inode->i_blocks
3798 static void ext4_free_branches(handle_t
*handle
, struct inode
*inode
,
3799 struct buffer_head
*parent_bh
,
3800 __le32
*first
, __le32
*last
, int depth
)
3805 if (ext4_handle_is_aborted(handle
))
3809 struct buffer_head
*bh
;
3810 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
3812 while (--p
>= first
) {
3813 nr
= le32_to_cpu(*p
);
3815 continue; /* A hole */
3817 /* Go read the buffer for the next level down */
3818 bh
= sb_bread(inode
->i_sb
, nr
);
3821 * A read failure? Report error and clear slot
3825 ext4_error(inode
->i_sb
, "ext4_free_branches",
3826 "Read failure, inode=%lu, block=%llu",
3831 /* This zaps the entire block. Bottom up. */
3832 BUFFER_TRACE(bh
, "free child branches");
3833 ext4_free_branches(handle
, inode
, bh
,
3834 (__le32
*) bh
->b_data
,
3835 (__le32
*) bh
->b_data
+ addr_per_block
,
3839 * We've probably journalled the indirect block several
3840 * times during the truncate. But it's no longer
3841 * needed and we now drop it from the transaction via
3842 * jbd2_journal_revoke().
3844 * That's easy if it's exclusively part of this
3845 * transaction. But if it's part of the committing
3846 * transaction then jbd2_journal_forget() will simply
3847 * brelse() it. That means that if the underlying
3848 * block is reallocated in ext4_get_block(),
3849 * unmap_underlying_metadata() will find this block
3850 * and will try to get rid of it. damn, damn.
3852 * If this block has already been committed to the
3853 * journal, a revoke record will be written. And
3854 * revoke records must be emitted *before* clearing
3855 * this block's bit in the bitmaps.
3857 ext4_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
3860 * Everything below this this pointer has been
3861 * released. Now let this top-of-subtree go.
3863 * We want the freeing of this indirect block to be
3864 * atomic in the journal with the updating of the
3865 * bitmap block which owns it. So make some room in
3868 * We zero the parent pointer *after* freeing its
3869 * pointee in the bitmaps, so if extend_transaction()
3870 * for some reason fails to put the bitmap changes and
3871 * the release into the same transaction, recovery
3872 * will merely complain about releasing a free block,
3873 * rather than leaking blocks.
3875 if (ext4_handle_is_aborted(handle
))
3877 if (try_to_extend_transaction(handle
, inode
)) {
3878 ext4_mark_inode_dirty(handle
, inode
);
3879 ext4_journal_test_restart(handle
, inode
);
3882 ext4_free_blocks(handle
, inode
, nr
, 1, 1);
3886 * The block which we have just freed is
3887 * pointed to by an indirect block: journal it
3889 BUFFER_TRACE(parent_bh
, "get_write_access");
3890 if (!ext4_journal_get_write_access(handle
,
3893 BUFFER_TRACE(parent_bh
,
3894 "call ext4_handle_dirty_metadata");
3895 ext4_handle_dirty_metadata(handle
,
3902 /* We have reached the bottom of the tree. */
3903 BUFFER_TRACE(parent_bh
, "free data blocks");
3904 ext4_free_data(handle
, inode
, parent_bh
, first
, last
);
3908 int ext4_can_truncate(struct inode
*inode
)
3910 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
3912 if (S_ISREG(inode
->i_mode
))
3914 if (S_ISDIR(inode
->i_mode
))
3916 if (S_ISLNK(inode
->i_mode
))
3917 return !ext4_inode_is_fast_symlink(inode
);
3924 * We block out ext4_get_block() block instantiations across the entire
3925 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3926 * simultaneously on behalf of the same inode.
3928 * As we work through the truncate and commmit bits of it to the journal there
3929 * is one core, guiding principle: the file's tree must always be consistent on
3930 * disk. We must be able to restart the truncate after a crash.
3932 * The file's tree may be transiently inconsistent in memory (although it
3933 * probably isn't), but whenever we close off and commit a journal transaction,
3934 * the contents of (the filesystem + the journal) must be consistent and
3935 * restartable. It's pretty simple, really: bottom up, right to left (although
3936 * left-to-right works OK too).
3938 * Note that at recovery time, journal replay occurs *before* the restart of
3939 * truncate against the orphan inode list.
3941 * The committed inode has the new, desired i_size (which is the same as
3942 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3943 * that this inode's truncate did not complete and it will again call
3944 * ext4_truncate() to have another go. So there will be instantiated blocks
3945 * to the right of the truncation point in a crashed ext4 filesystem. But
3946 * that's fine - as long as they are linked from the inode, the post-crash
3947 * ext4_truncate() run will find them and release them.
3949 void ext4_truncate(struct inode
*inode
)
3952 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3953 __le32
*i_data
= ei
->i_data
;
3954 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
3955 struct address_space
*mapping
= inode
->i_mapping
;
3956 ext4_lblk_t offsets
[4];
3961 ext4_lblk_t last_block
;
3962 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
3964 if (!ext4_can_truncate(inode
))
3967 if (ei
->i_disksize
&& inode
->i_size
== 0 &&
3968 !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3969 ei
->i_state
|= EXT4_STATE_DA_ALLOC_CLOSE
;
3971 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
3972 ext4_ext_truncate(inode
);
3976 handle
= start_transaction(inode
);
3978 return; /* AKPM: return what? */
3980 last_block
= (inode
->i_size
+ blocksize
-1)
3981 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
3983 if (inode
->i_size
& (blocksize
- 1))
3984 if (ext4_block_truncate_page(handle
, mapping
, inode
->i_size
))
3987 n
= ext4_block_to_path(inode
, last_block
, offsets
, NULL
);
3989 goto out_stop
; /* error */
3992 * OK. This truncate is going to happen. We add the inode to the
3993 * orphan list, so that if this truncate spans multiple transactions,
3994 * and we crash, we will resume the truncate when the filesystem
3995 * recovers. It also marks the inode dirty, to catch the new size.
3997 * Implication: the file must always be in a sane, consistent
3998 * truncatable state while each transaction commits.
4000 if (ext4_orphan_add(handle
, inode
))
4004 * From here we block out all ext4_get_block() callers who want to
4005 * modify the block allocation tree.
4007 down_write(&ei
->i_data_sem
);
4009 ext4_discard_preallocations(inode
);
4012 * The orphan list entry will now protect us from any crash which
4013 * occurs before the truncate completes, so it is now safe to propagate
4014 * the new, shorter inode size (held for now in i_size) into the
4015 * on-disk inode. We do this via i_disksize, which is the value which
4016 * ext4 *really* writes onto the disk inode.
4018 ei
->i_disksize
= inode
->i_size
;
4020 if (n
== 1) { /* direct blocks */
4021 ext4_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
4022 i_data
+ EXT4_NDIR_BLOCKS
);
4026 partial
= ext4_find_shared(inode
, n
, offsets
, chain
, &nr
);
4027 /* Kill the top of shared branch (not detached) */
4029 if (partial
== chain
) {
4030 /* Shared branch grows from the inode */
4031 ext4_free_branches(handle
, inode
, NULL
,
4032 &nr
, &nr
+1, (chain
+n
-1) - partial
);
4035 * We mark the inode dirty prior to restart,
4036 * and prior to stop. No need for it here.
4039 /* Shared branch grows from an indirect block */
4040 BUFFER_TRACE(partial
->bh
, "get_write_access");
4041 ext4_free_branches(handle
, inode
, partial
->bh
,
4043 partial
->p
+1, (chain
+n
-1) - partial
);
4046 /* Clear the ends of indirect blocks on the shared branch */
4047 while (partial
> chain
) {
4048 ext4_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
4049 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
4050 (chain
+n
-1) - partial
);
4051 BUFFER_TRACE(partial
->bh
, "call brelse");
4052 brelse(partial
->bh
);
4056 /* Kill the remaining (whole) subtrees */
4057 switch (offsets
[0]) {
4059 nr
= i_data
[EXT4_IND_BLOCK
];
4061 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
4062 i_data
[EXT4_IND_BLOCK
] = 0;
4064 case EXT4_IND_BLOCK
:
4065 nr
= i_data
[EXT4_DIND_BLOCK
];
4067 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
4068 i_data
[EXT4_DIND_BLOCK
] = 0;
4070 case EXT4_DIND_BLOCK
:
4071 nr
= i_data
[EXT4_TIND_BLOCK
];
4073 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
4074 i_data
[EXT4_TIND_BLOCK
] = 0;
4076 case EXT4_TIND_BLOCK
:
4080 up_write(&ei
->i_data_sem
);
4081 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4082 ext4_mark_inode_dirty(handle
, inode
);
4085 * In a multi-transaction truncate, we only make the final transaction
4089 ext4_handle_sync(handle
);
4092 * If this was a simple ftruncate(), and the file will remain alive
4093 * then we need to clear up the orphan record which we created above.
4094 * However, if this was a real unlink then we were called by
4095 * ext4_delete_inode(), and we allow that function to clean up the
4096 * orphan info for us.
4099 ext4_orphan_del(handle
, inode
);
4101 ext4_journal_stop(handle
);
4105 * ext4_get_inode_loc returns with an extra refcount against the inode's
4106 * underlying buffer_head on success. If 'in_mem' is true, we have all
4107 * data in memory that is needed to recreate the on-disk version of this
4110 static int __ext4_get_inode_loc(struct inode
*inode
,
4111 struct ext4_iloc
*iloc
, int in_mem
)
4113 struct ext4_group_desc
*gdp
;
4114 struct buffer_head
*bh
;
4115 struct super_block
*sb
= inode
->i_sb
;
4117 int inodes_per_block
, inode_offset
;
4120 if (!ext4_valid_inum(sb
, inode
->i_ino
))
4123 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4124 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4129 * Figure out the offset within the block group inode table
4131 inodes_per_block
= (EXT4_BLOCK_SIZE(sb
) / EXT4_INODE_SIZE(sb
));
4132 inode_offset
= ((inode
->i_ino
- 1) %
4133 EXT4_INODES_PER_GROUP(sb
));
4134 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4135 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4137 bh
= sb_getblk(sb
, block
);
4139 ext4_error(sb
, "ext4_get_inode_loc", "unable to read "
4140 "inode block - inode=%lu, block=%llu",
4141 inode
->i_ino
, block
);
4144 if (!buffer_uptodate(bh
)) {
4148 * If the buffer has the write error flag, we have failed
4149 * to write out another inode in the same block. In this
4150 * case, we don't have to read the block because we may
4151 * read the old inode data successfully.
4153 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4154 set_buffer_uptodate(bh
);
4156 if (buffer_uptodate(bh
)) {
4157 /* someone brought it uptodate while we waited */
4163 * If we have all information of the inode in memory and this
4164 * is the only valid inode in the block, we need not read the
4168 struct buffer_head
*bitmap_bh
;
4171 start
= inode_offset
& ~(inodes_per_block
- 1);
4173 /* Is the inode bitmap in cache? */
4174 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4179 * If the inode bitmap isn't in cache then the
4180 * optimisation may end up performing two reads instead
4181 * of one, so skip it.
4183 if (!buffer_uptodate(bitmap_bh
)) {
4187 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4188 if (i
== inode_offset
)
4190 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4194 if (i
== start
+ inodes_per_block
) {
4195 /* all other inodes are free, so skip I/O */
4196 memset(bh
->b_data
, 0, bh
->b_size
);
4197 set_buffer_uptodate(bh
);
4205 * If we need to do any I/O, try to pre-readahead extra
4206 * blocks from the inode table.
4208 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4209 ext4_fsblk_t b
, end
, table
;
4212 table
= ext4_inode_table(sb
, gdp
);
4213 /* s_inode_readahead_blks is always a power of 2 */
4214 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
4217 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
4218 num
= EXT4_INODES_PER_GROUP(sb
);
4219 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4220 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
4221 num
-= ext4_itable_unused_count(sb
, gdp
);
4222 table
+= num
/ inodes_per_block
;
4226 sb_breadahead(sb
, b
++);
4230 * There are other valid inodes in the buffer, this inode
4231 * has in-inode xattrs, or we don't have this inode in memory.
4232 * Read the block from disk.
4235 bh
->b_end_io
= end_buffer_read_sync
;
4236 submit_bh(READ_META
, bh
);
4238 if (!buffer_uptodate(bh
)) {
4239 ext4_error(sb
, __func__
,
4240 "unable to read inode block - inode=%lu, "
4241 "block=%llu", inode
->i_ino
, block
);
4251 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4253 /* We have all inode data except xattrs in memory here. */
4254 return __ext4_get_inode_loc(inode
, iloc
,
4255 !(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
));
4258 void ext4_set_inode_flags(struct inode
*inode
)
4260 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4262 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
4263 if (flags
& EXT4_SYNC_FL
)
4264 inode
->i_flags
|= S_SYNC
;
4265 if (flags
& EXT4_APPEND_FL
)
4266 inode
->i_flags
|= S_APPEND
;
4267 if (flags
& EXT4_IMMUTABLE_FL
)
4268 inode
->i_flags
|= S_IMMUTABLE
;
4269 if (flags
& EXT4_NOATIME_FL
)
4270 inode
->i_flags
|= S_NOATIME
;
4271 if (flags
& EXT4_DIRSYNC_FL
)
4272 inode
->i_flags
|= S_DIRSYNC
;
4275 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4276 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4278 unsigned int flags
= ei
->vfs_inode
.i_flags
;
4280 ei
->i_flags
&= ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4281 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|EXT4_DIRSYNC_FL
);
4283 ei
->i_flags
|= EXT4_SYNC_FL
;
4284 if (flags
& S_APPEND
)
4285 ei
->i_flags
|= EXT4_APPEND_FL
;
4286 if (flags
& S_IMMUTABLE
)
4287 ei
->i_flags
|= EXT4_IMMUTABLE_FL
;
4288 if (flags
& S_NOATIME
)
4289 ei
->i_flags
|= EXT4_NOATIME_FL
;
4290 if (flags
& S_DIRSYNC
)
4291 ei
->i_flags
|= EXT4_DIRSYNC_FL
;
4294 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4295 struct ext4_inode_info
*ei
)
4298 struct inode
*inode
= &(ei
->vfs_inode
);
4299 struct super_block
*sb
= inode
->i_sb
;
4301 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4302 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
4303 /* we are using combined 48 bit field */
4304 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4305 le32_to_cpu(raw_inode
->i_blocks_lo
);
4306 if (ei
->i_flags
& EXT4_HUGE_FILE_FL
) {
4307 /* i_blocks represent file system block size */
4308 return i_blocks
<< (inode
->i_blkbits
- 9);
4313 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4317 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4319 struct ext4_iloc iloc
;
4320 struct ext4_inode
*raw_inode
;
4321 struct ext4_inode_info
*ei
;
4322 struct buffer_head
*bh
;
4323 struct inode
*inode
;
4327 inode
= iget_locked(sb
, ino
);
4329 return ERR_PTR(-ENOMEM
);
4330 if (!(inode
->i_state
& I_NEW
))
4335 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4339 raw_inode
= ext4_raw_inode(&iloc
);
4340 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4341 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4342 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4343 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4344 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4345 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4347 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
4350 ei
->i_dir_start_lookup
= 0;
4351 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4352 /* We now have enough fields to check if the inode was active or not.
4353 * This is needed because nfsd might try to access dead inodes
4354 * the test is that same one that e2fsck uses
4355 * NeilBrown 1999oct15
4357 if (inode
->i_nlink
== 0) {
4358 if (inode
->i_mode
== 0 ||
4359 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
4360 /* this inode is deleted */
4365 /* The only unlinked inodes we let through here have
4366 * valid i_mode and are being read by the orphan
4367 * recovery code: that's fine, we're about to complete
4368 * the process of deleting those. */
4370 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4371 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4372 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4373 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4375 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4376 inode
->i_size
= ext4_isize(raw_inode
);
4377 ei
->i_disksize
= inode
->i_size
;
4378 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4379 ei
->i_block_group
= iloc
.block_group
;
4380 ei
->i_last_alloc_group
= ~0;
4382 * NOTE! The in-memory inode i_data array is in little-endian order
4383 * even on big-endian machines: we do NOT byteswap the block numbers!
4385 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4386 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4387 INIT_LIST_HEAD(&ei
->i_orphan
);
4389 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4390 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4391 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4392 EXT4_INODE_SIZE(inode
->i_sb
)) {
4397 if (ei
->i_extra_isize
== 0) {
4398 /* The extra space is currently unused. Use it. */
4399 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4400 EXT4_GOOD_OLD_INODE_SIZE
;
4402 __le32
*magic
= (void *)raw_inode
+
4403 EXT4_GOOD_OLD_INODE_SIZE
+
4405 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
4406 ei
->i_state
|= EXT4_STATE_XATTR
;
4409 ei
->i_extra_isize
= 0;
4411 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4412 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4413 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4414 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4416 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4417 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4418 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4420 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4424 if (ei
->i_file_acl
&&
4426 (le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
) +
4427 EXT4_SB(sb
)->s_gdb_count
)) ||
4428 (ei
->i_file_acl
>= ext4_blocks_count(EXT4_SB(sb
)->s_es
)))) {
4429 ext4_error(sb
, __func__
,
4430 "bad extended attribute block %llu in inode #%lu",
4431 ei
->i_file_acl
, inode
->i_ino
);
4434 } else if (ei
->i_flags
& EXT4_EXTENTS_FL
) {
4435 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4436 (S_ISLNK(inode
->i_mode
) &&
4437 !ext4_inode_is_fast_symlink(inode
)))
4438 /* Validate extent which is part of inode */
4439 ret
= ext4_ext_check_inode(inode
);
4440 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4441 (S_ISLNK(inode
->i_mode
) &&
4442 !ext4_inode_is_fast_symlink(inode
))) {
4443 /* Validate block references which are part of inode */
4444 ret
= ext4_check_inode_blockref(inode
);
4451 if (S_ISREG(inode
->i_mode
)) {
4452 inode
->i_op
= &ext4_file_inode_operations
;
4453 inode
->i_fop
= &ext4_file_operations
;
4454 ext4_set_aops(inode
);
4455 } else if (S_ISDIR(inode
->i_mode
)) {
4456 inode
->i_op
= &ext4_dir_inode_operations
;
4457 inode
->i_fop
= &ext4_dir_operations
;
4458 } else if (S_ISLNK(inode
->i_mode
)) {
4459 if (ext4_inode_is_fast_symlink(inode
)) {
4460 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4461 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4462 sizeof(ei
->i_data
) - 1);
4464 inode
->i_op
= &ext4_symlink_inode_operations
;
4465 ext4_set_aops(inode
);
4467 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4468 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4469 inode
->i_op
= &ext4_special_inode_operations
;
4470 if (raw_inode
->i_block
[0])
4471 init_special_inode(inode
, inode
->i_mode
,
4472 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4474 init_special_inode(inode
, inode
->i_mode
,
4475 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4479 ext4_error(inode
->i_sb
, __func__
,
4480 "bogus i_mode (%o) for inode=%lu",
4481 inode
->i_mode
, inode
->i_ino
);
4485 ext4_set_inode_flags(inode
);
4486 unlock_new_inode(inode
);
4491 return ERR_PTR(ret
);
4494 static int ext4_inode_blocks_set(handle_t
*handle
,
4495 struct ext4_inode
*raw_inode
,
4496 struct ext4_inode_info
*ei
)
4498 struct inode
*inode
= &(ei
->vfs_inode
);
4499 u64 i_blocks
= inode
->i_blocks
;
4500 struct super_block
*sb
= inode
->i_sb
;
4502 if (i_blocks
<= ~0U) {
4504 * i_blocks can be represnted in a 32 bit variable
4505 * as multiple of 512 bytes
4507 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4508 raw_inode
->i_blocks_high
= 0;
4509 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
4512 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
4515 if (i_blocks
<= 0xffffffffffffULL
) {
4517 * i_blocks can be represented in a 48 bit variable
4518 * as multiple of 512 bytes
4520 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4521 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4522 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
4524 ei
->i_flags
|= EXT4_HUGE_FILE_FL
;
4525 /* i_block is stored in file system block size */
4526 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
4527 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4528 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4534 * Post the struct inode info into an on-disk inode location in the
4535 * buffer-cache. This gobbles the caller's reference to the
4536 * buffer_head in the inode location struct.
4538 * The caller must have write access to iloc->bh.
4540 static int ext4_do_update_inode(handle_t
*handle
,
4541 struct inode
*inode
,
4542 struct ext4_iloc
*iloc
)
4544 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
4545 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4546 struct buffer_head
*bh
= iloc
->bh
;
4547 int err
= 0, rc
, block
;
4549 /* For fields not not tracking in the in-memory inode,
4550 * initialise them to zero for new inodes. */
4551 if (ei
->i_state
& EXT4_STATE_NEW
)
4552 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
4554 ext4_get_inode_flags(ei
);
4555 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
4556 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4557 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
4558 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
4560 * Fix up interoperability with old kernels. Otherwise, old inodes get
4561 * re-used with the upper 16 bits of the uid/gid intact
4564 raw_inode
->i_uid_high
=
4565 cpu_to_le16(high_16_bits(inode
->i_uid
));
4566 raw_inode
->i_gid_high
=
4567 cpu_to_le16(high_16_bits(inode
->i_gid
));
4569 raw_inode
->i_uid_high
= 0;
4570 raw_inode
->i_gid_high
= 0;
4573 raw_inode
->i_uid_low
=
4574 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
4575 raw_inode
->i_gid_low
=
4576 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
4577 raw_inode
->i_uid_high
= 0;
4578 raw_inode
->i_gid_high
= 0;
4580 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4582 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4583 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4584 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4585 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
4587 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
4589 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
4590 /* clear the migrate flag in the raw_inode */
4591 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& ~EXT4_EXT_MIGRATE
);
4592 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
4593 cpu_to_le32(EXT4_OS_HURD
))
4594 raw_inode
->i_file_acl_high
=
4595 cpu_to_le16(ei
->i_file_acl
>> 32);
4596 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
4597 ext4_isize_set(raw_inode
, ei
->i_disksize
);
4598 if (ei
->i_disksize
> 0x7fffffffULL
) {
4599 struct super_block
*sb
= inode
->i_sb
;
4600 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4601 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
4602 EXT4_SB(sb
)->s_es
->s_rev_level
==
4603 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
4604 /* If this is the first large file
4605 * created, add a flag to the superblock.
4607 err
= ext4_journal_get_write_access(handle
,
4608 EXT4_SB(sb
)->s_sbh
);
4611 ext4_update_dynamic_rev(sb
);
4612 EXT4_SET_RO_COMPAT_FEATURE(sb
,
4613 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
4615 ext4_handle_sync(handle
);
4616 err
= ext4_handle_dirty_metadata(handle
, inode
,
4617 EXT4_SB(sb
)->s_sbh
);
4620 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
4621 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
4622 if (old_valid_dev(inode
->i_rdev
)) {
4623 raw_inode
->i_block
[0] =
4624 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
4625 raw_inode
->i_block
[1] = 0;
4627 raw_inode
->i_block
[0] = 0;
4628 raw_inode
->i_block
[1] =
4629 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
4630 raw_inode
->i_block
[2] = 0;
4633 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4634 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
4636 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
4637 if (ei
->i_extra_isize
) {
4638 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4639 raw_inode
->i_version_hi
=
4640 cpu_to_le32(inode
->i_version
>> 32);
4641 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
4644 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4645 rc
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
4648 ei
->i_state
&= ~EXT4_STATE_NEW
;
4652 ext4_std_error(inode
->i_sb
, err
);
4657 * ext4_write_inode()
4659 * We are called from a few places:
4661 * - Within generic_file_write() for O_SYNC files.
4662 * Here, there will be no transaction running. We wait for any running
4663 * trasnaction to commit.
4665 * - Within sys_sync(), kupdate and such.
4666 * We wait on commit, if tol to.
4668 * - Within prune_icache() (PF_MEMALLOC == true)
4669 * Here we simply return. We can't afford to block kswapd on the
4672 * In all cases it is actually safe for us to return without doing anything,
4673 * because the inode has been copied into a raw inode buffer in
4674 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4677 * Note that we are absolutely dependent upon all inode dirtiers doing the
4678 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4679 * which we are interested.
4681 * It would be a bug for them to not do this. The code:
4683 * mark_inode_dirty(inode)
4685 * inode->i_size = expr;
4687 * is in error because a kswapd-driven write_inode() could occur while
4688 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4689 * will no longer be on the superblock's dirty inode list.
4691 int ext4_write_inode(struct inode
*inode
, int wait
)
4693 if (current
->flags
& PF_MEMALLOC
)
4696 if (ext4_journal_current_handle()) {
4697 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4705 return ext4_force_commit(inode
->i_sb
);
4711 * Called from notify_change.
4713 * We want to trap VFS attempts to truncate the file as soon as
4714 * possible. In particular, we want to make sure that when the VFS
4715 * shrinks i_size, we put the inode on the orphan list and modify
4716 * i_disksize immediately, so that during the subsequent flushing of
4717 * dirty pages and freeing of disk blocks, we can guarantee that any
4718 * commit will leave the blocks being flushed in an unused state on
4719 * disk. (On recovery, the inode will get truncated and the blocks will
4720 * be freed, so we have a strong guarantee that no future commit will
4721 * leave these blocks visible to the user.)
4723 * Another thing we have to assure is that if we are in ordered mode
4724 * and inode is still attached to the committing transaction, we must
4725 * we start writeout of all the dirty pages which are being truncated.
4726 * This way we are sure that all the data written in the previous
4727 * transaction are already on disk (truncate waits for pages under
4730 * Called with inode->i_mutex down.
4732 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4734 struct inode
*inode
= dentry
->d_inode
;
4736 const unsigned int ia_valid
= attr
->ia_valid
;
4738 error
= inode_change_ok(inode
, attr
);
4742 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
4743 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
4746 /* (user+group)*(old+new) structure, inode write (sb,
4747 * inode block, ? - but truncate inode update has it) */
4748 handle
= ext4_journal_start(inode
, 2*(EXT4_QUOTA_INIT_BLOCKS(inode
->i_sb
)+
4749 EXT4_QUOTA_DEL_BLOCKS(inode
->i_sb
))+3);
4750 if (IS_ERR(handle
)) {
4751 error
= PTR_ERR(handle
);
4754 error
= vfs_dq_transfer(inode
, attr
) ? -EDQUOT
: 0;
4756 ext4_journal_stop(handle
);
4759 /* Update corresponding info in inode so that everything is in
4760 * one transaction */
4761 if (attr
->ia_valid
& ATTR_UID
)
4762 inode
->i_uid
= attr
->ia_uid
;
4763 if (attr
->ia_valid
& ATTR_GID
)
4764 inode
->i_gid
= attr
->ia_gid
;
4765 error
= ext4_mark_inode_dirty(handle
, inode
);
4766 ext4_journal_stop(handle
);
4769 if (attr
->ia_valid
& ATTR_SIZE
) {
4770 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
4771 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4773 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
) {
4780 if (S_ISREG(inode
->i_mode
) &&
4781 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
4784 handle
= ext4_journal_start(inode
, 3);
4785 if (IS_ERR(handle
)) {
4786 error
= PTR_ERR(handle
);
4790 error
= ext4_orphan_add(handle
, inode
);
4791 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
4792 rc
= ext4_mark_inode_dirty(handle
, inode
);
4795 ext4_journal_stop(handle
);
4797 if (ext4_should_order_data(inode
)) {
4798 error
= ext4_begin_ordered_truncate(inode
,
4801 /* Do as much error cleanup as possible */
4802 handle
= ext4_journal_start(inode
, 3);
4803 if (IS_ERR(handle
)) {
4804 ext4_orphan_del(NULL
, inode
);
4807 ext4_orphan_del(handle
, inode
);
4808 ext4_journal_stop(handle
);
4814 rc
= inode_setattr(inode
, attr
);
4816 /* If inode_setattr's call to ext4_truncate failed to get a
4817 * transaction handle at all, we need to clean up the in-core
4818 * orphan list manually. */
4820 ext4_orphan_del(NULL
, inode
);
4822 if (!rc
&& (ia_valid
& ATTR_MODE
))
4823 rc
= ext4_acl_chmod(inode
);
4826 ext4_std_error(inode
->i_sb
, error
);
4832 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
4835 struct inode
*inode
;
4836 unsigned long delalloc_blocks
;
4838 inode
= dentry
->d_inode
;
4839 generic_fillattr(inode
, stat
);
4842 * We can't update i_blocks if the block allocation is delayed
4843 * otherwise in the case of system crash before the real block
4844 * allocation is done, we will have i_blocks inconsistent with
4845 * on-disk file blocks.
4846 * We always keep i_blocks updated together with real
4847 * allocation. But to not confuse with user, stat
4848 * will return the blocks that include the delayed allocation
4849 * blocks for this file.
4851 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
4852 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
4853 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
4855 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
4859 static int ext4_indirect_trans_blocks(struct inode
*inode
, int nrblocks
,
4864 /* if nrblocks are contiguous */
4867 * With N contiguous data blocks, it need at most
4868 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4869 * 2 dindirect blocks
4872 indirects
= nrblocks
/ EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4873 return indirects
+ 3;
4876 * if nrblocks are not contiguous, worse case, each block touch
4877 * a indirect block, and each indirect block touch a double indirect
4878 * block, plus a triple indirect block
4880 indirects
= nrblocks
* 2 + 1;
4884 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4886 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
))
4887 return ext4_indirect_trans_blocks(inode
, nrblocks
, chunk
);
4888 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
4892 * Account for index blocks, block groups bitmaps and block group
4893 * descriptor blocks if modify datablocks and index blocks
4894 * worse case, the indexs blocks spread over different block groups
4896 * If datablocks are discontiguous, they are possible to spread over
4897 * different block groups too. If they are contiugous, with flexbg,
4898 * they could still across block group boundary.
4900 * Also account for superblock, inode, quota and xattr blocks
4902 int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4904 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
4910 * How many index blocks need to touch to modify nrblocks?
4911 * The "Chunk" flag indicating whether the nrblocks is
4912 * physically contiguous on disk
4914 * For Direct IO and fallocate, they calls get_block to allocate
4915 * one single extent at a time, so they could set the "Chunk" flag
4917 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
4922 * Now let's see how many group bitmaps and group descriptors need
4932 if (groups
> ngroups
)
4934 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
4935 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
4937 /* bitmaps and block group descriptor blocks */
4938 ret
+= groups
+ gdpblocks
;
4940 /* Blocks for super block, inode, quota and xattr blocks */
4941 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
4947 * Calulate the total number of credits to reserve to fit
4948 * the modification of a single pages into a single transaction,
4949 * which may include multiple chunks of block allocations.
4951 * This could be called via ext4_write_begin()
4953 * We need to consider the worse case, when
4954 * one new block per extent.
4956 int ext4_writepage_trans_blocks(struct inode
*inode
)
4958 int bpp
= ext4_journal_blocks_per_page(inode
);
4961 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
4963 /* Account for data blocks for journalled mode */
4964 if (ext4_should_journal_data(inode
))
4970 * Calculate the journal credits for a chunk of data modification.
4972 * This is called from DIO, fallocate or whoever calling
4973 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
4975 * journal buffers for data blocks are not included here, as DIO
4976 * and fallocate do no need to journal data buffers.
4978 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
4980 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
4984 * The caller must have previously called ext4_reserve_inode_write().
4985 * Give this, we know that the caller already has write access to iloc->bh.
4987 int ext4_mark_iloc_dirty(handle_t
*handle
,
4988 struct inode
*inode
, struct ext4_iloc
*iloc
)
4992 if (test_opt(inode
->i_sb
, I_VERSION
))
4993 inode_inc_iversion(inode
);
4995 /* the do_update_inode consumes one bh->b_count */
4998 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4999 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5005 * On success, We end up with an outstanding reference count against
5006 * iloc->bh. This _must_ be cleaned up later.
5010 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5011 struct ext4_iloc
*iloc
)
5015 err
= ext4_get_inode_loc(inode
, iloc
);
5017 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5018 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5024 ext4_std_error(inode
->i_sb
, err
);
5029 * Expand an inode by new_extra_isize bytes.
5030 * Returns 0 on success or negative error number on failure.
5032 static int ext4_expand_extra_isize(struct inode
*inode
,
5033 unsigned int new_extra_isize
,
5034 struct ext4_iloc iloc
,
5037 struct ext4_inode
*raw_inode
;
5038 struct ext4_xattr_ibody_header
*header
;
5039 struct ext4_xattr_entry
*entry
;
5041 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5044 raw_inode
= ext4_raw_inode(&iloc
);
5046 header
= IHDR(inode
, raw_inode
);
5047 entry
= IFIRST(header
);
5049 /* No extended attributes present */
5050 if (!(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
) ||
5051 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5052 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5054 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5058 /* try to expand with EAs present */
5059 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5064 * What we do here is to mark the in-core inode as clean with respect to inode
5065 * dirtiness (it may still be data-dirty).
5066 * This means that the in-core inode may be reaped by prune_icache
5067 * without having to perform any I/O. This is a very good thing,
5068 * because *any* task may call prune_icache - even ones which
5069 * have a transaction open against a different journal.
5071 * Is this cheating? Not really. Sure, we haven't written the
5072 * inode out, but prune_icache isn't a user-visible syncing function.
5073 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5074 * we start and wait on commits.
5076 * Is this efficient/effective? Well, we're being nice to the system
5077 * by cleaning up our inodes proactively so they can be reaped
5078 * without I/O. But we are potentially leaving up to five seconds'
5079 * worth of inodes floating about which prune_icache wants us to
5080 * write out. One way to fix that would be to get prune_icache()
5081 * to do a write_super() to free up some memory. It has the desired
5084 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5086 struct ext4_iloc iloc
;
5087 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5088 static unsigned int mnt_count
;
5092 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5093 if (ext4_handle_valid(handle
) &&
5094 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5095 !(EXT4_I(inode
)->i_state
& EXT4_STATE_NO_EXPAND
)) {
5097 * We need extra buffer credits since we may write into EA block
5098 * with this same handle. If journal_extend fails, then it will
5099 * only result in a minor loss of functionality for that inode.
5100 * If this is felt to be critical, then e2fsck should be run to
5101 * force a large enough s_min_extra_isize.
5103 if ((jbd2_journal_extend(handle
,
5104 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5105 ret
= ext4_expand_extra_isize(inode
,
5106 sbi
->s_want_extra_isize
,
5109 EXT4_I(inode
)->i_state
|= EXT4_STATE_NO_EXPAND
;
5111 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5112 ext4_warning(inode
->i_sb
, __func__
,
5113 "Unable to expand inode %lu. Delete"
5114 " some EAs or run e2fsck.",
5117 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5123 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5128 * ext4_dirty_inode() is called from __mark_inode_dirty()
5130 * We're really interested in the case where a file is being extended.
5131 * i_size has been changed by generic_commit_write() and we thus need
5132 * to include the updated inode in the current transaction.
5134 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5135 * are allocated to the file.
5137 * If the inode is marked synchronous, we don't honour that here - doing
5138 * so would cause a commit on atime updates, which we don't bother doing.
5139 * We handle synchronous inodes at the highest possible level.
5141 void ext4_dirty_inode(struct inode
*inode
)
5143 handle_t
*current_handle
= ext4_journal_current_handle();
5146 if (!ext4_handle_valid(current_handle
)) {
5147 ext4_mark_inode_dirty(current_handle
, inode
);
5151 handle
= ext4_journal_start(inode
, 2);
5154 if (current_handle
&&
5155 current_handle
->h_transaction
!= handle
->h_transaction
) {
5156 /* This task has a transaction open against a different fs */
5157 printk(KERN_EMERG
"%s: transactions do not match!\n",
5160 jbd_debug(5, "marking dirty. outer handle=%p\n",
5162 ext4_mark_inode_dirty(handle
, inode
);
5164 ext4_journal_stop(handle
);
5171 * Bind an inode's backing buffer_head into this transaction, to prevent
5172 * it from being flushed to disk early. Unlike
5173 * ext4_reserve_inode_write, this leaves behind no bh reference and
5174 * returns no iloc structure, so the caller needs to repeat the iloc
5175 * lookup to mark the inode dirty later.
5177 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5179 struct ext4_iloc iloc
;
5183 err
= ext4_get_inode_loc(inode
, &iloc
);
5185 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5186 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5188 err
= ext4_handle_dirty_metadata(handle
,
5194 ext4_std_error(inode
->i_sb
, err
);
5199 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5206 * We have to be very careful here: changing a data block's
5207 * journaling status dynamically is dangerous. If we write a
5208 * data block to the journal, change the status and then delete
5209 * that block, we risk forgetting to revoke the old log record
5210 * from the journal and so a subsequent replay can corrupt data.
5211 * So, first we make sure that the journal is empty and that
5212 * nobody is changing anything.
5215 journal
= EXT4_JOURNAL(inode
);
5218 if (is_journal_aborted(journal
))
5221 jbd2_journal_lock_updates(journal
);
5222 jbd2_journal_flush(journal
);
5225 * OK, there are no updates running now, and all cached data is
5226 * synced to disk. We are now in a completely consistent state
5227 * which doesn't have anything in the journal, and we know that
5228 * no filesystem updates are running, so it is safe to modify
5229 * the inode's in-core data-journaling state flag now.
5233 EXT4_I(inode
)->i_flags
|= EXT4_JOURNAL_DATA_FL
;
5235 EXT4_I(inode
)->i_flags
&= ~EXT4_JOURNAL_DATA_FL
;
5236 ext4_set_aops(inode
);
5238 jbd2_journal_unlock_updates(journal
);
5240 /* Finally we can mark the inode as dirty. */
5242 handle
= ext4_journal_start(inode
, 1);
5244 return PTR_ERR(handle
);
5246 err
= ext4_mark_inode_dirty(handle
, inode
);
5247 ext4_handle_sync(handle
);
5248 ext4_journal_stop(handle
);
5249 ext4_std_error(inode
->i_sb
, err
);
5254 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5256 return !buffer_mapped(bh
);
5259 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5261 struct page
*page
= vmf
->page
;
5266 struct file
*file
= vma
->vm_file
;
5267 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
5268 struct address_space
*mapping
= inode
->i_mapping
;
5271 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5272 * get i_mutex because we are already holding mmap_sem.
5274 down_read(&inode
->i_alloc_sem
);
5275 size
= i_size_read(inode
);
5276 if (page
->mapping
!= mapping
|| size
<= page_offset(page
)
5277 || !PageUptodate(page
)) {
5278 /* page got truncated from under us? */
5282 if (PageMappedToDisk(page
))
5285 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5286 len
= size
& ~PAGE_CACHE_MASK
;
5288 len
= PAGE_CACHE_SIZE
;
5290 if (page_has_buffers(page
)) {
5291 /* return if we have all the buffers mapped */
5292 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
5297 * OK, we need to fill the hole... Do write_begin write_end
5298 * to do block allocation/reservation.We are not holding
5299 * inode.i__mutex here. That allow * parallel write_begin,
5300 * write_end call. lock_page prevent this from happening
5301 * on the same page though
5303 ret
= mapping
->a_ops
->write_begin(file
, mapping
, page_offset(page
),
5304 len
, AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
5307 ret
= mapping
->a_ops
->write_end(file
, mapping
, page_offset(page
),
5308 len
, len
, page
, fsdata
);
5314 ret
= VM_FAULT_SIGBUS
;
5315 up_read(&inode
->i_alloc_sem
);