4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
91 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
100 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
105 * Helpers for converting nanosecond timing to jiffy resolution
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109 #define NICE_0_LOAD SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
113 * These are the 'tuning knobs' of the scheduler:
115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116 * Timeslices get refilled after they expire.
118 #define DEF_TIMESLICE (100 * HZ / 1000)
121 * single value that denotes runtime == period, ie unlimited time.
123 #define RUNTIME_INF ((u64)~0ULL)
125 static inline int rt_policy(int policy
)
127 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
132 static inline int task_has_rt_policy(struct task_struct
*p
)
134 return rt_policy(p
->policy
);
138 * This is the priority-queue data structure of the RT scheduling class:
140 struct rt_prio_array
{
141 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
142 struct list_head queue
[MAX_RT_PRIO
];
145 struct rt_bandwidth
{
146 /* nests inside the rq lock: */
147 raw_spinlock_t rt_runtime_lock
;
150 struct hrtimer rt_period_timer
;
153 static struct rt_bandwidth def_rt_bandwidth
;
155 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
157 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
159 struct rt_bandwidth
*rt_b
=
160 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
166 now
= hrtimer_cb_get_time(timer
);
167 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
172 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
175 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
179 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
181 rt_b
->rt_period
= ns_to_ktime(period
);
182 rt_b
->rt_runtime
= runtime
;
184 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
186 hrtimer_init(&rt_b
->rt_period_timer
,
187 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
188 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
191 static inline int rt_bandwidth_enabled(void)
193 return sysctl_sched_rt_runtime
>= 0;
196 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
200 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
203 if (hrtimer_active(&rt_b
->rt_period_timer
))
206 raw_spin_lock(&rt_b
->rt_runtime_lock
);
211 if (hrtimer_active(&rt_b
->rt_period_timer
))
214 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
215 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
217 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
218 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
219 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
220 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
221 HRTIMER_MODE_ABS_PINNED
, 0);
223 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
226 #ifdef CONFIG_RT_GROUP_SCHED
227 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
229 hrtimer_cancel(&rt_b
->rt_period_timer
);
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
237 static DEFINE_MUTEX(sched_domains_mutex
);
239 #ifdef CONFIG_CGROUP_SCHED
241 #include <linux/cgroup.h>
245 static LIST_HEAD(task_groups
);
247 /* task group related information */
249 struct cgroup_subsys_state css
;
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity
**se
;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq
**cfs_rq
;
256 unsigned long shares
;
258 atomic_t load_weight
;
261 #ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity
**rt_se
;
263 struct rt_rq
**rt_rq
;
265 struct rt_bandwidth rt_bandwidth
;
269 struct list_head list
;
271 struct task_group
*parent
;
272 struct list_head siblings
;
273 struct list_head children
;
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup
*autogroup
;
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock
);
283 #ifdef CONFIG_FAIR_GROUP_SCHED
285 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
296 #define MAX_SHARES (1UL << 18)
298 static int root_task_group_load
= ROOT_TASK_GROUP_LOAD
;
301 /* Default task group.
302 * Every task in system belong to this group at bootup.
304 struct task_group root_task_group
;
306 #endif /* CONFIG_CGROUP_SCHED */
308 /* CFS-related fields in a runqueue */
310 struct load_weight load
;
311 unsigned long nr_running
;
316 struct rb_root tasks_timeline
;
317 struct rb_node
*rb_leftmost
;
319 struct list_head tasks
;
320 struct list_head
*balance_iterator
;
323 * 'curr' points to currently running entity on this cfs_rq.
324 * It is set to NULL otherwise (i.e when none are currently running).
326 struct sched_entity
*curr
, *next
, *last
, *skip
;
328 unsigned int nr_spread_over
;
330 #ifdef CONFIG_FAIR_GROUP_SCHED
331 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
334 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
335 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
336 * (like users, containers etc.)
338 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
339 * list is used during load balance.
342 struct list_head leaf_cfs_rq_list
;
343 struct task_group
*tg
; /* group that "owns" this runqueue */
347 * the part of load.weight contributed by tasks
349 unsigned long task_weight
;
352 * h_load = weight * f(tg)
354 * Where f(tg) is the recursive weight fraction assigned to
357 unsigned long h_load
;
360 * Maintaining per-cpu shares distribution for group scheduling
362 * load_stamp is the last time we updated the load average
363 * load_last is the last time we updated the load average and saw load
364 * load_unacc_exec_time is currently unaccounted execution time
368 u64 load_stamp
, load_last
, load_unacc_exec_time
;
370 unsigned long load_contribution
;
375 /* Real-Time classes' related field in a runqueue: */
377 struct rt_prio_array active
;
378 unsigned long rt_nr_running
;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
381 int curr
; /* highest queued rt task prio */
383 int next
; /* next highest */
388 unsigned long rt_nr_migratory
;
389 unsigned long rt_nr_total
;
391 struct plist_head pushable_tasks
;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock
;
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted
;
403 struct list_head leaf_rt_rq_list
;
404 struct task_group
*tg
;
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
421 cpumask_var_t online
;
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
427 cpumask_var_t rto_mask
;
429 struct cpupri cpupri
;
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
436 static struct root_domain def_root_domain
;
438 #endif /* CONFIG_SMP */
441 * This is the main, per-CPU runqueue data structure.
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
455 unsigned long nr_running
;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
458 unsigned long last_load_update_tick
;
461 unsigned char nohz_balance_kick
;
463 unsigned int skip_clock_update
;
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load
;
467 unsigned long nr_load_updates
;
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list
;
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list
;
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
487 unsigned long nr_uninterruptible
;
489 struct task_struct
*curr
, *idle
, *stop
;
490 unsigned long next_balance
;
491 struct mm_struct
*prev_mm
;
499 struct root_domain
*rd
;
500 struct sched_domain
*sd
;
502 unsigned long cpu_power
;
504 unsigned char idle_at_tick
;
505 /* For active balancing */
509 struct cpu_stop_work active_balance_work
;
510 /* cpu of this runqueue: */
514 unsigned long avg_load_per_task
;
522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
526 /* calc_load related fields */
527 unsigned long calc_load_update
;
528 long calc_load_active
;
530 #ifdef CONFIG_SCHED_HRTICK
532 int hrtick_csd_pending
;
533 struct call_single_data hrtick_csd
;
535 struct hrtimer hrtick_timer
;
538 #ifdef CONFIG_SCHEDSTATS
540 struct sched_info rq_sched_info
;
541 unsigned long long rq_cpu_time
;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
544 /* sys_sched_yield() stats */
545 unsigned int yld_count
;
547 /* schedule() stats */
548 unsigned int sched_switch
;
549 unsigned int sched_count
;
550 unsigned int sched_goidle
;
552 /* try_to_wake_up() stats */
553 unsigned int ttwu_count
;
554 unsigned int ttwu_local
;
558 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
561 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
563 static inline int cpu_of(struct rq
*rq
)
572 #define rcu_dereference_check_sched_domain(p) \
573 rcu_dereference_check((p), \
574 rcu_read_lock_sched_held() || \
575 lockdep_is_held(&sched_domains_mutex))
578 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
579 * See detach_destroy_domains: synchronize_sched for details.
581 * The domain tree of any CPU may only be accessed from within
582 * preempt-disabled sections.
584 #define for_each_domain(cpu, __sd) \
585 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
587 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
588 #define this_rq() (&__get_cpu_var(runqueues))
589 #define task_rq(p) cpu_rq(task_cpu(p))
590 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
591 #define raw_rq() (&__raw_get_cpu_var(runqueues))
593 #ifdef CONFIG_CGROUP_SCHED
596 * Return the group to which this tasks belongs.
598 * We use task_subsys_state_check() and extend the RCU verification
599 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
600 * holds that lock for each task it moves into the cgroup. Therefore
601 * by holding that lock, we pin the task to the current cgroup.
603 static inline struct task_group
*task_group(struct task_struct
*p
)
605 struct task_group
*tg
;
606 struct cgroup_subsys_state
*css
;
608 css
= task_subsys_state_check(p
, cpu_cgroup_subsys_id
,
609 lockdep_is_held(&task_rq(p
)->lock
));
610 tg
= container_of(css
, struct task_group
, css
);
612 return autogroup_task_group(p
, tg
);
615 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
618 #ifdef CONFIG_FAIR_GROUP_SCHED
619 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
620 p
->se
.parent
= task_group(p
)->se
[cpu
];
623 #ifdef CONFIG_RT_GROUP_SCHED
624 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
625 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
629 #else /* CONFIG_CGROUP_SCHED */
631 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
632 static inline struct task_group
*task_group(struct task_struct
*p
)
637 #endif /* CONFIG_CGROUP_SCHED */
639 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
641 static void update_rq_clock(struct rq
*rq
)
645 if (rq
->skip_clock_update
)
648 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
650 update_rq_clock_task(rq
, delta
);
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
656 #ifdef CONFIG_SCHED_DEBUG
657 # define const_debug __read_mostly
659 # define const_debug static const
663 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
664 * @cpu: the processor in question.
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
669 int runqueue_is_locked(int cpu
)
671 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
675 * Debugging: various feature bits
678 #define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
682 #include "sched_features.h"
687 #define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
690 const_debug
unsigned int sysctl_sched_features
=
691 #include "sched_features.h"
696 #ifdef CONFIG_SCHED_DEBUG
697 #define SCHED_FEAT(name, enabled) \
700 static __read_mostly
char *sched_feat_names
[] = {
701 #include "sched_features.h"
707 static int sched_feat_show(struct seq_file
*m
, void *v
)
711 for (i
= 0; sched_feat_names
[i
]; i
++) {
712 if (!(sysctl_sched_features
& (1UL << i
)))
714 seq_printf(m
, "%s ", sched_feat_names
[i
]);
722 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
723 size_t cnt
, loff_t
*ppos
)
733 if (copy_from_user(&buf
, ubuf
, cnt
))
739 if (strncmp(cmp
, "NO_", 3) == 0) {
744 for (i
= 0; sched_feat_names
[i
]; i
++) {
745 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
747 sysctl_sched_features
&= ~(1UL << i
);
749 sysctl_sched_features
|= (1UL << i
);
754 if (!sched_feat_names
[i
])
762 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
764 return single_open(filp
, sched_feat_show
, NULL
);
767 static const struct file_operations sched_feat_fops
= {
768 .open
= sched_feat_open
,
769 .write
= sched_feat_write
,
772 .release
= single_release
,
775 static __init
int sched_init_debug(void)
777 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
782 late_initcall(sched_init_debug
);
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
792 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
795 * period over which we average the RT time consumption, measured
800 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
803 * period over which we measure -rt task cpu usage in us.
806 unsigned int sysctl_sched_rt_period
= 1000000;
808 static __read_mostly
int scheduler_running
;
811 * part of the period that we allow rt tasks to run in us.
814 int sysctl_sched_rt_runtime
= 950000;
816 static inline u64
global_rt_period(void)
818 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
821 static inline u64
global_rt_runtime(void)
823 if (sysctl_sched_rt_runtime
< 0)
826 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
829 #ifndef prepare_arch_switch
830 # define prepare_arch_switch(next) do { } while (0)
832 #ifndef finish_arch_switch
833 # define finish_arch_switch(prev) do { } while (0)
836 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
838 return rq
->curr
== p
;
841 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
842 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
844 return task_current(rq
, p
);
847 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
851 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
853 #ifdef CONFIG_DEBUG_SPINLOCK
854 /* this is a valid case when another task releases the spinlock */
855 rq
->lock
.owner
= current
;
858 * If we are tracking spinlock dependencies then we have to
859 * fix up the runqueue lock - which gets 'carried over' from
862 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
864 raw_spin_unlock_irq(&rq
->lock
);
867 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
868 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
873 return task_current(rq
, p
);
877 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
881 * We can optimise this out completely for !SMP, because the
882 * SMP rebalancing from interrupt is the only thing that cares
887 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
888 raw_spin_unlock_irq(&rq
->lock
);
890 raw_spin_unlock(&rq
->lock
);
894 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
898 * After ->oncpu is cleared, the task can be moved to a different CPU.
899 * We must ensure this doesn't happen until the switch is completely
905 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
909 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
912 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
915 static inline int task_is_waking(struct task_struct
*p
)
917 return unlikely(p
->state
== TASK_WAKING
);
921 * __task_rq_lock - lock the runqueue a given task resides on.
922 * Must be called interrupts disabled.
924 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
931 raw_spin_lock(&rq
->lock
);
932 if (likely(rq
== task_rq(p
)))
934 raw_spin_unlock(&rq
->lock
);
939 * task_rq_lock - lock the runqueue a given task resides on and disable
940 * interrupts. Note the ordering: we can safely lookup the task_rq without
941 * explicitly disabling preemption.
943 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
949 local_irq_save(*flags
);
951 raw_spin_lock(&rq
->lock
);
952 if (likely(rq
== task_rq(p
)))
954 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
958 static void __task_rq_unlock(struct rq
*rq
)
961 raw_spin_unlock(&rq
->lock
);
964 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
967 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
971 * this_rq_lock - lock this runqueue and disable interrupts.
973 static struct rq
*this_rq_lock(void)
980 raw_spin_lock(&rq
->lock
);
985 #ifdef CONFIG_SCHED_HRTICK
987 * Use HR-timers to deliver accurate preemption points.
989 * Its all a bit involved since we cannot program an hrt while holding the
990 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
993 * When we get rescheduled we reprogram the hrtick_timer outside of the
999 * - enabled by features
1000 * - hrtimer is actually high res
1002 static inline int hrtick_enabled(struct rq
*rq
)
1004 if (!sched_feat(HRTICK
))
1006 if (!cpu_active(cpu_of(rq
)))
1008 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1011 static void hrtick_clear(struct rq
*rq
)
1013 if (hrtimer_active(&rq
->hrtick_timer
))
1014 hrtimer_cancel(&rq
->hrtick_timer
);
1018 * High-resolution timer tick.
1019 * Runs from hardirq context with interrupts disabled.
1021 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1023 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1025 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1027 raw_spin_lock(&rq
->lock
);
1028 update_rq_clock(rq
);
1029 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1030 raw_spin_unlock(&rq
->lock
);
1032 return HRTIMER_NORESTART
;
1037 * called from hardirq (IPI) context
1039 static void __hrtick_start(void *arg
)
1041 struct rq
*rq
= arg
;
1043 raw_spin_lock(&rq
->lock
);
1044 hrtimer_restart(&rq
->hrtick_timer
);
1045 rq
->hrtick_csd_pending
= 0;
1046 raw_spin_unlock(&rq
->lock
);
1050 * Called to set the hrtick timer state.
1052 * called with rq->lock held and irqs disabled
1054 static void hrtick_start(struct rq
*rq
, u64 delay
)
1056 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1057 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1059 hrtimer_set_expires(timer
, time
);
1061 if (rq
== this_rq()) {
1062 hrtimer_restart(timer
);
1063 } else if (!rq
->hrtick_csd_pending
) {
1064 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1065 rq
->hrtick_csd_pending
= 1;
1070 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1072 int cpu
= (int)(long)hcpu
;
1075 case CPU_UP_CANCELED
:
1076 case CPU_UP_CANCELED_FROZEN
:
1077 case CPU_DOWN_PREPARE
:
1078 case CPU_DOWN_PREPARE_FROZEN
:
1080 case CPU_DEAD_FROZEN
:
1081 hrtick_clear(cpu_rq(cpu
));
1088 static __init
void init_hrtick(void)
1090 hotcpu_notifier(hotplug_hrtick
, 0);
1094 * Called to set the hrtick timer state.
1096 * called with rq->lock held and irqs disabled
1098 static void hrtick_start(struct rq
*rq
, u64 delay
)
1100 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1101 HRTIMER_MODE_REL_PINNED
, 0);
1104 static inline void init_hrtick(void)
1107 #endif /* CONFIG_SMP */
1109 static void init_rq_hrtick(struct rq
*rq
)
1112 rq
->hrtick_csd_pending
= 0;
1114 rq
->hrtick_csd
.flags
= 0;
1115 rq
->hrtick_csd
.func
= __hrtick_start
;
1116 rq
->hrtick_csd
.info
= rq
;
1119 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1120 rq
->hrtick_timer
.function
= hrtick
;
1122 #else /* CONFIG_SCHED_HRTICK */
1123 static inline void hrtick_clear(struct rq
*rq
)
1127 static inline void init_rq_hrtick(struct rq
*rq
)
1131 static inline void init_hrtick(void)
1134 #endif /* CONFIG_SCHED_HRTICK */
1137 * resched_task - mark a task 'to be rescheduled now'.
1139 * On UP this means the setting of the need_resched flag, on SMP it
1140 * might also involve a cross-CPU call to trigger the scheduler on
1145 #ifndef tsk_is_polling
1146 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1149 static void resched_task(struct task_struct
*p
)
1153 assert_raw_spin_locked(&task_rq(p
)->lock
);
1155 if (test_tsk_need_resched(p
))
1158 set_tsk_need_resched(p
);
1161 if (cpu
== smp_processor_id())
1164 /* NEED_RESCHED must be visible before we test polling */
1166 if (!tsk_is_polling(p
))
1167 smp_send_reschedule(cpu
);
1170 static void resched_cpu(int cpu
)
1172 struct rq
*rq
= cpu_rq(cpu
);
1173 unsigned long flags
;
1175 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1177 resched_task(cpu_curr(cpu
));
1178 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1183 * In the semi idle case, use the nearest busy cpu for migrating timers
1184 * from an idle cpu. This is good for power-savings.
1186 * We don't do similar optimization for completely idle system, as
1187 * selecting an idle cpu will add more delays to the timers than intended
1188 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1190 int get_nohz_timer_target(void)
1192 int cpu
= smp_processor_id();
1194 struct sched_domain
*sd
;
1196 for_each_domain(cpu
, sd
) {
1197 for_each_cpu(i
, sched_domain_span(sd
))
1204 * When add_timer_on() enqueues a timer into the timer wheel of an
1205 * idle CPU then this timer might expire before the next timer event
1206 * which is scheduled to wake up that CPU. In case of a completely
1207 * idle system the next event might even be infinite time into the
1208 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1209 * leaves the inner idle loop so the newly added timer is taken into
1210 * account when the CPU goes back to idle and evaluates the timer
1211 * wheel for the next timer event.
1213 void wake_up_idle_cpu(int cpu
)
1215 struct rq
*rq
= cpu_rq(cpu
);
1217 if (cpu
== smp_processor_id())
1221 * This is safe, as this function is called with the timer
1222 * wheel base lock of (cpu) held. When the CPU is on the way
1223 * to idle and has not yet set rq->curr to idle then it will
1224 * be serialized on the timer wheel base lock and take the new
1225 * timer into account automatically.
1227 if (rq
->curr
!= rq
->idle
)
1231 * We can set TIF_RESCHED on the idle task of the other CPU
1232 * lockless. The worst case is that the other CPU runs the
1233 * idle task through an additional NOOP schedule()
1235 set_tsk_need_resched(rq
->idle
);
1237 /* NEED_RESCHED must be visible before we test polling */
1239 if (!tsk_is_polling(rq
->idle
))
1240 smp_send_reschedule(cpu
);
1243 #endif /* CONFIG_NO_HZ */
1245 static u64
sched_avg_period(void)
1247 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1250 static void sched_avg_update(struct rq
*rq
)
1252 s64 period
= sched_avg_period();
1254 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1256 * Inline assembly required to prevent the compiler
1257 * optimising this loop into a divmod call.
1258 * See __iter_div_u64_rem() for another example of this.
1260 asm("" : "+rm" (rq
->age_stamp
));
1261 rq
->age_stamp
+= period
;
1266 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1268 rq
->rt_avg
+= rt_delta
;
1269 sched_avg_update(rq
);
1272 #else /* !CONFIG_SMP */
1273 static void resched_task(struct task_struct
*p
)
1275 assert_raw_spin_locked(&task_rq(p
)->lock
);
1276 set_tsk_need_resched(p
);
1279 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1283 static void sched_avg_update(struct rq
*rq
)
1286 #endif /* CONFIG_SMP */
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1291 # define WMULT_CONST (1UL << 32)
1294 #define WMULT_SHIFT 32
1297 * Shift right and round:
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1302 * delta *= weight / lw
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1306 struct load_weight
*lw
)
1310 if (!lw
->inv_weight
) {
1311 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1314 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1318 tmp
= (u64
)delta_exec
* weight
;
1320 * Check whether we'd overflow the 64-bit multiplication:
1322 if (unlikely(tmp
> WMULT_CONST
))
1323 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1326 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1328 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1331 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1337 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1343 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
1350 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1351 * of tasks with abnormal "nice" values across CPUs the contribution that
1352 * each task makes to its run queue's load is weighted according to its
1353 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1354 * scaled version of the new time slice allocation that they receive on time
1358 #define WEIGHT_IDLEPRIO 3
1359 #define WMULT_IDLEPRIO 1431655765
1362 * Nice levels are multiplicative, with a gentle 10% change for every
1363 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1364 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1365 * that remained on nice 0.
1367 * The "10% effect" is relative and cumulative: from _any_ nice level,
1368 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1369 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1370 * If a task goes up by ~10% and another task goes down by ~10% then
1371 * the relative distance between them is ~25%.)
1373 static const int prio_to_weight
[40] = {
1374 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1375 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1376 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1377 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1378 /* 0 */ 1024, 820, 655, 526, 423,
1379 /* 5 */ 335, 272, 215, 172, 137,
1380 /* 10 */ 110, 87, 70, 56, 45,
1381 /* 15 */ 36, 29, 23, 18, 15,
1385 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1387 * In cases where the weight does not change often, we can use the
1388 * precalculated inverse to speed up arithmetics by turning divisions
1389 * into multiplications:
1391 static const u32 prio_to_wmult
[40] = {
1392 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1393 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1394 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1395 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1396 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1397 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1398 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1399 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1402 /* Time spent by the tasks of the cpu accounting group executing in ... */
1403 enum cpuacct_stat_index
{
1404 CPUACCT_STAT_USER
, /* ... user mode */
1405 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1407 CPUACCT_STAT_NSTATS
,
1410 #ifdef CONFIG_CGROUP_CPUACCT
1411 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1412 static void cpuacct_update_stats(struct task_struct
*tsk
,
1413 enum cpuacct_stat_index idx
, cputime_t val
);
1415 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1416 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1417 enum cpuacct_stat_index idx
, cputime_t val
) {}
1420 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1422 update_load_add(&rq
->load
, load
);
1425 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1427 update_load_sub(&rq
->load
, load
);
1430 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1431 typedef int (*tg_visitor
)(struct task_group
*, void *);
1434 * Iterate the full tree, calling @down when first entering a node and @up when
1435 * leaving it for the final time.
1437 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1439 struct task_group
*parent
, *child
;
1443 parent
= &root_task_group
;
1445 ret
= (*down
)(parent
, data
);
1448 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1455 ret
= (*up
)(parent
, data
);
1460 parent
= parent
->parent
;
1469 static int tg_nop(struct task_group
*tg
, void *data
)
1476 /* Used instead of source_load when we know the type == 0 */
1477 static unsigned long weighted_cpuload(const int cpu
)
1479 return cpu_rq(cpu
)->load
.weight
;
1483 * Return a low guess at the load of a migration-source cpu weighted
1484 * according to the scheduling class and "nice" value.
1486 * We want to under-estimate the load of migration sources, to
1487 * balance conservatively.
1489 static unsigned long source_load(int cpu
, int type
)
1491 struct rq
*rq
= cpu_rq(cpu
);
1492 unsigned long total
= weighted_cpuload(cpu
);
1494 if (type
== 0 || !sched_feat(LB_BIAS
))
1497 return min(rq
->cpu_load
[type
-1], total
);
1501 * Return a high guess at the load of a migration-target cpu weighted
1502 * according to the scheduling class and "nice" value.
1504 static unsigned long target_load(int cpu
, int type
)
1506 struct rq
*rq
= cpu_rq(cpu
);
1507 unsigned long total
= weighted_cpuload(cpu
);
1509 if (type
== 0 || !sched_feat(LB_BIAS
))
1512 return max(rq
->cpu_load
[type
-1], total
);
1515 static unsigned long power_of(int cpu
)
1517 return cpu_rq(cpu
)->cpu_power
;
1520 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1522 static unsigned long cpu_avg_load_per_task(int cpu
)
1524 struct rq
*rq
= cpu_rq(cpu
);
1525 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1528 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1530 rq
->avg_load_per_task
= 0;
1532 return rq
->avg_load_per_task
;
1535 #ifdef CONFIG_FAIR_GROUP_SCHED
1538 * Compute the cpu's hierarchical load factor for each task group.
1539 * This needs to be done in a top-down fashion because the load of a child
1540 * group is a fraction of its parents load.
1542 static int tg_load_down(struct task_group
*tg
, void *data
)
1545 long cpu
= (long)data
;
1548 load
= cpu_rq(cpu
)->load
.weight
;
1550 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1551 load
*= tg
->se
[cpu
]->load
.weight
;
1552 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1555 tg
->cfs_rq
[cpu
]->h_load
= load
;
1560 static void update_h_load(long cpu
)
1562 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1567 #ifdef CONFIG_PREEMPT
1569 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1572 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1573 * way at the expense of forcing extra atomic operations in all
1574 * invocations. This assures that the double_lock is acquired using the
1575 * same underlying policy as the spinlock_t on this architecture, which
1576 * reduces latency compared to the unfair variant below. However, it
1577 * also adds more overhead and therefore may reduce throughput.
1579 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1580 __releases(this_rq
->lock
)
1581 __acquires(busiest
->lock
)
1582 __acquires(this_rq
->lock
)
1584 raw_spin_unlock(&this_rq
->lock
);
1585 double_rq_lock(this_rq
, busiest
);
1592 * Unfair double_lock_balance: Optimizes throughput at the expense of
1593 * latency by eliminating extra atomic operations when the locks are
1594 * already in proper order on entry. This favors lower cpu-ids and will
1595 * grant the double lock to lower cpus over higher ids under contention,
1596 * regardless of entry order into the function.
1598 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1599 __releases(this_rq
->lock
)
1600 __acquires(busiest
->lock
)
1601 __acquires(this_rq
->lock
)
1605 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1606 if (busiest
< this_rq
) {
1607 raw_spin_unlock(&this_rq
->lock
);
1608 raw_spin_lock(&busiest
->lock
);
1609 raw_spin_lock_nested(&this_rq
->lock
,
1610 SINGLE_DEPTH_NESTING
);
1613 raw_spin_lock_nested(&busiest
->lock
,
1614 SINGLE_DEPTH_NESTING
);
1619 #endif /* CONFIG_PREEMPT */
1622 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1624 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1626 if (unlikely(!irqs_disabled())) {
1627 /* printk() doesn't work good under rq->lock */
1628 raw_spin_unlock(&this_rq
->lock
);
1632 return _double_lock_balance(this_rq
, busiest
);
1635 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1636 __releases(busiest
->lock
)
1638 raw_spin_unlock(&busiest
->lock
);
1639 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1643 * double_rq_lock - safely lock two runqueues
1645 * Note this does not disable interrupts like task_rq_lock,
1646 * you need to do so manually before calling.
1648 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1649 __acquires(rq1
->lock
)
1650 __acquires(rq2
->lock
)
1652 BUG_ON(!irqs_disabled());
1654 raw_spin_lock(&rq1
->lock
);
1655 __acquire(rq2
->lock
); /* Fake it out ;) */
1658 raw_spin_lock(&rq1
->lock
);
1659 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1661 raw_spin_lock(&rq2
->lock
);
1662 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1668 * double_rq_unlock - safely unlock two runqueues
1670 * Note this does not restore interrupts like task_rq_unlock,
1671 * you need to do so manually after calling.
1673 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1674 __releases(rq1
->lock
)
1675 __releases(rq2
->lock
)
1677 raw_spin_unlock(&rq1
->lock
);
1679 raw_spin_unlock(&rq2
->lock
);
1681 __release(rq2
->lock
);
1684 #else /* CONFIG_SMP */
1687 * double_rq_lock - safely lock two runqueues
1689 * Note this does not disable interrupts like task_rq_lock,
1690 * you need to do so manually before calling.
1692 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1693 __acquires(rq1
->lock
)
1694 __acquires(rq2
->lock
)
1696 BUG_ON(!irqs_disabled());
1698 raw_spin_lock(&rq1
->lock
);
1699 __acquire(rq2
->lock
); /* Fake it out ;) */
1703 * double_rq_unlock - safely unlock two runqueues
1705 * Note this does not restore interrupts like task_rq_unlock,
1706 * you need to do so manually after calling.
1708 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1709 __releases(rq1
->lock
)
1710 __releases(rq2
->lock
)
1713 raw_spin_unlock(&rq1
->lock
);
1714 __release(rq2
->lock
);
1719 static void calc_load_account_idle(struct rq
*this_rq
);
1720 static void update_sysctl(void);
1721 static int get_update_sysctl_factor(void);
1722 static void update_cpu_load(struct rq
*this_rq
);
1724 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1726 set_task_rq(p
, cpu
);
1729 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1730 * successfuly executed on another CPU. We must ensure that updates of
1731 * per-task data have been completed by this moment.
1734 task_thread_info(p
)->cpu
= cpu
;
1738 static const struct sched_class rt_sched_class
;
1740 #define sched_class_highest (&stop_sched_class)
1741 #define for_each_class(class) \
1742 for (class = sched_class_highest; class; class = class->next)
1744 #include "sched_stats.h"
1746 static void inc_nr_running(struct rq
*rq
)
1751 static void dec_nr_running(struct rq
*rq
)
1756 static void set_load_weight(struct task_struct
*p
)
1759 * SCHED_IDLE tasks get minimal weight:
1761 if (p
->policy
== SCHED_IDLE
) {
1762 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1763 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1767 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1768 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1771 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1773 update_rq_clock(rq
);
1774 sched_info_queued(p
);
1775 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1779 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1781 update_rq_clock(rq
);
1782 sched_info_dequeued(p
);
1783 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1788 * activate_task - move a task to the runqueue.
1790 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1792 if (task_contributes_to_load(p
))
1793 rq
->nr_uninterruptible
--;
1795 enqueue_task(rq
, p
, flags
);
1800 * deactivate_task - remove a task from the runqueue.
1802 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1804 if (task_contributes_to_load(p
))
1805 rq
->nr_uninterruptible
++;
1807 dequeue_task(rq
, p
, flags
);
1811 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1814 * There are no locks covering percpu hardirq/softirq time.
1815 * They are only modified in account_system_vtime, on corresponding CPU
1816 * with interrupts disabled. So, writes are safe.
1817 * They are read and saved off onto struct rq in update_rq_clock().
1818 * This may result in other CPU reading this CPU's irq time and can
1819 * race with irq/account_system_vtime on this CPU. We would either get old
1820 * or new value with a side effect of accounting a slice of irq time to wrong
1821 * task when irq is in progress while we read rq->clock. That is a worthy
1822 * compromise in place of having locks on each irq in account_system_time.
1824 static DEFINE_PER_CPU(u64
, cpu_hardirq_time
);
1825 static DEFINE_PER_CPU(u64
, cpu_softirq_time
);
1827 static DEFINE_PER_CPU(u64
, irq_start_time
);
1828 static int sched_clock_irqtime
;
1830 void enable_sched_clock_irqtime(void)
1832 sched_clock_irqtime
= 1;
1835 void disable_sched_clock_irqtime(void)
1837 sched_clock_irqtime
= 0;
1840 #ifndef CONFIG_64BIT
1841 static DEFINE_PER_CPU(seqcount_t
, irq_time_seq
);
1843 static inline void irq_time_write_begin(void)
1845 __this_cpu_inc(irq_time_seq
.sequence
);
1849 static inline void irq_time_write_end(void)
1852 __this_cpu_inc(irq_time_seq
.sequence
);
1855 static inline u64
irq_time_read(int cpu
)
1861 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
1862 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
1863 per_cpu(cpu_hardirq_time
, cpu
);
1864 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
1868 #else /* CONFIG_64BIT */
1869 static inline void irq_time_write_begin(void)
1873 static inline void irq_time_write_end(void)
1877 static inline u64
irq_time_read(int cpu
)
1879 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
1881 #endif /* CONFIG_64BIT */
1884 * Called before incrementing preempt_count on {soft,}irq_enter
1885 * and before decrementing preempt_count on {soft,}irq_exit.
1887 void account_system_vtime(struct task_struct
*curr
)
1889 unsigned long flags
;
1893 if (!sched_clock_irqtime
)
1896 local_irq_save(flags
);
1898 cpu
= smp_processor_id();
1899 delta
= sched_clock_cpu(cpu
) - __this_cpu_read(irq_start_time
);
1900 __this_cpu_add(irq_start_time
, delta
);
1902 irq_time_write_begin();
1904 * We do not account for softirq time from ksoftirqd here.
1905 * We want to continue accounting softirq time to ksoftirqd thread
1906 * in that case, so as not to confuse scheduler with a special task
1907 * that do not consume any time, but still wants to run.
1909 if (hardirq_count())
1910 __this_cpu_add(cpu_hardirq_time
, delta
);
1911 else if (in_serving_softirq() && curr
!= this_cpu_ksoftirqd())
1912 __this_cpu_add(cpu_softirq_time
, delta
);
1914 irq_time_write_end();
1915 local_irq_restore(flags
);
1917 EXPORT_SYMBOL_GPL(account_system_vtime
);
1919 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
1923 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
1926 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1927 * this case when a previous update_rq_clock() happened inside a
1928 * {soft,}irq region.
1930 * When this happens, we stop ->clock_task and only update the
1931 * prev_irq_time stamp to account for the part that fit, so that a next
1932 * update will consume the rest. This ensures ->clock_task is
1935 * It does however cause some slight miss-attribution of {soft,}irq
1936 * time, a more accurate solution would be to update the irq_time using
1937 * the current rq->clock timestamp, except that would require using
1940 if (irq_delta
> delta
)
1943 rq
->prev_irq_time
+= irq_delta
;
1945 rq
->clock_task
+= delta
;
1947 if (irq_delta
&& sched_feat(NONIRQ_POWER
))
1948 sched_rt_avg_update(rq
, irq_delta
);
1951 static int irqtime_account_hi_update(void)
1953 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
1954 unsigned long flags
;
1958 local_irq_save(flags
);
1959 latest_ns
= this_cpu_read(cpu_hardirq_time
);
1960 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->irq
))
1962 local_irq_restore(flags
);
1966 static int irqtime_account_si_update(void)
1968 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
1969 unsigned long flags
;
1973 local_irq_save(flags
);
1974 latest_ns
= this_cpu_read(cpu_softirq_time
);
1975 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->softirq
))
1977 local_irq_restore(flags
);
1981 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
1983 #define sched_clock_irqtime (0)
1985 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
1987 rq
->clock_task
+= delta
;
1990 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1992 #include "sched_idletask.c"
1993 #include "sched_fair.c"
1994 #include "sched_rt.c"
1995 #include "sched_autogroup.c"
1996 #include "sched_stoptask.c"
1997 #ifdef CONFIG_SCHED_DEBUG
1998 # include "sched_debug.c"
2001 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
2003 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
2004 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
2008 * Make it appear like a SCHED_FIFO task, its something
2009 * userspace knows about and won't get confused about.
2011 * Also, it will make PI more or less work without too
2012 * much confusion -- but then, stop work should not
2013 * rely on PI working anyway.
2015 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
2017 stop
->sched_class
= &stop_sched_class
;
2020 cpu_rq(cpu
)->stop
= stop
;
2024 * Reset it back to a normal scheduling class so that
2025 * it can die in pieces.
2027 old_stop
->sched_class
= &rt_sched_class
;
2032 * __normal_prio - return the priority that is based on the static prio
2034 static inline int __normal_prio(struct task_struct
*p
)
2036 return p
->static_prio
;
2040 * Calculate the expected normal priority: i.e. priority
2041 * without taking RT-inheritance into account. Might be
2042 * boosted by interactivity modifiers. Changes upon fork,
2043 * setprio syscalls, and whenever the interactivity
2044 * estimator recalculates.
2046 static inline int normal_prio(struct task_struct
*p
)
2050 if (task_has_rt_policy(p
))
2051 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
2053 prio
= __normal_prio(p
);
2058 * Calculate the current priority, i.e. the priority
2059 * taken into account by the scheduler. This value might
2060 * be boosted by RT tasks, or might be boosted by
2061 * interactivity modifiers. Will be RT if the task got
2062 * RT-boosted. If not then it returns p->normal_prio.
2064 static int effective_prio(struct task_struct
*p
)
2066 p
->normal_prio
= normal_prio(p
);
2068 * If we are RT tasks or we were boosted to RT priority,
2069 * keep the priority unchanged. Otherwise, update priority
2070 * to the normal priority:
2072 if (!rt_prio(p
->prio
))
2073 return p
->normal_prio
;
2078 * task_curr - is this task currently executing on a CPU?
2079 * @p: the task in question.
2081 inline int task_curr(const struct task_struct
*p
)
2083 return cpu_curr(task_cpu(p
)) == p
;
2086 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
2087 const struct sched_class
*prev_class
,
2090 if (prev_class
!= p
->sched_class
) {
2091 if (prev_class
->switched_from
)
2092 prev_class
->switched_from(rq
, p
);
2093 p
->sched_class
->switched_to(rq
, p
);
2094 } else if (oldprio
!= p
->prio
)
2095 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
2098 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
2100 const struct sched_class
*class;
2102 if (p
->sched_class
== rq
->curr
->sched_class
) {
2103 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
2105 for_each_class(class) {
2106 if (class == rq
->curr
->sched_class
)
2108 if (class == p
->sched_class
) {
2109 resched_task(rq
->curr
);
2116 * A queue event has occurred, and we're going to schedule. In
2117 * this case, we can save a useless back to back clock update.
2119 if (rq
->curr
->se
.on_rq
&& test_tsk_need_resched(rq
->curr
))
2120 rq
->skip_clock_update
= 1;
2125 * Is this task likely cache-hot:
2128 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2132 if (p
->sched_class
!= &fair_sched_class
)
2135 if (unlikely(p
->policy
== SCHED_IDLE
))
2139 * Buddy candidates are cache hot:
2141 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2142 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2143 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2146 if (sysctl_sched_migration_cost
== -1)
2148 if (sysctl_sched_migration_cost
== 0)
2151 delta
= now
- p
->se
.exec_start
;
2153 return delta
< (s64
)sysctl_sched_migration_cost
;
2156 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2158 #ifdef CONFIG_SCHED_DEBUG
2160 * We should never call set_task_cpu() on a blocked task,
2161 * ttwu() will sort out the placement.
2163 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2164 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2167 trace_sched_migrate_task(p
, new_cpu
);
2169 if (task_cpu(p
) != new_cpu
) {
2170 p
->se
.nr_migrations
++;
2171 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2174 __set_task_cpu(p
, new_cpu
);
2177 struct migration_arg
{
2178 struct task_struct
*task
;
2182 static int migration_cpu_stop(void *data
);
2185 * The task's runqueue lock must be held.
2186 * Returns true if you have to wait for migration thread.
2188 static bool migrate_task(struct task_struct
*p
, struct rq
*rq
)
2191 * If the task is not on a runqueue (and not running), then
2192 * the next wake-up will properly place the task.
2194 return p
->se
.on_rq
|| task_running(rq
, p
);
2198 * wait_task_inactive - wait for a thread to unschedule.
2200 * If @match_state is nonzero, it's the @p->state value just checked and
2201 * not expected to change. If it changes, i.e. @p might have woken up,
2202 * then return zero. When we succeed in waiting for @p to be off its CPU,
2203 * we return a positive number (its total switch count). If a second call
2204 * a short while later returns the same number, the caller can be sure that
2205 * @p has remained unscheduled the whole time.
2207 * The caller must ensure that the task *will* unschedule sometime soon,
2208 * else this function might spin for a *long* time. This function can't
2209 * be called with interrupts off, or it may introduce deadlock with
2210 * smp_call_function() if an IPI is sent by the same process we are
2211 * waiting to become inactive.
2213 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2215 unsigned long flags
;
2222 * We do the initial early heuristics without holding
2223 * any task-queue locks at all. We'll only try to get
2224 * the runqueue lock when things look like they will
2230 * If the task is actively running on another CPU
2231 * still, just relax and busy-wait without holding
2234 * NOTE! Since we don't hold any locks, it's not
2235 * even sure that "rq" stays as the right runqueue!
2236 * But we don't care, since "task_running()" will
2237 * return false if the runqueue has changed and p
2238 * is actually now running somewhere else!
2240 while (task_running(rq
, p
)) {
2241 if (match_state
&& unlikely(p
->state
!= match_state
))
2247 * Ok, time to look more closely! We need the rq
2248 * lock now, to be *sure*. If we're wrong, we'll
2249 * just go back and repeat.
2251 rq
= task_rq_lock(p
, &flags
);
2252 trace_sched_wait_task(p
);
2253 running
= task_running(rq
, p
);
2254 on_rq
= p
->se
.on_rq
;
2256 if (!match_state
|| p
->state
== match_state
)
2257 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2258 task_rq_unlock(rq
, &flags
);
2261 * If it changed from the expected state, bail out now.
2263 if (unlikely(!ncsw
))
2267 * Was it really running after all now that we
2268 * checked with the proper locks actually held?
2270 * Oops. Go back and try again..
2272 if (unlikely(running
)) {
2278 * It's not enough that it's not actively running,
2279 * it must be off the runqueue _entirely_, and not
2282 * So if it was still runnable (but just not actively
2283 * running right now), it's preempted, and we should
2284 * yield - it could be a while.
2286 if (unlikely(on_rq
)) {
2287 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
2289 set_current_state(TASK_UNINTERRUPTIBLE
);
2290 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
2295 * Ahh, all good. It wasn't running, and it wasn't
2296 * runnable, which means that it will never become
2297 * running in the future either. We're all done!
2306 * kick_process - kick a running thread to enter/exit the kernel
2307 * @p: the to-be-kicked thread
2309 * Cause a process which is running on another CPU to enter
2310 * kernel-mode, without any delay. (to get signals handled.)
2312 * NOTE: this function doesn't have to take the runqueue lock,
2313 * because all it wants to ensure is that the remote task enters
2314 * the kernel. If the IPI races and the task has been migrated
2315 * to another CPU then no harm is done and the purpose has been
2318 void kick_process(struct task_struct
*p
)
2324 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2325 smp_send_reschedule(cpu
);
2328 EXPORT_SYMBOL_GPL(kick_process
);
2329 #endif /* CONFIG_SMP */
2333 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2335 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2338 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2340 /* Look for allowed, online CPU in same node. */
2341 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2342 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2345 /* Any allowed, online CPU? */
2346 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2347 if (dest_cpu
< nr_cpu_ids
)
2350 /* No more Mr. Nice Guy. */
2351 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2353 * Don't tell them about moving exiting tasks or
2354 * kernel threads (both mm NULL), since they never
2357 if (p
->mm
&& printk_ratelimit()) {
2358 printk(KERN_INFO
"process %d (%s) no longer affine to cpu%d\n",
2359 task_pid_nr(p
), p
->comm
, cpu
);
2366 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2369 int select_task_rq(struct rq
*rq
, struct task_struct
*p
, int sd_flags
, int wake_flags
)
2371 int cpu
= p
->sched_class
->select_task_rq(rq
, p
, sd_flags
, wake_flags
);
2374 * In order not to call set_task_cpu() on a blocking task we need
2375 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2378 * Since this is common to all placement strategies, this lives here.
2380 * [ this allows ->select_task() to simply return task_cpu(p) and
2381 * not worry about this generic constraint ]
2383 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2385 cpu
= select_fallback_rq(task_cpu(p
), p
);
2390 static void update_avg(u64
*avg
, u64 sample
)
2392 s64 diff
= sample
- *avg
;
2397 static inline void ttwu_activate(struct task_struct
*p
, struct rq
*rq
,
2398 bool is_sync
, bool is_migrate
, bool is_local
,
2399 unsigned long en_flags
)
2401 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2403 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2405 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2407 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2409 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2411 activate_task(rq
, p
, en_flags
);
2414 static inline void ttwu_post_activation(struct task_struct
*p
, struct rq
*rq
,
2415 int wake_flags
, bool success
)
2417 trace_sched_wakeup(p
, success
);
2418 check_preempt_curr(rq
, p
, wake_flags
);
2420 p
->state
= TASK_RUNNING
;
2422 if (p
->sched_class
->task_woken
)
2423 p
->sched_class
->task_woken(rq
, p
);
2425 if (unlikely(rq
->idle_stamp
)) {
2426 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2427 u64 max
= 2*sysctl_sched_migration_cost
;
2432 update_avg(&rq
->avg_idle
, delta
);
2436 /* if a worker is waking up, notify workqueue */
2437 if ((p
->flags
& PF_WQ_WORKER
) && success
)
2438 wq_worker_waking_up(p
, cpu_of(rq
));
2442 * try_to_wake_up - wake up a thread
2443 * @p: the thread to be awakened
2444 * @state: the mask of task states that can be woken
2445 * @wake_flags: wake modifier flags (WF_*)
2447 * Put it on the run-queue if it's not already there. The "current"
2448 * thread is always on the run-queue (except when the actual
2449 * re-schedule is in progress), and as such you're allowed to do
2450 * the simpler "current->state = TASK_RUNNING" to mark yourself
2451 * runnable without the overhead of this.
2453 * Returns %true if @p was woken up, %false if it was already running
2454 * or @state didn't match @p's state.
2456 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2459 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2460 unsigned long flags
;
2461 unsigned long en_flags
= ENQUEUE_WAKEUP
;
2464 this_cpu
= get_cpu();
2467 rq
= task_rq_lock(p
, &flags
);
2468 if (!(p
->state
& state
))
2478 if (unlikely(task_running(rq
, p
)))
2482 * In order to handle concurrent wakeups and release the rq->lock
2483 * we put the task in TASK_WAKING state.
2485 * First fix up the nr_uninterruptible count:
2487 if (task_contributes_to_load(p
)) {
2488 if (likely(cpu_online(orig_cpu
)))
2489 rq
->nr_uninterruptible
--;
2491 this_rq()->nr_uninterruptible
--;
2493 p
->state
= TASK_WAKING
;
2495 if (p
->sched_class
->task_waking
) {
2496 p
->sched_class
->task_waking(rq
, p
);
2497 en_flags
|= ENQUEUE_WAKING
;
2500 cpu
= select_task_rq(rq
, p
, SD_BALANCE_WAKE
, wake_flags
);
2501 if (cpu
!= orig_cpu
)
2502 set_task_cpu(p
, cpu
);
2503 __task_rq_unlock(rq
);
2506 raw_spin_lock(&rq
->lock
);
2509 * We migrated the task without holding either rq->lock, however
2510 * since the task is not on the task list itself, nobody else
2511 * will try and migrate the task, hence the rq should match the
2512 * cpu we just moved it to.
2514 WARN_ON(task_cpu(p
) != cpu
);
2515 WARN_ON(p
->state
!= TASK_WAKING
);
2517 #ifdef CONFIG_SCHEDSTATS
2518 schedstat_inc(rq
, ttwu_count
);
2519 if (cpu
== this_cpu
)
2520 schedstat_inc(rq
, ttwu_local
);
2522 struct sched_domain
*sd
;
2523 for_each_domain(this_cpu
, sd
) {
2524 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2525 schedstat_inc(sd
, ttwu_wake_remote
);
2530 #endif /* CONFIG_SCHEDSTATS */
2533 #endif /* CONFIG_SMP */
2534 ttwu_activate(p
, rq
, wake_flags
& WF_SYNC
, orig_cpu
!= cpu
,
2535 cpu
== this_cpu
, en_flags
);
2538 ttwu_post_activation(p
, rq
, wake_flags
, success
);
2540 task_rq_unlock(rq
, &flags
);
2547 * try_to_wake_up_local - try to wake up a local task with rq lock held
2548 * @p: the thread to be awakened
2550 * Put @p on the run-queue if it's not already there. The caller must
2551 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2552 * the current task. this_rq() stays locked over invocation.
2554 static void try_to_wake_up_local(struct task_struct
*p
)
2556 struct rq
*rq
= task_rq(p
);
2557 bool success
= false;
2559 BUG_ON(rq
!= this_rq());
2560 BUG_ON(p
== current
);
2561 lockdep_assert_held(&rq
->lock
);
2563 if (!(p
->state
& TASK_NORMAL
))
2567 if (likely(!task_running(rq
, p
))) {
2568 schedstat_inc(rq
, ttwu_count
);
2569 schedstat_inc(rq
, ttwu_local
);
2571 ttwu_activate(p
, rq
, false, false, true, ENQUEUE_WAKEUP
);
2574 ttwu_post_activation(p
, rq
, 0, success
);
2578 * wake_up_process - Wake up a specific process
2579 * @p: The process to be woken up.
2581 * Attempt to wake up the nominated process and move it to the set of runnable
2582 * processes. Returns 1 if the process was woken up, 0 if it was already
2585 * It may be assumed that this function implies a write memory barrier before
2586 * changing the task state if and only if any tasks are woken up.
2588 int wake_up_process(struct task_struct
*p
)
2590 return try_to_wake_up(p
, TASK_ALL
, 0);
2592 EXPORT_SYMBOL(wake_up_process
);
2594 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2596 return try_to_wake_up(p
, state
, 0);
2600 * Perform scheduler related setup for a newly forked process p.
2601 * p is forked by current.
2603 * __sched_fork() is basic setup used by init_idle() too:
2605 static void __sched_fork(struct task_struct
*p
)
2607 p
->se
.exec_start
= 0;
2608 p
->se
.sum_exec_runtime
= 0;
2609 p
->se
.prev_sum_exec_runtime
= 0;
2610 p
->se
.nr_migrations
= 0;
2613 #ifdef CONFIG_SCHEDSTATS
2614 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2617 INIT_LIST_HEAD(&p
->rt
.run_list
);
2619 INIT_LIST_HEAD(&p
->se
.group_node
);
2621 #ifdef CONFIG_PREEMPT_NOTIFIERS
2622 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2627 * fork()/clone()-time setup:
2629 void sched_fork(struct task_struct
*p
, int clone_flags
)
2631 int cpu
= get_cpu();
2635 * We mark the process as running here. This guarantees that
2636 * nobody will actually run it, and a signal or other external
2637 * event cannot wake it up and insert it on the runqueue either.
2639 p
->state
= TASK_RUNNING
;
2642 * Revert to default priority/policy on fork if requested.
2644 if (unlikely(p
->sched_reset_on_fork
)) {
2645 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2646 p
->policy
= SCHED_NORMAL
;
2647 p
->normal_prio
= p
->static_prio
;
2650 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2651 p
->static_prio
= NICE_TO_PRIO(0);
2652 p
->normal_prio
= p
->static_prio
;
2657 * We don't need the reset flag anymore after the fork. It has
2658 * fulfilled its duty:
2660 p
->sched_reset_on_fork
= 0;
2664 * Make sure we do not leak PI boosting priority to the child.
2666 p
->prio
= current
->normal_prio
;
2668 if (!rt_prio(p
->prio
))
2669 p
->sched_class
= &fair_sched_class
;
2671 if (p
->sched_class
->task_fork
)
2672 p
->sched_class
->task_fork(p
);
2675 * The child is not yet in the pid-hash so no cgroup attach races,
2676 * and the cgroup is pinned to this child due to cgroup_fork()
2677 * is ran before sched_fork().
2679 * Silence PROVE_RCU.
2682 set_task_cpu(p
, cpu
);
2685 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2686 if (likely(sched_info_on()))
2687 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2689 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2692 #ifdef CONFIG_PREEMPT
2693 /* Want to start with kernel preemption disabled. */
2694 task_thread_info(p
)->preempt_count
= 1;
2697 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2704 * wake_up_new_task - wake up a newly created task for the first time.
2706 * This function will do some initial scheduler statistics housekeeping
2707 * that must be done for every newly created context, then puts the task
2708 * on the runqueue and wakes it.
2710 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2712 unsigned long flags
;
2714 int cpu __maybe_unused
= get_cpu();
2717 rq
= task_rq_lock(p
, &flags
);
2718 p
->state
= TASK_WAKING
;
2721 * Fork balancing, do it here and not earlier because:
2722 * - cpus_allowed can change in the fork path
2723 * - any previously selected cpu might disappear through hotplug
2725 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2726 * without people poking at ->cpus_allowed.
2728 cpu
= select_task_rq(rq
, p
, SD_BALANCE_FORK
, 0);
2729 set_task_cpu(p
, cpu
);
2731 p
->state
= TASK_RUNNING
;
2732 task_rq_unlock(rq
, &flags
);
2735 rq
= task_rq_lock(p
, &flags
);
2736 activate_task(rq
, p
, 0);
2737 trace_sched_wakeup_new(p
, 1);
2738 check_preempt_curr(rq
, p
, WF_FORK
);
2740 if (p
->sched_class
->task_woken
)
2741 p
->sched_class
->task_woken(rq
, p
);
2743 task_rq_unlock(rq
, &flags
);
2747 #ifdef CONFIG_PREEMPT_NOTIFIERS
2750 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2751 * @notifier: notifier struct to register
2753 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2755 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2757 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2760 * preempt_notifier_unregister - no longer interested in preemption notifications
2761 * @notifier: notifier struct to unregister
2763 * This is safe to call from within a preemption notifier.
2765 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2767 hlist_del(¬ifier
->link
);
2769 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2771 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2773 struct preempt_notifier
*notifier
;
2774 struct hlist_node
*node
;
2776 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2777 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2781 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2782 struct task_struct
*next
)
2784 struct preempt_notifier
*notifier
;
2785 struct hlist_node
*node
;
2787 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2788 notifier
->ops
->sched_out(notifier
, next
);
2791 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2793 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2798 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2799 struct task_struct
*next
)
2803 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2806 * prepare_task_switch - prepare to switch tasks
2807 * @rq: the runqueue preparing to switch
2808 * @prev: the current task that is being switched out
2809 * @next: the task we are going to switch to.
2811 * This is called with the rq lock held and interrupts off. It must
2812 * be paired with a subsequent finish_task_switch after the context
2815 * prepare_task_switch sets up locking and calls architecture specific
2819 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2820 struct task_struct
*next
)
2822 sched_info_switch(prev
, next
);
2823 perf_event_task_sched_out(prev
, next
);
2824 fire_sched_out_preempt_notifiers(prev
, next
);
2825 prepare_lock_switch(rq
, next
);
2826 prepare_arch_switch(next
);
2827 trace_sched_switch(prev
, next
);
2831 * finish_task_switch - clean up after a task-switch
2832 * @rq: runqueue associated with task-switch
2833 * @prev: the thread we just switched away from.
2835 * finish_task_switch must be called after the context switch, paired
2836 * with a prepare_task_switch call before the context switch.
2837 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2838 * and do any other architecture-specific cleanup actions.
2840 * Note that we may have delayed dropping an mm in context_switch(). If
2841 * so, we finish that here outside of the runqueue lock. (Doing it
2842 * with the lock held can cause deadlocks; see schedule() for
2845 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2846 __releases(rq
->lock
)
2848 struct mm_struct
*mm
= rq
->prev_mm
;
2854 * A task struct has one reference for the use as "current".
2855 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2856 * schedule one last time. The schedule call will never return, and
2857 * the scheduled task must drop that reference.
2858 * The test for TASK_DEAD must occur while the runqueue locks are
2859 * still held, otherwise prev could be scheduled on another cpu, die
2860 * there before we look at prev->state, and then the reference would
2862 * Manfred Spraul <manfred@colorfullife.com>
2864 prev_state
= prev
->state
;
2865 finish_arch_switch(prev
);
2866 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2867 local_irq_disable();
2868 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2869 perf_event_task_sched_in(current
);
2870 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2872 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2873 finish_lock_switch(rq
, prev
);
2875 fire_sched_in_preempt_notifiers(current
);
2878 if (unlikely(prev_state
== TASK_DEAD
)) {
2880 * Remove function-return probe instances associated with this
2881 * task and put them back on the free list.
2883 kprobe_flush_task(prev
);
2884 put_task_struct(prev
);
2890 /* assumes rq->lock is held */
2891 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2893 if (prev
->sched_class
->pre_schedule
)
2894 prev
->sched_class
->pre_schedule(rq
, prev
);
2897 /* rq->lock is NOT held, but preemption is disabled */
2898 static inline void post_schedule(struct rq
*rq
)
2900 if (rq
->post_schedule
) {
2901 unsigned long flags
;
2903 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2904 if (rq
->curr
->sched_class
->post_schedule
)
2905 rq
->curr
->sched_class
->post_schedule(rq
);
2906 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2908 rq
->post_schedule
= 0;
2914 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2918 static inline void post_schedule(struct rq
*rq
)
2925 * schedule_tail - first thing a freshly forked thread must call.
2926 * @prev: the thread we just switched away from.
2928 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2929 __releases(rq
->lock
)
2931 struct rq
*rq
= this_rq();
2933 finish_task_switch(rq
, prev
);
2936 * FIXME: do we need to worry about rq being invalidated by the
2941 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2942 /* In this case, finish_task_switch does not reenable preemption */
2945 if (current
->set_child_tid
)
2946 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2950 * context_switch - switch to the new MM and the new
2951 * thread's register state.
2954 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2955 struct task_struct
*next
)
2957 struct mm_struct
*mm
, *oldmm
;
2959 prepare_task_switch(rq
, prev
, next
);
2962 oldmm
= prev
->active_mm
;
2964 * For paravirt, this is coupled with an exit in switch_to to
2965 * combine the page table reload and the switch backend into
2968 arch_start_context_switch(prev
);
2971 next
->active_mm
= oldmm
;
2972 atomic_inc(&oldmm
->mm_count
);
2973 enter_lazy_tlb(oldmm
, next
);
2975 switch_mm(oldmm
, mm
, next
);
2978 prev
->active_mm
= NULL
;
2979 rq
->prev_mm
= oldmm
;
2982 * Since the runqueue lock will be released by the next
2983 * task (which is an invalid locking op but in the case
2984 * of the scheduler it's an obvious special-case), so we
2985 * do an early lockdep release here:
2987 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2988 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2991 /* Here we just switch the register state and the stack. */
2992 switch_to(prev
, next
, prev
);
2996 * this_rq must be evaluated again because prev may have moved
2997 * CPUs since it called schedule(), thus the 'rq' on its stack
2998 * frame will be invalid.
3000 finish_task_switch(this_rq(), prev
);
3004 * nr_running, nr_uninterruptible and nr_context_switches:
3006 * externally visible scheduler statistics: current number of runnable
3007 * threads, current number of uninterruptible-sleeping threads, total
3008 * number of context switches performed since bootup.
3010 unsigned long nr_running(void)
3012 unsigned long i
, sum
= 0;
3014 for_each_online_cpu(i
)
3015 sum
+= cpu_rq(i
)->nr_running
;
3020 unsigned long nr_uninterruptible(void)
3022 unsigned long i
, sum
= 0;
3024 for_each_possible_cpu(i
)
3025 sum
+= cpu_rq(i
)->nr_uninterruptible
;
3028 * Since we read the counters lockless, it might be slightly
3029 * inaccurate. Do not allow it to go below zero though:
3031 if (unlikely((long)sum
< 0))
3037 unsigned long long nr_context_switches(void)
3040 unsigned long long sum
= 0;
3042 for_each_possible_cpu(i
)
3043 sum
+= cpu_rq(i
)->nr_switches
;
3048 unsigned long nr_iowait(void)
3050 unsigned long i
, sum
= 0;
3052 for_each_possible_cpu(i
)
3053 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
3058 unsigned long nr_iowait_cpu(int cpu
)
3060 struct rq
*this = cpu_rq(cpu
);
3061 return atomic_read(&this->nr_iowait
);
3064 unsigned long this_cpu_load(void)
3066 struct rq
*this = this_rq();
3067 return this->cpu_load
[0];
3071 /* Variables and functions for calc_load */
3072 static atomic_long_t calc_load_tasks
;
3073 static unsigned long calc_load_update
;
3074 unsigned long avenrun
[3];
3075 EXPORT_SYMBOL(avenrun
);
3077 static long calc_load_fold_active(struct rq
*this_rq
)
3079 long nr_active
, delta
= 0;
3081 nr_active
= this_rq
->nr_running
;
3082 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3084 if (nr_active
!= this_rq
->calc_load_active
) {
3085 delta
= nr_active
- this_rq
->calc_load_active
;
3086 this_rq
->calc_load_active
= nr_active
;
3092 static unsigned long
3093 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3096 load
+= active
* (FIXED_1
- exp
);
3097 load
+= 1UL << (FSHIFT
- 1);
3098 return load
>> FSHIFT
;
3103 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3105 * When making the ILB scale, we should try to pull this in as well.
3107 static atomic_long_t calc_load_tasks_idle
;
3109 static void calc_load_account_idle(struct rq
*this_rq
)
3113 delta
= calc_load_fold_active(this_rq
);
3115 atomic_long_add(delta
, &calc_load_tasks_idle
);
3118 static long calc_load_fold_idle(void)
3123 * Its got a race, we don't care...
3125 if (atomic_long_read(&calc_load_tasks_idle
))
3126 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
3132 * fixed_power_int - compute: x^n, in O(log n) time
3134 * @x: base of the power
3135 * @frac_bits: fractional bits of @x
3136 * @n: power to raise @x to.
3138 * By exploiting the relation between the definition of the natural power
3139 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3140 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3141 * (where: n_i \elem {0, 1}, the binary vector representing n),
3142 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3143 * of course trivially computable in O(log_2 n), the length of our binary
3146 static unsigned long
3147 fixed_power_int(unsigned long x
, unsigned int frac_bits
, unsigned int n
)
3149 unsigned long result
= 1UL << frac_bits
;
3154 result
+= 1UL << (frac_bits
- 1);
3155 result
>>= frac_bits
;
3161 x
+= 1UL << (frac_bits
- 1);
3169 * a1 = a0 * e + a * (1 - e)
3171 * a2 = a1 * e + a * (1 - e)
3172 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3173 * = a0 * e^2 + a * (1 - e) * (1 + e)
3175 * a3 = a2 * e + a * (1 - e)
3176 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3177 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3181 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3182 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3183 * = a0 * e^n + a * (1 - e^n)
3185 * [1] application of the geometric series:
3188 * S_n := \Sum x^i = -------------
3191 static unsigned long
3192 calc_load_n(unsigned long load
, unsigned long exp
,
3193 unsigned long active
, unsigned int n
)
3196 return calc_load(load
, fixed_power_int(exp
, FSHIFT
, n
), active
);
3200 * NO_HZ can leave us missing all per-cpu ticks calling
3201 * calc_load_account_active(), but since an idle CPU folds its delta into
3202 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3203 * in the pending idle delta if our idle period crossed a load cycle boundary.
3205 * Once we've updated the global active value, we need to apply the exponential
3206 * weights adjusted to the number of cycles missed.
3208 static void calc_global_nohz(unsigned long ticks
)
3210 long delta
, active
, n
;
3212 if (time_before(jiffies
, calc_load_update
))
3216 * If we crossed a calc_load_update boundary, make sure to fold
3217 * any pending idle changes, the respective CPUs might have
3218 * missed the tick driven calc_load_account_active() update
3221 delta
= calc_load_fold_idle();
3223 atomic_long_add(delta
, &calc_load_tasks
);
3226 * If we were idle for multiple load cycles, apply them.
3228 if (ticks
>= LOAD_FREQ
) {
3229 n
= ticks
/ LOAD_FREQ
;
3231 active
= atomic_long_read(&calc_load_tasks
);
3232 active
= active
> 0 ? active
* FIXED_1
: 0;
3234 avenrun
[0] = calc_load_n(avenrun
[0], EXP_1
, active
, n
);
3235 avenrun
[1] = calc_load_n(avenrun
[1], EXP_5
, active
, n
);
3236 avenrun
[2] = calc_load_n(avenrun
[2], EXP_15
, active
, n
);
3238 calc_load_update
+= n
* LOAD_FREQ
;
3242 * Its possible the remainder of the above division also crosses
3243 * a LOAD_FREQ period, the regular check in calc_global_load()
3244 * which comes after this will take care of that.
3246 * Consider us being 11 ticks before a cycle completion, and us
3247 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3248 * age us 4 cycles, and the test in calc_global_load() will
3249 * pick up the final one.
3253 static void calc_load_account_idle(struct rq
*this_rq
)
3257 static inline long calc_load_fold_idle(void)
3262 static void calc_global_nohz(unsigned long ticks
)
3268 * get_avenrun - get the load average array
3269 * @loads: pointer to dest load array
3270 * @offset: offset to add
3271 * @shift: shift count to shift the result left
3273 * These values are estimates at best, so no need for locking.
3275 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3277 loads
[0] = (avenrun
[0] + offset
) << shift
;
3278 loads
[1] = (avenrun
[1] + offset
) << shift
;
3279 loads
[2] = (avenrun
[2] + offset
) << shift
;
3283 * calc_load - update the avenrun load estimates 10 ticks after the
3284 * CPUs have updated calc_load_tasks.
3286 void calc_global_load(unsigned long ticks
)
3290 calc_global_nohz(ticks
);
3292 if (time_before(jiffies
, calc_load_update
+ 10))
3295 active
= atomic_long_read(&calc_load_tasks
);
3296 active
= active
> 0 ? active
* FIXED_1
: 0;
3298 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3299 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3300 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3302 calc_load_update
+= LOAD_FREQ
;
3306 * Called from update_cpu_load() to periodically update this CPU's
3309 static void calc_load_account_active(struct rq
*this_rq
)
3313 if (time_before(jiffies
, this_rq
->calc_load_update
))
3316 delta
= calc_load_fold_active(this_rq
);
3317 delta
+= calc_load_fold_idle();
3319 atomic_long_add(delta
, &calc_load_tasks
);
3321 this_rq
->calc_load_update
+= LOAD_FREQ
;
3325 * The exact cpuload at various idx values, calculated at every tick would be
3326 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3328 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3329 * on nth tick when cpu may be busy, then we have:
3330 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3331 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3333 * decay_load_missed() below does efficient calculation of
3334 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3335 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3337 * The calculation is approximated on a 128 point scale.
3338 * degrade_zero_ticks is the number of ticks after which load at any
3339 * particular idx is approximated to be zero.
3340 * degrade_factor is a precomputed table, a row for each load idx.
3341 * Each column corresponds to degradation factor for a power of two ticks,
3342 * based on 128 point scale.
3344 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3345 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3347 * With this power of 2 load factors, we can degrade the load n times
3348 * by looking at 1 bits in n and doing as many mult/shift instead of
3349 * n mult/shifts needed by the exact degradation.
3351 #define DEGRADE_SHIFT 7
3352 static const unsigned char
3353 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
3354 static const unsigned char
3355 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
3356 {0, 0, 0, 0, 0, 0, 0, 0},
3357 {64, 32, 8, 0, 0, 0, 0, 0},
3358 {96, 72, 40, 12, 1, 0, 0},
3359 {112, 98, 75, 43, 15, 1, 0},
3360 {120, 112, 98, 76, 45, 16, 2} };
3363 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3364 * would be when CPU is idle and so we just decay the old load without
3365 * adding any new load.
3367 static unsigned long
3368 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
3372 if (!missed_updates
)
3375 if (missed_updates
>= degrade_zero_ticks
[idx
])
3379 return load
>> missed_updates
;
3381 while (missed_updates
) {
3382 if (missed_updates
% 2)
3383 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
3385 missed_updates
>>= 1;
3392 * Update rq->cpu_load[] statistics. This function is usually called every
3393 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3394 * every tick. We fix it up based on jiffies.
3396 static void update_cpu_load(struct rq
*this_rq
)
3398 unsigned long this_load
= this_rq
->load
.weight
;
3399 unsigned long curr_jiffies
= jiffies
;
3400 unsigned long pending_updates
;
3403 this_rq
->nr_load_updates
++;
3405 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3406 if (curr_jiffies
== this_rq
->last_load_update_tick
)
3409 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
3410 this_rq
->last_load_update_tick
= curr_jiffies
;
3412 /* Update our load: */
3413 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
3414 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3415 unsigned long old_load
, new_load
;
3417 /* scale is effectively 1 << i now, and >> i divides by scale */
3419 old_load
= this_rq
->cpu_load
[i
];
3420 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
3421 new_load
= this_load
;
3423 * Round up the averaging division if load is increasing. This
3424 * prevents us from getting stuck on 9 if the load is 10, for
3427 if (new_load
> old_load
)
3428 new_load
+= scale
- 1;
3430 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
3433 sched_avg_update(this_rq
);
3436 static void update_cpu_load_active(struct rq
*this_rq
)
3438 update_cpu_load(this_rq
);
3440 calc_load_account_active(this_rq
);
3446 * sched_exec - execve() is a valuable balancing opportunity, because at
3447 * this point the task has the smallest effective memory and cache footprint.
3449 void sched_exec(void)
3451 struct task_struct
*p
= current
;
3452 unsigned long flags
;
3456 rq
= task_rq_lock(p
, &flags
);
3457 dest_cpu
= p
->sched_class
->select_task_rq(rq
, p
, SD_BALANCE_EXEC
, 0);
3458 if (dest_cpu
== smp_processor_id())
3462 * select_task_rq() can race against ->cpus_allowed
3464 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
) &&
3465 likely(cpu_active(dest_cpu
)) && migrate_task(p
, rq
)) {
3466 struct migration_arg arg
= { p
, dest_cpu
};
3468 task_rq_unlock(rq
, &flags
);
3469 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
3473 task_rq_unlock(rq
, &flags
);
3478 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3480 EXPORT_PER_CPU_SYMBOL(kstat
);
3483 * Return any ns on the sched_clock that have not yet been accounted in
3484 * @p in case that task is currently running.
3486 * Called with task_rq_lock() held on @rq.
3488 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3492 if (task_current(rq
, p
)) {
3493 update_rq_clock(rq
);
3494 ns
= rq
->clock_task
- p
->se
.exec_start
;
3502 unsigned long long task_delta_exec(struct task_struct
*p
)
3504 unsigned long flags
;
3508 rq
= task_rq_lock(p
, &flags
);
3509 ns
= do_task_delta_exec(p
, rq
);
3510 task_rq_unlock(rq
, &flags
);
3516 * Return accounted runtime for the task.
3517 * In case the task is currently running, return the runtime plus current's
3518 * pending runtime that have not been accounted yet.
3520 unsigned long long task_sched_runtime(struct task_struct
*p
)
3522 unsigned long flags
;
3526 rq
= task_rq_lock(p
, &flags
);
3527 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3528 task_rq_unlock(rq
, &flags
);
3534 * Return sum_exec_runtime for the thread group.
3535 * In case the task is currently running, return the sum plus current's
3536 * pending runtime that have not been accounted yet.
3538 * Note that the thread group might have other running tasks as well,
3539 * so the return value not includes other pending runtime that other
3540 * running tasks might have.
3542 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
3544 struct task_cputime totals
;
3545 unsigned long flags
;
3549 rq
= task_rq_lock(p
, &flags
);
3550 thread_group_cputime(p
, &totals
);
3551 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3552 task_rq_unlock(rq
, &flags
);
3558 * Account user cpu time to a process.
3559 * @p: the process that the cpu time gets accounted to
3560 * @cputime: the cpu time spent in user space since the last update
3561 * @cputime_scaled: cputime scaled by cpu frequency
3563 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3564 cputime_t cputime_scaled
)
3566 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3569 /* Add user time to process. */
3570 p
->utime
= cputime_add(p
->utime
, cputime
);
3571 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3572 account_group_user_time(p
, cputime
);
3574 /* Add user time to cpustat. */
3575 tmp
= cputime_to_cputime64(cputime
);
3576 if (TASK_NICE(p
) > 0)
3577 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3579 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3581 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3582 /* Account for user time used */
3583 acct_update_integrals(p
);
3587 * Account guest cpu time to a process.
3588 * @p: the process that the cpu time gets accounted to
3589 * @cputime: the cpu time spent in virtual machine since the last update
3590 * @cputime_scaled: cputime scaled by cpu frequency
3592 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3593 cputime_t cputime_scaled
)
3596 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3598 tmp
= cputime_to_cputime64(cputime
);
3600 /* Add guest time to process. */
3601 p
->utime
= cputime_add(p
->utime
, cputime
);
3602 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3603 account_group_user_time(p
, cputime
);
3604 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3606 /* Add guest time to cpustat. */
3607 if (TASK_NICE(p
) > 0) {
3608 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3609 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3611 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3612 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3617 * Account system cpu time to a process and desired cpustat field
3618 * @p: the process that the cpu time gets accounted to
3619 * @cputime: the cpu time spent in kernel space since the last update
3620 * @cputime_scaled: cputime scaled by cpu frequency
3621 * @target_cputime64: pointer to cpustat field that has to be updated
3624 void __account_system_time(struct task_struct
*p
, cputime_t cputime
,
3625 cputime_t cputime_scaled
, cputime64_t
*target_cputime64
)
3627 cputime64_t tmp
= cputime_to_cputime64(cputime
);
3629 /* Add system time to process. */
3630 p
->stime
= cputime_add(p
->stime
, cputime
);
3631 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3632 account_group_system_time(p
, cputime
);
3634 /* Add system time to cpustat. */
3635 *target_cputime64
= cputime64_add(*target_cputime64
, tmp
);
3636 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3638 /* Account for system time used */
3639 acct_update_integrals(p
);
3643 * Account system cpu time to a process.
3644 * @p: the process that the cpu time gets accounted to
3645 * @hardirq_offset: the offset to subtract from hardirq_count()
3646 * @cputime: the cpu time spent in kernel space since the last update
3647 * @cputime_scaled: cputime scaled by cpu frequency
3649 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3650 cputime_t cputime
, cputime_t cputime_scaled
)
3652 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3653 cputime64_t
*target_cputime64
;
3655 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3656 account_guest_time(p
, cputime
, cputime_scaled
);
3660 if (hardirq_count() - hardirq_offset
)
3661 target_cputime64
= &cpustat
->irq
;
3662 else if (in_serving_softirq())
3663 target_cputime64
= &cpustat
->softirq
;
3665 target_cputime64
= &cpustat
->system
;
3667 __account_system_time(p
, cputime
, cputime_scaled
, target_cputime64
);
3671 * Account for involuntary wait time.
3672 * @cputime: the cpu time spent in involuntary wait
3674 void account_steal_time(cputime_t cputime
)
3676 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3677 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3679 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3683 * Account for idle time.
3684 * @cputime: the cpu time spent in idle wait
3686 void account_idle_time(cputime_t cputime
)
3688 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3689 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3690 struct rq
*rq
= this_rq();
3692 if (atomic_read(&rq
->nr_iowait
) > 0)
3693 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3695 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3698 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3700 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3702 * Account a tick to a process and cpustat
3703 * @p: the process that the cpu time gets accounted to
3704 * @user_tick: is the tick from userspace
3705 * @rq: the pointer to rq
3707 * Tick demultiplexing follows the order
3708 * - pending hardirq update
3709 * - pending softirq update
3713 * - check for guest_time
3714 * - else account as system_time
3716 * Check for hardirq is done both for system and user time as there is
3717 * no timer going off while we are on hardirq and hence we may never get an
3718 * opportunity to update it solely in system time.
3719 * p->stime and friends are only updated on system time and not on irq
3720 * softirq as those do not count in task exec_runtime any more.
3722 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
3725 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3726 cputime64_t tmp
= cputime_to_cputime64(cputime_one_jiffy
);
3727 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3729 if (irqtime_account_hi_update()) {
3730 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3731 } else if (irqtime_account_si_update()) {
3732 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3733 } else if (this_cpu_ksoftirqd() == p
) {
3735 * ksoftirqd time do not get accounted in cpu_softirq_time.
3736 * So, we have to handle it separately here.
3737 * Also, p->stime needs to be updated for ksoftirqd.
3739 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
3741 } else if (user_tick
) {
3742 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3743 } else if (p
== rq
->idle
) {
3744 account_idle_time(cputime_one_jiffy
);
3745 } else if (p
->flags
& PF_VCPU
) { /* System time or guest time */
3746 account_guest_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3748 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
3753 static void irqtime_account_idle_ticks(int ticks
)
3756 struct rq
*rq
= this_rq();
3758 for (i
= 0; i
< ticks
; i
++)
3759 irqtime_account_process_tick(current
, 0, rq
);
3761 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3762 static void irqtime_account_idle_ticks(int ticks
) {}
3763 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
3765 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3768 * Account a single tick of cpu time.
3769 * @p: the process that the cpu time gets accounted to
3770 * @user_tick: indicates if the tick is a user or a system tick
3772 void account_process_tick(struct task_struct
*p
, int user_tick
)
3774 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3775 struct rq
*rq
= this_rq();
3777 if (sched_clock_irqtime
) {
3778 irqtime_account_process_tick(p
, user_tick
, rq
);
3783 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3784 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
3785 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
3788 account_idle_time(cputime_one_jiffy
);
3792 * Account multiple ticks of steal time.
3793 * @p: the process from which the cpu time has been stolen
3794 * @ticks: number of stolen ticks
3796 void account_steal_ticks(unsigned long ticks
)
3798 account_steal_time(jiffies_to_cputime(ticks
));
3802 * Account multiple ticks of idle time.
3803 * @ticks: number of stolen ticks
3805 void account_idle_ticks(unsigned long ticks
)
3808 if (sched_clock_irqtime
) {
3809 irqtime_account_idle_ticks(ticks
);
3813 account_idle_time(jiffies_to_cputime(ticks
));
3819 * Use precise platform statistics if available:
3821 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3822 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3828 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3830 struct task_cputime cputime
;
3832 thread_group_cputime(p
, &cputime
);
3834 *ut
= cputime
.utime
;
3835 *st
= cputime
.stime
;
3839 #ifndef nsecs_to_cputime
3840 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3843 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3845 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
3848 * Use CFS's precise accounting:
3850 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
3856 do_div(temp
, total
);
3857 utime
= (cputime_t
)temp
;
3862 * Compare with previous values, to keep monotonicity:
3864 p
->prev_utime
= max(p
->prev_utime
, utime
);
3865 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
3867 *ut
= p
->prev_utime
;
3868 *st
= p
->prev_stime
;
3872 * Must be called with siglock held.
3874 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3876 struct signal_struct
*sig
= p
->signal
;
3877 struct task_cputime cputime
;
3878 cputime_t rtime
, utime
, total
;
3880 thread_group_cputime(p
, &cputime
);
3882 total
= cputime_add(cputime
.utime
, cputime
.stime
);
3883 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
3888 temp
*= cputime
.utime
;
3889 do_div(temp
, total
);
3890 utime
= (cputime_t
)temp
;
3894 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
3895 sig
->prev_stime
= max(sig
->prev_stime
,
3896 cputime_sub(rtime
, sig
->prev_utime
));
3898 *ut
= sig
->prev_utime
;
3899 *st
= sig
->prev_stime
;
3904 * This function gets called by the timer code, with HZ frequency.
3905 * We call it with interrupts disabled.
3907 * It also gets called by the fork code, when changing the parent's
3910 void scheduler_tick(void)
3912 int cpu
= smp_processor_id();
3913 struct rq
*rq
= cpu_rq(cpu
);
3914 struct task_struct
*curr
= rq
->curr
;
3918 raw_spin_lock(&rq
->lock
);
3919 update_rq_clock(rq
);
3920 update_cpu_load_active(rq
);
3921 curr
->sched_class
->task_tick(rq
, curr
, 0);
3922 raw_spin_unlock(&rq
->lock
);
3924 perf_event_task_tick();
3927 rq
->idle_at_tick
= idle_cpu(cpu
);
3928 trigger_load_balance(rq
, cpu
);
3932 notrace
unsigned long get_parent_ip(unsigned long addr
)
3934 if (in_lock_functions(addr
)) {
3935 addr
= CALLER_ADDR2
;
3936 if (in_lock_functions(addr
))
3937 addr
= CALLER_ADDR3
;
3942 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3943 defined(CONFIG_PREEMPT_TRACER))
3945 void __kprobes
add_preempt_count(int val
)
3947 #ifdef CONFIG_DEBUG_PREEMPT
3951 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3954 preempt_count() += val
;
3955 #ifdef CONFIG_DEBUG_PREEMPT
3957 * Spinlock count overflowing soon?
3959 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3962 if (preempt_count() == val
)
3963 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3965 EXPORT_SYMBOL(add_preempt_count
);
3967 void __kprobes
sub_preempt_count(int val
)
3969 #ifdef CONFIG_DEBUG_PREEMPT
3973 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3976 * Is the spinlock portion underflowing?
3978 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3979 !(preempt_count() & PREEMPT_MASK
)))
3983 if (preempt_count() == val
)
3984 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3985 preempt_count() -= val
;
3987 EXPORT_SYMBOL(sub_preempt_count
);
3992 * Print scheduling while atomic bug:
3994 static noinline
void __schedule_bug(struct task_struct
*prev
)
3996 struct pt_regs
*regs
= get_irq_regs();
3998 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3999 prev
->comm
, prev
->pid
, preempt_count());
4001 debug_show_held_locks(prev
);
4003 if (irqs_disabled())
4004 print_irqtrace_events(prev
);
4013 * Various schedule()-time debugging checks and statistics:
4015 static inline void schedule_debug(struct task_struct
*prev
)
4018 * Test if we are atomic. Since do_exit() needs to call into
4019 * schedule() atomically, we ignore that path for now.
4020 * Otherwise, whine if we are scheduling when we should not be.
4022 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4023 __schedule_bug(prev
);
4025 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4027 schedstat_inc(this_rq(), sched_count
);
4028 #ifdef CONFIG_SCHEDSTATS
4029 if (unlikely(prev
->lock_depth
>= 0)) {
4030 schedstat_inc(this_rq(), rq_sched_info
.bkl_count
);
4031 schedstat_inc(prev
, sched_info
.bkl_count
);
4036 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
4039 update_rq_clock(rq
);
4040 prev
->sched_class
->put_prev_task(rq
, prev
);
4044 * Pick up the highest-prio task:
4046 static inline struct task_struct
*
4047 pick_next_task(struct rq
*rq
)
4049 const struct sched_class
*class;
4050 struct task_struct
*p
;
4053 * Optimization: we know that if all tasks are in
4054 * the fair class we can call that function directly:
4056 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4057 p
= fair_sched_class
.pick_next_task(rq
);
4062 for_each_class(class) {
4063 p
= class->pick_next_task(rq
);
4068 BUG(); /* the idle class will always have a runnable task */
4072 * schedule() is the main scheduler function.
4074 asmlinkage
void __sched
schedule(void)
4076 struct task_struct
*prev
, *next
;
4077 unsigned long *switch_count
;
4083 cpu
= smp_processor_id();
4085 rcu_note_context_switch(cpu
);
4088 schedule_debug(prev
);
4090 if (sched_feat(HRTICK
))
4093 raw_spin_lock_irq(&rq
->lock
);
4095 switch_count
= &prev
->nivcsw
;
4096 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4097 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
4098 prev
->state
= TASK_RUNNING
;
4101 * If a worker is going to sleep, notify and
4102 * ask workqueue whether it wants to wake up a
4103 * task to maintain concurrency. If so, wake
4106 if (prev
->flags
& PF_WQ_WORKER
) {
4107 struct task_struct
*to_wakeup
;
4109 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
4111 try_to_wake_up_local(to_wakeup
);
4113 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
4115 switch_count
= &prev
->nvcsw
;
4119 * If we are going to sleep and we have plugged IO queued, make
4120 * sure to submit it to avoid deadlocks.
4122 if (prev
->state
!= TASK_RUNNING
&& blk_needs_flush_plug(prev
)) {
4123 raw_spin_unlock(&rq
->lock
);
4124 blk_flush_plug(prev
);
4125 raw_spin_lock(&rq
->lock
);
4128 pre_schedule(rq
, prev
);
4130 if (unlikely(!rq
->nr_running
))
4131 idle_balance(cpu
, rq
);
4133 put_prev_task(rq
, prev
);
4134 next
= pick_next_task(rq
);
4135 clear_tsk_need_resched(prev
);
4136 rq
->skip_clock_update
= 0;
4138 if (likely(prev
!= next
)) {
4143 context_switch(rq
, prev
, next
); /* unlocks the rq */
4145 * The context switch have flipped the stack from under us
4146 * and restored the local variables which were saved when
4147 * this task called schedule() in the past. prev == current
4148 * is still correct, but it can be moved to another cpu/rq.
4150 cpu
= smp_processor_id();
4153 raw_spin_unlock_irq(&rq
->lock
);
4157 preempt_enable_no_resched();
4161 EXPORT_SYMBOL(schedule
);
4163 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4165 * Look out! "owner" is an entirely speculative pointer
4166 * access and not reliable.
4168 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
4173 if (!sched_feat(OWNER_SPIN
))
4176 #ifdef CONFIG_DEBUG_PAGEALLOC
4178 * Need to access the cpu field knowing that
4179 * DEBUG_PAGEALLOC could have unmapped it if
4180 * the mutex owner just released it and exited.
4182 if (probe_kernel_address(&owner
->cpu
, cpu
))
4189 * Even if the access succeeded (likely case),
4190 * the cpu field may no longer be valid.
4192 if (cpu
>= nr_cpumask_bits
)
4196 * We need to validate that we can do a
4197 * get_cpu() and that we have the percpu area.
4199 if (!cpu_online(cpu
))
4206 * Owner changed, break to re-assess state.
4208 if (lock
->owner
!= owner
) {
4210 * If the lock has switched to a different owner,
4211 * we likely have heavy contention. Return 0 to quit
4212 * optimistic spinning and not contend further:
4220 * Is that owner really running on that cpu?
4222 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
4225 arch_mutex_cpu_relax();
4232 #ifdef CONFIG_PREEMPT
4234 * this is the entry point to schedule() from in-kernel preemption
4235 * off of preempt_enable. Kernel preemptions off return from interrupt
4236 * occur there and call schedule directly.
4238 asmlinkage
void __sched notrace
preempt_schedule(void)
4240 struct thread_info
*ti
= current_thread_info();
4243 * If there is a non-zero preempt_count or interrupts are disabled,
4244 * we do not want to preempt the current task. Just return..
4246 if (likely(ti
->preempt_count
|| irqs_disabled()))
4250 add_preempt_count_notrace(PREEMPT_ACTIVE
);
4252 sub_preempt_count_notrace(PREEMPT_ACTIVE
);
4255 * Check again in case we missed a preemption opportunity
4256 * between schedule and now.
4259 } while (need_resched());
4261 EXPORT_SYMBOL(preempt_schedule
);
4264 * this is the entry point to schedule() from kernel preemption
4265 * off of irq context.
4266 * Note, that this is called and return with irqs disabled. This will
4267 * protect us against recursive calling from irq.
4269 asmlinkage
void __sched
preempt_schedule_irq(void)
4271 struct thread_info
*ti
= current_thread_info();
4273 /* Catch callers which need to be fixed */
4274 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4277 add_preempt_count(PREEMPT_ACTIVE
);
4280 local_irq_disable();
4281 sub_preempt_count(PREEMPT_ACTIVE
);
4284 * Check again in case we missed a preemption opportunity
4285 * between schedule and now.
4288 } while (need_resched());
4291 #endif /* CONFIG_PREEMPT */
4293 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
4296 return try_to_wake_up(curr
->private, mode
, wake_flags
);
4298 EXPORT_SYMBOL(default_wake_function
);
4301 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4302 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4303 * number) then we wake all the non-exclusive tasks and one exclusive task.
4305 * There are circumstances in which we can try to wake a task which has already
4306 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4307 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4309 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4310 int nr_exclusive
, int wake_flags
, void *key
)
4312 wait_queue_t
*curr
, *next
;
4314 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4315 unsigned flags
= curr
->flags
;
4317 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
4318 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4324 * __wake_up - wake up threads blocked on a waitqueue.
4326 * @mode: which threads
4327 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4328 * @key: is directly passed to the wakeup function
4330 * It may be assumed that this function implies a write memory barrier before
4331 * changing the task state if and only if any tasks are woken up.
4333 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4334 int nr_exclusive
, void *key
)
4336 unsigned long flags
;
4338 spin_lock_irqsave(&q
->lock
, flags
);
4339 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4340 spin_unlock_irqrestore(&q
->lock
, flags
);
4342 EXPORT_SYMBOL(__wake_up
);
4345 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4347 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4349 __wake_up_common(q
, mode
, 1, 0, NULL
);
4351 EXPORT_SYMBOL_GPL(__wake_up_locked
);
4353 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
4355 __wake_up_common(q
, mode
, 1, 0, key
);
4357 EXPORT_SYMBOL_GPL(__wake_up_locked_key
);
4360 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4362 * @mode: which threads
4363 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4364 * @key: opaque value to be passed to wakeup targets
4366 * The sync wakeup differs that the waker knows that it will schedule
4367 * away soon, so while the target thread will be woken up, it will not
4368 * be migrated to another CPU - ie. the two threads are 'synchronized'
4369 * with each other. This can prevent needless bouncing between CPUs.
4371 * On UP it can prevent extra preemption.
4373 * It may be assumed that this function implies a write memory barrier before
4374 * changing the task state if and only if any tasks are woken up.
4376 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
4377 int nr_exclusive
, void *key
)
4379 unsigned long flags
;
4380 int wake_flags
= WF_SYNC
;
4385 if (unlikely(!nr_exclusive
))
4388 spin_lock_irqsave(&q
->lock
, flags
);
4389 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
4390 spin_unlock_irqrestore(&q
->lock
, flags
);
4392 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
4395 * __wake_up_sync - see __wake_up_sync_key()
4397 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4399 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
4401 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4404 * complete: - signals a single thread waiting on this completion
4405 * @x: holds the state of this particular completion
4407 * This will wake up a single thread waiting on this completion. Threads will be
4408 * awakened in the same order in which they were queued.
4410 * See also complete_all(), wait_for_completion() and related routines.
4412 * It may be assumed that this function implies a write memory barrier before
4413 * changing the task state if and only if any tasks are woken up.
4415 void complete(struct completion
*x
)
4417 unsigned long flags
;
4419 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4421 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4422 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4424 EXPORT_SYMBOL(complete
);
4427 * complete_all: - signals all threads waiting on this completion
4428 * @x: holds the state of this particular completion
4430 * This will wake up all threads waiting on this particular completion event.
4432 * It may be assumed that this function implies a write memory barrier before
4433 * changing the task state if and only if any tasks are woken up.
4435 void complete_all(struct completion
*x
)
4437 unsigned long flags
;
4439 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4440 x
->done
+= UINT_MAX
/2;
4441 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4442 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4444 EXPORT_SYMBOL(complete_all
);
4446 static inline long __sched
4447 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4450 DECLARE_WAITQUEUE(wait
, current
);
4452 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
4454 if (signal_pending_state(state
, current
)) {
4455 timeout
= -ERESTARTSYS
;
4458 __set_current_state(state
);
4459 spin_unlock_irq(&x
->wait
.lock
);
4460 timeout
= schedule_timeout(timeout
);
4461 spin_lock_irq(&x
->wait
.lock
);
4462 } while (!x
->done
&& timeout
);
4463 __remove_wait_queue(&x
->wait
, &wait
);
4468 return timeout
?: 1;
4472 wait_for_common(struct completion
*x
, long timeout
, int state
)
4476 spin_lock_irq(&x
->wait
.lock
);
4477 timeout
= do_wait_for_common(x
, timeout
, state
);
4478 spin_unlock_irq(&x
->wait
.lock
);
4483 * wait_for_completion: - waits for completion of a task
4484 * @x: holds the state of this particular completion
4486 * This waits to be signaled for completion of a specific task. It is NOT
4487 * interruptible and there is no timeout.
4489 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4490 * and interrupt capability. Also see complete().
4492 void __sched
wait_for_completion(struct completion
*x
)
4494 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4496 EXPORT_SYMBOL(wait_for_completion
);
4499 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4500 * @x: holds the state of this particular completion
4501 * @timeout: timeout value in jiffies
4503 * This waits for either a completion of a specific task to be signaled or for a
4504 * specified timeout to expire. The timeout is in jiffies. It is not
4507 unsigned long __sched
4508 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4510 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4512 EXPORT_SYMBOL(wait_for_completion_timeout
);
4515 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4516 * @x: holds the state of this particular completion
4518 * This waits for completion of a specific task to be signaled. It is
4521 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4523 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4524 if (t
== -ERESTARTSYS
)
4528 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4531 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4532 * @x: holds the state of this particular completion
4533 * @timeout: timeout value in jiffies
4535 * This waits for either a completion of a specific task to be signaled or for a
4536 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4539 wait_for_completion_interruptible_timeout(struct completion
*x
,
4540 unsigned long timeout
)
4542 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4544 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4547 * wait_for_completion_killable: - waits for completion of a task (killable)
4548 * @x: holds the state of this particular completion
4550 * This waits to be signaled for completion of a specific task. It can be
4551 * interrupted by a kill signal.
4553 int __sched
wait_for_completion_killable(struct completion
*x
)
4555 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4556 if (t
== -ERESTARTSYS
)
4560 EXPORT_SYMBOL(wait_for_completion_killable
);
4563 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4564 * @x: holds the state of this particular completion
4565 * @timeout: timeout value in jiffies
4567 * This waits for either a completion of a specific task to be
4568 * signaled or for a specified timeout to expire. It can be
4569 * interrupted by a kill signal. The timeout is in jiffies.
4572 wait_for_completion_killable_timeout(struct completion
*x
,
4573 unsigned long timeout
)
4575 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
4577 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
4580 * try_wait_for_completion - try to decrement a completion without blocking
4581 * @x: completion structure
4583 * Returns: 0 if a decrement cannot be done without blocking
4584 * 1 if a decrement succeeded.
4586 * If a completion is being used as a counting completion,
4587 * attempt to decrement the counter without blocking. This
4588 * enables us to avoid waiting if the resource the completion
4589 * is protecting is not available.
4591 bool try_wait_for_completion(struct completion
*x
)
4593 unsigned long flags
;
4596 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4601 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4604 EXPORT_SYMBOL(try_wait_for_completion
);
4607 * completion_done - Test to see if a completion has any waiters
4608 * @x: completion structure
4610 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4611 * 1 if there are no waiters.
4614 bool completion_done(struct completion
*x
)
4616 unsigned long flags
;
4619 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4622 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4625 EXPORT_SYMBOL(completion_done
);
4628 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4630 unsigned long flags
;
4633 init_waitqueue_entry(&wait
, current
);
4635 __set_current_state(state
);
4637 spin_lock_irqsave(&q
->lock
, flags
);
4638 __add_wait_queue(q
, &wait
);
4639 spin_unlock(&q
->lock
);
4640 timeout
= schedule_timeout(timeout
);
4641 spin_lock_irq(&q
->lock
);
4642 __remove_wait_queue(q
, &wait
);
4643 spin_unlock_irqrestore(&q
->lock
, flags
);
4648 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4650 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4652 EXPORT_SYMBOL(interruptible_sleep_on
);
4655 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4657 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4659 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4661 void __sched
sleep_on(wait_queue_head_t
*q
)
4663 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4665 EXPORT_SYMBOL(sleep_on
);
4667 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4669 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4671 EXPORT_SYMBOL(sleep_on_timeout
);
4673 #ifdef CONFIG_RT_MUTEXES
4676 * rt_mutex_setprio - set the current priority of a task
4678 * @prio: prio value (kernel-internal form)
4680 * This function changes the 'effective' priority of a task. It does
4681 * not touch ->normal_prio like __setscheduler().
4683 * Used by the rt_mutex code to implement priority inheritance logic.
4685 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4687 unsigned long flags
;
4688 int oldprio
, on_rq
, running
;
4690 const struct sched_class
*prev_class
;
4692 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4694 rq
= task_rq_lock(p
, &flags
);
4696 trace_sched_pi_setprio(p
, prio
);
4698 prev_class
= p
->sched_class
;
4699 on_rq
= p
->se
.on_rq
;
4700 running
= task_current(rq
, p
);
4702 dequeue_task(rq
, p
, 0);
4704 p
->sched_class
->put_prev_task(rq
, p
);
4707 p
->sched_class
= &rt_sched_class
;
4709 p
->sched_class
= &fair_sched_class
;
4714 p
->sched_class
->set_curr_task(rq
);
4716 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
4718 check_class_changed(rq
, p
, prev_class
, oldprio
);
4719 task_rq_unlock(rq
, &flags
);
4724 void set_user_nice(struct task_struct
*p
, long nice
)
4726 int old_prio
, delta
, on_rq
;
4727 unsigned long flags
;
4730 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4733 * We have to be careful, if called from sys_setpriority(),
4734 * the task might be in the middle of scheduling on another CPU.
4736 rq
= task_rq_lock(p
, &flags
);
4738 * The RT priorities are set via sched_setscheduler(), but we still
4739 * allow the 'normal' nice value to be set - but as expected
4740 * it wont have any effect on scheduling until the task is
4741 * SCHED_FIFO/SCHED_RR:
4743 if (task_has_rt_policy(p
)) {
4744 p
->static_prio
= NICE_TO_PRIO(nice
);
4747 on_rq
= p
->se
.on_rq
;
4749 dequeue_task(rq
, p
, 0);
4751 p
->static_prio
= NICE_TO_PRIO(nice
);
4754 p
->prio
= effective_prio(p
);
4755 delta
= p
->prio
- old_prio
;
4758 enqueue_task(rq
, p
, 0);
4760 * If the task increased its priority or is running and
4761 * lowered its priority, then reschedule its CPU:
4763 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4764 resched_task(rq
->curr
);
4767 task_rq_unlock(rq
, &flags
);
4769 EXPORT_SYMBOL(set_user_nice
);
4772 * can_nice - check if a task can reduce its nice value
4776 int can_nice(const struct task_struct
*p
, const int nice
)
4778 /* convert nice value [19,-20] to rlimit style value [1,40] */
4779 int nice_rlim
= 20 - nice
;
4781 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4782 capable(CAP_SYS_NICE
));
4785 #ifdef __ARCH_WANT_SYS_NICE
4788 * sys_nice - change the priority of the current process.
4789 * @increment: priority increment
4791 * sys_setpriority is a more generic, but much slower function that
4792 * does similar things.
4794 SYSCALL_DEFINE1(nice
, int, increment
)
4799 * Setpriority might change our priority at the same moment.
4800 * We don't have to worry. Conceptually one call occurs first
4801 * and we have a single winner.
4803 if (increment
< -40)
4808 nice
= TASK_NICE(current
) + increment
;
4814 if (increment
< 0 && !can_nice(current
, nice
))
4817 retval
= security_task_setnice(current
, nice
);
4821 set_user_nice(current
, nice
);
4828 * task_prio - return the priority value of a given task.
4829 * @p: the task in question.
4831 * This is the priority value as seen by users in /proc.
4832 * RT tasks are offset by -200. Normal tasks are centered
4833 * around 0, value goes from -16 to +15.
4835 int task_prio(const struct task_struct
*p
)
4837 return p
->prio
- MAX_RT_PRIO
;
4841 * task_nice - return the nice value of a given task.
4842 * @p: the task in question.
4844 int task_nice(const struct task_struct
*p
)
4846 return TASK_NICE(p
);
4848 EXPORT_SYMBOL(task_nice
);
4851 * idle_cpu - is a given cpu idle currently?
4852 * @cpu: the processor in question.
4854 int idle_cpu(int cpu
)
4856 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4860 * idle_task - return the idle task for a given cpu.
4861 * @cpu: the processor in question.
4863 struct task_struct
*idle_task(int cpu
)
4865 return cpu_rq(cpu
)->idle
;
4869 * find_process_by_pid - find a process with a matching PID value.
4870 * @pid: the pid in question.
4872 static struct task_struct
*find_process_by_pid(pid_t pid
)
4874 return pid
? find_task_by_vpid(pid
) : current
;
4877 /* Actually do priority change: must hold rq lock. */
4879 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4881 BUG_ON(p
->se
.on_rq
);
4884 p
->rt_priority
= prio
;
4885 p
->normal_prio
= normal_prio(p
);
4886 /* we are holding p->pi_lock already */
4887 p
->prio
= rt_mutex_getprio(p
);
4888 if (rt_prio(p
->prio
))
4889 p
->sched_class
= &rt_sched_class
;
4891 p
->sched_class
= &fair_sched_class
;
4896 * check the target process has a UID that matches the current process's
4898 static bool check_same_owner(struct task_struct
*p
)
4900 const struct cred
*cred
= current_cred(), *pcred
;
4904 pcred
= __task_cred(p
);
4905 if (cred
->user
->user_ns
== pcred
->user
->user_ns
)
4906 match
= (cred
->euid
== pcred
->euid
||
4907 cred
->euid
== pcred
->uid
);
4914 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
4915 const struct sched_param
*param
, bool user
)
4917 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4918 unsigned long flags
;
4919 const struct sched_class
*prev_class
;
4923 /* may grab non-irq protected spin_locks */
4924 BUG_ON(in_interrupt());
4926 /* double check policy once rq lock held */
4928 reset_on_fork
= p
->sched_reset_on_fork
;
4929 policy
= oldpolicy
= p
->policy
;
4931 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
4932 policy
&= ~SCHED_RESET_ON_FORK
;
4934 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4935 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4936 policy
!= SCHED_IDLE
)
4941 * Valid priorities for SCHED_FIFO and SCHED_RR are
4942 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4943 * SCHED_BATCH and SCHED_IDLE is 0.
4945 if (param
->sched_priority
< 0 ||
4946 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4947 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4949 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4953 * Allow unprivileged RT tasks to decrease priority:
4955 if (user
&& !capable(CAP_SYS_NICE
)) {
4956 if (rt_policy(policy
)) {
4957 unsigned long rlim_rtprio
=
4958 task_rlimit(p
, RLIMIT_RTPRIO
);
4960 /* can't set/change the rt policy */
4961 if (policy
!= p
->policy
&& !rlim_rtprio
)
4964 /* can't increase priority */
4965 if (param
->sched_priority
> p
->rt_priority
&&
4966 param
->sched_priority
> rlim_rtprio
)
4971 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4972 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4974 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
) {
4975 if (!can_nice(p
, TASK_NICE(p
)))
4979 /* can't change other user's priorities */
4980 if (!check_same_owner(p
))
4983 /* Normal users shall not reset the sched_reset_on_fork flag */
4984 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4989 retval
= security_task_setscheduler(p
);
4995 * make sure no PI-waiters arrive (or leave) while we are
4996 * changing the priority of the task:
4998 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
5000 * To be able to change p->policy safely, the appropriate
5001 * runqueue lock must be held.
5003 rq
= __task_rq_lock(p
);
5006 * Changing the policy of the stop threads its a very bad idea
5008 if (p
== rq
->stop
) {
5009 __task_rq_unlock(rq
);
5010 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5015 * If not changing anything there's no need to proceed further:
5017 if (unlikely(policy
== p
->policy
&& (!rt_policy(policy
) ||
5018 param
->sched_priority
== p
->rt_priority
))) {
5020 __task_rq_unlock(rq
);
5021 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5025 #ifdef CONFIG_RT_GROUP_SCHED
5028 * Do not allow realtime tasks into groups that have no runtime
5031 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5032 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
5033 !task_group_is_autogroup(task_group(p
))) {
5034 __task_rq_unlock(rq
);
5035 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5041 /* recheck policy now with rq lock held */
5042 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5043 policy
= oldpolicy
= -1;
5044 __task_rq_unlock(rq
);
5045 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5048 on_rq
= p
->se
.on_rq
;
5049 running
= task_current(rq
, p
);
5051 deactivate_task(rq
, p
, 0);
5053 p
->sched_class
->put_prev_task(rq
, p
);
5055 p
->sched_reset_on_fork
= reset_on_fork
;
5058 prev_class
= p
->sched_class
;
5059 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5062 p
->sched_class
->set_curr_task(rq
);
5064 activate_task(rq
, p
, 0);
5066 check_class_changed(rq
, p
, prev_class
, oldprio
);
5067 __task_rq_unlock(rq
);
5068 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5070 rt_mutex_adjust_pi(p
);
5076 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5077 * @p: the task in question.
5078 * @policy: new policy.
5079 * @param: structure containing the new RT priority.
5081 * NOTE that the task may be already dead.
5083 int sched_setscheduler(struct task_struct
*p
, int policy
,
5084 const struct sched_param
*param
)
5086 return __sched_setscheduler(p
, policy
, param
, true);
5088 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5091 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5092 * @p: the task in question.
5093 * @policy: new policy.
5094 * @param: structure containing the new RT priority.
5096 * Just like sched_setscheduler, only don't bother checking if the
5097 * current context has permission. For example, this is needed in
5098 * stop_machine(): we create temporary high priority worker threads,
5099 * but our caller might not have that capability.
5101 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5102 const struct sched_param
*param
)
5104 return __sched_setscheduler(p
, policy
, param
, false);
5108 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5110 struct sched_param lparam
;
5111 struct task_struct
*p
;
5114 if (!param
|| pid
< 0)
5116 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5121 p
= find_process_by_pid(pid
);
5123 retval
= sched_setscheduler(p
, policy
, &lparam
);
5130 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5131 * @pid: the pid in question.
5132 * @policy: new policy.
5133 * @param: structure containing the new RT priority.
5135 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
5136 struct sched_param __user
*, param
)
5138 /* negative values for policy are not valid */
5142 return do_sched_setscheduler(pid
, policy
, param
);
5146 * sys_sched_setparam - set/change the RT priority of a thread
5147 * @pid: the pid in question.
5148 * @param: structure containing the new RT priority.
5150 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5152 return do_sched_setscheduler(pid
, -1, param
);
5156 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5157 * @pid: the pid in question.
5159 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
5161 struct task_struct
*p
;
5169 p
= find_process_by_pid(pid
);
5171 retval
= security_task_getscheduler(p
);
5174 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
5181 * sys_sched_getparam - get the RT priority of a thread
5182 * @pid: the pid in question.
5183 * @param: structure containing the RT priority.
5185 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5187 struct sched_param lp
;
5188 struct task_struct
*p
;
5191 if (!param
|| pid
< 0)
5195 p
= find_process_by_pid(pid
);
5200 retval
= security_task_getscheduler(p
);
5204 lp
.sched_priority
= p
->rt_priority
;
5208 * This one might sleep, we cannot do it with a spinlock held ...
5210 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5219 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5221 cpumask_var_t cpus_allowed
, new_mask
;
5222 struct task_struct
*p
;
5228 p
= find_process_by_pid(pid
);
5235 /* Prevent p going away */
5239 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5243 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5245 goto out_free_cpus_allowed
;
5248 if (!check_same_owner(p
) && !task_ns_capable(p
, CAP_SYS_NICE
))
5251 retval
= security_task_setscheduler(p
);
5255 cpuset_cpus_allowed(p
, cpus_allowed
);
5256 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5258 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5261 cpuset_cpus_allowed(p
, cpus_allowed
);
5262 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5264 * We must have raced with a concurrent cpuset
5265 * update. Just reset the cpus_allowed to the
5266 * cpuset's cpus_allowed
5268 cpumask_copy(new_mask
, cpus_allowed
);
5273 free_cpumask_var(new_mask
);
5274 out_free_cpus_allowed
:
5275 free_cpumask_var(cpus_allowed
);
5282 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5283 struct cpumask
*new_mask
)
5285 if (len
< cpumask_size())
5286 cpumask_clear(new_mask
);
5287 else if (len
> cpumask_size())
5288 len
= cpumask_size();
5290 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5294 * sys_sched_setaffinity - set the cpu affinity of a process
5295 * @pid: pid of the process
5296 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5297 * @user_mask_ptr: user-space pointer to the new cpu mask
5299 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
5300 unsigned long __user
*, user_mask_ptr
)
5302 cpumask_var_t new_mask
;
5305 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5308 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5310 retval
= sched_setaffinity(pid
, new_mask
);
5311 free_cpumask_var(new_mask
);
5315 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5317 struct task_struct
*p
;
5318 unsigned long flags
;
5326 p
= find_process_by_pid(pid
);
5330 retval
= security_task_getscheduler(p
);
5334 rq
= task_rq_lock(p
, &flags
);
5335 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5336 task_rq_unlock(rq
, &flags
);
5346 * sys_sched_getaffinity - get the cpu affinity of a process
5347 * @pid: pid of the process
5348 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5349 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5351 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
5352 unsigned long __user
*, user_mask_ptr
)
5357 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
5359 if (len
& (sizeof(unsigned long)-1))
5362 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5365 ret
= sched_getaffinity(pid
, mask
);
5367 size_t retlen
= min_t(size_t, len
, cpumask_size());
5369 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
5374 free_cpumask_var(mask
);
5380 * sys_sched_yield - yield the current processor to other threads.
5382 * This function yields the current CPU to other tasks. If there are no
5383 * other threads running on this CPU then this function will return.
5385 SYSCALL_DEFINE0(sched_yield
)
5387 struct rq
*rq
= this_rq_lock();
5389 schedstat_inc(rq
, yld_count
);
5390 current
->sched_class
->yield_task(rq
);
5393 * Since we are going to call schedule() anyway, there's
5394 * no need to preempt or enable interrupts:
5396 __release(rq
->lock
);
5397 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5398 do_raw_spin_unlock(&rq
->lock
);
5399 preempt_enable_no_resched();
5406 static inline int should_resched(void)
5408 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
5411 static void __cond_resched(void)
5413 add_preempt_count(PREEMPT_ACTIVE
);
5415 sub_preempt_count(PREEMPT_ACTIVE
);
5418 int __sched
_cond_resched(void)
5420 if (should_resched()) {
5426 EXPORT_SYMBOL(_cond_resched
);
5429 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5430 * call schedule, and on return reacquire the lock.
5432 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5433 * operations here to prevent schedule() from being called twice (once via
5434 * spin_unlock(), once by hand).
5436 int __cond_resched_lock(spinlock_t
*lock
)
5438 int resched
= should_resched();
5441 lockdep_assert_held(lock
);
5443 if (spin_needbreak(lock
) || resched
) {
5454 EXPORT_SYMBOL(__cond_resched_lock
);
5456 int __sched
__cond_resched_softirq(void)
5458 BUG_ON(!in_softirq());
5460 if (should_resched()) {
5468 EXPORT_SYMBOL(__cond_resched_softirq
);
5471 * yield - yield the current processor to other threads.
5473 * This is a shortcut for kernel-space yielding - it marks the
5474 * thread runnable and calls sys_sched_yield().
5476 void __sched
yield(void)
5478 set_current_state(TASK_RUNNING
);
5481 EXPORT_SYMBOL(yield
);
5484 * yield_to - yield the current processor to another thread in
5485 * your thread group, or accelerate that thread toward the
5486 * processor it's on.
5488 * @preempt: whether task preemption is allowed or not
5490 * It's the caller's job to ensure that the target task struct
5491 * can't go away on us before we can do any checks.
5493 * Returns true if we indeed boosted the target task.
5495 bool __sched
yield_to(struct task_struct
*p
, bool preempt
)
5497 struct task_struct
*curr
= current
;
5498 struct rq
*rq
, *p_rq
;
5499 unsigned long flags
;
5502 local_irq_save(flags
);
5507 double_rq_lock(rq
, p_rq
);
5508 while (task_rq(p
) != p_rq
) {
5509 double_rq_unlock(rq
, p_rq
);
5513 if (!curr
->sched_class
->yield_to_task
)
5516 if (curr
->sched_class
!= p
->sched_class
)
5519 if (task_running(p_rq
, p
) || p
->state
)
5522 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
5524 schedstat_inc(rq
, yld_count
);
5526 * Make p's CPU reschedule; pick_next_entity takes care of
5529 if (preempt
&& rq
!= p_rq
)
5530 resched_task(p_rq
->curr
);
5534 double_rq_unlock(rq
, p_rq
);
5535 local_irq_restore(flags
);
5542 EXPORT_SYMBOL_GPL(yield_to
);
5545 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5546 * that process accounting knows that this is a task in IO wait state.
5548 void __sched
io_schedule(void)
5550 struct rq
*rq
= raw_rq();
5552 delayacct_blkio_start();
5553 atomic_inc(&rq
->nr_iowait
);
5554 blk_flush_plug(current
);
5555 current
->in_iowait
= 1;
5557 current
->in_iowait
= 0;
5558 atomic_dec(&rq
->nr_iowait
);
5559 delayacct_blkio_end();
5561 EXPORT_SYMBOL(io_schedule
);
5563 long __sched
io_schedule_timeout(long timeout
)
5565 struct rq
*rq
= raw_rq();
5568 delayacct_blkio_start();
5569 atomic_inc(&rq
->nr_iowait
);
5570 blk_flush_plug(current
);
5571 current
->in_iowait
= 1;
5572 ret
= schedule_timeout(timeout
);
5573 current
->in_iowait
= 0;
5574 atomic_dec(&rq
->nr_iowait
);
5575 delayacct_blkio_end();
5580 * sys_sched_get_priority_max - return maximum RT priority.
5581 * @policy: scheduling class.
5583 * this syscall returns the maximum rt_priority that can be used
5584 * by a given scheduling class.
5586 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5593 ret
= MAX_USER_RT_PRIO
-1;
5605 * sys_sched_get_priority_min - return minimum RT priority.
5606 * @policy: scheduling class.
5608 * this syscall returns the minimum rt_priority that can be used
5609 * by a given scheduling class.
5611 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5629 * sys_sched_rr_get_interval - return the default timeslice of a process.
5630 * @pid: pid of the process.
5631 * @interval: userspace pointer to the timeslice value.
5633 * this syscall writes the default timeslice value of a given process
5634 * into the user-space timespec buffer. A value of '0' means infinity.
5636 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5637 struct timespec __user
*, interval
)
5639 struct task_struct
*p
;
5640 unsigned int time_slice
;
5641 unsigned long flags
;
5651 p
= find_process_by_pid(pid
);
5655 retval
= security_task_getscheduler(p
);
5659 rq
= task_rq_lock(p
, &flags
);
5660 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5661 task_rq_unlock(rq
, &flags
);
5664 jiffies_to_timespec(time_slice
, &t
);
5665 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5673 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5675 void sched_show_task(struct task_struct
*p
)
5677 unsigned long free
= 0;
5680 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5681 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
5682 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5683 #if BITS_PER_LONG == 32
5684 if (state
== TASK_RUNNING
)
5685 printk(KERN_CONT
" running ");
5687 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5689 if (state
== TASK_RUNNING
)
5690 printk(KERN_CONT
" running task ");
5692 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5694 #ifdef CONFIG_DEBUG_STACK_USAGE
5695 free
= stack_not_used(p
);
5697 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5698 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5699 (unsigned long)task_thread_info(p
)->flags
);
5701 show_stack(p
, NULL
);
5704 void show_state_filter(unsigned long state_filter
)
5706 struct task_struct
*g
, *p
;
5708 #if BITS_PER_LONG == 32
5710 " task PC stack pid father\n");
5713 " task PC stack pid father\n");
5715 read_lock(&tasklist_lock
);
5716 do_each_thread(g
, p
) {
5718 * reset the NMI-timeout, listing all files on a slow
5719 * console might take a lot of time:
5721 touch_nmi_watchdog();
5722 if (!state_filter
|| (p
->state
& state_filter
))
5724 } while_each_thread(g
, p
);
5726 touch_all_softlockup_watchdogs();
5728 #ifdef CONFIG_SCHED_DEBUG
5729 sysrq_sched_debug_show();
5731 read_unlock(&tasklist_lock
);
5733 * Only show locks if all tasks are dumped:
5736 debug_show_all_locks();
5739 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5741 idle
->sched_class
= &idle_sched_class
;
5745 * init_idle - set up an idle thread for a given CPU
5746 * @idle: task in question
5747 * @cpu: cpu the idle task belongs to
5749 * NOTE: this function does not set the idle thread's NEED_RESCHED
5750 * flag, to make booting more robust.
5752 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5754 struct rq
*rq
= cpu_rq(cpu
);
5755 unsigned long flags
;
5757 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5760 idle
->state
= TASK_RUNNING
;
5761 idle
->se
.exec_start
= sched_clock();
5763 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
5765 * We're having a chicken and egg problem, even though we are
5766 * holding rq->lock, the cpu isn't yet set to this cpu so the
5767 * lockdep check in task_group() will fail.
5769 * Similar case to sched_fork(). / Alternatively we could
5770 * use task_rq_lock() here and obtain the other rq->lock.
5775 __set_task_cpu(idle
, cpu
);
5778 rq
->curr
= rq
->idle
= idle
;
5779 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5782 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5784 /* Set the preempt count _outside_ the spinlocks! */
5785 #if defined(CONFIG_PREEMPT)
5786 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5788 task_thread_info(idle
)->preempt_count
= 0;
5791 * The idle tasks have their own, simple scheduling class:
5793 idle
->sched_class
= &idle_sched_class
;
5794 ftrace_graph_init_idle_task(idle
, cpu
);
5798 * In a system that switches off the HZ timer nohz_cpu_mask
5799 * indicates which cpus entered this state. This is used
5800 * in the rcu update to wait only for active cpus. For system
5801 * which do not switch off the HZ timer nohz_cpu_mask should
5802 * always be CPU_BITS_NONE.
5804 cpumask_var_t nohz_cpu_mask
;
5807 * Increase the granularity value when there are more CPUs,
5808 * because with more CPUs the 'effective latency' as visible
5809 * to users decreases. But the relationship is not linear,
5810 * so pick a second-best guess by going with the log2 of the
5813 * This idea comes from the SD scheduler of Con Kolivas:
5815 static int get_update_sysctl_factor(void)
5817 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
5818 unsigned int factor
;
5820 switch (sysctl_sched_tunable_scaling
) {
5821 case SCHED_TUNABLESCALING_NONE
:
5824 case SCHED_TUNABLESCALING_LINEAR
:
5827 case SCHED_TUNABLESCALING_LOG
:
5829 factor
= 1 + ilog2(cpus
);
5836 static void update_sysctl(void)
5838 unsigned int factor
= get_update_sysctl_factor();
5840 #define SET_SYSCTL(name) \
5841 (sysctl_##name = (factor) * normalized_sysctl_##name)
5842 SET_SYSCTL(sched_min_granularity
);
5843 SET_SYSCTL(sched_latency
);
5844 SET_SYSCTL(sched_wakeup_granularity
);
5848 static inline void sched_init_granularity(void)
5855 * This is how migration works:
5857 * 1) we invoke migration_cpu_stop() on the target CPU using
5859 * 2) stopper starts to run (implicitly forcing the migrated thread
5861 * 3) it checks whether the migrated task is still in the wrong runqueue.
5862 * 4) if it's in the wrong runqueue then the migration thread removes
5863 * it and puts it into the right queue.
5864 * 5) stopper completes and stop_one_cpu() returns and the migration
5869 * Change a given task's CPU affinity. Migrate the thread to a
5870 * proper CPU and schedule it away if the CPU it's executing on
5871 * is removed from the allowed bitmask.
5873 * NOTE: the caller must have a valid reference to the task, the
5874 * task must not exit() & deallocate itself prematurely. The
5875 * call is not atomic; no spinlocks may be held.
5877 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
5879 unsigned long flags
;
5881 unsigned int dest_cpu
;
5885 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5886 * drop the rq->lock and still rely on ->cpus_allowed.
5889 while (task_is_waking(p
))
5891 rq
= task_rq_lock(p
, &flags
);
5892 if (task_is_waking(p
)) {
5893 task_rq_unlock(rq
, &flags
);
5897 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
5902 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5903 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
5908 if (p
->sched_class
->set_cpus_allowed
)
5909 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5911 cpumask_copy(&p
->cpus_allowed
, new_mask
);
5912 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
5915 /* Can the task run on the task's current CPU? If so, we're done */
5916 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
5919 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
5920 if (migrate_task(p
, rq
)) {
5921 struct migration_arg arg
= { p
, dest_cpu
};
5922 /* Need help from migration thread: drop lock and wait. */
5923 task_rq_unlock(rq
, &flags
);
5924 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
5925 tlb_migrate_finish(p
->mm
);
5929 task_rq_unlock(rq
, &flags
);
5933 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5936 * Move (not current) task off this cpu, onto dest cpu. We're doing
5937 * this because either it can't run here any more (set_cpus_allowed()
5938 * away from this CPU, or CPU going down), or because we're
5939 * attempting to rebalance this task on exec (sched_exec).
5941 * So we race with normal scheduler movements, but that's OK, as long
5942 * as the task is no longer on this CPU.
5944 * Returns non-zero if task was successfully migrated.
5946 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5948 struct rq
*rq_dest
, *rq_src
;
5951 if (unlikely(!cpu_active(dest_cpu
)))
5954 rq_src
= cpu_rq(src_cpu
);
5955 rq_dest
= cpu_rq(dest_cpu
);
5957 double_rq_lock(rq_src
, rq_dest
);
5958 /* Already moved. */
5959 if (task_cpu(p
) != src_cpu
)
5961 /* Affinity changed (again). */
5962 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
5966 * If we're not on a rq, the next wake-up will ensure we're
5970 deactivate_task(rq_src
, p
, 0);
5971 set_task_cpu(p
, dest_cpu
);
5972 activate_task(rq_dest
, p
, 0);
5973 check_preempt_curr(rq_dest
, p
, 0);
5978 double_rq_unlock(rq_src
, rq_dest
);
5983 * migration_cpu_stop - this will be executed by a highprio stopper thread
5984 * and performs thread migration by bumping thread off CPU then
5985 * 'pushing' onto another runqueue.
5987 static int migration_cpu_stop(void *data
)
5989 struct migration_arg
*arg
= data
;
5992 * The original target cpu might have gone down and we might
5993 * be on another cpu but it doesn't matter.
5995 local_irq_disable();
5996 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
6001 #ifdef CONFIG_HOTPLUG_CPU
6004 * Ensures that the idle task is using init_mm right before its cpu goes
6007 void idle_task_exit(void)
6009 struct mm_struct
*mm
= current
->active_mm
;
6011 BUG_ON(cpu_online(smp_processor_id()));
6014 switch_mm(mm
, &init_mm
, current
);
6019 * While a dead CPU has no uninterruptible tasks queued at this point,
6020 * it might still have a nonzero ->nr_uninterruptible counter, because
6021 * for performance reasons the counter is not stricly tracking tasks to
6022 * their home CPUs. So we just add the counter to another CPU's counter,
6023 * to keep the global sum constant after CPU-down:
6025 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6027 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
6029 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6030 rq_src
->nr_uninterruptible
= 0;
6034 * remove the tasks which were accounted by rq from calc_load_tasks.
6036 static void calc_global_load_remove(struct rq
*rq
)
6038 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
6039 rq
->calc_load_active
= 0;
6043 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6044 * try_to_wake_up()->select_task_rq().
6046 * Called with rq->lock held even though we'er in stop_machine() and
6047 * there's no concurrency possible, we hold the required locks anyway
6048 * because of lock validation efforts.
6050 static void migrate_tasks(unsigned int dead_cpu
)
6052 struct rq
*rq
= cpu_rq(dead_cpu
);
6053 struct task_struct
*next
, *stop
= rq
->stop
;
6057 * Fudge the rq selection such that the below task selection loop
6058 * doesn't get stuck on the currently eligible stop task.
6060 * We're currently inside stop_machine() and the rq is either stuck
6061 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6062 * either way we should never end up calling schedule() until we're
6069 * There's this thread running, bail when that's the only
6072 if (rq
->nr_running
== 1)
6075 next
= pick_next_task(rq
);
6077 next
->sched_class
->put_prev_task(rq
, next
);
6079 /* Find suitable destination for @next, with force if needed. */
6080 dest_cpu
= select_fallback_rq(dead_cpu
, next
);
6081 raw_spin_unlock(&rq
->lock
);
6083 __migrate_task(next
, dead_cpu
, dest_cpu
);
6085 raw_spin_lock(&rq
->lock
);
6091 #endif /* CONFIG_HOTPLUG_CPU */
6093 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6095 static struct ctl_table sd_ctl_dir
[] = {
6097 .procname
= "sched_domain",
6103 static struct ctl_table sd_ctl_root
[] = {
6105 .procname
= "kernel",
6107 .child
= sd_ctl_dir
,
6112 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6114 struct ctl_table
*entry
=
6115 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6120 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6122 struct ctl_table
*entry
;
6125 * In the intermediate directories, both the child directory and
6126 * procname are dynamically allocated and could fail but the mode
6127 * will always be set. In the lowest directory the names are
6128 * static strings and all have proc handlers.
6130 for (entry
= *tablep
; entry
->mode
; entry
++) {
6132 sd_free_ctl_entry(&entry
->child
);
6133 if (entry
->proc_handler
== NULL
)
6134 kfree(entry
->procname
);
6142 set_table_entry(struct ctl_table
*entry
,
6143 const char *procname
, void *data
, int maxlen
,
6144 mode_t mode
, proc_handler
*proc_handler
)
6146 entry
->procname
= procname
;
6148 entry
->maxlen
= maxlen
;
6150 entry
->proc_handler
= proc_handler
;
6153 static struct ctl_table
*
6154 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6156 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6161 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6162 sizeof(long), 0644, proc_doulongvec_minmax
);
6163 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6164 sizeof(long), 0644, proc_doulongvec_minmax
);
6165 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6166 sizeof(int), 0644, proc_dointvec_minmax
);
6167 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6168 sizeof(int), 0644, proc_dointvec_minmax
);
6169 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6170 sizeof(int), 0644, proc_dointvec_minmax
);
6171 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6172 sizeof(int), 0644, proc_dointvec_minmax
);
6173 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6174 sizeof(int), 0644, proc_dointvec_minmax
);
6175 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6176 sizeof(int), 0644, proc_dointvec_minmax
);
6177 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6178 sizeof(int), 0644, proc_dointvec_minmax
);
6179 set_table_entry(&table
[9], "cache_nice_tries",
6180 &sd
->cache_nice_tries
,
6181 sizeof(int), 0644, proc_dointvec_minmax
);
6182 set_table_entry(&table
[10], "flags", &sd
->flags
,
6183 sizeof(int), 0644, proc_dointvec_minmax
);
6184 set_table_entry(&table
[11], "name", sd
->name
,
6185 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6186 /* &table[12] is terminator */
6191 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6193 struct ctl_table
*entry
, *table
;
6194 struct sched_domain
*sd
;
6195 int domain_num
= 0, i
;
6198 for_each_domain(cpu
, sd
)
6200 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6205 for_each_domain(cpu
, sd
) {
6206 snprintf(buf
, 32, "domain%d", i
);
6207 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6209 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6216 static struct ctl_table_header
*sd_sysctl_header
;
6217 static void register_sched_domain_sysctl(void)
6219 int i
, cpu_num
= num_possible_cpus();
6220 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6223 WARN_ON(sd_ctl_dir
[0].child
);
6224 sd_ctl_dir
[0].child
= entry
;
6229 for_each_possible_cpu(i
) {
6230 snprintf(buf
, 32, "cpu%d", i
);
6231 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6233 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6237 WARN_ON(sd_sysctl_header
);
6238 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6241 /* may be called multiple times per register */
6242 static void unregister_sched_domain_sysctl(void)
6244 if (sd_sysctl_header
)
6245 unregister_sysctl_table(sd_sysctl_header
);
6246 sd_sysctl_header
= NULL
;
6247 if (sd_ctl_dir
[0].child
)
6248 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6251 static void register_sched_domain_sysctl(void)
6254 static void unregister_sched_domain_sysctl(void)
6259 static void set_rq_online(struct rq
*rq
)
6262 const struct sched_class
*class;
6264 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6267 for_each_class(class) {
6268 if (class->rq_online
)
6269 class->rq_online(rq
);
6274 static void set_rq_offline(struct rq
*rq
)
6277 const struct sched_class
*class;
6279 for_each_class(class) {
6280 if (class->rq_offline
)
6281 class->rq_offline(rq
);
6284 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6290 * migration_call - callback that gets triggered when a CPU is added.
6291 * Here we can start up the necessary migration thread for the new CPU.
6293 static int __cpuinit
6294 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6296 int cpu
= (long)hcpu
;
6297 unsigned long flags
;
6298 struct rq
*rq
= cpu_rq(cpu
);
6300 switch (action
& ~CPU_TASKS_FROZEN
) {
6302 case CPU_UP_PREPARE
:
6303 rq
->calc_load_update
= calc_load_update
;
6307 /* Update our root-domain */
6308 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6310 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6314 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6317 #ifdef CONFIG_HOTPLUG_CPU
6319 /* Update our root-domain */
6320 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6322 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6326 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
6327 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6329 migrate_nr_uninterruptible(rq
);
6330 calc_global_load_remove(rq
);
6335 update_max_interval();
6341 * Register at high priority so that task migration (migrate_all_tasks)
6342 * happens before everything else. This has to be lower priority than
6343 * the notifier in the perf_event subsystem, though.
6345 static struct notifier_block __cpuinitdata migration_notifier
= {
6346 .notifier_call
= migration_call
,
6347 .priority
= CPU_PRI_MIGRATION
,
6350 static int __cpuinit
sched_cpu_active(struct notifier_block
*nfb
,
6351 unsigned long action
, void *hcpu
)
6353 switch (action
& ~CPU_TASKS_FROZEN
) {
6355 case CPU_DOWN_FAILED
:
6356 set_cpu_active((long)hcpu
, true);
6363 static int __cpuinit
sched_cpu_inactive(struct notifier_block
*nfb
,
6364 unsigned long action
, void *hcpu
)
6366 switch (action
& ~CPU_TASKS_FROZEN
) {
6367 case CPU_DOWN_PREPARE
:
6368 set_cpu_active((long)hcpu
, false);
6375 static int __init
migration_init(void)
6377 void *cpu
= (void *)(long)smp_processor_id();
6380 /* Initialize migration for the boot CPU */
6381 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6382 BUG_ON(err
== NOTIFY_BAD
);
6383 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6384 register_cpu_notifier(&migration_notifier
);
6386 /* Register cpu active notifiers */
6387 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
6388 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
6392 early_initcall(migration_init
);
6397 #ifdef CONFIG_SCHED_DEBUG
6399 static __read_mostly
int sched_domain_debug_enabled
;
6401 static int __init
sched_domain_debug_setup(char *str
)
6403 sched_domain_debug_enabled
= 1;
6407 early_param("sched_debug", sched_domain_debug_setup
);
6409 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6410 struct cpumask
*groupmask
)
6412 struct sched_group
*group
= sd
->groups
;
6415 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6416 cpumask_clear(groupmask
);
6418 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6420 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6421 printk("does not load-balance\n");
6423 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6428 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6430 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6431 printk(KERN_ERR
"ERROR: domain->span does not contain "
6434 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6435 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6439 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6443 printk(KERN_ERR
"ERROR: group is NULL\n");
6447 if (!group
->cpu_power
) {
6448 printk(KERN_CONT
"\n");
6449 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6454 if (!cpumask_weight(sched_group_cpus(group
))) {
6455 printk(KERN_CONT
"\n");
6456 printk(KERN_ERR
"ERROR: empty group\n");
6460 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6461 printk(KERN_CONT
"\n");
6462 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6466 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6468 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6470 printk(KERN_CONT
" %s", str
);
6471 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
6472 printk(KERN_CONT
" (cpu_power = %d)",
6476 group
= group
->next
;
6477 } while (group
!= sd
->groups
);
6478 printk(KERN_CONT
"\n");
6480 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6481 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6484 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6485 printk(KERN_ERR
"ERROR: parent span is not a superset "
6486 "of domain->span\n");
6490 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6492 cpumask_var_t groupmask
;
6495 if (!sched_domain_debug_enabled
)
6499 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6503 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6505 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
6506 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6511 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6518 free_cpumask_var(groupmask
);
6520 #else /* !CONFIG_SCHED_DEBUG */
6521 # define sched_domain_debug(sd, cpu) do { } while (0)
6522 #endif /* CONFIG_SCHED_DEBUG */
6524 static int sd_degenerate(struct sched_domain
*sd
)
6526 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6529 /* Following flags need at least 2 groups */
6530 if (sd
->flags
& (SD_LOAD_BALANCE
|
6531 SD_BALANCE_NEWIDLE
|
6535 SD_SHARE_PKG_RESOURCES
)) {
6536 if (sd
->groups
!= sd
->groups
->next
)
6540 /* Following flags don't use groups */
6541 if (sd
->flags
& (SD_WAKE_AFFINE
))
6548 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6550 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6552 if (sd_degenerate(parent
))
6555 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6558 /* Flags needing groups don't count if only 1 group in parent */
6559 if (parent
->groups
== parent
->groups
->next
) {
6560 pflags
&= ~(SD_LOAD_BALANCE
|
6561 SD_BALANCE_NEWIDLE
|
6565 SD_SHARE_PKG_RESOURCES
);
6566 if (nr_node_ids
== 1)
6567 pflags
&= ~SD_SERIALIZE
;
6569 if (~cflags
& pflags
)
6575 static void free_rootdomain(struct root_domain
*rd
)
6577 synchronize_sched();
6579 cpupri_cleanup(&rd
->cpupri
);
6581 free_cpumask_var(rd
->rto_mask
);
6582 free_cpumask_var(rd
->online
);
6583 free_cpumask_var(rd
->span
);
6587 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6589 struct root_domain
*old_rd
= NULL
;
6590 unsigned long flags
;
6592 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6597 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6600 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6603 * If we dont want to free the old_rt yet then
6604 * set old_rd to NULL to skip the freeing later
6607 if (!atomic_dec_and_test(&old_rd
->refcount
))
6611 atomic_inc(&rd
->refcount
);
6614 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6615 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6618 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6621 free_rootdomain(old_rd
);
6624 static int init_rootdomain(struct root_domain
*rd
)
6626 memset(rd
, 0, sizeof(*rd
));
6628 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
6630 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
6632 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
6635 if (cpupri_init(&rd
->cpupri
) != 0)
6640 free_cpumask_var(rd
->rto_mask
);
6642 free_cpumask_var(rd
->online
);
6644 free_cpumask_var(rd
->span
);
6649 static void init_defrootdomain(void)
6651 init_rootdomain(&def_root_domain
);
6653 atomic_set(&def_root_domain
.refcount
, 1);
6656 static struct root_domain
*alloc_rootdomain(void)
6658 struct root_domain
*rd
;
6660 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6664 if (init_rootdomain(rd
) != 0) {
6673 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6674 * hold the hotplug lock.
6677 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6679 struct rq
*rq
= cpu_rq(cpu
);
6680 struct sched_domain
*tmp
;
6682 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
)
6683 tmp
->span_weight
= cpumask_weight(sched_domain_span(tmp
));
6685 /* Remove the sched domains which do not contribute to scheduling. */
6686 for (tmp
= sd
; tmp
; ) {
6687 struct sched_domain
*parent
= tmp
->parent
;
6691 if (sd_parent_degenerate(tmp
, parent
)) {
6692 tmp
->parent
= parent
->parent
;
6694 parent
->parent
->child
= tmp
;
6699 if (sd
&& sd_degenerate(sd
)) {
6705 sched_domain_debug(sd
, cpu
);
6707 rq_attach_root(rq
, rd
);
6708 rcu_assign_pointer(rq
->sd
, sd
);
6711 /* cpus with isolated domains */
6712 static cpumask_var_t cpu_isolated_map
;
6714 /* Setup the mask of cpus configured for isolated domains */
6715 static int __init
isolated_cpu_setup(char *str
)
6717 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6718 cpulist_parse(str
, cpu_isolated_map
);
6722 __setup("isolcpus=", isolated_cpu_setup
);
6725 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6726 * to a function which identifies what group(along with sched group) a CPU
6727 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6728 * (due to the fact that we keep track of groups covered with a struct cpumask).
6730 * init_sched_build_groups will build a circular linked list of the groups
6731 * covered by the given span, and will set each group's ->cpumask correctly,
6732 * and ->cpu_power to 0.
6735 init_sched_build_groups(const struct cpumask
*span
,
6736 const struct cpumask
*cpu_map
,
6737 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
6738 struct sched_group
**sg
,
6739 struct cpumask
*tmpmask
),
6740 struct cpumask
*covered
, struct cpumask
*tmpmask
)
6742 struct sched_group
*first
= NULL
, *last
= NULL
;
6745 cpumask_clear(covered
);
6747 for_each_cpu(i
, span
) {
6748 struct sched_group
*sg
;
6749 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6752 if (cpumask_test_cpu(i
, covered
))
6755 cpumask_clear(sched_group_cpus(sg
));
6758 for_each_cpu(j
, span
) {
6759 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6762 cpumask_set_cpu(j
, covered
);
6763 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6774 #define SD_NODES_PER_DOMAIN 16
6779 * find_next_best_node - find the next node to include in a sched_domain
6780 * @node: node whose sched_domain we're building
6781 * @used_nodes: nodes already in the sched_domain
6783 * Find the next node to include in a given scheduling domain. Simply
6784 * finds the closest node not already in the @used_nodes map.
6786 * Should use nodemask_t.
6788 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6790 int i
, n
, val
, min_val
, best_node
= 0;
6794 for (i
= 0; i
< nr_node_ids
; i
++) {
6795 /* Start at @node */
6796 n
= (node
+ i
) % nr_node_ids
;
6798 if (!nr_cpus_node(n
))
6801 /* Skip already used nodes */
6802 if (node_isset(n
, *used_nodes
))
6805 /* Simple min distance search */
6806 val
= node_distance(node
, n
);
6808 if (val
< min_val
) {
6814 node_set(best_node
, *used_nodes
);
6819 * sched_domain_node_span - get a cpumask for a node's sched_domain
6820 * @node: node whose cpumask we're constructing
6821 * @span: resulting cpumask
6823 * Given a node, construct a good cpumask for its sched_domain to span. It
6824 * should be one that prevents unnecessary balancing, but also spreads tasks
6827 static void sched_domain_node_span(int node
, struct cpumask
*span
)
6829 nodemask_t used_nodes
;
6832 cpumask_clear(span
);
6833 nodes_clear(used_nodes
);
6835 cpumask_or(span
, span
, cpumask_of_node(node
));
6836 node_set(node
, used_nodes
);
6838 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6839 int next_node
= find_next_best_node(node
, &used_nodes
);
6841 cpumask_or(span
, span
, cpumask_of_node(next_node
));
6844 #endif /* CONFIG_NUMA */
6846 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6849 * The cpus mask in sched_group and sched_domain hangs off the end.
6851 * ( See the the comments in include/linux/sched.h:struct sched_group
6852 * and struct sched_domain. )
6854 struct static_sched_group
{
6855 struct sched_group sg
;
6856 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
6859 struct static_sched_domain
{
6860 struct sched_domain sd
;
6861 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
6867 cpumask_var_t domainspan
;
6868 cpumask_var_t covered
;
6869 cpumask_var_t notcovered
;
6871 cpumask_var_t nodemask
;
6872 cpumask_var_t this_sibling_map
;
6873 cpumask_var_t this_core_map
;
6874 cpumask_var_t this_book_map
;
6875 cpumask_var_t send_covered
;
6876 cpumask_var_t tmpmask
;
6877 struct sched_group
**sched_group_nodes
;
6878 struct root_domain
*rd
;
6882 sa_sched_groups
= 0,
6888 sa_this_sibling_map
,
6890 sa_sched_group_nodes
,
6900 * SMT sched-domains:
6902 #ifdef CONFIG_SCHED_SMT
6903 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
6904 static DEFINE_PER_CPU(struct static_sched_group
, sched_groups
);
6907 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
6908 struct sched_group
**sg
, struct cpumask
*unused
)
6911 *sg
= &per_cpu(sched_groups
, cpu
).sg
;
6914 #endif /* CONFIG_SCHED_SMT */
6917 * multi-core sched-domains:
6919 #ifdef CONFIG_SCHED_MC
6920 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
6921 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
6924 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6925 struct sched_group
**sg
, struct cpumask
*mask
)
6928 #ifdef CONFIG_SCHED_SMT
6929 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6930 group
= cpumask_first(mask
);
6935 *sg
= &per_cpu(sched_group_core
, group
).sg
;
6938 #endif /* CONFIG_SCHED_MC */
6941 * book sched-domains:
6943 #ifdef CONFIG_SCHED_BOOK
6944 static DEFINE_PER_CPU(struct static_sched_domain
, book_domains
);
6945 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_book
);
6948 cpu_to_book_group(int cpu
, const struct cpumask
*cpu_map
,
6949 struct sched_group
**sg
, struct cpumask
*mask
)
6952 #ifdef CONFIG_SCHED_MC
6953 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6954 group
= cpumask_first(mask
);
6955 #elif defined(CONFIG_SCHED_SMT)
6956 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6957 group
= cpumask_first(mask
);
6960 *sg
= &per_cpu(sched_group_book
, group
).sg
;
6963 #endif /* CONFIG_SCHED_BOOK */
6965 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
6966 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
6969 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
6970 struct sched_group
**sg
, struct cpumask
*mask
)
6973 #ifdef CONFIG_SCHED_BOOK
6974 cpumask_and(mask
, cpu_book_mask(cpu
), cpu_map
);
6975 group
= cpumask_first(mask
);
6976 #elif defined(CONFIG_SCHED_MC)
6977 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6978 group
= cpumask_first(mask
);
6979 #elif defined(CONFIG_SCHED_SMT)
6980 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6981 group
= cpumask_first(mask
);
6986 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
6992 * The init_sched_build_groups can't handle what we want to do with node
6993 * groups, so roll our own. Now each node has its own list of groups which
6994 * gets dynamically allocated.
6996 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
6997 static struct sched_group
***sched_group_nodes_bycpu
;
6999 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
7000 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
7002 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
7003 struct sched_group
**sg
,
7004 struct cpumask
*nodemask
)
7008 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
7009 group
= cpumask_first(nodemask
);
7012 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
7016 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
7018 struct sched_group
*sg
= group_head
;
7024 for_each_cpu(j
, sched_group_cpus(sg
)) {
7025 struct sched_domain
*sd
;
7027 sd
= &per_cpu(phys_domains
, j
).sd
;
7028 if (j
!= group_first_cpu(sd
->groups
)) {
7030 * Only add "power" once for each
7036 sg
->cpu_power
+= sd
->groups
->cpu_power
;
7039 } while (sg
!= group_head
);
7042 static int build_numa_sched_groups(struct s_data
*d
,
7043 const struct cpumask
*cpu_map
, int num
)
7045 struct sched_domain
*sd
;
7046 struct sched_group
*sg
, *prev
;
7049 cpumask_clear(d
->covered
);
7050 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
7051 if (cpumask_empty(d
->nodemask
)) {
7052 d
->sched_group_nodes
[num
] = NULL
;
7056 sched_domain_node_span(num
, d
->domainspan
);
7057 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
7059 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7062 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
7066 d
->sched_group_nodes
[num
] = sg
;
7068 for_each_cpu(j
, d
->nodemask
) {
7069 sd
= &per_cpu(node_domains
, j
).sd
;
7074 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
7076 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
7079 for (j
= 0; j
< nr_node_ids
; j
++) {
7080 n
= (num
+ j
) % nr_node_ids
;
7081 cpumask_complement(d
->notcovered
, d
->covered
);
7082 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
7083 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
7084 if (cpumask_empty(d
->tmpmask
))
7086 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
7087 if (cpumask_empty(d
->tmpmask
))
7089 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7093 "Can not alloc domain group for node %d\n", j
);
7097 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
7098 sg
->next
= prev
->next
;
7099 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
7106 #endif /* CONFIG_NUMA */
7109 /* Free memory allocated for various sched_group structures */
7110 static void free_sched_groups(const struct cpumask
*cpu_map
,
7111 struct cpumask
*nodemask
)
7115 for_each_cpu(cpu
, cpu_map
) {
7116 struct sched_group
**sched_group_nodes
7117 = sched_group_nodes_bycpu
[cpu
];
7119 if (!sched_group_nodes
)
7122 for (i
= 0; i
< nr_node_ids
; i
++) {
7123 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
7125 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
7126 if (cpumask_empty(nodemask
))
7136 if (oldsg
!= sched_group_nodes
[i
])
7139 kfree(sched_group_nodes
);
7140 sched_group_nodes_bycpu
[cpu
] = NULL
;
7143 #else /* !CONFIG_NUMA */
7144 static void free_sched_groups(const struct cpumask
*cpu_map
,
7145 struct cpumask
*nodemask
)
7148 #endif /* CONFIG_NUMA */
7151 * Initialize sched groups cpu_power.
7153 * cpu_power indicates the capacity of sched group, which is used while
7154 * distributing the load between different sched groups in a sched domain.
7155 * Typically cpu_power for all the groups in a sched domain will be same unless
7156 * there are asymmetries in the topology. If there are asymmetries, group
7157 * having more cpu_power will pickup more load compared to the group having
7160 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7162 struct sched_domain
*child
;
7163 struct sched_group
*group
;
7167 WARN_ON(!sd
|| !sd
->groups
);
7169 if (cpu
!= group_first_cpu(sd
->groups
))
7172 sd
->groups
->group_weight
= cpumask_weight(sched_group_cpus(sd
->groups
));
7176 sd
->groups
->cpu_power
= 0;
7179 power
= SCHED_LOAD_SCALE
;
7180 weight
= cpumask_weight(sched_domain_span(sd
));
7182 * SMT siblings share the power of a single core.
7183 * Usually multiple threads get a better yield out of
7184 * that one core than a single thread would have,
7185 * reflect that in sd->smt_gain.
7187 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
7188 power
*= sd
->smt_gain
;
7190 power
>>= SCHED_LOAD_SHIFT
;
7192 sd
->groups
->cpu_power
+= power
;
7197 * Add cpu_power of each child group to this groups cpu_power.
7199 group
= child
->groups
;
7201 sd
->groups
->cpu_power
+= group
->cpu_power
;
7202 group
= group
->next
;
7203 } while (group
!= child
->groups
);
7207 * Initializers for schedule domains
7208 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7211 #ifdef CONFIG_SCHED_DEBUG
7212 # define SD_INIT_NAME(sd, type) sd->name = #type
7214 # define SD_INIT_NAME(sd, type) do { } while (0)
7217 #define SD_INIT(sd, type) sd_init_##type(sd)
7219 #define SD_INIT_FUNC(type) \
7220 static noinline void sd_init_##type(struct sched_domain *sd) \
7222 memset(sd, 0, sizeof(*sd)); \
7223 *sd = SD_##type##_INIT; \
7224 sd->level = SD_LV_##type; \
7225 SD_INIT_NAME(sd, type); \
7230 SD_INIT_FUNC(ALLNODES
)
7233 #ifdef CONFIG_SCHED_SMT
7234 SD_INIT_FUNC(SIBLING
)
7236 #ifdef CONFIG_SCHED_MC
7239 #ifdef CONFIG_SCHED_BOOK
7243 static int default_relax_domain_level
= -1;
7245 static int __init
setup_relax_domain_level(char *str
)
7249 val
= simple_strtoul(str
, NULL
, 0);
7250 if (val
< SD_LV_MAX
)
7251 default_relax_domain_level
= val
;
7255 __setup("relax_domain_level=", setup_relax_domain_level
);
7257 static void set_domain_attribute(struct sched_domain
*sd
,
7258 struct sched_domain_attr
*attr
)
7262 if (!attr
|| attr
->relax_domain_level
< 0) {
7263 if (default_relax_domain_level
< 0)
7266 request
= default_relax_domain_level
;
7268 request
= attr
->relax_domain_level
;
7269 if (request
< sd
->level
) {
7270 /* turn off idle balance on this domain */
7271 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7273 /* turn on idle balance on this domain */
7274 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7278 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
7279 const struct cpumask
*cpu_map
)
7282 case sa_sched_groups
:
7283 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
7284 d
->sched_group_nodes
= NULL
;
7286 free_rootdomain(d
->rd
); /* fall through */
7288 free_cpumask_var(d
->tmpmask
); /* fall through */
7289 case sa_send_covered
:
7290 free_cpumask_var(d
->send_covered
); /* fall through */
7291 case sa_this_book_map
:
7292 free_cpumask_var(d
->this_book_map
); /* fall through */
7293 case sa_this_core_map
:
7294 free_cpumask_var(d
->this_core_map
); /* fall through */
7295 case sa_this_sibling_map
:
7296 free_cpumask_var(d
->this_sibling_map
); /* fall through */
7298 free_cpumask_var(d
->nodemask
); /* fall through */
7299 case sa_sched_group_nodes
:
7301 kfree(d
->sched_group_nodes
); /* fall through */
7303 free_cpumask_var(d
->notcovered
); /* fall through */
7305 free_cpumask_var(d
->covered
); /* fall through */
7307 free_cpumask_var(d
->domainspan
); /* fall through */
7314 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
7315 const struct cpumask
*cpu_map
)
7318 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
7320 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
7321 return sa_domainspan
;
7322 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
7324 /* Allocate the per-node list of sched groups */
7325 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
7326 sizeof(struct sched_group
*), GFP_KERNEL
);
7327 if (!d
->sched_group_nodes
) {
7328 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7329 return sa_notcovered
;
7331 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
7333 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
7334 return sa_sched_group_nodes
;
7335 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
7337 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
7338 return sa_this_sibling_map
;
7339 if (!alloc_cpumask_var(&d
->this_book_map
, GFP_KERNEL
))
7340 return sa_this_core_map
;
7341 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
7342 return sa_this_book_map
;
7343 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
7344 return sa_send_covered
;
7345 d
->rd
= alloc_rootdomain();
7347 printk(KERN_WARNING
"Cannot alloc root domain\n");
7350 return sa_rootdomain
;
7353 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
7354 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
7356 struct sched_domain
*sd
= NULL
;
7358 struct sched_domain
*parent
;
7361 if (cpumask_weight(cpu_map
) >
7362 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
7363 sd
= &per_cpu(allnodes_domains
, i
).sd
;
7364 SD_INIT(sd
, ALLNODES
);
7365 set_domain_attribute(sd
, attr
);
7366 cpumask_copy(sched_domain_span(sd
), cpu_map
);
7367 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7372 sd
= &per_cpu(node_domains
, i
).sd
;
7374 set_domain_attribute(sd
, attr
);
7375 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
7376 sd
->parent
= parent
;
7379 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
7384 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
7385 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7386 struct sched_domain
*parent
, int i
)
7388 struct sched_domain
*sd
;
7389 sd
= &per_cpu(phys_domains
, i
).sd
;
7391 set_domain_attribute(sd
, attr
);
7392 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
7393 sd
->parent
= parent
;
7396 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7400 static struct sched_domain
*__build_book_sched_domain(struct s_data
*d
,
7401 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7402 struct sched_domain
*parent
, int i
)
7404 struct sched_domain
*sd
= parent
;
7405 #ifdef CONFIG_SCHED_BOOK
7406 sd
= &per_cpu(book_domains
, i
).sd
;
7408 set_domain_attribute(sd
, attr
);
7409 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_book_mask(i
));
7410 sd
->parent
= parent
;
7412 cpu_to_book_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7417 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
7418 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7419 struct sched_domain
*parent
, int i
)
7421 struct sched_domain
*sd
= parent
;
7422 #ifdef CONFIG_SCHED_MC
7423 sd
= &per_cpu(core_domains
, i
).sd
;
7425 set_domain_attribute(sd
, attr
);
7426 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
7427 sd
->parent
= parent
;
7429 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7434 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
7435 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7436 struct sched_domain
*parent
, int i
)
7438 struct sched_domain
*sd
= parent
;
7439 #ifdef CONFIG_SCHED_SMT
7440 sd
= &per_cpu(cpu_domains
, i
).sd
;
7441 SD_INIT(sd
, SIBLING
);
7442 set_domain_attribute(sd
, attr
);
7443 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
7444 sd
->parent
= parent
;
7446 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7451 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
7452 const struct cpumask
*cpu_map
, int cpu
)
7455 #ifdef CONFIG_SCHED_SMT
7456 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
7457 cpumask_and(d
->this_sibling_map
, cpu_map
,
7458 topology_thread_cpumask(cpu
));
7459 if (cpu
== cpumask_first(d
->this_sibling_map
))
7460 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
7462 d
->send_covered
, d
->tmpmask
);
7465 #ifdef CONFIG_SCHED_MC
7466 case SD_LV_MC
: /* set up multi-core groups */
7467 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
7468 if (cpu
== cpumask_first(d
->this_core_map
))
7469 init_sched_build_groups(d
->this_core_map
, cpu_map
,
7471 d
->send_covered
, d
->tmpmask
);
7474 #ifdef CONFIG_SCHED_BOOK
7475 case SD_LV_BOOK
: /* set up book groups */
7476 cpumask_and(d
->this_book_map
, cpu_map
, cpu_book_mask(cpu
));
7477 if (cpu
== cpumask_first(d
->this_book_map
))
7478 init_sched_build_groups(d
->this_book_map
, cpu_map
,
7480 d
->send_covered
, d
->tmpmask
);
7483 case SD_LV_CPU
: /* set up physical groups */
7484 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
7485 if (!cpumask_empty(d
->nodemask
))
7486 init_sched_build_groups(d
->nodemask
, cpu_map
,
7488 d
->send_covered
, d
->tmpmask
);
7491 case SD_LV_ALLNODES
:
7492 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
7493 d
->send_covered
, d
->tmpmask
);
7502 * Build sched domains for a given set of cpus and attach the sched domains
7503 * to the individual cpus
7505 static int __build_sched_domains(const struct cpumask
*cpu_map
,
7506 struct sched_domain_attr
*attr
)
7508 enum s_alloc alloc_state
= sa_none
;
7510 struct sched_domain
*sd
;
7516 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
7517 if (alloc_state
!= sa_rootdomain
)
7519 alloc_state
= sa_sched_groups
;
7522 * Set up domains for cpus specified by the cpu_map.
7524 for_each_cpu(i
, cpu_map
) {
7525 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
7528 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
7529 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7530 sd
= __build_book_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7531 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7532 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7535 for_each_cpu(i
, cpu_map
) {
7536 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
7537 build_sched_groups(&d
, SD_LV_BOOK
, cpu_map
, i
);
7538 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
7541 /* Set up physical groups */
7542 for (i
= 0; i
< nr_node_ids
; i
++)
7543 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
7546 /* Set up node groups */
7548 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
7550 for (i
= 0; i
< nr_node_ids
; i
++)
7551 if (build_numa_sched_groups(&d
, cpu_map
, i
))
7555 /* Calculate CPU power for physical packages and nodes */
7556 #ifdef CONFIG_SCHED_SMT
7557 for_each_cpu(i
, cpu_map
) {
7558 sd
= &per_cpu(cpu_domains
, i
).sd
;
7559 init_sched_groups_power(i
, sd
);
7562 #ifdef CONFIG_SCHED_MC
7563 for_each_cpu(i
, cpu_map
) {
7564 sd
= &per_cpu(core_domains
, i
).sd
;
7565 init_sched_groups_power(i
, sd
);
7568 #ifdef CONFIG_SCHED_BOOK
7569 for_each_cpu(i
, cpu_map
) {
7570 sd
= &per_cpu(book_domains
, i
).sd
;
7571 init_sched_groups_power(i
, sd
);
7575 for_each_cpu(i
, cpu_map
) {
7576 sd
= &per_cpu(phys_domains
, i
).sd
;
7577 init_sched_groups_power(i
, sd
);
7581 for (i
= 0; i
< nr_node_ids
; i
++)
7582 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
7584 if (d
.sd_allnodes
) {
7585 struct sched_group
*sg
;
7587 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
7589 init_numa_sched_groups_power(sg
);
7593 /* Attach the domains */
7594 for_each_cpu(i
, cpu_map
) {
7595 #ifdef CONFIG_SCHED_SMT
7596 sd
= &per_cpu(cpu_domains
, i
).sd
;
7597 #elif defined(CONFIG_SCHED_MC)
7598 sd
= &per_cpu(core_domains
, i
).sd
;
7599 #elif defined(CONFIG_SCHED_BOOK)
7600 sd
= &per_cpu(book_domains
, i
).sd
;
7602 sd
= &per_cpu(phys_domains
, i
).sd
;
7604 cpu_attach_domain(sd
, d
.rd
, i
);
7607 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
7608 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
7612 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7616 static int build_sched_domains(const struct cpumask
*cpu_map
)
7618 return __build_sched_domains(cpu_map
, NULL
);
7621 static cpumask_var_t
*doms_cur
; /* current sched domains */
7622 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7623 static struct sched_domain_attr
*dattr_cur
;
7624 /* attribues of custom domains in 'doms_cur' */
7627 * Special case: If a kmalloc of a doms_cur partition (array of
7628 * cpumask) fails, then fallback to a single sched domain,
7629 * as determined by the single cpumask fallback_doms.
7631 static cpumask_var_t fallback_doms
;
7634 * arch_update_cpu_topology lets virtualized architectures update the
7635 * cpu core maps. It is supposed to return 1 if the topology changed
7636 * or 0 if it stayed the same.
7638 int __attribute__((weak
)) arch_update_cpu_topology(void)
7643 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7646 cpumask_var_t
*doms
;
7648 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7651 for (i
= 0; i
< ndoms
; i
++) {
7652 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7653 free_sched_domains(doms
, i
);
7660 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7663 for (i
= 0; i
< ndoms
; i
++)
7664 free_cpumask_var(doms
[i
]);
7669 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7670 * For now this just excludes isolated cpus, but could be used to
7671 * exclude other special cases in the future.
7673 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
7677 arch_update_cpu_topology();
7679 doms_cur
= alloc_sched_domains(ndoms_cur
);
7681 doms_cur
= &fallback_doms
;
7682 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7684 err
= build_sched_domains(doms_cur
[0]);
7685 register_sched_domain_sysctl();
7690 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
7691 struct cpumask
*tmpmask
)
7693 free_sched_groups(cpu_map
, tmpmask
);
7697 * Detach sched domains from a group of cpus specified in cpu_map
7698 * These cpus will now be attached to the NULL domain
7700 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7702 /* Save because hotplug lock held. */
7703 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
7706 for_each_cpu(i
, cpu_map
)
7707 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7708 synchronize_sched();
7709 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
7712 /* handle null as "default" */
7713 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7714 struct sched_domain_attr
*new, int idx_new
)
7716 struct sched_domain_attr tmp
;
7723 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7724 new ? (new + idx_new
) : &tmp
,
7725 sizeof(struct sched_domain_attr
));
7729 * Partition sched domains as specified by the 'ndoms_new'
7730 * cpumasks in the array doms_new[] of cpumasks. This compares
7731 * doms_new[] to the current sched domain partitioning, doms_cur[].
7732 * It destroys each deleted domain and builds each new domain.
7734 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7735 * The masks don't intersect (don't overlap.) We should setup one
7736 * sched domain for each mask. CPUs not in any of the cpumasks will
7737 * not be load balanced. If the same cpumask appears both in the
7738 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7741 * The passed in 'doms_new' should be allocated using
7742 * alloc_sched_domains. This routine takes ownership of it and will
7743 * free_sched_domains it when done with it. If the caller failed the
7744 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7745 * and partition_sched_domains() will fallback to the single partition
7746 * 'fallback_doms', it also forces the domains to be rebuilt.
7748 * If doms_new == NULL it will be replaced with cpu_online_mask.
7749 * ndoms_new == 0 is a special case for destroying existing domains,
7750 * and it will not create the default domain.
7752 * Call with hotplug lock held
7754 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7755 struct sched_domain_attr
*dattr_new
)
7760 mutex_lock(&sched_domains_mutex
);
7762 /* always unregister in case we don't destroy any domains */
7763 unregister_sched_domain_sysctl();
7765 /* Let architecture update cpu core mappings. */
7766 new_topology
= arch_update_cpu_topology();
7768 n
= doms_new
? ndoms_new
: 0;
7770 /* Destroy deleted domains */
7771 for (i
= 0; i
< ndoms_cur
; i
++) {
7772 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7773 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7774 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7777 /* no match - a current sched domain not in new doms_new[] */
7778 detach_destroy_domains(doms_cur
[i
]);
7783 if (doms_new
== NULL
) {
7785 doms_new
= &fallback_doms
;
7786 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7787 WARN_ON_ONCE(dattr_new
);
7790 /* Build new domains */
7791 for (i
= 0; i
< ndoms_new
; i
++) {
7792 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7793 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7794 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7797 /* no match - add a new doms_new */
7798 __build_sched_domains(doms_new
[i
],
7799 dattr_new
? dattr_new
+ i
: NULL
);
7804 /* Remember the new sched domains */
7805 if (doms_cur
!= &fallback_doms
)
7806 free_sched_domains(doms_cur
, ndoms_cur
);
7807 kfree(dattr_cur
); /* kfree(NULL) is safe */
7808 doms_cur
= doms_new
;
7809 dattr_cur
= dattr_new
;
7810 ndoms_cur
= ndoms_new
;
7812 register_sched_domain_sysctl();
7814 mutex_unlock(&sched_domains_mutex
);
7817 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7818 static void arch_reinit_sched_domains(void)
7822 /* Destroy domains first to force the rebuild */
7823 partition_sched_domains(0, NULL
, NULL
);
7825 rebuild_sched_domains();
7829 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7831 unsigned int level
= 0;
7833 if (sscanf(buf
, "%u", &level
) != 1)
7837 * level is always be positive so don't check for
7838 * level < POWERSAVINGS_BALANCE_NONE which is 0
7839 * What happens on 0 or 1 byte write,
7840 * need to check for count as well?
7843 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7847 sched_smt_power_savings
= level
;
7849 sched_mc_power_savings
= level
;
7851 arch_reinit_sched_domains();
7856 #ifdef CONFIG_SCHED_MC
7857 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7858 struct sysdev_class_attribute
*attr
,
7861 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7863 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7864 struct sysdev_class_attribute
*attr
,
7865 const char *buf
, size_t count
)
7867 return sched_power_savings_store(buf
, count
, 0);
7869 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7870 sched_mc_power_savings_show
,
7871 sched_mc_power_savings_store
);
7874 #ifdef CONFIG_SCHED_SMT
7875 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7876 struct sysdev_class_attribute
*attr
,
7879 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7881 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7882 struct sysdev_class_attribute
*attr
,
7883 const char *buf
, size_t count
)
7885 return sched_power_savings_store(buf
, count
, 1);
7887 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7888 sched_smt_power_savings_show
,
7889 sched_smt_power_savings_store
);
7892 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7896 #ifdef CONFIG_SCHED_SMT
7898 err
= sysfs_create_file(&cls
->kset
.kobj
,
7899 &attr_sched_smt_power_savings
.attr
);
7901 #ifdef CONFIG_SCHED_MC
7902 if (!err
&& mc_capable())
7903 err
= sysfs_create_file(&cls
->kset
.kobj
,
7904 &attr_sched_mc_power_savings
.attr
);
7908 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7911 * Update cpusets according to cpu_active mask. If cpusets are
7912 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7913 * around partition_sched_domains().
7915 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
7918 switch (action
& ~CPU_TASKS_FROZEN
) {
7920 case CPU_DOWN_FAILED
:
7921 cpuset_update_active_cpus();
7928 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
7931 switch (action
& ~CPU_TASKS_FROZEN
) {
7932 case CPU_DOWN_PREPARE
:
7933 cpuset_update_active_cpus();
7940 static int update_runtime(struct notifier_block
*nfb
,
7941 unsigned long action
, void *hcpu
)
7943 int cpu
= (int)(long)hcpu
;
7946 case CPU_DOWN_PREPARE
:
7947 case CPU_DOWN_PREPARE_FROZEN
:
7948 disable_runtime(cpu_rq(cpu
));
7951 case CPU_DOWN_FAILED
:
7952 case CPU_DOWN_FAILED_FROZEN
:
7954 case CPU_ONLINE_FROZEN
:
7955 enable_runtime(cpu_rq(cpu
));
7963 void __init
sched_init_smp(void)
7965 cpumask_var_t non_isolated_cpus
;
7967 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7968 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7970 #if defined(CONFIG_NUMA)
7971 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7973 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7976 mutex_lock(&sched_domains_mutex
);
7977 arch_init_sched_domains(cpu_active_mask
);
7978 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7979 if (cpumask_empty(non_isolated_cpus
))
7980 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7981 mutex_unlock(&sched_domains_mutex
);
7984 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
7985 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
7987 /* RT runtime code needs to handle some hotplug events */
7988 hotcpu_notifier(update_runtime
, 0);
7992 /* Move init over to a non-isolated CPU */
7993 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7995 sched_init_granularity();
7996 free_cpumask_var(non_isolated_cpus
);
7998 init_sched_rt_class();
8001 void __init
sched_init_smp(void)
8003 sched_init_granularity();
8005 #endif /* CONFIG_SMP */
8007 const_debug
unsigned int sysctl_timer_migration
= 1;
8009 int in_sched_functions(unsigned long addr
)
8011 return in_lock_functions(addr
) ||
8012 (addr
>= (unsigned long)__sched_text_start
8013 && addr
< (unsigned long)__sched_text_end
);
8016 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
8018 cfs_rq
->tasks_timeline
= RB_ROOT
;
8019 INIT_LIST_HEAD(&cfs_rq
->tasks
);
8020 #ifdef CONFIG_FAIR_GROUP_SCHED
8022 /* allow initial update_cfs_load() to truncate */
8024 cfs_rq
->load_stamp
= 1;
8027 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
8030 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
8032 struct rt_prio_array
*array
;
8035 array
= &rt_rq
->active
;
8036 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
8037 INIT_LIST_HEAD(array
->queue
+ i
);
8038 __clear_bit(i
, array
->bitmap
);
8040 /* delimiter for bitsearch: */
8041 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
8043 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8044 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
8046 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
8050 rt_rq
->rt_nr_migratory
= 0;
8051 rt_rq
->overloaded
= 0;
8052 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
8056 rt_rq
->rt_throttled
= 0;
8057 rt_rq
->rt_runtime
= 0;
8058 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
8060 #ifdef CONFIG_RT_GROUP_SCHED
8061 rt_rq
->rt_nr_boosted
= 0;
8066 #ifdef CONFIG_FAIR_GROUP_SCHED
8067 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8068 struct sched_entity
*se
, int cpu
,
8069 struct sched_entity
*parent
)
8071 struct rq
*rq
= cpu_rq(cpu
);
8072 tg
->cfs_rq
[cpu
] = cfs_rq
;
8073 init_cfs_rq(cfs_rq
, rq
);
8077 /* se could be NULL for root_task_group */
8082 se
->cfs_rq
= &rq
->cfs
;
8084 se
->cfs_rq
= parent
->my_q
;
8087 update_load_set(&se
->load
, 0);
8088 se
->parent
= parent
;
8092 #ifdef CONFIG_RT_GROUP_SCHED
8093 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
8094 struct sched_rt_entity
*rt_se
, int cpu
,
8095 struct sched_rt_entity
*parent
)
8097 struct rq
*rq
= cpu_rq(cpu
);
8099 tg
->rt_rq
[cpu
] = rt_rq
;
8100 init_rt_rq(rt_rq
, rq
);
8102 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8104 tg
->rt_se
[cpu
] = rt_se
;
8109 rt_se
->rt_rq
= &rq
->rt
;
8111 rt_se
->rt_rq
= parent
->my_q
;
8113 rt_se
->my_q
= rt_rq
;
8114 rt_se
->parent
= parent
;
8115 INIT_LIST_HEAD(&rt_se
->run_list
);
8119 void __init
sched_init(void)
8122 unsigned long alloc_size
= 0, ptr
;
8124 #ifdef CONFIG_FAIR_GROUP_SCHED
8125 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8127 #ifdef CONFIG_RT_GROUP_SCHED
8128 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8130 #ifdef CONFIG_CPUMASK_OFFSTACK
8131 alloc_size
+= num_possible_cpus() * cpumask_size();
8134 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
8136 #ifdef CONFIG_FAIR_GROUP_SCHED
8137 root_task_group
.se
= (struct sched_entity
**)ptr
;
8138 ptr
+= nr_cpu_ids
* sizeof(void **);
8140 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8141 ptr
+= nr_cpu_ids
* sizeof(void **);
8143 #endif /* CONFIG_FAIR_GROUP_SCHED */
8144 #ifdef CONFIG_RT_GROUP_SCHED
8145 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8146 ptr
+= nr_cpu_ids
* sizeof(void **);
8148 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8149 ptr
+= nr_cpu_ids
* sizeof(void **);
8151 #endif /* CONFIG_RT_GROUP_SCHED */
8152 #ifdef CONFIG_CPUMASK_OFFSTACK
8153 for_each_possible_cpu(i
) {
8154 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
8155 ptr
+= cpumask_size();
8157 #endif /* CONFIG_CPUMASK_OFFSTACK */
8161 init_defrootdomain();
8164 init_rt_bandwidth(&def_rt_bandwidth
,
8165 global_rt_period(), global_rt_runtime());
8167 #ifdef CONFIG_RT_GROUP_SCHED
8168 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8169 global_rt_period(), global_rt_runtime());
8170 #endif /* CONFIG_RT_GROUP_SCHED */
8172 #ifdef CONFIG_CGROUP_SCHED
8173 list_add(&root_task_group
.list
, &task_groups
);
8174 INIT_LIST_HEAD(&root_task_group
.children
);
8175 autogroup_init(&init_task
);
8176 #endif /* CONFIG_CGROUP_SCHED */
8178 for_each_possible_cpu(i
) {
8182 raw_spin_lock_init(&rq
->lock
);
8184 rq
->calc_load_active
= 0;
8185 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
8186 init_cfs_rq(&rq
->cfs
, rq
);
8187 init_rt_rq(&rq
->rt
, rq
);
8188 #ifdef CONFIG_FAIR_GROUP_SCHED
8189 root_task_group
.shares
= root_task_group_load
;
8190 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8192 * How much cpu bandwidth does root_task_group get?
8194 * In case of task-groups formed thr' the cgroup filesystem, it
8195 * gets 100% of the cpu resources in the system. This overall
8196 * system cpu resource is divided among the tasks of
8197 * root_task_group and its child task-groups in a fair manner,
8198 * based on each entity's (task or task-group's) weight
8199 * (se->load.weight).
8201 * In other words, if root_task_group has 10 tasks of weight
8202 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8203 * then A0's share of the cpu resource is:
8205 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8207 * We achieve this by letting root_task_group's tasks sit
8208 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8210 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
8211 #endif /* CONFIG_FAIR_GROUP_SCHED */
8213 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8214 #ifdef CONFIG_RT_GROUP_SCHED
8215 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8216 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
8219 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8220 rq
->cpu_load
[j
] = 0;
8222 rq
->last_load_update_tick
= jiffies
;
8227 rq
->cpu_power
= SCHED_LOAD_SCALE
;
8228 rq
->post_schedule
= 0;
8229 rq
->active_balance
= 0;
8230 rq
->next_balance
= jiffies
;
8235 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
8236 rq_attach_root(rq
, &def_root_domain
);
8238 rq
->nohz_balance_kick
= 0;
8239 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb
, i
));
8243 atomic_set(&rq
->nr_iowait
, 0);
8246 set_load_weight(&init_task
);
8248 #ifdef CONFIG_PREEMPT_NOTIFIERS
8249 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8253 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8256 #ifdef CONFIG_RT_MUTEXES
8257 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8261 * The boot idle thread does lazy MMU switching as well:
8263 atomic_inc(&init_mm
.mm_count
);
8264 enter_lazy_tlb(&init_mm
, current
);
8267 * Make us the idle thread. Technically, schedule() should not be
8268 * called from this thread, however somewhere below it might be,
8269 * but because we are the idle thread, we just pick up running again
8270 * when this runqueue becomes "idle".
8272 init_idle(current
, smp_processor_id());
8274 calc_load_update
= jiffies
+ LOAD_FREQ
;
8277 * During early bootup we pretend to be a normal task:
8279 current
->sched_class
= &fair_sched_class
;
8281 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8282 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
8285 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
8286 alloc_cpumask_var(&nohz
.grp_idle_mask
, GFP_NOWAIT
);
8287 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
8288 atomic_set(&nohz
.first_pick_cpu
, nr_cpu_ids
);
8289 atomic_set(&nohz
.second_pick_cpu
, nr_cpu_ids
);
8291 /* May be allocated at isolcpus cmdline parse time */
8292 if (cpu_isolated_map
== NULL
)
8293 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
8296 scheduler_running
= 1;
8299 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8300 static inline int preempt_count_equals(int preempt_offset
)
8302 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
8304 return (nested
== preempt_offset
);
8307 void __might_sleep(const char *file
, int line
, int preempt_offset
)
8310 static unsigned long prev_jiffy
; /* ratelimiting */
8312 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
8313 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8315 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8317 prev_jiffy
= jiffies
;
8320 "BUG: sleeping function called from invalid context at %s:%d\n",
8323 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8324 in_atomic(), irqs_disabled(),
8325 current
->pid
, current
->comm
);
8327 debug_show_held_locks(current
);
8328 if (irqs_disabled())
8329 print_irqtrace_events(current
);
8333 EXPORT_SYMBOL(__might_sleep
);
8336 #ifdef CONFIG_MAGIC_SYSRQ
8337 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8339 const struct sched_class
*prev_class
= p
->sched_class
;
8340 int old_prio
= p
->prio
;
8343 on_rq
= p
->se
.on_rq
;
8345 deactivate_task(rq
, p
, 0);
8346 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8348 activate_task(rq
, p
, 0);
8349 resched_task(rq
->curr
);
8352 check_class_changed(rq
, p
, prev_class
, old_prio
);
8355 void normalize_rt_tasks(void)
8357 struct task_struct
*g
, *p
;
8358 unsigned long flags
;
8361 read_lock_irqsave(&tasklist_lock
, flags
);
8362 do_each_thread(g
, p
) {
8364 * Only normalize user tasks:
8369 p
->se
.exec_start
= 0;
8370 #ifdef CONFIG_SCHEDSTATS
8371 p
->se
.statistics
.wait_start
= 0;
8372 p
->se
.statistics
.sleep_start
= 0;
8373 p
->se
.statistics
.block_start
= 0;
8378 * Renice negative nice level userspace
8381 if (TASK_NICE(p
) < 0 && p
->mm
)
8382 set_user_nice(p
, 0);
8386 raw_spin_lock(&p
->pi_lock
);
8387 rq
= __task_rq_lock(p
);
8389 normalize_task(rq
, p
);
8391 __task_rq_unlock(rq
);
8392 raw_spin_unlock(&p
->pi_lock
);
8393 } while_each_thread(g
, p
);
8395 read_unlock_irqrestore(&tasklist_lock
, flags
);
8398 #endif /* CONFIG_MAGIC_SYSRQ */
8400 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8402 * These functions are only useful for the IA64 MCA handling, or kdb.
8404 * They can only be called when the whole system has been
8405 * stopped - every CPU needs to be quiescent, and no scheduling
8406 * activity can take place. Using them for anything else would
8407 * be a serious bug, and as a result, they aren't even visible
8408 * under any other configuration.
8412 * curr_task - return the current task for a given cpu.
8413 * @cpu: the processor in question.
8415 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8417 struct task_struct
*curr_task(int cpu
)
8419 return cpu_curr(cpu
);
8422 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8426 * set_curr_task - set the current task for a given cpu.
8427 * @cpu: the processor in question.
8428 * @p: the task pointer to set.
8430 * Description: This function must only be used when non-maskable interrupts
8431 * are serviced on a separate stack. It allows the architecture to switch the
8432 * notion of the current task on a cpu in a non-blocking manner. This function
8433 * must be called with all CPU's synchronized, and interrupts disabled, the
8434 * and caller must save the original value of the current task (see
8435 * curr_task() above) and restore that value before reenabling interrupts and
8436 * re-starting the system.
8438 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8440 void set_curr_task(int cpu
, struct task_struct
*p
)
8447 #ifdef CONFIG_FAIR_GROUP_SCHED
8448 static void free_fair_sched_group(struct task_group
*tg
)
8452 for_each_possible_cpu(i
) {
8454 kfree(tg
->cfs_rq
[i
]);
8464 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8466 struct cfs_rq
*cfs_rq
;
8467 struct sched_entity
*se
;
8470 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8473 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8477 tg
->shares
= NICE_0_LOAD
;
8479 for_each_possible_cpu(i
) {
8480 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8481 GFP_KERNEL
, cpu_to_node(i
));
8485 se
= kzalloc_node(sizeof(struct sched_entity
),
8486 GFP_KERNEL
, cpu_to_node(i
));
8490 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
8501 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8503 struct rq
*rq
= cpu_rq(cpu
);
8504 unsigned long flags
;
8507 * Only empty task groups can be destroyed; so we can speculatively
8508 * check on_list without danger of it being re-added.
8510 if (!tg
->cfs_rq
[cpu
]->on_list
)
8513 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8514 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
8515 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8517 #else /* !CONFG_FAIR_GROUP_SCHED */
8518 static inline void free_fair_sched_group(struct task_group
*tg
)
8523 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8528 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8531 #endif /* CONFIG_FAIR_GROUP_SCHED */
8533 #ifdef CONFIG_RT_GROUP_SCHED
8534 static void free_rt_sched_group(struct task_group
*tg
)
8538 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8540 for_each_possible_cpu(i
) {
8542 kfree(tg
->rt_rq
[i
]);
8544 kfree(tg
->rt_se
[i
]);
8552 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8554 struct rt_rq
*rt_rq
;
8555 struct sched_rt_entity
*rt_se
;
8559 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8562 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8566 init_rt_bandwidth(&tg
->rt_bandwidth
,
8567 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8569 for_each_possible_cpu(i
) {
8572 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8573 GFP_KERNEL
, cpu_to_node(i
));
8577 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8578 GFP_KERNEL
, cpu_to_node(i
));
8582 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
8592 #else /* !CONFIG_RT_GROUP_SCHED */
8593 static inline void free_rt_sched_group(struct task_group
*tg
)
8598 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8602 #endif /* CONFIG_RT_GROUP_SCHED */
8604 #ifdef CONFIG_CGROUP_SCHED
8605 static void free_sched_group(struct task_group
*tg
)
8607 free_fair_sched_group(tg
);
8608 free_rt_sched_group(tg
);
8613 /* allocate runqueue etc for a new task group */
8614 struct task_group
*sched_create_group(struct task_group
*parent
)
8616 struct task_group
*tg
;
8617 unsigned long flags
;
8619 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8621 return ERR_PTR(-ENOMEM
);
8623 if (!alloc_fair_sched_group(tg
, parent
))
8626 if (!alloc_rt_sched_group(tg
, parent
))
8629 spin_lock_irqsave(&task_group_lock
, flags
);
8630 list_add_rcu(&tg
->list
, &task_groups
);
8632 WARN_ON(!parent
); /* root should already exist */
8634 tg
->parent
= parent
;
8635 INIT_LIST_HEAD(&tg
->children
);
8636 list_add_rcu(&tg
->siblings
, &parent
->children
);
8637 spin_unlock_irqrestore(&task_group_lock
, flags
);
8642 free_sched_group(tg
);
8643 return ERR_PTR(-ENOMEM
);
8646 /* rcu callback to free various structures associated with a task group */
8647 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8649 /* now it should be safe to free those cfs_rqs */
8650 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8653 /* Destroy runqueue etc associated with a task group */
8654 void sched_destroy_group(struct task_group
*tg
)
8656 unsigned long flags
;
8659 /* end participation in shares distribution */
8660 for_each_possible_cpu(i
)
8661 unregister_fair_sched_group(tg
, i
);
8663 spin_lock_irqsave(&task_group_lock
, flags
);
8664 list_del_rcu(&tg
->list
);
8665 list_del_rcu(&tg
->siblings
);
8666 spin_unlock_irqrestore(&task_group_lock
, flags
);
8668 /* wait for possible concurrent references to cfs_rqs complete */
8669 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8672 /* change task's runqueue when it moves between groups.
8673 * The caller of this function should have put the task in its new group
8674 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8675 * reflect its new group.
8677 void sched_move_task(struct task_struct
*tsk
)
8680 unsigned long flags
;
8683 rq
= task_rq_lock(tsk
, &flags
);
8685 running
= task_current(rq
, tsk
);
8686 on_rq
= tsk
->se
.on_rq
;
8689 dequeue_task(rq
, tsk
, 0);
8690 if (unlikely(running
))
8691 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8693 #ifdef CONFIG_FAIR_GROUP_SCHED
8694 if (tsk
->sched_class
->task_move_group
)
8695 tsk
->sched_class
->task_move_group(tsk
, on_rq
);
8698 set_task_rq(tsk
, task_cpu(tsk
));
8700 if (unlikely(running
))
8701 tsk
->sched_class
->set_curr_task(rq
);
8703 enqueue_task(rq
, tsk
, 0);
8705 task_rq_unlock(rq
, &flags
);
8707 #endif /* CONFIG_CGROUP_SCHED */
8709 #ifdef CONFIG_FAIR_GROUP_SCHED
8710 static DEFINE_MUTEX(shares_mutex
);
8712 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8715 unsigned long flags
;
8718 * We can't change the weight of the root cgroup.
8723 if (shares
< MIN_SHARES
)
8724 shares
= MIN_SHARES
;
8725 else if (shares
> MAX_SHARES
)
8726 shares
= MAX_SHARES
;
8728 mutex_lock(&shares_mutex
);
8729 if (tg
->shares
== shares
)
8732 tg
->shares
= shares
;
8733 for_each_possible_cpu(i
) {
8734 struct rq
*rq
= cpu_rq(i
);
8735 struct sched_entity
*se
;
8738 /* Propagate contribution to hierarchy */
8739 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8740 for_each_sched_entity(se
)
8741 update_cfs_shares(group_cfs_rq(se
));
8742 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8746 mutex_unlock(&shares_mutex
);
8750 unsigned long sched_group_shares(struct task_group
*tg
)
8756 #ifdef CONFIG_RT_GROUP_SCHED
8758 * Ensure that the real time constraints are schedulable.
8760 static DEFINE_MUTEX(rt_constraints_mutex
);
8762 static unsigned long to_ratio(u64 period
, u64 runtime
)
8764 if (runtime
== RUNTIME_INF
)
8767 return div64_u64(runtime
<< 20, period
);
8770 /* Must be called with tasklist_lock held */
8771 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8773 struct task_struct
*g
, *p
;
8775 do_each_thread(g
, p
) {
8776 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8778 } while_each_thread(g
, p
);
8783 struct rt_schedulable_data
{
8784 struct task_group
*tg
;
8789 static int tg_schedulable(struct task_group
*tg
, void *data
)
8791 struct rt_schedulable_data
*d
= data
;
8792 struct task_group
*child
;
8793 unsigned long total
, sum
= 0;
8794 u64 period
, runtime
;
8796 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8797 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8800 period
= d
->rt_period
;
8801 runtime
= d
->rt_runtime
;
8805 * Cannot have more runtime than the period.
8807 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8811 * Ensure we don't starve existing RT tasks.
8813 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8816 total
= to_ratio(period
, runtime
);
8819 * Nobody can have more than the global setting allows.
8821 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8825 * The sum of our children's runtime should not exceed our own.
8827 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8828 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8829 runtime
= child
->rt_bandwidth
.rt_runtime
;
8831 if (child
== d
->tg
) {
8832 period
= d
->rt_period
;
8833 runtime
= d
->rt_runtime
;
8836 sum
+= to_ratio(period
, runtime
);
8845 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8847 struct rt_schedulable_data data
= {
8849 .rt_period
= period
,
8850 .rt_runtime
= runtime
,
8853 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8856 static int tg_set_bandwidth(struct task_group
*tg
,
8857 u64 rt_period
, u64 rt_runtime
)
8861 mutex_lock(&rt_constraints_mutex
);
8862 read_lock(&tasklist_lock
);
8863 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8867 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8868 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8869 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8871 for_each_possible_cpu(i
) {
8872 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8874 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8875 rt_rq
->rt_runtime
= rt_runtime
;
8876 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8878 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8880 read_unlock(&tasklist_lock
);
8881 mutex_unlock(&rt_constraints_mutex
);
8886 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8888 u64 rt_runtime
, rt_period
;
8890 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8891 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8892 if (rt_runtime_us
< 0)
8893 rt_runtime
= RUNTIME_INF
;
8895 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8898 long sched_group_rt_runtime(struct task_group
*tg
)
8902 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8905 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8906 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8907 return rt_runtime_us
;
8910 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8912 u64 rt_runtime
, rt_period
;
8914 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8915 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8920 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8923 long sched_group_rt_period(struct task_group
*tg
)
8927 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8928 do_div(rt_period_us
, NSEC_PER_USEC
);
8929 return rt_period_us
;
8932 static int sched_rt_global_constraints(void)
8934 u64 runtime
, period
;
8937 if (sysctl_sched_rt_period
<= 0)
8940 runtime
= global_rt_runtime();
8941 period
= global_rt_period();
8944 * Sanity check on the sysctl variables.
8946 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8949 mutex_lock(&rt_constraints_mutex
);
8950 read_lock(&tasklist_lock
);
8951 ret
= __rt_schedulable(NULL
, 0, 0);
8952 read_unlock(&tasklist_lock
);
8953 mutex_unlock(&rt_constraints_mutex
);
8958 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8960 /* Don't accept realtime tasks when there is no way for them to run */
8961 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8967 #else /* !CONFIG_RT_GROUP_SCHED */
8968 static int sched_rt_global_constraints(void)
8970 unsigned long flags
;
8973 if (sysctl_sched_rt_period
<= 0)
8977 * There's always some RT tasks in the root group
8978 * -- migration, kstopmachine etc..
8980 if (sysctl_sched_rt_runtime
== 0)
8983 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8984 for_each_possible_cpu(i
) {
8985 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8987 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8988 rt_rq
->rt_runtime
= global_rt_runtime();
8989 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8991 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8995 #endif /* CONFIG_RT_GROUP_SCHED */
8997 int sched_rt_handler(struct ctl_table
*table
, int write
,
8998 void __user
*buffer
, size_t *lenp
,
9002 int old_period
, old_runtime
;
9003 static DEFINE_MUTEX(mutex
);
9006 old_period
= sysctl_sched_rt_period
;
9007 old_runtime
= sysctl_sched_rt_runtime
;
9009 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
9011 if (!ret
&& write
) {
9012 ret
= sched_rt_global_constraints();
9014 sysctl_sched_rt_period
= old_period
;
9015 sysctl_sched_rt_runtime
= old_runtime
;
9017 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
9018 def_rt_bandwidth
.rt_period
=
9019 ns_to_ktime(global_rt_period());
9022 mutex_unlock(&mutex
);
9027 #ifdef CONFIG_CGROUP_SCHED
9029 /* return corresponding task_group object of a cgroup */
9030 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
9032 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
9033 struct task_group
, css
);
9036 static struct cgroup_subsys_state
*
9037 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9039 struct task_group
*tg
, *parent
;
9041 if (!cgrp
->parent
) {
9042 /* This is early initialization for the top cgroup */
9043 return &root_task_group
.css
;
9046 parent
= cgroup_tg(cgrp
->parent
);
9047 tg
= sched_create_group(parent
);
9049 return ERR_PTR(-ENOMEM
);
9055 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9057 struct task_group
*tg
= cgroup_tg(cgrp
);
9059 sched_destroy_group(tg
);
9063 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
9065 #ifdef CONFIG_RT_GROUP_SCHED
9066 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
9069 /* We don't support RT-tasks being in separate groups */
9070 if (tsk
->sched_class
!= &fair_sched_class
)
9077 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9078 struct task_struct
*tsk
, bool threadgroup
)
9080 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
9084 struct task_struct
*c
;
9086 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
9087 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
9099 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9100 struct cgroup
*old_cont
, struct task_struct
*tsk
,
9103 sched_move_task(tsk
);
9105 struct task_struct
*c
;
9107 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
9115 cpu_cgroup_exit(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9116 struct cgroup
*old_cgrp
, struct task_struct
*task
)
9119 * cgroup_exit() is called in the copy_process() failure path.
9120 * Ignore this case since the task hasn't ran yet, this avoids
9121 * trying to poke a half freed task state from generic code.
9123 if (!(task
->flags
& PF_EXITING
))
9126 sched_move_task(task
);
9129 #ifdef CONFIG_FAIR_GROUP_SCHED
9130 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9133 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
9136 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9138 struct task_group
*tg
= cgroup_tg(cgrp
);
9140 return (u64
) tg
->shares
;
9142 #endif /* CONFIG_FAIR_GROUP_SCHED */
9144 #ifdef CONFIG_RT_GROUP_SCHED
9145 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9148 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9151 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9153 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9156 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9159 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9162 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9164 return sched_group_rt_period(cgroup_tg(cgrp
));
9166 #endif /* CONFIG_RT_GROUP_SCHED */
9168 static struct cftype cpu_files
[] = {
9169 #ifdef CONFIG_FAIR_GROUP_SCHED
9172 .read_u64
= cpu_shares_read_u64
,
9173 .write_u64
= cpu_shares_write_u64
,
9176 #ifdef CONFIG_RT_GROUP_SCHED
9178 .name
= "rt_runtime_us",
9179 .read_s64
= cpu_rt_runtime_read
,
9180 .write_s64
= cpu_rt_runtime_write
,
9183 .name
= "rt_period_us",
9184 .read_u64
= cpu_rt_period_read_uint
,
9185 .write_u64
= cpu_rt_period_write_uint
,
9190 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9192 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9195 struct cgroup_subsys cpu_cgroup_subsys
= {
9197 .create
= cpu_cgroup_create
,
9198 .destroy
= cpu_cgroup_destroy
,
9199 .can_attach
= cpu_cgroup_can_attach
,
9200 .attach
= cpu_cgroup_attach
,
9201 .exit
= cpu_cgroup_exit
,
9202 .populate
= cpu_cgroup_populate
,
9203 .subsys_id
= cpu_cgroup_subsys_id
,
9207 #endif /* CONFIG_CGROUP_SCHED */
9209 #ifdef CONFIG_CGROUP_CPUACCT
9212 * CPU accounting code for task groups.
9214 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9215 * (balbir@in.ibm.com).
9218 /* track cpu usage of a group of tasks and its child groups */
9220 struct cgroup_subsys_state css
;
9221 /* cpuusage holds pointer to a u64-type object on every cpu */
9222 u64 __percpu
*cpuusage
;
9223 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
9224 struct cpuacct
*parent
;
9227 struct cgroup_subsys cpuacct_subsys
;
9229 /* return cpu accounting group corresponding to this container */
9230 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9232 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9233 struct cpuacct
, css
);
9236 /* return cpu accounting group to which this task belongs */
9237 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9239 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9240 struct cpuacct
, css
);
9243 /* create a new cpu accounting group */
9244 static struct cgroup_subsys_state
*cpuacct_create(
9245 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9247 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9253 ca
->cpuusage
= alloc_percpu(u64
);
9257 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9258 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
9259 goto out_free_counters
;
9262 ca
->parent
= cgroup_ca(cgrp
->parent
);
9268 percpu_counter_destroy(&ca
->cpustat
[i
]);
9269 free_percpu(ca
->cpuusage
);
9273 return ERR_PTR(-ENOMEM
);
9276 /* destroy an existing cpu accounting group */
9278 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9280 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9283 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9284 percpu_counter_destroy(&ca
->cpustat
[i
]);
9285 free_percpu(ca
->cpuusage
);
9289 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
9291 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9294 #ifndef CONFIG_64BIT
9296 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9298 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9300 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9308 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9310 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9312 #ifndef CONFIG_64BIT
9314 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9316 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9318 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9324 /* return total cpu usage (in nanoseconds) of a group */
9325 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9327 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9328 u64 totalcpuusage
= 0;
9331 for_each_present_cpu(i
)
9332 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9334 return totalcpuusage
;
9337 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9340 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9349 for_each_present_cpu(i
)
9350 cpuacct_cpuusage_write(ca
, i
, 0);
9356 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9359 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9363 for_each_present_cpu(i
) {
9364 percpu
= cpuacct_cpuusage_read(ca
, i
);
9365 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9367 seq_printf(m
, "\n");
9371 static const char *cpuacct_stat_desc
[] = {
9372 [CPUACCT_STAT_USER
] = "user",
9373 [CPUACCT_STAT_SYSTEM
] = "system",
9376 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
9377 struct cgroup_map_cb
*cb
)
9379 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9382 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
9383 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
9384 val
= cputime64_to_clock_t(val
);
9385 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
9390 static struct cftype files
[] = {
9393 .read_u64
= cpuusage_read
,
9394 .write_u64
= cpuusage_write
,
9397 .name
= "usage_percpu",
9398 .read_seq_string
= cpuacct_percpu_seq_read
,
9402 .read_map
= cpuacct_stats_show
,
9406 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9408 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9412 * charge this task's execution time to its accounting group.
9414 * called with rq->lock held.
9416 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9421 if (unlikely(!cpuacct_subsys
.active
))
9424 cpu
= task_cpu(tsk
);
9430 for (; ca
; ca
= ca
->parent
) {
9431 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9432 *cpuusage
+= cputime
;
9439 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9440 * in cputime_t units. As a result, cpuacct_update_stats calls
9441 * percpu_counter_add with values large enough to always overflow the
9442 * per cpu batch limit causing bad SMP scalability.
9444 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9445 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9446 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9449 #define CPUACCT_BATCH \
9450 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9452 #define CPUACCT_BATCH 0
9456 * Charge the system/user time to the task's accounting group.
9458 static void cpuacct_update_stats(struct task_struct
*tsk
,
9459 enum cpuacct_stat_index idx
, cputime_t val
)
9462 int batch
= CPUACCT_BATCH
;
9464 if (unlikely(!cpuacct_subsys
.active
))
9471 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
9477 struct cgroup_subsys cpuacct_subsys
= {
9479 .create
= cpuacct_create
,
9480 .destroy
= cpuacct_destroy
,
9481 .populate
= cpuacct_populate
,
9482 .subsys_id
= cpuacct_subsys_id
,
9484 #endif /* CONFIG_CGROUP_CPUACCT */