Merge branch 'irq-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / wireless / reg.c
blob37693b6ef23a68c21f9684b6083f1371dc7c5921
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...) \
53 do { \
54 printk(KERN_DEBUG pr_fmt(format), ##args); \
55 } while (0)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
60 /* Receipt of information from last regulatory request */
61 static struct regulatory_request *last_request;
63 /* To trigger userspace events */
64 static struct platform_device *reg_pdev;
67 * Central wireless core regulatory domains, we only need two,
68 * the current one and a world regulatory domain in case we have no
69 * information to give us an alpha2
71 const struct ieee80211_regdomain *cfg80211_regdomain;
74 * Protects static reg.c components:
75 * - cfg80211_world_regdom
76 * - cfg80211_regdom
77 * - last_request
79 static DEFINE_MUTEX(reg_mutex);
81 static inline void assert_reg_lock(void)
83 lockdep_assert_held(&reg_mutex);
86 /* Used to queue up regulatory hints */
87 static LIST_HEAD(reg_requests_list);
88 static spinlock_t reg_requests_lock;
90 /* Used to queue up beacon hints for review */
91 static LIST_HEAD(reg_pending_beacons);
92 static spinlock_t reg_pending_beacons_lock;
94 /* Used to keep track of processed beacon hints */
95 static LIST_HEAD(reg_beacon_list);
97 struct reg_beacon {
98 struct list_head list;
99 struct ieee80211_channel chan;
102 static void reg_todo(struct work_struct *work);
103 static DECLARE_WORK(reg_work, reg_todo);
105 /* We keep a static world regulatory domain in case of the absence of CRDA */
106 static const struct ieee80211_regdomain world_regdom = {
107 .n_reg_rules = 5,
108 .alpha2 = "00",
109 .reg_rules = {
110 /* IEEE 802.11b/g, channels 1..11 */
111 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
112 /* IEEE 802.11b/g, channels 12..13. No HT40
113 * channel fits here. */
114 REG_RULE(2467-10, 2472+10, 20, 6, 20,
115 NL80211_RRF_PASSIVE_SCAN |
116 NL80211_RRF_NO_IBSS),
117 /* IEEE 802.11 channel 14 - Only JP enables
118 * this and for 802.11b only */
119 REG_RULE(2484-10, 2484+10, 20, 6, 20,
120 NL80211_RRF_PASSIVE_SCAN |
121 NL80211_RRF_NO_IBSS |
122 NL80211_RRF_NO_OFDM),
123 /* IEEE 802.11a, channel 36..48 */
124 REG_RULE(5180-10, 5240+10, 40, 6, 20,
125 NL80211_RRF_PASSIVE_SCAN |
126 NL80211_RRF_NO_IBSS),
128 /* NB: 5260 MHz - 5700 MHz requies DFS */
130 /* IEEE 802.11a, channel 149..165 */
131 REG_RULE(5745-10, 5825+10, 40, 6, 20,
132 NL80211_RRF_PASSIVE_SCAN |
133 NL80211_RRF_NO_IBSS),
137 static const struct ieee80211_regdomain *cfg80211_world_regdom =
138 &world_regdom;
140 static char *ieee80211_regdom = "00";
141 static char user_alpha2[2];
143 module_param(ieee80211_regdom, charp, 0444);
144 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
146 static void reset_regdomains(void)
148 /* avoid freeing static information or freeing something twice */
149 if (cfg80211_regdomain == cfg80211_world_regdom)
150 cfg80211_regdomain = NULL;
151 if (cfg80211_world_regdom == &world_regdom)
152 cfg80211_world_regdom = NULL;
153 if (cfg80211_regdomain == &world_regdom)
154 cfg80211_regdomain = NULL;
156 kfree(cfg80211_regdomain);
157 kfree(cfg80211_world_regdom);
159 cfg80211_world_regdom = &world_regdom;
160 cfg80211_regdomain = NULL;
164 * Dynamic world regulatory domain requested by the wireless
165 * core upon initialization
167 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
169 BUG_ON(!last_request);
171 reset_regdomains();
173 cfg80211_world_regdom = rd;
174 cfg80211_regdomain = rd;
177 bool is_world_regdom(const char *alpha2)
179 if (!alpha2)
180 return false;
181 if (alpha2[0] == '0' && alpha2[1] == '0')
182 return true;
183 return false;
186 static bool is_alpha2_set(const char *alpha2)
188 if (!alpha2)
189 return false;
190 if (alpha2[0] != 0 && alpha2[1] != 0)
191 return true;
192 return false;
195 static bool is_unknown_alpha2(const char *alpha2)
197 if (!alpha2)
198 return false;
200 * Special case where regulatory domain was built by driver
201 * but a specific alpha2 cannot be determined
203 if (alpha2[0] == '9' && alpha2[1] == '9')
204 return true;
205 return false;
208 static bool is_intersected_alpha2(const char *alpha2)
210 if (!alpha2)
211 return false;
213 * Special case where regulatory domain is the
214 * result of an intersection between two regulatory domain
215 * structures
217 if (alpha2[0] == '9' && alpha2[1] == '8')
218 return true;
219 return false;
222 static bool is_an_alpha2(const char *alpha2)
224 if (!alpha2)
225 return false;
226 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
227 return true;
228 return false;
231 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
233 if (!alpha2_x || !alpha2_y)
234 return false;
235 if (alpha2_x[0] == alpha2_y[0] &&
236 alpha2_x[1] == alpha2_y[1])
237 return true;
238 return false;
241 static bool regdom_changes(const char *alpha2)
243 assert_cfg80211_lock();
245 if (!cfg80211_regdomain)
246 return true;
247 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
248 return false;
249 return true;
253 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
254 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
255 * has ever been issued.
257 static bool is_user_regdom_saved(void)
259 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
260 return false;
262 /* This would indicate a mistake on the design */
263 if (WARN((!is_world_regdom(user_alpha2) &&
264 !is_an_alpha2(user_alpha2)),
265 "Unexpected user alpha2: %c%c\n",
266 user_alpha2[0],
267 user_alpha2[1]))
268 return false;
270 return true;
273 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
274 const struct ieee80211_regdomain *src_regd)
276 struct ieee80211_regdomain *regd;
277 int size_of_regd = 0;
278 unsigned int i;
280 size_of_regd = sizeof(struct ieee80211_regdomain) +
281 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
283 regd = kzalloc(size_of_regd, GFP_KERNEL);
284 if (!regd)
285 return -ENOMEM;
287 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
289 for (i = 0; i < src_regd->n_reg_rules; i++)
290 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
291 sizeof(struct ieee80211_reg_rule));
293 *dst_regd = regd;
294 return 0;
297 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
298 struct reg_regdb_search_request {
299 char alpha2[2];
300 struct list_head list;
303 static LIST_HEAD(reg_regdb_search_list);
304 static DEFINE_MUTEX(reg_regdb_search_mutex);
306 static void reg_regdb_search(struct work_struct *work)
308 struct reg_regdb_search_request *request;
309 const struct ieee80211_regdomain *curdom, *regdom;
310 int i, r;
312 mutex_lock(&reg_regdb_search_mutex);
313 while (!list_empty(&reg_regdb_search_list)) {
314 request = list_first_entry(&reg_regdb_search_list,
315 struct reg_regdb_search_request,
316 list);
317 list_del(&request->list);
319 for (i=0; i<reg_regdb_size; i++) {
320 curdom = reg_regdb[i];
322 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
323 r = reg_copy_regd(&regdom, curdom);
324 if (r)
325 break;
326 mutex_lock(&cfg80211_mutex);
327 set_regdom(regdom);
328 mutex_unlock(&cfg80211_mutex);
329 break;
333 kfree(request);
335 mutex_unlock(&reg_regdb_search_mutex);
338 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
340 static void reg_regdb_query(const char *alpha2)
342 struct reg_regdb_search_request *request;
344 if (!alpha2)
345 return;
347 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
348 if (!request)
349 return;
351 memcpy(request->alpha2, alpha2, 2);
353 mutex_lock(&reg_regdb_search_mutex);
354 list_add_tail(&request->list, &reg_regdb_search_list);
355 mutex_unlock(&reg_regdb_search_mutex);
357 schedule_work(&reg_regdb_work);
359 #else
360 static inline void reg_regdb_query(const char *alpha2) {}
361 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
364 * This lets us keep regulatory code which is updated on a regulatory
365 * basis in userspace.
367 static int call_crda(const char *alpha2)
369 char country_env[9 + 2] = "COUNTRY=";
370 char *envp[] = {
371 country_env,
372 NULL
375 if (!is_world_regdom((char *) alpha2))
376 pr_info("Calling CRDA for country: %c%c\n",
377 alpha2[0], alpha2[1]);
378 else
379 pr_info("Calling CRDA to update world regulatory domain\n");
381 /* query internal regulatory database (if it exists) */
382 reg_regdb_query(alpha2);
384 country_env[8] = alpha2[0];
385 country_env[9] = alpha2[1];
387 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
390 /* Used by nl80211 before kmalloc'ing our regulatory domain */
391 bool reg_is_valid_request(const char *alpha2)
393 assert_cfg80211_lock();
395 if (!last_request)
396 return false;
398 return alpha2_equal(last_request->alpha2, alpha2);
401 /* Sanity check on a regulatory rule */
402 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
404 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
405 u32 freq_diff;
407 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
408 return false;
410 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
411 return false;
413 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
415 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
416 freq_range->max_bandwidth_khz > freq_diff)
417 return false;
419 return true;
422 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
424 const struct ieee80211_reg_rule *reg_rule = NULL;
425 unsigned int i;
427 if (!rd->n_reg_rules)
428 return false;
430 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
431 return false;
433 for (i = 0; i < rd->n_reg_rules; i++) {
434 reg_rule = &rd->reg_rules[i];
435 if (!is_valid_reg_rule(reg_rule))
436 return false;
439 return true;
442 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
443 u32 center_freq_khz,
444 u32 bw_khz)
446 u32 start_freq_khz, end_freq_khz;
448 start_freq_khz = center_freq_khz - (bw_khz/2);
449 end_freq_khz = center_freq_khz + (bw_khz/2);
451 if (start_freq_khz >= freq_range->start_freq_khz &&
452 end_freq_khz <= freq_range->end_freq_khz)
453 return true;
455 return false;
459 * freq_in_rule_band - tells us if a frequency is in a frequency band
460 * @freq_range: frequency rule we want to query
461 * @freq_khz: frequency we are inquiring about
463 * This lets us know if a specific frequency rule is or is not relevant to
464 * a specific frequency's band. Bands are device specific and artificial
465 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
466 * safe for now to assume that a frequency rule should not be part of a
467 * frequency's band if the start freq or end freq are off by more than 2 GHz.
468 * This resolution can be lowered and should be considered as we add
469 * regulatory rule support for other "bands".
471 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
472 u32 freq_khz)
474 #define ONE_GHZ_IN_KHZ 1000000
475 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476 return true;
477 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
478 return true;
479 return false;
480 #undef ONE_GHZ_IN_KHZ
484 * Helper for regdom_intersect(), this does the real
485 * mathematical intersection fun
487 static int reg_rules_intersect(
488 const struct ieee80211_reg_rule *rule1,
489 const struct ieee80211_reg_rule *rule2,
490 struct ieee80211_reg_rule *intersected_rule)
492 const struct ieee80211_freq_range *freq_range1, *freq_range2;
493 struct ieee80211_freq_range *freq_range;
494 const struct ieee80211_power_rule *power_rule1, *power_rule2;
495 struct ieee80211_power_rule *power_rule;
496 u32 freq_diff;
498 freq_range1 = &rule1->freq_range;
499 freq_range2 = &rule2->freq_range;
500 freq_range = &intersected_rule->freq_range;
502 power_rule1 = &rule1->power_rule;
503 power_rule2 = &rule2->power_rule;
504 power_rule = &intersected_rule->power_rule;
506 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
507 freq_range2->start_freq_khz);
508 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
509 freq_range2->end_freq_khz);
510 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
511 freq_range2->max_bandwidth_khz);
513 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
514 if (freq_range->max_bandwidth_khz > freq_diff)
515 freq_range->max_bandwidth_khz = freq_diff;
517 power_rule->max_eirp = min(power_rule1->max_eirp,
518 power_rule2->max_eirp);
519 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
520 power_rule2->max_antenna_gain);
522 intersected_rule->flags = (rule1->flags | rule2->flags);
524 if (!is_valid_reg_rule(intersected_rule))
525 return -EINVAL;
527 return 0;
531 * regdom_intersect - do the intersection between two regulatory domains
532 * @rd1: first regulatory domain
533 * @rd2: second regulatory domain
535 * Use this function to get the intersection between two regulatory domains.
536 * Once completed we will mark the alpha2 for the rd as intersected, "98",
537 * as no one single alpha2 can represent this regulatory domain.
539 * Returns a pointer to the regulatory domain structure which will hold the
540 * resulting intersection of rules between rd1 and rd2. We will
541 * kzalloc() this structure for you.
543 static struct ieee80211_regdomain *regdom_intersect(
544 const struct ieee80211_regdomain *rd1,
545 const struct ieee80211_regdomain *rd2)
547 int r, size_of_regd;
548 unsigned int x, y;
549 unsigned int num_rules = 0, rule_idx = 0;
550 const struct ieee80211_reg_rule *rule1, *rule2;
551 struct ieee80211_reg_rule *intersected_rule;
552 struct ieee80211_regdomain *rd;
553 /* This is just a dummy holder to help us count */
554 struct ieee80211_reg_rule irule;
556 /* Uses the stack temporarily for counter arithmetic */
557 intersected_rule = &irule;
559 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
561 if (!rd1 || !rd2)
562 return NULL;
565 * First we get a count of the rules we'll need, then we actually
566 * build them. This is to so we can malloc() and free() a
567 * regdomain once. The reason we use reg_rules_intersect() here
568 * is it will return -EINVAL if the rule computed makes no sense.
569 * All rules that do check out OK are valid.
572 for (x = 0; x < rd1->n_reg_rules; x++) {
573 rule1 = &rd1->reg_rules[x];
574 for (y = 0; y < rd2->n_reg_rules; y++) {
575 rule2 = &rd2->reg_rules[y];
576 if (!reg_rules_intersect(rule1, rule2,
577 intersected_rule))
578 num_rules++;
579 memset(intersected_rule, 0,
580 sizeof(struct ieee80211_reg_rule));
584 if (!num_rules)
585 return NULL;
587 size_of_regd = sizeof(struct ieee80211_regdomain) +
588 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
590 rd = kzalloc(size_of_regd, GFP_KERNEL);
591 if (!rd)
592 return NULL;
594 for (x = 0; x < rd1->n_reg_rules; x++) {
595 rule1 = &rd1->reg_rules[x];
596 for (y = 0; y < rd2->n_reg_rules; y++) {
597 rule2 = &rd2->reg_rules[y];
599 * This time around instead of using the stack lets
600 * write to the target rule directly saving ourselves
601 * a memcpy()
603 intersected_rule = &rd->reg_rules[rule_idx];
604 r = reg_rules_intersect(rule1, rule2,
605 intersected_rule);
607 * No need to memset here the intersected rule here as
608 * we're not using the stack anymore
610 if (r)
611 continue;
612 rule_idx++;
616 if (rule_idx != num_rules) {
617 kfree(rd);
618 return NULL;
621 rd->n_reg_rules = num_rules;
622 rd->alpha2[0] = '9';
623 rd->alpha2[1] = '8';
625 return rd;
629 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
630 * want to just have the channel structure use these
632 static u32 map_regdom_flags(u32 rd_flags)
634 u32 channel_flags = 0;
635 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
636 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
637 if (rd_flags & NL80211_RRF_NO_IBSS)
638 channel_flags |= IEEE80211_CHAN_NO_IBSS;
639 if (rd_flags & NL80211_RRF_DFS)
640 channel_flags |= IEEE80211_CHAN_RADAR;
641 return channel_flags;
644 static int freq_reg_info_regd(struct wiphy *wiphy,
645 u32 center_freq,
646 u32 desired_bw_khz,
647 const struct ieee80211_reg_rule **reg_rule,
648 const struct ieee80211_regdomain *custom_regd)
650 int i;
651 bool band_rule_found = false;
652 const struct ieee80211_regdomain *regd;
653 bool bw_fits = false;
655 if (!desired_bw_khz)
656 desired_bw_khz = MHZ_TO_KHZ(20);
658 regd = custom_regd ? custom_regd : cfg80211_regdomain;
661 * Follow the driver's regulatory domain, if present, unless a country
662 * IE has been processed or a user wants to help complaince further
664 if (!custom_regd &&
665 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
666 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
667 wiphy->regd)
668 regd = wiphy->regd;
670 if (!regd)
671 return -EINVAL;
673 for (i = 0; i < regd->n_reg_rules; i++) {
674 const struct ieee80211_reg_rule *rr;
675 const struct ieee80211_freq_range *fr = NULL;
676 const struct ieee80211_power_rule *pr = NULL;
678 rr = &regd->reg_rules[i];
679 fr = &rr->freq_range;
680 pr = &rr->power_rule;
683 * We only need to know if one frequency rule was
684 * was in center_freq's band, that's enough, so lets
685 * not overwrite it once found
687 if (!band_rule_found)
688 band_rule_found = freq_in_rule_band(fr, center_freq);
690 bw_fits = reg_does_bw_fit(fr,
691 center_freq,
692 desired_bw_khz);
694 if (band_rule_found && bw_fits) {
695 *reg_rule = rr;
696 return 0;
700 if (!band_rule_found)
701 return -ERANGE;
703 return -EINVAL;
706 int freq_reg_info(struct wiphy *wiphy,
707 u32 center_freq,
708 u32 desired_bw_khz,
709 const struct ieee80211_reg_rule **reg_rule)
711 assert_cfg80211_lock();
712 return freq_reg_info_regd(wiphy,
713 center_freq,
714 desired_bw_khz,
715 reg_rule,
716 NULL);
718 EXPORT_SYMBOL(freq_reg_info);
720 #ifdef CONFIG_CFG80211_REG_DEBUG
721 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
723 switch (initiator) {
724 case NL80211_REGDOM_SET_BY_CORE:
725 return "Set by core";
726 case NL80211_REGDOM_SET_BY_USER:
727 return "Set by user";
728 case NL80211_REGDOM_SET_BY_DRIVER:
729 return "Set by driver";
730 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
731 return "Set by country IE";
732 default:
733 WARN_ON(1);
734 return "Set by bug";
738 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
739 u32 desired_bw_khz,
740 const struct ieee80211_reg_rule *reg_rule)
742 const struct ieee80211_power_rule *power_rule;
743 const struct ieee80211_freq_range *freq_range;
744 char max_antenna_gain[32];
746 power_rule = &reg_rule->power_rule;
747 freq_range = &reg_rule->freq_range;
749 if (!power_rule->max_antenna_gain)
750 snprintf(max_antenna_gain, 32, "N/A");
751 else
752 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
754 REG_DBG_PRINT("Updating information on frequency %d MHz "
755 "for a %d MHz width channel with regulatory rule:\n",
756 chan->center_freq,
757 KHZ_TO_MHZ(desired_bw_khz));
759 REG_DBG_PRINT("%d KHz - %d KHz @ KHz), (%s mBi, %d mBm)\n",
760 freq_range->start_freq_khz,
761 freq_range->end_freq_khz,
762 max_antenna_gain,
763 power_rule->max_eirp);
765 #else
766 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
767 u32 desired_bw_khz,
768 const struct ieee80211_reg_rule *reg_rule)
770 return;
772 #endif
775 * Note that right now we assume the desired channel bandwidth
776 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
777 * per channel, the primary and the extension channel). To support
778 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
779 * new ieee80211_channel.target_bw and re run the regulatory check
780 * on the wiphy with the target_bw specified. Then we can simply use
781 * that below for the desired_bw_khz below.
783 static void handle_channel(struct wiphy *wiphy,
784 enum nl80211_reg_initiator initiator,
785 enum ieee80211_band band,
786 unsigned int chan_idx)
788 int r;
789 u32 flags, bw_flags = 0;
790 u32 desired_bw_khz = MHZ_TO_KHZ(20);
791 const struct ieee80211_reg_rule *reg_rule = NULL;
792 const struct ieee80211_power_rule *power_rule = NULL;
793 const struct ieee80211_freq_range *freq_range = NULL;
794 struct ieee80211_supported_band *sband;
795 struct ieee80211_channel *chan;
796 struct wiphy *request_wiphy = NULL;
798 assert_cfg80211_lock();
800 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
802 sband = wiphy->bands[band];
803 BUG_ON(chan_idx >= sband->n_channels);
804 chan = &sband->channels[chan_idx];
806 flags = chan->orig_flags;
808 r = freq_reg_info(wiphy,
809 MHZ_TO_KHZ(chan->center_freq),
810 desired_bw_khz,
811 &reg_rule);
813 if (r) {
815 * We will disable all channels that do not match our
816 * recieved regulatory rule unless the hint is coming
817 * from a Country IE and the Country IE had no information
818 * about a band. The IEEE 802.11 spec allows for an AP
819 * to send only a subset of the regulatory rules allowed,
820 * so an AP in the US that only supports 2.4 GHz may only send
821 * a country IE with information for the 2.4 GHz band
822 * while 5 GHz is still supported.
824 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
825 r == -ERANGE)
826 return;
828 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
829 chan->flags = IEEE80211_CHAN_DISABLED;
830 return;
833 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
835 power_rule = &reg_rule->power_rule;
836 freq_range = &reg_rule->freq_range;
838 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
839 bw_flags = IEEE80211_CHAN_NO_HT40;
841 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
842 request_wiphy && request_wiphy == wiphy &&
843 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
845 * This gaurantees the driver's requested regulatory domain
846 * will always be used as a base for further regulatory
847 * settings
849 chan->flags = chan->orig_flags =
850 map_regdom_flags(reg_rule->flags) | bw_flags;
851 chan->max_antenna_gain = chan->orig_mag =
852 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
853 chan->max_power = chan->orig_mpwr =
854 (int) MBM_TO_DBM(power_rule->max_eirp);
855 return;
858 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
859 chan->max_antenna_gain = min(chan->orig_mag,
860 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
861 if (chan->orig_mpwr)
862 chan->max_power = min(chan->orig_mpwr,
863 (int) MBM_TO_DBM(power_rule->max_eirp));
864 else
865 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
868 static void handle_band(struct wiphy *wiphy,
869 enum ieee80211_band band,
870 enum nl80211_reg_initiator initiator)
872 unsigned int i;
873 struct ieee80211_supported_band *sband;
875 BUG_ON(!wiphy->bands[band]);
876 sband = wiphy->bands[band];
878 for (i = 0; i < sband->n_channels; i++)
879 handle_channel(wiphy, initiator, band, i);
882 static bool ignore_reg_update(struct wiphy *wiphy,
883 enum nl80211_reg_initiator initiator)
885 if (!last_request) {
886 REG_DBG_PRINT("Ignoring regulatory request %s since "
887 "last_request is not set\n",
888 reg_initiator_name(initiator));
889 return true;
892 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
893 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
894 REG_DBG_PRINT("Ignoring regulatory request %s "
895 "since the driver uses its own custom "
896 "regulatory domain ",
897 reg_initiator_name(initiator));
898 return true;
902 * wiphy->regd will be set once the device has its own
903 * desired regulatory domain set
905 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
906 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
907 !is_world_regdom(last_request->alpha2)) {
908 REG_DBG_PRINT("Ignoring regulatory request %s "
909 "since the driver requires its own regulaotry "
910 "domain to be set first",
911 reg_initiator_name(initiator));
912 return true;
915 return false;
918 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
920 struct cfg80211_registered_device *rdev;
922 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
923 wiphy_update_regulatory(&rdev->wiphy, initiator);
926 static void handle_reg_beacon(struct wiphy *wiphy,
927 unsigned int chan_idx,
928 struct reg_beacon *reg_beacon)
930 struct ieee80211_supported_band *sband;
931 struct ieee80211_channel *chan;
932 bool channel_changed = false;
933 struct ieee80211_channel chan_before;
935 assert_cfg80211_lock();
937 sband = wiphy->bands[reg_beacon->chan.band];
938 chan = &sband->channels[chan_idx];
940 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
941 return;
943 if (chan->beacon_found)
944 return;
946 chan->beacon_found = true;
948 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
949 return;
951 chan_before.center_freq = chan->center_freq;
952 chan_before.flags = chan->flags;
954 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
955 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
956 channel_changed = true;
959 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
960 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
961 channel_changed = true;
964 if (channel_changed)
965 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
969 * Called when a scan on a wiphy finds a beacon on
970 * new channel
972 static void wiphy_update_new_beacon(struct wiphy *wiphy,
973 struct reg_beacon *reg_beacon)
975 unsigned int i;
976 struct ieee80211_supported_band *sband;
978 assert_cfg80211_lock();
980 if (!wiphy->bands[reg_beacon->chan.band])
981 return;
983 sband = wiphy->bands[reg_beacon->chan.band];
985 for (i = 0; i < sband->n_channels; i++)
986 handle_reg_beacon(wiphy, i, reg_beacon);
990 * Called upon reg changes or a new wiphy is added
992 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
994 unsigned int i;
995 struct ieee80211_supported_band *sband;
996 struct reg_beacon *reg_beacon;
998 assert_cfg80211_lock();
1000 if (list_empty(&reg_beacon_list))
1001 return;
1003 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1004 if (!wiphy->bands[reg_beacon->chan.band])
1005 continue;
1006 sband = wiphy->bands[reg_beacon->chan.band];
1007 for (i = 0; i < sband->n_channels; i++)
1008 handle_reg_beacon(wiphy, i, reg_beacon);
1012 static bool reg_is_world_roaming(struct wiphy *wiphy)
1014 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1015 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1016 return true;
1017 if (last_request &&
1018 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1019 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1020 return true;
1021 return false;
1024 /* Reap the advantages of previously found beacons */
1025 static void reg_process_beacons(struct wiphy *wiphy)
1028 * Means we are just firing up cfg80211, so no beacons would
1029 * have been processed yet.
1031 if (!last_request)
1032 return;
1033 if (!reg_is_world_roaming(wiphy))
1034 return;
1035 wiphy_update_beacon_reg(wiphy);
1038 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1040 if (!chan)
1041 return true;
1042 if (chan->flags & IEEE80211_CHAN_DISABLED)
1043 return true;
1044 /* This would happen when regulatory rules disallow HT40 completely */
1045 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1046 return true;
1047 return false;
1050 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1051 enum ieee80211_band band,
1052 unsigned int chan_idx)
1054 struct ieee80211_supported_band *sband;
1055 struct ieee80211_channel *channel;
1056 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1057 unsigned int i;
1059 assert_cfg80211_lock();
1061 sband = wiphy->bands[band];
1062 BUG_ON(chan_idx >= sband->n_channels);
1063 channel = &sband->channels[chan_idx];
1065 if (is_ht40_not_allowed(channel)) {
1066 channel->flags |= IEEE80211_CHAN_NO_HT40;
1067 return;
1071 * We need to ensure the extension channels exist to
1072 * be able to use HT40- or HT40+, this finds them (or not)
1074 for (i = 0; i < sband->n_channels; i++) {
1075 struct ieee80211_channel *c = &sband->channels[i];
1076 if (c->center_freq == (channel->center_freq - 20))
1077 channel_before = c;
1078 if (c->center_freq == (channel->center_freq + 20))
1079 channel_after = c;
1083 * Please note that this assumes target bandwidth is 20 MHz,
1084 * if that ever changes we also need to change the below logic
1085 * to include that as well.
1087 if (is_ht40_not_allowed(channel_before))
1088 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1089 else
1090 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1092 if (is_ht40_not_allowed(channel_after))
1093 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1094 else
1095 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1098 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1099 enum ieee80211_band band)
1101 unsigned int i;
1102 struct ieee80211_supported_band *sband;
1104 BUG_ON(!wiphy->bands[band]);
1105 sband = wiphy->bands[band];
1107 for (i = 0; i < sband->n_channels; i++)
1108 reg_process_ht_flags_channel(wiphy, band, i);
1111 static void reg_process_ht_flags(struct wiphy *wiphy)
1113 enum ieee80211_band band;
1115 if (!wiphy)
1116 return;
1118 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1119 if (wiphy->bands[band])
1120 reg_process_ht_flags_band(wiphy, band);
1125 void wiphy_update_regulatory(struct wiphy *wiphy,
1126 enum nl80211_reg_initiator initiator)
1128 enum ieee80211_band band;
1130 if (ignore_reg_update(wiphy, initiator))
1131 goto out;
1132 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1133 if (wiphy->bands[band])
1134 handle_band(wiphy, band, initiator);
1136 out:
1137 reg_process_beacons(wiphy);
1138 reg_process_ht_flags(wiphy);
1139 if (wiphy->reg_notifier)
1140 wiphy->reg_notifier(wiphy, last_request);
1143 static void handle_channel_custom(struct wiphy *wiphy,
1144 enum ieee80211_band band,
1145 unsigned int chan_idx,
1146 const struct ieee80211_regdomain *regd)
1148 int r;
1149 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1150 u32 bw_flags = 0;
1151 const struct ieee80211_reg_rule *reg_rule = NULL;
1152 const struct ieee80211_power_rule *power_rule = NULL;
1153 const struct ieee80211_freq_range *freq_range = NULL;
1154 struct ieee80211_supported_band *sband;
1155 struct ieee80211_channel *chan;
1157 assert_reg_lock();
1159 sband = wiphy->bands[band];
1160 BUG_ON(chan_idx >= sband->n_channels);
1161 chan = &sband->channels[chan_idx];
1163 r = freq_reg_info_regd(wiphy,
1164 MHZ_TO_KHZ(chan->center_freq),
1165 desired_bw_khz,
1166 &reg_rule,
1167 regd);
1169 if (r) {
1170 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1171 "regd has no rule that fits a %d MHz "
1172 "wide channel\n",
1173 chan->center_freq,
1174 KHZ_TO_MHZ(desired_bw_khz));
1175 chan->flags = IEEE80211_CHAN_DISABLED;
1176 return;
1179 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1181 power_rule = &reg_rule->power_rule;
1182 freq_range = &reg_rule->freq_range;
1184 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1185 bw_flags = IEEE80211_CHAN_NO_HT40;
1187 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1188 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1189 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1192 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1193 const struct ieee80211_regdomain *regd)
1195 unsigned int i;
1196 struct ieee80211_supported_band *sband;
1198 BUG_ON(!wiphy->bands[band]);
1199 sband = wiphy->bands[band];
1201 for (i = 0; i < sband->n_channels; i++)
1202 handle_channel_custom(wiphy, band, i, regd);
1205 /* Used by drivers prior to wiphy registration */
1206 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1207 const struct ieee80211_regdomain *regd)
1209 enum ieee80211_band band;
1210 unsigned int bands_set = 0;
1212 mutex_lock(&reg_mutex);
1213 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1214 if (!wiphy->bands[band])
1215 continue;
1216 handle_band_custom(wiphy, band, regd);
1217 bands_set++;
1219 mutex_unlock(&reg_mutex);
1222 * no point in calling this if it won't have any effect
1223 * on your device's supportd bands.
1225 WARN_ON(!bands_set);
1227 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1230 * Return value which can be used by ignore_request() to indicate
1231 * it has been determined we should intersect two regulatory domains
1233 #define REG_INTERSECT 1
1235 /* This has the logic which determines when a new request
1236 * should be ignored. */
1237 static int ignore_request(struct wiphy *wiphy,
1238 struct regulatory_request *pending_request)
1240 struct wiphy *last_wiphy = NULL;
1242 assert_cfg80211_lock();
1244 /* All initial requests are respected */
1245 if (!last_request)
1246 return 0;
1248 switch (pending_request->initiator) {
1249 case NL80211_REGDOM_SET_BY_CORE:
1250 return 0;
1251 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1253 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1255 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1256 return -EINVAL;
1257 if (last_request->initiator ==
1258 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1259 if (last_wiphy != wiphy) {
1261 * Two cards with two APs claiming different
1262 * Country IE alpha2s. We could
1263 * intersect them, but that seems unlikely
1264 * to be correct. Reject second one for now.
1266 if (regdom_changes(pending_request->alpha2))
1267 return -EOPNOTSUPP;
1268 return -EALREADY;
1271 * Two consecutive Country IE hints on the same wiphy.
1272 * This should be picked up early by the driver/stack
1274 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1275 return 0;
1276 return -EALREADY;
1278 return 0;
1279 case NL80211_REGDOM_SET_BY_DRIVER:
1280 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1281 if (regdom_changes(pending_request->alpha2))
1282 return 0;
1283 return -EALREADY;
1287 * This would happen if you unplug and plug your card
1288 * back in or if you add a new device for which the previously
1289 * loaded card also agrees on the regulatory domain.
1291 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1292 !regdom_changes(pending_request->alpha2))
1293 return -EALREADY;
1295 return REG_INTERSECT;
1296 case NL80211_REGDOM_SET_BY_USER:
1297 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1298 return REG_INTERSECT;
1300 * If the user knows better the user should set the regdom
1301 * to their country before the IE is picked up
1303 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1304 last_request->intersect)
1305 return -EOPNOTSUPP;
1307 * Process user requests only after previous user/driver/core
1308 * requests have been processed
1310 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1311 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1312 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1313 if (regdom_changes(last_request->alpha2))
1314 return -EAGAIN;
1317 if (!regdom_changes(pending_request->alpha2))
1318 return -EALREADY;
1320 return 0;
1323 return -EINVAL;
1326 static void reg_set_request_processed(void)
1328 bool need_more_processing = false;
1330 last_request->processed = true;
1332 spin_lock(&reg_requests_lock);
1333 if (!list_empty(&reg_requests_list))
1334 need_more_processing = true;
1335 spin_unlock(&reg_requests_lock);
1337 if (need_more_processing)
1338 schedule_work(&reg_work);
1342 * __regulatory_hint - hint to the wireless core a regulatory domain
1343 * @wiphy: if the hint comes from country information from an AP, this
1344 * is required to be set to the wiphy that received the information
1345 * @pending_request: the regulatory request currently being processed
1347 * The Wireless subsystem can use this function to hint to the wireless core
1348 * what it believes should be the current regulatory domain.
1350 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1351 * already been set or other standard error codes.
1353 * Caller must hold &cfg80211_mutex and &reg_mutex
1355 static int __regulatory_hint(struct wiphy *wiphy,
1356 struct regulatory_request *pending_request)
1358 bool intersect = false;
1359 int r = 0;
1361 assert_cfg80211_lock();
1363 r = ignore_request(wiphy, pending_request);
1365 if (r == REG_INTERSECT) {
1366 if (pending_request->initiator ==
1367 NL80211_REGDOM_SET_BY_DRIVER) {
1368 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1369 if (r) {
1370 kfree(pending_request);
1371 return r;
1374 intersect = true;
1375 } else if (r) {
1377 * If the regulatory domain being requested by the
1378 * driver has already been set just copy it to the
1379 * wiphy
1381 if (r == -EALREADY &&
1382 pending_request->initiator ==
1383 NL80211_REGDOM_SET_BY_DRIVER) {
1384 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1385 if (r) {
1386 kfree(pending_request);
1387 return r;
1389 r = -EALREADY;
1390 goto new_request;
1392 kfree(pending_request);
1393 return r;
1396 new_request:
1397 kfree(last_request);
1399 last_request = pending_request;
1400 last_request->intersect = intersect;
1402 pending_request = NULL;
1404 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1405 user_alpha2[0] = last_request->alpha2[0];
1406 user_alpha2[1] = last_request->alpha2[1];
1409 /* When r == REG_INTERSECT we do need to call CRDA */
1410 if (r < 0) {
1412 * Since CRDA will not be called in this case as we already
1413 * have applied the requested regulatory domain before we just
1414 * inform userspace we have processed the request
1416 if (r == -EALREADY) {
1417 nl80211_send_reg_change_event(last_request);
1418 reg_set_request_processed();
1420 return r;
1423 return call_crda(last_request->alpha2);
1426 /* This processes *all* regulatory hints */
1427 static void reg_process_hint(struct regulatory_request *reg_request)
1429 int r = 0;
1430 struct wiphy *wiphy = NULL;
1431 enum nl80211_reg_initiator initiator = reg_request->initiator;
1433 BUG_ON(!reg_request->alpha2);
1435 if (wiphy_idx_valid(reg_request->wiphy_idx))
1436 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1438 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1439 !wiphy) {
1440 kfree(reg_request);
1441 return;
1444 r = __regulatory_hint(wiphy, reg_request);
1445 /* This is required so that the orig_* parameters are saved */
1446 if (r == -EALREADY && wiphy &&
1447 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1448 wiphy_update_regulatory(wiphy, initiator);
1452 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1453 * Regulatory hints come on a first come first serve basis and we
1454 * must process each one atomically.
1456 static void reg_process_pending_hints(void)
1458 struct regulatory_request *reg_request;
1460 mutex_lock(&cfg80211_mutex);
1461 mutex_lock(&reg_mutex);
1463 /* When last_request->processed becomes true this will be rescheduled */
1464 if (last_request && !last_request->processed) {
1465 REG_DBG_PRINT("Pending regulatory request, waiting "
1466 "for it to be processed...");
1467 goto out;
1470 spin_lock(&reg_requests_lock);
1472 if (list_empty(&reg_requests_list)) {
1473 spin_unlock(&reg_requests_lock);
1474 goto out;
1477 reg_request = list_first_entry(&reg_requests_list,
1478 struct regulatory_request,
1479 list);
1480 list_del_init(&reg_request->list);
1482 spin_unlock(&reg_requests_lock);
1484 reg_process_hint(reg_request);
1486 out:
1487 mutex_unlock(&reg_mutex);
1488 mutex_unlock(&cfg80211_mutex);
1491 /* Processes beacon hints -- this has nothing to do with country IEs */
1492 static void reg_process_pending_beacon_hints(void)
1494 struct cfg80211_registered_device *rdev;
1495 struct reg_beacon *pending_beacon, *tmp;
1498 * No need to hold the reg_mutex here as we just touch wiphys
1499 * and do not read or access regulatory variables.
1501 mutex_lock(&cfg80211_mutex);
1503 /* This goes through the _pending_ beacon list */
1504 spin_lock_bh(&reg_pending_beacons_lock);
1506 if (list_empty(&reg_pending_beacons)) {
1507 spin_unlock_bh(&reg_pending_beacons_lock);
1508 goto out;
1511 list_for_each_entry_safe(pending_beacon, tmp,
1512 &reg_pending_beacons, list) {
1514 list_del_init(&pending_beacon->list);
1516 /* Applies the beacon hint to current wiphys */
1517 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1518 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1520 /* Remembers the beacon hint for new wiphys or reg changes */
1521 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1524 spin_unlock_bh(&reg_pending_beacons_lock);
1525 out:
1526 mutex_unlock(&cfg80211_mutex);
1529 static void reg_todo(struct work_struct *work)
1531 reg_process_pending_hints();
1532 reg_process_pending_beacon_hints();
1535 static void queue_regulatory_request(struct regulatory_request *request)
1537 if (isalpha(request->alpha2[0]))
1538 request->alpha2[0] = toupper(request->alpha2[0]);
1539 if (isalpha(request->alpha2[1]))
1540 request->alpha2[1] = toupper(request->alpha2[1]);
1542 spin_lock(&reg_requests_lock);
1543 list_add_tail(&request->list, &reg_requests_list);
1544 spin_unlock(&reg_requests_lock);
1546 schedule_work(&reg_work);
1550 * Core regulatory hint -- happens during cfg80211_init()
1551 * and when we restore regulatory settings.
1553 static int regulatory_hint_core(const char *alpha2)
1555 struct regulatory_request *request;
1557 kfree(last_request);
1558 last_request = NULL;
1560 request = kzalloc(sizeof(struct regulatory_request),
1561 GFP_KERNEL);
1562 if (!request)
1563 return -ENOMEM;
1565 request->alpha2[0] = alpha2[0];
1566 request->alpha2[1] = alpha2[1];
1567 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1569 queue_regulatory_request(request);
1571 return 0;
1574 /* User hints */
1575 int regulatory_hint_user(const char *alpha2)
1577 struct regulatory_request *request;
1579 BUG_ON(!alpha2);
1581 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1582 if (!request)
1583 return -ENOMEM;
1585 request->wiphy_idx = WIPHY_IDX_STALE;
1586 request->alpha2[0] = alpha2[0];
1587 request->alpha2[1] = alpha2[1];
1588 request->initiator = NL80211_REGDOM_SET_BY_USER;
1590 queue_regulatory_request(request);
1592 return 0;
1595 /* Driver hints */
1596 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1598 struct regulatory_request *request;
1600 BUG_ON(!alpha2);
1601 BUG_ON(!wiphy);
1603 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1604 if (!request)
1605 return -ENOMEM;
1607 request->wiphy_idx = get_wiphy_idx(wiphy);
1609 /* Must have registered wiphy first */
1610 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1612 request->alpha2[0] = alpha2[0];
1613 request->alpha2[1] = alpha2[1];
1614 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1616 queue_regulatory_request(request);
1618 return 0;
1620 EXPORT_SYMBOL(regulatory_hint);
1623 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1624 * therefore cannot iterate over the rdev list here.
1626 void regulatory_hint_11d(struct wiphy *wiphy,
1627 enum ieee80211_band band,
1628 u8 *country_ie,
1629 u8 country_ie_len)
1631 char alpha2[2];
1632 enum environment_cap env = ENVIRON_ANY;
1633 struct regulatory_request *request;
1635 mutex_lock(&reg_mutex);
1637 if (unlikely(!last_request))
1638 goto out;
1640 /* IE len must be evenly divisible by 2 */
1641 if (country_ie_len & 0x01)
1642 goto out;
1644 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1645 goto out;
1647 alpha2[0] = country_ie[0];
1648 alpha2[1] = country_ie[1];
1650 if (country_ie[2] == 'I')
1651 env = ENVIRON_INDOOR;
1652 else if (country_ie[2] == 'O')
1653 env = ENVIRON_OUTDOOR;
1656 * We will run this only upon a successful connection on cfg80211.
1657 * We leave conflict resolution to the workqueue, where can hold
1658 * cfg80211_mutex.
1660 if (likely(last_request->initiator ==
1661 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1662 wiphy_idx_valid(last_request->wiphy_idx)))
1663 goto out;
1665 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1666 if (!request)
1667 goto out;
1669 request->wiphy_idx = get_wiphy_idx(wiphy);
1670 request->alpha2[0] = alpha2[0];
1671 request->alpha2[1] = alpha2[1];
1672 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1673 request->country_ie_env = env;
1675 mutex_unlock(&reg_mutex);
1677 queue_regulatory_request(request);
1679 return;
1681 out:
1682 mutex_unlock(&reg_mutex);
1685 static void restore_alpha2(char *alpha2, bool reset_user)
1687 /* indicates there is no alpha2 to consider for restoration */
1688 alpha2[0] = '9';
1689 alpha2[1] = '7';
1691 /* The user setting has precedence over the module parameter */
1692 if (is_user_regdom_saved()) {
1693 /* Unless we're asked to ignore it and reset it */
1694 if (reset_user) {
1695 REG_DBG_PRINT("Restoring regulatory settings "
1696 "including user preference\n");
1697 user_alpha2[0] = '9';
1698 user_alpha2[1] = '7';
1701 * If we're ignoring user settings, we still need to
1702 * check the module parameter to ensure we put things
1703 * back as they were for a full restore.
1705 if (!is_world_regdom(ieee80211_regdom)) {
1706 REG_DBG_PRINT("Keeping preference on "
1707 "module parameter ieee80211_regdom: %c%c\n",
1708 ieee80211_regdom[0],
1709 ieee80211_regdom[1]);
1710 alpha2[0] = ieee80211_regdom[0];
1711 alpha2[1] = ieee80211_regdom[1];
1713 } else {
1714 REG_DBG_PRINT("Restoring regulatory settings "
1715 "while preserving user preference for: %c%c\n",
1716 user_alpha2[0],
1717 user_alpha2[1]);
1718 alpha2[0] = user_alpha2[0];
1719 alpha2[1] = user_alpha2[1];
1721 } else if (!is_world_regdom(ieee80211_regdom)) {
1722 REG_DBG_PRINT("Keeping preference on "
1723 "module parameter ieee80211_regdom: %c%c\n",
1724 ieee80211_regdom[0],
1725 ieee80211_regdom[1]);
1726 alpha2[0] = ieee80211_regdom[0];
1727 alpha2[1] = ieee80211_regdom[1];
1728 } else
1729 REG_DBG_PRINT("Restoring regulatory settings\n");
1733 * Restoring regulatory settings involves ingoring any
1734 * possibly stale country IE information and user regulatory
1735 * settings if so desired, this includes any beacon hints
1736 * learned as we could have traveled outside to another country
1737 * after disconnection. To restore regulatory settings we do
1738 * exactly what we did at bootup:
1740 * - send a core regulatory hint
1741 * - send a user regulatory hint if applicable
1743 * Device drivers that send a regulatory hint for a specific country
1744 * keep their own regulatory domain on wiphy->regd so that does does
1745 * not need to be remembered.
1747 static void restore_regulatory_settings(bool reset_user)
1749 char alpha2[2];
1750 struct reg_beacon *reg_beacon, *btmp;
1752 mutex_lock(&cfg80211_mutex);
1753 mutex_lock(&reg_mutex);
1755 reset_regdomains();
1756 restore_alpha2(alpha2, reset_user);
1758 /* Clear beacon hints */
1759 spin_lock_bh(&reg_pending_beacons_lock);
1760 if (!list_empty(&reg_pending_beacons)) {
1761 list_for_each_entry_safe(reg_beacon, btmp,
1762 &reg_pending_beacons, list) {
1763 list_del(&reg_beacon->list);
1764 kfree(reg_beacon);
1767 spin_unlock_bh(&reg_pending_beacons_lock);
1769 if (!list_empty(&reg_beacon_list)) {
1770 list_for_each_entry_safe(reg_beacon, btmp,
1771 &reg_beacon_list, list) {
1772 list_del(&reg_beacon->list);
1773 kfree(reg_beacon);
1777 /* First restore to the basic regulatory settings */
1778 cfg80211_regdomain = cfg80211_world_regdom;
1780 mutex_unlock(&reg_mutex);
1781 mutex_unlock(&cfg80211_mutex);
1783 regulatory_hint_core(cfg80211_regdomain->alpha2);
1786 * This restores the ieee80211_regdom module parameter
1787 * preference or the last user requested regulatory
1788 * settings, user regulatory settings takes precedence.
1790 if (is_an_alpha2(alpha2))
1791 regulatory_hint_user(user_alpha2);
1795 void regulatory_hint_disconnect(void)
1797 REG_DBG_PRINT("All devices are disconnected, going to "
1798 "restore regulatory settings\n");
1799 restore_regulatory_settings(false);
1802 static bool freq_is_chan_12_13_14(u16 freq)
1804 if (freq == ieee80211_channel_to_frequency(12) ||
1805 freq == ieee80211_channel_to_frequency(13) ||
1806 freq == ieee80211_channel_to_frequency(14))
1807 return true;
1808 return false;
1811 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1812 struct ieee80211_channel *beacon_chan,
1813 gfp_t gfp)
1815 struct reg_beacon *reg_beacon;
1817 if (likely((beacon_chan->beacon_found ||
1818 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1819 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1820 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1821 return 0;
1823 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1824 if (!reg_beacon)
1825 return -ENOMEM;
1827 REG_DBG_PRINT("Found new beacon on "
1828 "frequency: %d MHz (Ch %d) on %s\n",
1829 beacon_chan->center_freq,
1830 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1831 wiphy_name(wiphy));
1833 memcpy(&reg_beacon->chan, beacon_chan,
1834 sizeof(struct ieee80211_channel));
1838 * Since we can be called from BH or and non-BH context
1839 * we must use spin_lock_bh()
1841 spin_lock_bh(&reg_pending_beacons_lock);
1842 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1843 spin_unlock_bh(&reg_pending_beacons_lock);
1845 schedule_work(&reg_work);
1847 return 0;
1850 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1852 unsigned int i;
1853 const struct ieee80211_reg_rule *reg_rule = NULL;
1854 const struct ieee80211_freq_range *freq_range = NULL;
1855 const struct ieee80211_power_rule *power_rule = NULL;
1857 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1859 for (i = 0; i < rd->n_reg_rules; i++) {
1860 reg_rule = &rd->reg_rules[i];
1861 freq_range = &reg_rule->freq_range;
1862 power_rule = &reg_rule->power_rule;
1865 * There may not be documentation for max antenna gain
1866 * in certain regions
1868 if (power_rule->max_antenna_gain)
1869 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1870 freq_range->start_freq_khz,
1871 freq_range->end_freq_khz,
1872 freq_range->max_bandwidth_khz,
1873 power_rule->max_antenna_gain,
1874 power_rule->max_eirp);
1875 else
1876 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1877 freq_range->start_freq_khz,
1878 freq_range->end_freq_khz,
1879 freq_range->max_bandwidth_khz,
1880 power_rule->max_eirp);
1884 static void print_regdomain(const struct ieee80211_regdomain *rd)
1887 if (is_intersected_alpha2(rd->alpha2)) {
1889 if (last_request->initiator ==
1890 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1891 struct cfg80211_registered_device *rdev;
1892 rdev = cfg80211_rdev_by_wiphy_idx(
1893 last_request->wiphy_idx);
1894 if (rdev) {
1895 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1896 rdev->country_ie_alpha2[0],
1897 rdev->country_ie_alpha2[1]);
1898 } else
1899 pr_info("Current regulatory domain intersected:\n");
1900 } else
1901 pr_info("Current regulatory domain intersected:\n");
1902 } else if (is_world_regdom(rd->alpha2))
1903 pr_info("World regulatory domain updated:\n");
1904 else {
1905 if (is_unknown_alpha2(rd->alpha2))
1906 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1907 else
1908 pr_info("Regulatory domain changed to country: %c%c\n",
1909 rd->alpha2[0], rd->alpha2[1]);
1911 print_rd_rules(rd);
1914 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1916 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1917 print_rd_rules(rd);
1920 /* Takes ownership of rd only if it doesn't fail */
1921 static int __set_regdom(const struct ieee80211_regdomain *rd)
1923 const struct ieee80211_regdomain *intersected_rd = NULL;
1924 struct cfg80211_registered_device *rdev = NULL;
1925 struct wiphy *request_wiphy;
1926 /* Some basic sanity checks first */
1928 if (is_world_regdom(rd->alpha2)) {
1929 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1930 return -EINVAL;
1931 update_world_regdomain(rd);
1932 return 0;
1935 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1936 !is_unknown_alpha2(rd->alpha2))
1937 return -EINVAL;
1939 if (!last_request)
1940 return -EINVAL;
1943 * Lets only bother proceeding on the same alpha2 if the current
1944 * rd is non static (it means CRDA was present and was used last)
1945 * and the pending request came in from a country IE
1947 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1949 * If someone else asked us to change the rd lets only bother
1950 * checking if the alpha2 changes if CRDA was already called
1952 if (!regdom_changes(rd->alpha2))
1953 return -EINVAL;
1957 * Now lets set the regulatory domain, update all driver channels
1958 * and finally inform them of what we have done, in case they want
1959 * to review or adjust their own settings based on their own
1960 * internal EEPROM data
1963 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1964 return -EINVAL;
1966 if (!is_valid_rd(rd)) {
1967 pr_err("Invalid regulatory domain detected:\n");
1968 print_regdomain_info(rd);
1969 return -EINVAL;
1972 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1974 if (!last_request->intersect) {
1975 int r;
1977 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1978 reset_regdomains();
1979 cfg80211_regdomain = rd;
1980 return 0;
1984 * For a driver hint, lets copy the regulatory domain the
1985 * driver wanted to the wiphy to deal with conflicts
1989 * Userspace could have sent two replies with only
1990 * one kernel request.
1992 if (request_wiphy->regd)
1993 return -EALREADY;
1995 r = reg_copy_regd(&request_wiphy->regd, rd);
1996 if (r)
1997 return r;
1999 reset_regdomains();
2000 cfg80211_regdomain = rd;
2001 return 0;
2004 /* Intersection requires a bit more work */
2006 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2008 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2009 if (!intersected_rd)
2010 return -EINVAL;
2013 * We can trash what CRDA provided now.
2014 * However if a driver requested this specific regulatory
2015 * domain we keep it for its private use
2017 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2018 request_wiphy->regd = rd;
2019 else
2020 kfree(rd);
2022 rd = NULL;
2024 reset_regdomains();
2025 cfg80211_regdomain = intersected_rd;
2027 return 0;
2030 if (!intersected_rd)
2031 return -EINVAL;
2033 rdev = wiphy_to_dev(request_wiphy);
2035 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2036 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2037 rdev->env = last_request->country_ie_env;
2039 BUG_ON(intersected_rd == rd);
2041 kfree(rd);
2042 rd = NULL;
2044 reset_regdomains();
2045 cfg80211_regdomain = intersected_rd;
2047 return 0;
2052 * Use this call to set the current regulatory domain. Conflicts with
2053 * multiple drivers can be ironed out later. Caller must've already
2054 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2056 int set_regdom(const struct ieee80211_regdomain *rd)
2058 int r;
2060 assert_cfg80211_lock();
2062 mutex_lock(&reg_mutex);
2064 /* Note that this doesn't update the wiphys, this is done below */
2065 r = __set_regdom(rd);
2066 if (r) {
2067 kfree(rd);
2068 mutex_unlock(&reg_mutex);
2069 return r;
2072 /* This would make this whole thing pointless */
2073 if (!last_request->intersect)
2074 BUG_ON(rd != cfg80211_regdomain);
2076 /* update all wiphys now with the new established regulatory domain */
2077 update_all_wiphy_regulatory(last_request->initiator);
2079 print_regdomain(cfg80211_regdomain);
2081 nl80211_send_reg_change_event(last_request);
2083 reg_set_request_processed();
2085 mutex_unlock(&reg_mutex);
2087 return r;
2090 /* Caller must hold cfg80211_mutex */
2091 void reg_device_remove(struct wiphy *wiphy)
2093 struct wiphy *request_wiphy = NULL;
2095 assert_cfg80211_lock();
2097 mutex_lock(&reg_mutex);
2099 kfree(wiphy->regd);
2101 if (last_request)
2102 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2104 if (!request_wiphy || request_wiphy != wiphy)
2105 goto out;
2107 last_request->wiphy_idx = WIPHY_IDX_STALE;
2108 last_request->country_ie_env = ENVIRON_ANY;
2109 out:
2110 mutex_unlock(&reg_mutex);
2113 int __init regulatory_init(void)
2115 int err = 0;
2117 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2118 if (IS_ERR(reg_pdev))
2119 return PTR_ERR(reg_pdev);
2121 spin_lock_init(&reg_requests_lock);
2122 spin_lock_init(&reg_pending_beacons_lock);
2124 cfg80211_regdomain = cfg80211_world_regdom;
2126 user_alpha2[0] = '9';
2127 user_alpha2[1] = '7';
2129 /* We always try to get an update for the static regdomain */
2130 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2131 if (err) {
2132 if (err == -ENOMEM)
2133 return err;
2135 * N.B. kobject_uevent_env() can fail mainly for when we're out
2136 * memory which is handled and propagated appropriately above
2137 * but it can also fail during a netlink_broadcast() or during
2138 * early boot for call_usermodehelper(). For now treat these
2139 * errors as non-fatal.
2141 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2142 #ifdef CONFIG_CFG80211_REG_DEBUG
2143 /* We want to find out exactly why when debugging */
2144 WARN_ON(err);
2145 #endif
2149 * Finally, if the user set the module parameter treat it
2150 * as a user hint.
2152 if (!is_world_regdom(ieee80211_regdom))
2153 regulatory_hint_user(ieee80211_regdom);
2155 return 0;
2158 void /* __init_or_exit */ regulatory_exit(void)
2160 struct regulatory_request *reg_request, *tmp;
2161 struct reg_beacon *reg_beacon, *btmp;
2163 cancel_work_sync(&reg_work);
2165 mutex_lock(&cfg80211_mutex);
2166 mutex_lock(&reg_mutex);
2168 reset_regdomains();
2170 kfree(last_request);
2172 platform_device_unregister(reg_pdev);
2174 spin_lock_bh(&reg_pending_beacons_lock);
2175 if (!list_empty(&reg_pending_beacons)) {
2176 list_for_each_entry_safe(reg_beacon, btmp,
2177 &reg_pending_beacons, list) {
2178 list_del(&reg_beacon->list);
2179 kfree(reg_beacon);
2182 spin_unlock_bh(&reg_pending_beacons_lock);
2184 if (!list_empty(&reg_beacon_list)) {
2185 list_for_each_entry_safe(reg_beacon, btmp,
2186 &reg_beacon_list, list) {
2187 list_del(&reg_beacon->list);
2188 kfree(reg_beacon);
2192 spin_lock(&reg_requests_lock);
2193 if (!list_empty(&reg_requests_list)) {
2194 list_for_each_entry_safe(reg_request, tmp,
2195 &reg_requests_list, list) {
2196 list_del(&reg_request->list);
2197 kfree(reg_request);
2200 spin_unlock(&reg_requests_lock);
2202 mutex_unlock(&reg_mutex);
2203 mutex_unlock(&cfg80211_mutex);