pcie: utilize pcie transaction pending bit
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_mount.c
blobebdb76da527c81d6c021e0ffe995ef1395393c9e
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
47 STATIC void xfs_mount_log_sbunit(xfs_mount_t *, __int64_t);
48 STATIC int xfs_uuid_mount(xfs_mount_t *);
49 STATIC void xfs_uuid_unmount(xfs_mount_t *mp);
50 STATIC void xfs_unmountfs_wait(xfs_mount_t *);
53 #ifdef HAVE_PERCPU_SB
54 STATIC void xfs_icsb_destroy_counters(xfs_mount_t *);
55 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
56 int, int);
57 STATIC void xfs_icsb_sync_counters(xfs_mount_t *);
58 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
59 int64_t, int);
60 STATIC int xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
62 #else
64 #define xfs_icsb_destroy_counters(mp) do { } while (0)
65 #define xfs_icsb_balance_counter(mp, a, b, c) do { } while (0)
66 #define xfs_icsb_sync_counters(mp) do { } while (0)
67 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
69 #endif
71 static const struct {
72 short offset;
73 short type; /* 0 = integer
74 * 1 = binary / string (no translation)
76 } xfs_sb_info[] = {
77 { offsetof(xfs_sb_t, sb_magicnum), 0 },
78 { offsetof(xfs_sb_t, sb_blocksize), 0 },
79 { offsetof(xfs_sb_t, sb_dblocks), 0 },
80 { offsetof(xfs_sb_t, sb_rblocks), 0 },
81 { offsetof(xfs_sb_t, sb_rextents), 0 },
82 { offsetof(xfs_sb_t, sb_uuid), 1 },
83 { offsetof(xfs_sb_t, sb_logstart), 0 },
84 { offsetof(xfs_sb_t, sb_rootino), 0 },
85 { offsetof(xfs_sb_t, sb_rbmino), 0 },
86 { offsetof(xfs_sb_t, sb_rsumino), 0 },
87 { offsetof(xfs_sb_t, sb_rextsize), 0 },
88 { offsetof(xfs_sb_t, sb_agblocks), 0 },
89 { offsetof(xfs_sb_t, sb_agcount), 0 },
90 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
91 { offsetof(xfs_sb_t, sb_logblocks), 0 },
92 { offsetof(xfs_sb_t, sb_versionnum), 0 },
93 { offsetof(xfs_sb_t, sb_sectsize), 0 },
94 { offsetof(xfs_sb_t, sb_inodesize), 0 },
95 { offsetof(xfs_sb_t, sb_inopblock), 0 },
96 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
97 { offsetof(xfs_sb_t, sb_blocklog), 0 },
98 { offsetof(xfs_sb_t, sb_sectlog), 0 },
99 { offsetof(xfs_sb_t, sb_inodelog), 0 },
100 { offsetof(xfs_sb_t, sb_inopblog), 0 },
101 { offsetof(xfs_sb_t, sb_agblklog), 0 },
102 { offsetof(xfs_sb_t, sb_rextslog), 0 },
103 { offsetof(xfs_sb_t, sb_inprogress), 0 },
104 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
105 { offsetof(xfs_sb_t, sb_icount), 0 },
106 { offsetof(xfs_sb_t, sb_ifree), 0 },
107 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
108 { offsetof(xfs_sb_t, sb_frextents), 0 },
109 { offsetof(xfs_sb_t, sb_uquotino), 0 },
110 { offsetof(xfs_sb_t, sb_gquotino), 0 },
111 { offsetof(xfs_sb_t, sb_qflags), 0 },
112 { offsetof(xfs_sb_t, sb_flags), 0 },
113 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
114 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
115 { offsetof(xfs_sb_t, sb_unit), 0 },
116 { offsetof(xfs_sb_t, sb_width), 0 },
117 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
118 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
119 { offsetof(xfs_sb_t, sb_logsectsize),0 },
120 { offsetof(xfs_sb_t, sb_logsunit), 0 },
121 { offsetof(xfs_sb_t, sb_features2), 0 },
122 { sizeof(xfs_sb_t), 0 }
126 * Return a pointer to an initialized xfs_mount structure.
128 xfs_mount_t *
129 xfs_mount_init(void)
131 xfs_mount_t *mp;
133 mp = kmem_zalloc(sizeof(xfs_mount_t), KM_SLEEP);
135 if (xfs_icsb_init_counters(mp)) {
136 mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB;
139 AIL_LOCKINIT(&mp->m_ail_lock, "xfs_ail");
140 spinlock_init(&mp->m_sb_lock, "xfs_sb");
141 mutex_init(&mp->m_ilock);
142 mutex_init(&mp->m_growlock);
144 * Initialize the AIL.
146 xfs_trans_ail_init(mp);
148 atomic_set(&mp->m_active_trans, 0);
150 return mp;
154 * Free up the resources associated with a mount structure. Assume that
155 * the structure was initially zeroed, so we can tell which fields got
156 * initialized.
158 void
159 xfs_mount_free(
160 xfs_mount_t *mp)
162 if (mp->m_perag) {
163 int agno;
165 for (agno = 0; agno < mp->m_maxagi; agno++)
166 if (mp->m_perag[agno].pagb_list)
167 kmem_free(mp->m_perag[agno].pagb_list,
168 sizeof(xfs_perag_busy_t) *
169 XFS_PAGB_NUM_SLOTS);
170 kmem_free(mp->m_perag,
171 sizeof(xfs_perag_t) * mp->m_sb.sb_agcount);
174 AIL_LOCK_DESTROY(&mp->m_ail_lock);
175 spinlock_destroy(&mp->m_sb_lock);
176 mutex_destroy(&mp->m_ilock);
177 mutex_destroy(&mp->m_growlock);
178 if (mp->m_quotainfo)
179 XFS_QM_DONE(mp);
181 if (mp->m_fsname != NULL)
182 kmem_free(mp->m_fsname, mp->m_fsname_len);
183 if (mp->m_rtname != NULL)
184 kmem_free(mp->m_rtname, strlen(mp->m_rtname) + 1);
185 if (mp->m_logname != NULL)
186 kmem_free(mp->m_logname, strlen(mp->m_logname) + 1);
188 xfs_icsb_destroy_counters(mp);
192 * Check size of device based on the (data/realtime) block count.
193 * Note: this check is used by the growfs code as well as mount.
196 xfs_sb_validate_fsb_count(
197 xfs_sb_t *sbp,
198 __uint64_t nblocks)
200 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
201 ASSERT(sbp->sb_blocklog >= BBSHIFT);
203 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
204 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
205 return E2BIG;
206 #else /* Limited by UINT_MAX of sectors */
207 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
208 return E2BIG;
209 #endif
210 return 0;
214 * Check the validity of the SB found.
216 STATIC int
217 xfs_mount_validate_sb(
218 xfs_mount_t *mp,
219 xfs_sb_t *sbp,
220 int flags)
223 * If the log device and data device have the
224 * same device number, the log is internal.
225 * Consequently, the sb_logstart should be non-zero. If
226 * we have a zero sb_logstart in this case, we may be trying to mount
227 * a volume filesystem in a non-volume manner.
229 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
230 xfs_fs_mount_cmn_err(flags, "bad magic number");
231 return XFS_ERROR(EWRONGFS);
234 if (!XFS_SB_GOOD_VERSION(sbp)) {
235 xfs_fs_mount_cmn_err(flags, "bad version");
236 return XFS_ERROR(EWRONGFS);
239 if (unlikely(
240 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
241 xfs_fs_mount_cmn_err(flags,
242 "filesystem is marked as having an external log; "
243 "specify logdev on the\nmount command line.");
244 return XFS_ERROR(EINVAL);
247 if (unlikely(
248 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
249 xfs_fs_mount_cmn_err(flags,
250 "filesystem is marked as having an internal log; "
251 "do not specify logdev on\nthe mount command line.");
252 return XFS_ERROR(EINVAL);
256 * More sanity checking. These were stolen directly from
257 * xfs_repair.
259 if (unlikely(
260 sbp->sb_agcount <= 0 ||
261 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
262 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
263 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
264 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
265 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
266 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
267 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
268 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
269 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
270 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
271 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
272 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
273 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
274 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
275 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
276 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
277 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
278 return XFS_ERROR(EFSCORRUPTED);
282 * Sanity check AG count, size fields against data size field
284 if (unlikely(
285 sbp->sb_dblocks == 0 ||
286 sbp->sb_dblocks >
287 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
288 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
289 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
290 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
291 return XFS_ERROR(EFSCORRUPTED);
294 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
295 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
296 xfs_fs_mount_cmn_err(flags,
297 "file system too large to be mounted on this system.");
298 return XFS_ERROR(E2BIG);
301 if (unlikely(sbp->sb_inprogress)) {
302 xfs_fs_mount_cmn_err(flags, "file system busy");
303 return XFS_ERROR(EFSCORRUPTED);
307 * Version 1 directory format has never worked on Linux.
309 if (unlikely(!XFS_SB_VERSION_HASDIRV2(sbp))) {
310 xfs_fs_mount_cmn_err(flags,
311 "file system using version 1 directory format");
312 return XFS_ERROR(ENOSYS);
316 * Until this is fixed only page-sized or smaller data blocks work.
318 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
319 xfs_fs_mount_cmn_err(flags,
320 "file system with blocksize %d bytes",
321 sbp->sb_blocksize);
322 xfs_fs_mount_cmn_err(flags,
323 "only pagesize (%ld) or less will currently work.",
324 PAGE_SIZE);
325 return XFS_ERROR(ENOSYS);
328 return 0;
331 STATIC void
332 xfs_initialize_perag_icache(
333 xfs_perag_t *pag)
335 if (!pag->pag_ici_init) {
336 rwlock_init(&pag->pag_ici_lock);
337 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
338 pag->pag_ici_init = 1;
342 xfs_agnumber_t
343 xfs_initialize_perag(
344 xfs_mount_t *mp,
345 xfs_agnumber_t agcount)
347 xfs_agnumber_t index, max_metadata;
348 xfs_perag_t *pag;
349 xfs_agino_t agino;
350 xfs_ino_t ino;
351 xfs_sb_t *sbp = &mp->m_sb;
352 xfs_ino_t max_inum = XFS_MAXINUMBER_32;
354 /* Check to see if the filesystem can overflow 32 bit inodes */
355 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
356 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
358 /* Clear the mount flag if no inode can overflow 32 bits
359 * on this filesystem, or if specifically requested..
361 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
362 mp->m_flags |= XFS_MOUNT_32BITINODES;
363 } else {
364 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
367 /* If we can overflow then setup the ag headers accordingly */
368 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
369 /* Calculate how much should be reserved for inodes to
370 * meet the max inode percentage.
372 if (mp->m_maxicount) {
373 __uint64_t icount;
375 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
376 do_div(icount, 100);
377 icount += sbp->sb_agblocks - 1;
378 do_div(icount, sbp->sb_agblocks);
379 max_metadata = icount;
380 } else {
381 max_metadata = agcount;
383 for (index = 0; index < agcount; index++) {
384 ino = XFS_AGINO_TO_INO(mp, index, agino);
385 if (ino > max_inum) {
386 index++;
387 break;
390 /* This ag is preferred for inodes */
391 pag = &mp->m_perag[index];
392 pag->pagi_inodeok = 1;
393 if (index < max_metadata)
394 pag->pagf_metadata = 1;
395 xfs_initialize_perag_icache(pag);
397 } else {
398 /* Setup default behavior for smaller filesystems */
399 for (index = 0; index < agcount; index++) {
400 pag = &mp->m_perag[index];
401 pag->pagi_inodeok = 1;
402 xfs_initialize_perag_icache(pag);
405 return index;
408 void
409 xfs_sb_from_disk(
410 xfs_sb_t *to,
411 xfs_dsb_t *from)
413 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
414 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
415 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
416 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
417 to->sb_rextents = be64_to_cpu(from->sb_rextents);
418 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
419 to->sb_logstart = be64_to_cpu(from->sb_logstart);
420 to->sb_rootino = be64_to_cpu(from->sb_rootino);
421 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
422 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
423 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
424 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
425 to->sb_agcount = be32_to_cpu(from->sb_agcount);
426 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
427 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
428 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
429 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
430 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
431 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
432 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
433 to->sb_blocklog = from->sb_blocklog;
434 to->sb_sectlog = from->sb_sectlog;
435 to->sb_inodelog = from->sb_inodelog;
436 to->sb_inopblog = from->sb_inopblog;
437 to->sb_agblklog = from->sb_agblklog;
438 to->sb_rextslog = from->sb_rextslog;
439 to->sb_inprogress = from->sb_inprogress;
440 to->sb_imax_pct = from->sb_imax_pct;
441 to->sb_icount = be64_to_cpu(from->sb_icount);
442 to->sb_ifree = be64_to_cpu(from->sb_ifree);
443 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
444 to->sb_frextents = be64_to_cpu(from->sb_frextents);
445 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
446 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
447 to->sb_qflags = be16_to_cpu(from->sb_qflags);
448 to->sb_flags = from->sb_flags;
449 to->sb_shared_vn = from->sb_shared_vn;
450 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
451 to->sb_unit = be32_to_cpu(from->sb_unit);
452 to->sb_width = be32_to_cpu(from->sb_width);
453 to->sb_dirblklog = from->sb_dirblklog;
454 to->sb_logsectlog = from->sb_logsectlog;
455 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
456 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
457 to->sb_features2 = be32_to_cpu(from->sb_features2);
461 * Copy in core superblock to ondisk one.
463 * The fields argument is mask of superblock fields to copy.
465 void
466 xfs_sb_to_disk(
467 xfs_dsb_t *to,
468 xfs_sb_t *from,
469 __int64_t fields)
471 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
472 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
473 xfs_sb_field_t f;
474 int first;
475 int size;
477 ASSERT(fields);
478 if (!fields)
479 return;
481 while (fields) {
482 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
483 first = xfs_sb_info[f].offset;
484 size = xfs_sb_info[f + 1].offset - first;
486 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
488 if (size == 1 || xfs_sb_info[f].type == 1) {
489 memcpy(to_ptr + first, from_ptr + first, size);
490 } else {
491 switch (size) {
492 case 2:
493 *(__be16 *)(to_ptr + first) =
494 cpu_to_be16(*(__u16 *)(from_ptr + first));
495 break;
496 case 4:
497 *(__be32 *)(to_ptr + first) =
498 cpu_to_be32(*(__u32 *)(from_ptr + first));
499 break;
500 case 8:
501 *(__be64 *)(to_ptr + first) =
502 cpu_to_be64(*(__u64 *)(from_ptr + first));
503 break;
504 default:
505 ASSERT(0);
509 fields &= ~(1LL << f);
514 * xfs_readsb
516 * Does the initial read of the superblock.
519 xfs_readsb(xfs_mount_t *mp, int flags)
521 unsigned int sector_size;
522 unsigned int extra_flags;
523 xfs_buf_t *bp;
524 int error;
526 ASSERT(mp->m_sb_bp == NULL);
527 ASSERT(mp->m_ddev_targp != NULL);
530 * Allocate a (locked) buffer to hold the superblock.
531 * This will be kept around at all times to optimize
532 * access to the superblock.
534 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
535 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
537 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
538 BTOBB(sector_size), extra_flags);
539 if (!bp || XFS_BUF_ISERROR(bp)) {
540 xfs_fs_mount_cmn_err(flags, "SB read failed");
541 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
542 goto fail;
544 ASSERT(XFS_BUF_ISBUSY(bp));
545 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
548 * Initialize the mount structure from the superblock.
549 * But first do some basic consistency checking.
551 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
553 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
554 if (error) {
555 xfs_fs_mount_cmn_err(flags, "SB validate failed");
556 goto fail;
560 * We must be able to do sector-sized and sector-aligned IO.
562 if (sector_size > mp->m_sb.sb_sectsize) {
563 xfs_fs_mount_cmn_err(flags,
564 "device supports only %u byte sectors (not %u)",
565 sector_size, mp->m_sb.sb_sectsize);
566 error = ENOSYS;
567 goto fail;
571 * If device sector size is smaller than the superblock size,
572 * re-read the superblock so the buffer is correctly sized.
574 if (sector_size < mp->m_sb.sb_sectsize) {
575 XFS_BUF_UNMANAGE(bp);
576 xfs_buf_relse(bp);
577 sector_size = mp->m_sb.sb_sectsize;
578 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
579 BTOBB(sector_size), extra_flags);
580 if (!bp || XFS_BUF_ISERROR(bp)) {
581 xfs_fs_mount_cmn_err(flags, "SB re-read failed");
582 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
583 goto fail;
585 ASSERT(XFS_BUF_ISBUSY(bp));
586 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
589 /* Initialize per-cpu counters */
590 xfs_icsb_reinit_counters(mp);
592 mp->m_sb_bp = bp;
593 xfs_buf_relse(bp);
594 ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
595 return 0;
597 fail:
598 if (bp) {
599 XFS_BUF_UNMANAGE(bp);
600 xfs_buf_relse(bp);
602 return error;
607 * xfs_mount_common
609 * Mount initialization code establishing various mount
610 * fields from the superblock associated with the given
611 * mount structure
613 STATIC void
614 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
616 int i;
618 mp->m_agfrotor = mp->m_agirotor = 0;
619 spinlock_init(&mp->m_agirotor_lock, "m_agirotor_lock");
620 mp->m_maxagi = mp->m_sb.sb_agcount;
621 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
622 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
623 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
624 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
625 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
626 mp->m_litino = sbp->sb_inodesize -
627 ((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t));
628 mp->m_blockmask = sbp->sb_blocksize - 1;
629 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
630 mp->m_blockwmask = mp->m_blockwsize - 1;
631 INIT_LIST_HEAD(&mp->m_del_inodes);
634 * Setup for attributes, in case they get created.
635 * This value is for inodes getting attributes for the first time,
636 * the per-inode value is for old attribute values.
638 ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048);
639 switch (sbp->sb_inodesize) {
640 case 256:
641 mp->m_attroffset = XFS_LITINO(mp) -
642 XFS_BMDR_SPACE_CALC(MINABTPTRS);
643 break;
644 case 512:
645 case 1024:
646 case 2048:
647 mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS);
648 break;
649 default:
650 ASSERT(0);
652 ASSERT(mp->m_attroffset < XFS_LITINO(mp));
654 for (i = 0; i < 2; i++) {
655 mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
656 xfs_alloc, i == 0);
657 mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
658 xfs_alloc, i == 0);
660 for (i = 0; i < 2; i++) {
661 mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
662 xfs_bmbt, i == 0);
663 mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
664 xfs_bmbt, i == 0);
666 for (i = 0; i < 2; i++) {
667 mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
668 xfs_inobt, i == 0);
669 mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
670 xfs_inobt, i == 0);
673 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
674 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
675 sbp->sb_inopblock);
676 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
680 * xfs_initialize_perag_data
682 * Read in each per-ag structure so we can count up the number of
683 * allocated inodes, free inodes and used filesystem blocks as this
684 * information is no longer persistent in the superblock. Once we have
685 * this information, write it into the in-core superblock structure.
687 STATIC int
688 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
690 xfs_agnumber_t index;
691 xfs_perag_t *pag;
692 xfs_sb_t *sbp = &mp->m_sb;
693 uint64_t ifree = 0;
694 uint64_t ialloc = 0;
695 uint64_t bfree = 0;
696 uint64_t bfreelst = 0;
697 uint64_t btree = 0;
698 int error;
699 int s;
701 for (index = 0; index < agcount; index++) {
703 * read the agf, then the agi. This gets us
704 * all the inforamtion we need and populates the
705 * per-ag structures for us.
707 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
708 if (error)
709 return error;
711 error = xfs_ialloc_pagi_init(mp, NULL, index);
712 if (error)
713 return error;
714 pag = &mp->m_perag[index];
715 ifree += pag->pagi_freecount;
716 ialloc += pag->pagi_count;
717 bfree += pag->pagf_freeblks;
718 bfreelst += pag->pagf_flcount;
719 btree += pag->pagf_btreeblks;
722 * Overwrite incore superblock counters with just-read data
724 s = XFS_SB_LOCK(mp);
725 sbp->sb_ifree = ifree;
726 sbp->sb_icount = ialloc;
727 sbp->sb_fdblocks = bfree + bfreelst + btree;
728 XFS_SB_UNLOCK(mp, s);
730 /* Fixup the per-cpu counters as well. */
731 xfs_icsb_reinit_counters(mp);
733 return 0;
737 * xfs_mountfs
739 * This function does the following on an initial mount of a file system:
740 * - reads the superblock from disk and init the mount struct
741 * - if we're a 32-bit kernel, do a size check on the superblock
742 * so we don't mount terabyte filesystems
743 * - init mount struct realtime fields
744 * - allocate inode hash table for fs
745 * - init directory manager
746 * - perform recovery and init the log manager
749 xfs_mountfs(
750 xfs_mount_t *mp,
751 int mfsi_flags)
753 xfs_buf_t *bp;
754 xfs_sb_t *sbp = &(mp->m_sb);
755 xfs_inode_t *rip;
756 bhv_vnode_t *rvp = NULL;
757 int readio_log, writeio_log;
758 xfs_daddr_t d;
759 __uint64_t resblks;
760 __int64_t update_flags;
761 uint quotamount, quotaflags;
762 int agno;
763 int uuid_mounted = 0;
764 int error = 0;
766 if (mp->m_sb_bp == NULL) {
767 if ((error = xfs_readsb(mp, mfsi_flags))) {
768 return error;
771 xfs_mount_common(mp, sbp);
774 * Check if sb_agblocks is aligned at stripe boundary
775 * If sb_agblocks is NOT aligned turn off m_dalign since
776 * allocator alignment is within an ag, therefore ag has
777 * to be aligned at stripe boundary.
779 update_flags = 0LL;
780 if (mp->m_dalign && !(mfsi_flags & XFS_MFSI_SECOND)) {
782 * If stripe unit and stripe width are not multiples
783 * of the fs blocksize turn off alignment.
785 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
786 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
787 if (mp->m_flags & XFS_MOUNT_RETERR) {
788 cmn_err(CE_WARN,
789 "XFS: alignment check 1 failed");
790 error = XFS_ERROR(EINVAL);
791 goto error1;
793 mp->m_dalign = mp->m_swidth = 0;
794 } else {
796 * Convert the stripe unit and width to FSBs.
798 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
799 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
800 if (mp->m_flags & XFS_MOUNT_RETERR) {
801 error = XFS_ERROR(EINVAL);
802 goto error1;
804 xfs_fs_cmn_err(CE_WARN, mp,
805 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
806 mp->m_dalign, mp->m_swidth,
807 sbp->sb_agblocks);
809 mp->m_dalign = 0;
810 mp->m_swidth = 0;
811 } else if (mp->m_dalign) {
812 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
813 } else {
814 if (mp->m_flags & XFS_MOUNT_RETERR) {
815 xfs_fs_cmn_err(CE_WARN, mp,
816 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
817 mp->m_dalign,
818 mp->m_blockmask +1);
819 error = XFS_ERROR(EINVAL);
820 goto error1;
822 mp->m_swidth = 0;
827 * Update superblock with new values
828 * and log changes
830 if (XFS_SB_VERSION_HASDALIGN(sbp)) {
831 if (sbp->sb_unit != mp->m_dalign) {
832 sbp->sb_unit = mp->m_dalign;
833 update_flags |= XFS_SB_UNIT;
835 if (sbp->sb_width != mp->m_swidth) {
836 sbp->sb_width = mp->m_swidth;
837 update_flags |= XFS_SB_WIDTH;
840 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
841 XFS_SB_VERSION_HASDALIGN(&mp->m_sb)) {
842 mp->m_dalign = sbp->sb_unit;
843 mp->m_swidth = sbp->sb_width;
846 xfs_alloc_compute_maxlevels(mp);
847 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
848 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
849 xfs_ialloc_compute_maxlevels(mp);
851 if (sbp->sb_imax_pct) {
852 __uint64_t icount;
854 /* Make sure the maximum inode count is a multiple of the
855 * units we allocate inodes in.
858 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
859 do_div(icount, 100);
860 do_div(icount, mp->m_ialloc_blks);
861 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
862 sbp->sb_inopblog;
863 } else
864 mp->m_maxicount = 0;
866 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
869 * XFS uses the uuid from the superblock as the unique
870 * identifier for fsid. We can not use the uuid from the volume
871 * since a single partition filesystem is identical to a single
872 * partition volume/filesystem.
874 if ((mfsi_flags & XFS_MFSI_SECOND) == 0 &&
875 (mp->m_flags & XFS_MOUNT_NOUUID) == 0) {
876 if (xfs_uuid_mount(mp)) {
877 error = XFS_ERROR(EINVAL);
878 goto error1;
880 uuid_mounted=1;
884 * Set the default minimum read and write sizes unless
885 * already specified in a mount option.
886 * We use smaller I/O sizes when the file system
887 * is being used for NFS service (wsync mount option).
889 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
890 if (mp->m_flags & XFS_MOUNT_WSYNC) {
891 readio_log = XFS_WSYNC_READIO_LOG;
892 writeio_log = XFS_WSYNC_WRITEIO_LOG;
893 } else {
894 readio_log = XFS_READIO_LOG_LARGE;
895 writeio_log = XFS_WRITEIO_LOG_LARGE;
897 } else {
898 readio_log = mp->m_readio_log;
899 writeio_log = mp->m_writeio_log;
902 if (sbp->sb_blocklog > readio_log) {
903 mp->m_readio_log = sbp->sb_blocklog;
904 } else {
905 mp->m_readio_log = readio_log;
907 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
908 if (sbp->sb_blocklog > writeio_log) {
909 mp->m_writeio_log = sbp->sb_blocklog;
910 } else {
911 mp->m_writeio_log = writeio_log;
913 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
916 * Set the inode cluster size.
917 * This may still be overridden by the file system
918 * block size if it is larger than the chosen cluster size.
920 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
923 * Set whether we're using inode alignment.
925 if (XFS_SB_VERSION_HASALIGN(&mp->m_sb) &&
926 mp->m_sb.sb_inoalignmt >=
927 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
928 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
929 else
930 mp->m_inoalign_mask = 0;
932 * If we are using stripe alignment, check whether
933 * the stripe unit is a multiple of the inode alignment
935 if (mp->m_dalign && mp->m_inoalign_mask &&
936 !(mp->m_dalign & mp->m_inoalign_mask))
937 mp->m_sinoalign = mp->m_dalign;
938 else
939 mp->m_sinoalign = 0;
941 * Check that the data (and log if separate) are an ok size.
943 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
944 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
945 cmn_err(CE_WARN, "XFS: size check 1 failed");
946 error = XFS_ERROR(E2BIG);
947 goto error1;
949 error = xfs_read_buf(mp, mp->m_ddev_targp,
950 d - XFS_FSS_TO_BB(mp, 1),
951 XFS_FSS_TO_BB(mp, 1), 0, &bp);
952 if (!error) {
953 xfs_buf_relse(bp);
954 } else {
955 cmn_err(CE_WARN, "XFS: size check 2 failed");
956 if (error == ENOSPC) {
957 error = XFS_ERROR(E2BIG);
959 goto error1;
962 if (((mfsi_flags & XFS_MFSI_CLIENT) == 0) &&
963 mp->m_logdev_targp != mp->m_ddev_targp) {
964 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
965 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
966 cmn_err(CE_WARN, "XFS: size check 3 failed");
967 error = XFS_ERROR(E2BIG);
968 goto error1;
970 error = xfs_read_buf(mp, mp->m_logdev_targp,
971 d - XFS_FSB_TO_BB(mp, 1),
972 XFS_FSB_TO_BB(mp, 1), 0, &bp);
973 if (!error) {
974 xfs_buf_relse(bp);
975 } else {
976 cmn_err(CE_WARN, "XFS: size check 3 failed");
977 if (error == ENOSPC) {
978 error = XFS_ERROR(E2BIG);
980 goto error1;
985 * Initialize realtime fields in the mount structure
987 if ((error = xfs_rtmount_init(mp))) {
988 cmn_err(CE_WARN, "XFS: RT mount failed");
989 goto error1;
993 * For client case we are done now
995 if (mfsi_flags & XFS_MFSI_CLIENT) {
996 return 0;
1000 * Copies the low order bits of the timestamp and the randomly
1001 * set "sequence" number out of a UUID.
1003 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1005 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1007 xfs_dir_mount(mp);
1010 * Initialize the attribute manager's entries.
1012 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1015 * Initialize the precomputed transaction reservations values.
1017 xfs_trans_init(mp);
1020 * Allocate and initialize the per-ag data.
1022 init_rwsem(&mp->m_peraglock);
1023 mp->m_perag =
1024 kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), KM_SLEEP);
1026 mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1029 * log's mount-time initialization. Perform 1st part recovery if needed
1031 if (likely(sbp->sb_logblocks > 0)) { /* check for volume case */
1032 error = xfs_log_mount(mp, mp->m_logdev_targp,
1033 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1034 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1035 if (error) {
1036 cmn_err(CE_WARN, "XFS: log mount failed");
1037 goto error2;
1039 } else { /* No log has been defined */
1040 cmn_err(CE_WARN, "XFS: no log defined");
1041 XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp);
1042 error = XFS_ERROR(EFSCORRUPTED);
1043 goto error2;
1047 * Now the log is mounted, we know if it was an unclean shutdown or
1048 * not. If it was, with the first phase of recovery has completed, we
1049 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1050 * but they are recovered transactionally in the second recovery phase
1051 * later.
1053 * Hence we can safely re-initialise incore superblock counters from
1054 * the per-ag data. These may not be correct if the filesystem was not
1055 * cleanly unmounted, so we need to wait for recovery to finish before
1056 * doing this.
1058 * If the filesystem was cleanly unmounted, then we can trust the
1059 * values in the superblock to be correct and we don't need to do
1060 * anything here.
1062 * If we are currently making the filesystem, the initialisation will
1063 * fail as the perag data is in an undefined state.
1066 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1067 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1068 !mp->m_sb.sb_inprogress) {
1069 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1070 if (error) {
1071 goto error2;
1075 * Get and sanity-check the root inode.
1076 * Save the pointer to it in the mount structure.
1078 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1079 if (error) {
1080 cmn_err(CE_WARN, "XFS: failed to read root inode");
1081 goto error3;
1084 ASSERT(rip != NULL);
1085 rvp = XFS_ITOV(rip);
1087 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1088 cmn_err(CE_WARN, "XFS: corrupted root inode");
1089 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1090 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1091 (unsigned long long)rip->i_ino);
1092 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1093 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1094 mp);
1095 error = XFS_ERROR(EFSCORRUPTED);
1096 goto error4;
1098 mp->m_rootip = rip; /* save it */
1100 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1103 * Initialize realtime inode pointers in the mount structure
1105 if ((error = xfs_rtmount_inodes(mp))) {
1107 * Free up the root inode.
1109 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1110 goto error4;
1114 * If fs is not mounted readonly, then update the superblock
1115 * unit and width changes.
1117 if (update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY))
1118 xfs_mount_log_sbunit(mp, update_flags);
1121 * Initialise the XFS quota management subsystem for this mount
1123 if ((error = XFS_QM_INIT(mp, &quotamount, &quotaflags)))
1124 goto error4;
1127 * Finish recovering the file system. This part needed to be
1128 * delayed until after the root and real-time bitmap inodes
1129 * were consistently read in.
1131 error = xfs_log_mount_finish(mp, mfsi_flags);
1132 if (error) {
1133 cmn_err(CE_WARN, "XFS: log mount finish failed");
1134 goto error4;
1138 * Complete the quota initialisation, post-log-replay component.
1140 if ((error = XFS_QM_MOUNT(mp, quotamount, quotaflags, mfsi_flags)))
1141 goto error4;
1144 * Now we are mounted, reserve a small amount of unused space for
1145 * privileged transactions. This is needed so that transaction
1146 * space required for critical operations can dip into this pool
1147 * when at ENOSPC. This is needed for operations like create with
1148 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1149 * are not allowed to use this reserved space.
1151 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1152 * This may drive us straight to ENOSPC on mount, but that implies
1153 * we were already there on the last unmount.
1155 resblks = mp->m_sb.sb_dblocks;
1156 do_div(resblks, 20);
1157 resblks = min_t(__uint64_t, resblks, 1024);
1158 xfs_reserve_blocks(mp, &resblks, NULL);
1160 return 0;
1162 error4:
1164 * Free up the root inode.
1166 VN_RELE(rvp);
1167 error3:
1168 xfs_log_unmount_dealloc(mp);
1169 error2:
1170 for (agno = 0; agno < sbp->sb_agcount; agno++)
1171 if (mp->m_perag[agno].pagb_list)
1172 kmem_free(mp->m_perag[agno].pagb_list,
1173 sizeof(xfs_perag_busy_t) * XFS_PAGB_NUM_SLOTS);
1174 kmem_free(mp->m_perag, sbp->sb_agcount * sizeof(xfs_perag_t));
1175 mp->m_perag = NULL;
1176 /* FALLTHROUGH */
1177 error1:
1178 if (uuid_mounted)
1179 xfs_uuid_unmount(mp);
1180 xfs_freesb(mp);
1181 return error;
1185 * xfs_unmountfs
1187 * This flushes out the inodes,dquots and the superblock, unmounts the
1188 * log and makes sure that incore structures are freed.
1191 xfs_unmountfs(xfs_mount_t *mp, struct cred *cr)
1193 __uint64_t resblks;
1196 * We can potentially deadlock here if we have an inode cluster
1197 * that has been freed has it's buffer still pinned in memory because
1198 * the transaction is still sitting in a iclog. The stale inodes
1199 * on that buffer will have their flush locks held until the
1200 * transaction hits the disk and the callbacks run. the inode
1201 * flush takes the flush lock unconditionally and with nothing to
1202 * push out the iclog we will never get that unlocked. hence we
1203 * need to force the log first.
1205 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1206 xfs_iflush_all(mp);
1208 XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1211 * Flush out the log synchronously so that we know for sure
1212 * that nothing is pinned. This is important because bflush()
1213 * will skip pinned buffers.
1215 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1217 xfs_binval(mp->m_ddev_targp);
1218 if (mp->m_rtdev_targp) {
1219 xfs_binval(mp->m_rtdev_targp);
1223 * Unreserve any blocks we have so that when we unmount we don't account
1224 * the reserved free space as used. This is really only necessary for
1225 * lazy superblock counting because it trusts the incore superblock
1226 * counters to be aboslutely correct on clean unmount.
1228 * We don't bother correcting this elsewhere for lazy superblock
1229 * counting because on mount of an unclean filesystem we reconstruct the
1230 * correct counter value and this is irrelevant.
1232 * For non-lazy counter filesystems, this doesn't matter at all because
1233 * we only every apply deltas to the superblock and hence the incore
1234 * value does not matter....
1236 resblks = 0;
1237 xfs_reserve_blocks(mp, &resblks, NULL);
1239 xfs_log_sbcount(mp, 1);
1240 xfs_unmountfs_writesb(mp);
1241 xfs_unmountfs_wait(mp); /* wait for async bufs */
1242 xfs_log_unmount(mp); /* Done! No more fs ops. */
1244 xfs_freesb(mp);
1247 * All inodes from this mount point should be freed.
1249 ASSERT(mp->m_inodes == NULL);
1251 xfs_unmountfs_close(mp, cr);
1252 if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0)
1253 xfs_uuid_unmount(mp);
1255 #if defined(DEBUG) || defined(INDUCE_IO_ERROR)
1256 xfs_errortag_clearall(mp, 0);
1257 #endif
1258 XFS_IODONE(mp);
1259 xfs_mount_free(mp);
1260 return 0;
1263 void
1264 xfs_unmountfs_close(xfs_mount_t *mp, struct cred *cr)
1266 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1267 xfs_free_buftarg(mp->m_logdev_targp, 1);
1268 if (mp->m_rtdev_targp)
1269 xfs_free_buftarg(mp->m_rtdev_targp, 1);
1270 xfs_free_buftarg(mp->m_ddev_targp, 0);
1273 STATIC void
1274 xfs_unmountfs_wait(xfs_mount_t *mp)
1276 if (mp->m_logdev_targp != mp->m_ddev_targp)
1277 xfs_wait_buftarg(mp->m_logdev_targp);
1278 if (mp->m_rtdev_targp)
1279 xfs_wait_buftarg(mp->m_rtdev_targp);
1280 xfs_wait_buftarg(mp->m_ddev_targp);
1284 xfs_fs_writable(xfs_mount_t *mp)
1286 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1287 (mp->m_flags & XFS_MOUNT_RDONLY));
1291 * xfs_log_sbcount
1293 * Called either periodically to keep the on disk superblock values
1294 * roughly up to date or from unmount to make sure the values are
1295 * correct on a clean unmount.
1297 * Note this code can be called during the process of freezing, so
1298 * we may need to use the transaction allocator which does not not
1299 * block when the transaction subsystem is in its frozen state.
1302 xfs_log_sbcount(
1303 xfs_mount_t *mp,
1304 uint sync)
1306 xfs_trans_t *tp;
1307 int error;
1309 if (!xfs_fs_writable(mp))
1310 return 0;
1312 xfs_icsb_sync_counters(mp);
1315 * we don't need to do this if we are updating the superblock
1316 * counters on every modification.
1318 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1319 return 0;
1321 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1322 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1323 XFS_DEFAULT_LOG_COUNT);
1324 if (error) {
1325 xfs_trans_cancel(tp, 0);
1326 return error;
1329 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1330 if (sync)
1331 xfs_trans_set_sync(tp);
1332 xfs_trans_commit(tp, 0);
1334 return 0;
1337 STATIC void
1338 xfs_mark_shared_ro(
1339 xfs_mount_t *mp,
1340 xfs_buf_t *bp)
1342 xfs_dsb_t *sb = XFS_BUF_TO_SBP(bp);
1343 __uint16_t version;
1345 if (!(sb->sb_flags & XFS_SBF_READONLY))
1346 sb->sb_flags |= XFS_SBF_READONLY;
1348 version = be16_to_cpu(sb->sb_versionnum);
1349 if ((version & XFS_SB_VERSION_NUMBITS) != XFS_SB_VERSION_4 ||
1350 !(version & XFS_SB_VERSION_SHAREDBIT))
1351 version |= XFS_SB_VERSION_SHAREDBIT;
1352 sb->sb_versionnum = cpu_to_be16(version);
1356 xfs_unmountfs_writesb(xfs_mount_t *mp)
1358 xfs_buf_t *sbp;
1359 int error = 0;
1362 * skip superblock write if fs is read-only, or
1363 * if we are doing a forced umount.
1365 if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1366 XFS_FORCED_SHUTDOWN(mp))) {
1368 sbp = xfs_getsb(mp, 0);
1371 * mark shared-readonly if desired
1373 if (mp->m_mk_sharedro)
1374 xfs_mark_shared_ro(mp, sbp);
1376 XFS_BUF_UNDONE(sbp);
1377 XFS_BUF_UNREAD(sbp);
1378 XFS_BUF_UNDELAYWRITE(sbp);
1379 XFS_BUF_WRITE(sbp);
1380 XFS_BUF_UNASYNC(sbp);
1381 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1382 xfsbdstrat(mp, sbp);
1383 /* Nevermind errors we might get here. */
1384 error = xfs_iowait(sbp);
1385 if (error)
1386 xfs_ioerror_alert("xfs_unmountfs_writesb",
1387 mp, sbp, XFS_BUF_ADDR(sbp));
1388 if (error && mp->m_mk_sharedro)
1389 xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting. Filesystem may not be marked shared readonly");
1390 xfs_buf_relse(sbp);
1392 return error;
1396 * xfs_mod_sb() can be used to copy arbitrary changes to the
1397 * in-core superblock into the superblock buffer to be logged.
1398 * It does not provide the higher level of locking that is
1399 * needed to protect the in-core superblock from concurrent
1400 * access.
1402 void
1403 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1405 xfs_buf_t *bp;
1406 int first;
1407 int last;
1408 xfs_mount_t *mp;
1409 xfs_sb_field_t f;
1411 ASSERT(fields);
1412 if (!fields)
1413 return;
1414 mp = tp->t_mountp;
1415 bp = xfs_trans_getsb(tp, mp, 0);
1416 first = sizeof(xfs_sb_t);
1417 last = 0;
1419 /* translate/copy */
1421 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1423 /* find modified range */
1425 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1426 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1427 first = xfs_sb_info[f].offset;
1429 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1430 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1431 last = xfs_sb_info[f + 1].offset - 1;
1433 xfs_trans_log_buf(tp, bp, first, last);
1438 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1439 * a delta to a specified field in the in-core superblock. Simply
1440 * switch on the field indicated and apply the delta to that field.
1441 * Fields are not allowed to dip below zero, so if the delta would
1442 * do this do not apply it and return EINVAL.
1444 * The SB_LOCK must be held when this routine is called.
1447 xfs_mod_incore_sb_unlocked(
1448 xfs_mount_t *mp,
1449 xfs_sb_field_t field,
1450 int64_t delta,
1451 int rsvd)
1453 int scounter; /* short counter for 32 bit fields */
1454 long long lcounter; /* long counter for 64 bit fields */
1455 long long res_used, rem;
1458 * With the in-core superblock spin lock held, switch
1459 * on the indicated field. Apply the delta to the
1460 * proper field. If the fields value would dip below
1461 * 0, then do not apply the delta and return EINVAL.
1463 switch (field) {
1464 case XFS_SBS_ICOUNT:
1465 lcounter = (long long)mp->m_sb.sb_icount;
1466 lcounter += delta;
1467 if (lcounter < 0) {
1468 ASSERT(0);
1469 return XFS_ERROR(EINVAL);
1471 mp->m_sb.sb_icount = lcounter;
1472 return 0;
1473 case XFS_SBS_IFREE:
1474 lcounter = (long long)mp->m_sb.sb_ifree;
1475 lcounter += delta;
1476 if (lcounter < 0) {
1477 ASSERT(0);
1478 return XFS_ERROR(EINVAL);
1480 mp->m_sb.sb_ifree = lcounter;
1481 return 0;
1482 case XFS_SBS_FDBLOCKS:
1483 lcounter = (long long)
1484 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1485 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1487 if (delta > 0) { /* Putting blocks back */
1488 if (res_used > delta) {
1489 mp->m_resblks_avail += delta;
1490 } else {
1491 rem = delta - res_used;
1492 mp->m_resblks_avail = mp->m_resblks;
1493 lcounter += rem;
1495 } else { /* Taking blocks away */
1497 lcounter += delta;
1500 * If were out of blocks, use any available reserved blocks if
1501 * were allowed to.
1504 if (lcounter < 0) {
1505 if (rsvd) {
1506 lcounter = (long long)mp->m_resblks_avail + delta;
1507 if (lcounter < 0) {
1508 return XFS_ERROR(ENOSPC);
1510 mp->m_resblks_avail = lcounter;
1511 return 0;
1512 } else { /* not reserved */
1513 return XFS_ERROR(ENOSPC);
1518 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1519 return 0;
1520 case XFS_SBS_FREXTENTS:
1521 lcounter = (long long)mp->m_sb.sb_frextents;
1522 lcounter += delta;
1523 if (lcounter < 0) {
1524 return XFS_ERROR(ENOSPC);
1526 mp->m_sb.sb_frextents = lcounter;
1527 return 0;
1528 case XFS_SBS_DBLOCKS:
1529 lcounter = (long long)mp->m_sb.sb_dblocks;
1530 lcounter += delta;
1531 if (lcounter < 0) {
1532 ASSERT(0);
1533 return XFS_ERROR(EINVAL);
1535 mp->m_sb.sb_dblocks = lcounter;
1536 return 0;
1537 case XFS_SBS_AGCOUNT:
1538 scounter = mp->m_sb.sb_agcount;
1539 scounter += delta;
1540 if (scounter < 0) {
1541 ASSERT(0);
1542 return XFS_ERROR(EINVAL);
1544 mp->m_sb.sb_agcount = scounter;
1545 return 0;
1546 case XFS_SBS_IMAX_PCT:
1547 scounter = mp->m_sb.sb_imax_pct;
1548 scounter += delta;
1549 if (scounter < 0) {
1550 ASSERT(0);
1551 return XFS_ERROR(EINVAL);
1553 mp->m_sb.sb_imax_pct = scounter;
1554 return 0;
1555 case XFS_SBS_REXTSIZE:
1556 scounter = mp->m_sb.sb_rextsize;
1557 scounter += delta;
1558 if (scounter < 0) {
1559 ASSERT(0);
1560 return XFS_ERROR(EINVAL);
1562 mp->m_sb.sb_rextsize = scounter;
1563 return 0;
1564 case XFS_SBS_RBMBLOCKS:
1565 scounter = mp->m_sb.sb_rbmblocks;
1566 scounter += delta;
1567 if (scounter < 0) {
1568 ASSERT(0);
1569 return XFS_ERROR(EINVAL);
1571 mp->m_sb.sb_rbmblocks = scounter;
1572 return 0;
1573 case XFS_SBS_RBLOCKS:
1574 lcounter = (long long)mp->m_sb.sb_rblocks;
1575 lcounter += delta;
1576 if (lcounter < 0) {
1577 ASSERT(0);
1578 return XFS_ERROR(EINVAL);
1580 mp->m_sb.sb_rblocks = lcounter;
1581 return 0;
1582 case XFS_SBS_REXTENTS:
1583 lcounter = (long long)mp->m_sb.sb_rextents;
1584 lcounter += delta;
1585 if (lcounter < 0) {
1586 ASSERT(0);
1587 return XFS_ERROR(EINVAL);
1589 mp->m_sb.sb_rextents = lcounter;
1590 return 0;
1591 case XFS_SBS_REXTSLOG:
1592 scounter = mp->m_sb.sb_rextslog;
1593 scounter += delta;
1594 if (scounter < 0) {
1595 ASSERT(0);
1596 return XFS_ERROR(EINVAL);
1598 mp->m_sb.sb_rextslog = scounter;
1599 return 0;
1600 default:
1601 ASSERT(0);
1602 return XFS_ERROR(EINVAL);
1607 * xfs_mod_incore_sb() is used to change a field in the in-core
1608 * superblock structure by the specified delta. This modification
1609 * is protected by the SB_LOCK. Just use the xfs_mod_incore_sb_unlocked()
1610 * routine to do the work.
1613 xfs_mod_incore_sb(
1614 xfs_mount_t *mp,
1615 xfs_sb_field_t field,
1616 int64_t delta,
1617 int rsvd)
1619 unsigned long s;
1620 int status;
1622 /* check for per-cpu counters */
1623 switch (field) {
1624 #ifdef HAVE_PERCPU_SB
1625 case XFS_SBS_ICOUNT:
1626 case XFS_SBS_IFREE:
1627 case XFS_SBS_FDBLOCKS:
1628 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1629 status = xfs_icsb_modify_counters(mp, field,
1630 delta, rsvd);
1631 break;
1633 /* FALLTHROUGH */
1634 #endif
1635 default:
1636 s = XFS_SB_LOCK(mp);
1637 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1638 XFS_SB_UNLOCK(mp, s);
1639 break;
1642 return status;
1646 * xfs_mod_incore_sb_batch() is used to change more than one field
1647 * in the in-core superblock structure at a time. This modification
1648 * is protected by a lock internal to this module. The fields and
1649 * changes to those fields are specified in the array of xfs_mod_sb
1650 * structures passed in.
1652 * Either all of the specified deltas will be applied or none of
1653 * them will. If any modified field dips below 0, then all modifications
1654 * will be backed out and EINVAL will be returned.
1657 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1659 unsigned long s;
1660 int status=0;
1661 xfs_mod_sb_t *msbp;
1664 * Loop through the array of mod structures and apply each
1665 * individually. If any fail, then back out all those
1666 * which have already been applied. Do all of this within
1667 * the scope of the SB_LOCK so that all of the changes will
1668 * be atomic.
1670 s = XFS_SB_LOCK(mp);
1671 msbp = &msb[0];
1672 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1674 * Apply the delta at index n. If it fails, break
1675 * from the loop so we'll fall into the undo loop
1676 * below.
1678 switch (msbp->msb_field) {
1679 #ifdef HAVE_PERCPU_SB
1680 case XFS_SBS_ICOUNT:
1681 case XFS_SBS_IFREE:
1682 case XFS_SBS_FDBLOCKS:
1683 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1684 XFS_SB_UNLOCK(mp, s);
1685 status = xfs_icsb_modify_counters(mp,
1686 msbp->msb_field,
1687 msbp->msb_delta, rsvd);
1688 s = XFS_SB_LOCK(mp);
1689 break;
1691 /* FALLTHROUGH */
1692 #endif
1693 default:
1694 status = xfs_mod_incore_sb_unlocked(mp,
1695 msbp->msb_field,
1696 msbp->msb_delta, rsvd);
1697 break;
1700 if (status != 0) {
1701 break;
1706 * If we didn't complete the loop above, then back out
1707 * any changes made to the superblock. If you add code
1708 * between the loop above and here, make sure that you
1709 * preserve the value of status. Loop back until
1710 * we step below the beginning of the array. Make sure
1711 * we don't touch anything back there.
1713 if (status != 0) {
1714 msbp--;
1715 while (msbp >= msb) {
1716 switch (msbp->msb_field) {
1717 #ifdef HAVE_PERCPU_SB
1718 case XFS_SBS_ICOUNT:
1719 case XFS_SBS_IFREE:
1720 case XFS_SBS_FDBLOCKS:
1721 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1722 XFS_SB_UNLOCK(mp, s);
1723 status = xfs_icsb_modify_counters(mp,
1724 msbp->msb_field,
1725 -(msbp->msb_delta),
1726 rsvd);
1727 s = XFS_SB_LOCK(mp);
1728 break;
1730 /* FALLTHROUGH */
1731 #endif
1732 default:
1733 status = xfs_mod_incore_sb_unlocked(mp,
1734 msbp->msb_field,
1735 -(msbp->msb_delta),
1736 rsvd);
1737 break;
1739 ASSERT(status == 0);
1740 msbp--;
1743 XFS_SB_UNLOCK(mp, s);
1744 return status;
1748 * xfs_getsb() is called to obtain the buffer for the superblock.
1749 * The buffer is returned locked and read in from disk.
1750 * The buffer should be released with a call to xfs_brelse().
1752 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1753 * the superblock buffer if it can be locked without sleeping.
1754 * If it can't then we'll return NULL.
1756 xfs_buf_t *
1757 xfs_getsb(
1758 xfs_mount_t *mp,
1759 int flags)
1761 xfs_buf_t *bp;
1763 ASSERT(mp->m_sb_bp != NULL);
1764 bp = mp->m_sb_bp;
1765 if (flags & XFS_BUF_TRYLOCK) {
1766 if (!XFS_BUF_CPSEMA(bp)) {
1767 return NULL;
1769 } else {
1770 XFS_BUF_PSEMA(bp, PRIBIO);
1772 XFS_BUF_HOLD(bp);
1773 ASSERT(XFS_BUF_ISDONE(bp));
1774 return bp;
1778 * Used to free the superblock along various error paths.
1780 void
1781 xfs_freesb(
1782 xfs_mount_t *mp)
1784 xfs_buf_t *bp;
1787 * Use xfs_getsb() so that the buffer will be locked
1788 * when we call xfs_buf_relse().
1790 bp = xfs_getsb(mp, 0);
1791 XFS_BUF_UNMANAGE(bp);
1792 xfs_buf_relse(bp);
1793 mp->m_sb_bp = NULL;
1797 * See if the UUID is unique among mounted XFS filesystems.
1798 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
1800 STATIC int
1801 xfs_uuid_mount(
1802 xfs_mount_t *mp)
1804 if (uuid_is_nil(&mp->m_sb.sb_uuid)) {
1805 cmn_err(CE_WARN,
1806 "XFS: Filesystem %s has nil UUID - can't mount",
1807 mp->m_fsname);
1808 return -1;
1810 if (!uuid_table_insert(&mp->m_sb.sb_uuid)) {
1811 cmn_err(CE_WARN,
1812 "XFS: Filesystem %s has duplicate UUID - can't mount",
1813 mp->m_fsname);
1814 return -1;
1816 return 0;
1820 * Remove filesystem from the UUID table.
1822 STATIC void
1823 xfs_uuid_unmount(
1824 xfs_mount_t *mp)
1826 uuid_table_remove(&mp->m_sb.sb_uuid);
1830 * Used to log changes to the superblock unit and width fields which could
1831 * be altered by the mount options. Only the first superblock is updated.
1833 STATIC void
1834 xfs_mount_log_sbunit(
1835 xfs_mount_t *mp,
1836 __int64_t fields)
1838 xfs_trans_t *tp;
1840 ASSERT(fields & (XFS_SB_UNIT|XFS_SB_WIDTH|XFS_SB_UUID));
1842 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1843 if (xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1844 XFS_DEFAULT_LOG_COUNT)) {
1845 xfs_trans_cancel(tp, 0);
1846 return;
1848 xfs_mod_sb(tp, fields);
1849 xfs_trans_commit(tp, 0);
1853 #ifdef HAVE_PERCPU_SB
1855 * Per-cpu incore superblock counters
1857 * Simple concept, difficult implementation
1859 * Basically, replace the incore superblock counters with a distributed per cpu
1860 * counter for contended fields (e.g. free block count).
1862 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1863 * hence needs to be accurately read when we are running low on space. Hence
1864 * there is a method to enable and disable the per-cpu counters based on how
1865 * much "stuff" is available in them.
1867 * Basically, a counter is enabled if there is enough free resource to justify
1868 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1869 * ENOSPC), then we disable the counters to synchronise all callers and
1870 * re-distribute the available resources.
1872 * If, once we redistributed the available resources, we still get a failure,
1873 * we disable the per-cpu counter and go through the slow path.
1875 * The slow path is the current xfs_mod_incore_sb() function. This means that
1876 * when we disable a per-cpu counter, we need to drain it's resources back to
1877 * the global superblock. We do this after disabling the counter to prevent
1878 * more threads from queueing up on the counter.
1880 * Essentially, this means that we still need a lock in the fast path to enable
1881 * synchronisation between the global counters and the per-cpu counters. This
1882 * is not a problem because the lock will be local to a CPU almost all the time
1883 * and have little contention except when we get to ENOSPC conditions.
1885 * Basically, this lock becomes a barrier that enables us to lock out the fast
1886 * path while we do things like enabling and disabling counters and
1887 * synchronising the counters.
1889 * Locking rules:
1891 * 1. XFS_SB_LOCK() before picking up per-cpu locks
1892 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1893 * 3. accurate counter sync requires XFS_SB_LOCK + per cpu locks
1894 * 4. modifying per-cpu counters requires holding per-cpu lock
1895 * 5. modifying global counters requires holding XFS_SB_LOCK
1896 * 6. enabling or disabling a counter requires holding the XFS_SB_LOCK
1897 * and _none_ of the per-cpu locks.
1899 * Disabled counters are only ever re-enabled by a balance operation
1900 * that results in more free resources per CPU than a given threshold.
1901 * To ensure counters don't remain disabled, they are rebalanced when
1902 * the global resource goes above a higher threshold (i.e. some hysteresis
1903 * is present to prevent thrashing).
1906 #ifdef CONFIG_HOTPLUG_CPU
1908 * hot-plug CPU notifier support.
1910 * We need a notifier per filesystem as we need to be able to identify
1911 * the filesystem to balance the counters out. This is achieved by
1912 * having a notifier block embedded in the xfs_mount_t and doing pointer
1913 * magic to get the mount pointer from the notifier block address.
1915 STATIC int
1916 xfs_icsb_cpu_notify(
1917 struct notifier_block *nfb,
1918 unsigned long action,
1919 void *hcpu)
1921 xfs_icsb_cnts_t *cntp;
1922 xfs_mount_t *mp;
1923 int s;
1925 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1926 cntp = (xfs_icsb_cnts_t *)
1927 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1928 switch (action) {
1929 case CPU_UP_PREPARE:
1930 case CPU_UP_PREPARE_FROZEN:
1931 /* Easy Case - initialize the area and locks, and
1932 * then rebalance when online does everything else for us. */
1933 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1934 break;
1935 case CPU_ONLINE:
1936 case CPU_ONLINE_FROZEN:
1937 xfs_icsb_lock(mp);
1938 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0);
1939 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0);
1940 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0);
1941 xfs_icsb_unlock(mp);
1942 break;
1943 case CPU_DEAD:
1944 case CPU_DEAD_FROZEN:
1945 /* Disable all the counters, then fold the dead cpu's
1946 * count into the total on the global superblock and
1947 * re-enable the counters. */
1948 xfs_icsb_lock(mp);
1949 s = XFS_SB_LOCK(mp);
1950 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1951 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1952 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1954 mp->m_sb.sb_icount += cntp->icsb_icount;
1955 mp->m_sb.sb_ifree += cntp->icsb_ifree;
1956 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1958 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1960 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT,
1961 XFS_ICSB_SB_LOCKED, 0);
1962 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE,
1963 XFS_ICSB_SB_LOCKED, 0);
1964 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS,
1965 XFS_ICSB_SB_LOCKED, 0);
1966 XFS_SB_UNLOCK(mp, s);
1967 xfs_icsb_unlock(mp);
1968 break;
1971 return NOTIFY_OK;
1973 #endif /* CONFIG_HOTPLUG_CPU */
1976 xfs_icsb_init_counters(
1977 xfs_mount_t *mp)
1979 xfs_icsb_cnts_t *cntp;
1980 int i;
1982 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1983 if (mp->m_sb_cnts == NULL)
1984 return -ENOMEM;
1986 #ifdef CONFIG_HOTPLUG_CPU
1987 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1988 mp->m_icsb_notifier.priority = 0;
1989 register_hotcpu_notifier(&mp->m_icsb_notifier);
1990 #endif /* CONFIG_HOTPLUG_CPU */
1992 for_each_online_cpu(i) {
1993 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1994 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1997 mutex_init(&mp->m_icsb_mutex);
2000 * start with all counters disabled so that the
2001 * initial balance kicks us off correctly
2003 mp->m_icsb_counters = -1;
2004 return 0;
2007 void
2008 xfs_icsb_reinit_counters(
2009 xfs_mount_t *mp)
2011 xfs_icsb_lock(mp);
2013 * start with all counters disabled so that the
2014 * initial balance kicks us off correctly
2016 mp->m_icsb_counters = -1;
2017 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0);
2018 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0);
2019 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0);
2020 xfs_icsb_unlock(mp);
2023 STATIC void
2024 xfs_icsb_destroy_counters(
2025 xfs_mount_t *mp)
2027 if (mp->m_sb_cnts) {
2028 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2029 free_percpu(mp->m_sb_cnts);
2031 mutex_destroy(&mp->m_icsb_mutex);
2034 STATIC_INLINE void
2035 xfs_icsb_lock_cntr(
2036 xfs_icsb_cnts_t *icsbp)
2038 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2039 ndelay(1000);
2043 STATIC_INLINE void
2044 xfs_icsb_unlock_cntr(
2045 xfs_icsb_cnts_t *icsbp)
2047 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2051 STATIC_INLINE void
2052 xfs_icsb_lock_all_counters(
2053 xfs_mount_t *mp)
2055 xfs_icsb_cnts_t *cntp;
2056 int i;
2058 for_each_online_cpu(i) {
2059 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2060 xfs_icsb_lock_cntr(cntp);
2064 STATIC_INLINE void
2065 xfs_icsb_unlock_all_counters(
2066 xfs_mount_t *mp)
2068 xfs_icsb_cnts_t *cntp;
2069 int i;
2071 for_each_online_cpu(i) {
2072 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2073 xfs_icsb_unlock_cntr(cntp);
2077 STATIC void
2078 xfs_icsb_count(
2079 xfs_mount_t *mp,
2080 xfs_icsb_cnts_t *cnt,
2081 int flags)
2083 xfs_icsb_cnts_t *cntp;
2084 int i;
2086 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2088 if (!(flags & XFS_ICSB_LAZY_COUNT))
2089 xfs_icsb_lock_all_counters(mp);
2091 for_each_online_cpu(i) {
2092 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2093 cnt->icsb_icount += cntp->icsb_icount;
2094 cnt->icsb_ifree += cntp->icsb_ifree;
2095 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2098 if (!(flags & XFS_ICSB_LAZY_COUNT))
2099 xfs_icsb_unlock_all_counters(mp);
2102 STATIC int
2103 xfs_icsb_counter_disabled(
2104 xfs_mount_t *mp,
2105 xfs_sb_field_t field)
2107 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2108 return test_bit(field, &mp->m_icsb_counters);
2111 STATIC int
2112 xfs_icsb_disable_counter(
2113 xfs_mount_t *mp,
2114 xfs_sb_field_t field)
2116 xfs_icsb_cnts_t cnt;
2118 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2121 * If we are already disabled, then there is nothing to do
2122 * here. We check before locking all the counters to avoid
2123 * the expensive lock operation when being called in the
2124 * slow path and the counter is already disabled. This is
2125 * safe because the only time we set or clear this state is under
2126 * the m_icsb_mutex.
2128 if (xfs_icsb_counter_disabled(mp, field))
2129 return 0;
2131 xfs_icsb_lock_all_counters(mp);
2132 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2133 /* drain back to superblock */
2135 xfs_icsb_count(mp, &cnt, XFS_ICSB_SB_LOCKED|XFS_ICSB_LAZY_COUNT);
2136 switch(field) {
2137 case XFS_SBS_ICOUNT:
2138 mp->m_sb.sb_icount = cnt.icsb_icount;
2139 break;
2140 case XFS_SBS_IFREE:
2141 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2142 break;
2143 case XFS_SBS_FDBLOCKS:
2144 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2145 break;
2146 default:
2147 BUG();
2151 xfs_icsb_unlock_all_counters(mp);
2153 return 0;
2156 STATIC void
2157 xfs_icsb_enable_counter(
2158 xfs_mount_t *mp,
2159 xfs_sb_field_t field,
2160 uint64_t count,
2161 uint64_t resid)
2163 xfs_icsb_cnts_t *cntp;
2164 int i;
2166 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2168 xfs_icsb_lock_all_counters(mp);
2169 for_each_online_cpu(i) {
2170 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2171 switch (field) {
2172 case XFS_SBS_ICOUNT:
2173 cntp->icsb_icount = count + resid;
2174 break;
2175 case XFS_SBS_IFREE:
2176 cntp->icsb_ifree = count + resid;
2177 break;
2178 case XFS_SBS_FDBLOCKS:
2179 cntp->icsb_fdblocks = count + resid;
2180 break;
2181 default:
2182 BUG();
2183 break;
2185 resid = 0;
2187 clear_bit(field, &mp->m_icsb_counters);
2188 xfs_icsb_unlock_all_counters(mp);
2191 void
2192 xfs_icsb_sync_counters_flags(
2193 xfs_mount_t *mp,
2194 int flags)
2196 xfs_icsb_cnts_t cnt;
2197 int s;
2199 /* Pass 1: lock all counters */
2200 if ((flags & XFS_ICSB_SB_LOCKED) == 0)
2201 s = XFS_SB_LOCK(mp);
2203 xfs_icsb_count(mp, &cnt, flags);
2205 /* Step 3: update mp->m_sb fields */
2206 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2207 mp->m_sb.sb_icount = cnt.icsb_icount;
2208 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2209 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2210 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2211 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2213 if ((flags & XFS_ICSB_SB_LOCKED) == 0)
2214 XFS_SB_UNLOCK(mp, s);
2218 * Accurate update of per-cpu counters to incore superblock
2220 STATIC void
2221 xfs_icsb_sync_counters(
2222 xfs_mount_t *mp)
2224 xfs_icsb_sync_counters_flags(mp, 0);
2228 * Balance and enable/disable counters as necessary.
2230 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2231 * chosen to be the same number as single on disk allocation chunk per CPU, and
2232 * free blocks is something far enough zero that we aren't going thrash when we
2233 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2234 * prevent looping endlessly when xfs_alloc_space asks for more than will
2235 * be distributed to a single CPU but each CPU has enough blocks to be
2236 * reenabled.
2238 * Note that we can be called when counters are already disabled.
2239 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2240 * prevent locking every per-cpu counter needlessly.
2243 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2244 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2245 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2246 STATIC void
2247 xfs_icsb_balance_counter(
2248 xfs_mount_t *mp,
2249 xfs_sb_field_t field,
2250 int flags,
2251 int min_per_cpu)
2253 uint64_t count, resid;
2254 int weight = num_online_cpus();
2255 int s;
2256 uint64_t min = (uint64_t)min_per_cpu;
2258 if (!(flags & XFS_ICSB_SB_LOCKED))
2259 s = XFS_SB_LOCK(mp);
2261 /* disable counter and sync counter */
2262 xfs_icsb_disable_counter(mp, field);
2264 /* update counters - first CPU gets residual*/
2265 switch (field) {
2266 case XFS_SBS_ICOUNT:
2267 count = mp->m_sb.sb_icount;
2268 resid = do_div(count, weight);
2269 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2270 goto out;
2271 break;
2272 case XFS_SBS_IFREE:
2273 count = mp->m_sb.sb_ifree;
2274 resid = do_div(count, weight);
2275 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2276 goto out;
2277 break;
2278 case XFS_SBS_FDBLOCKS:
2279 count = mp->m_sb.sb_fdblocks;
2280 resid = do_div(count, weight);
2281 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2282 goto out;
2283 break;
2284 default:
2285 BUG();
2286 count = resid = 0; /* quiet, gcc */
2287 break;
2290 xfs_icsb_enable_counter(mp, field, count, resid);
2291 out:
2292 if (!(flags & XFS_ICSB_SB_LOCKED))
2293 XFS_SB_UNLOCK(mp, s);
2297 xfs_icsb_modify_counters(
2298 xfs_mount_t *mp,
2299 xfs_sb_field_t field,
2300 int64_t delta,
2301 int rsvd)
2303 xfs_icsb_cnts_t *icsbp;
2304 long long lcounter; /* long counter for 64 bit fields */
2305 int cpu, ret = 0, s;
2307 might_sleep();
2308 again:
2309 cpu = get_cpu();
2310 icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2313 * if the counter is disabled, go to slow path
2315 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2316 goto slow_path;
2317 xfs_icsb_lock_cntr(icsbp);
2318 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2319 xfs_icsb_unlock_cntr(icsbp);
2320 goto slow_path;
2323 switch (field) {
2324 case XFS_SBS_ICOUNT:
2325 lcounter = icsbp->icsb_icount;
2326 lcounter += delta;
2327 if (unlikely(lcounter < 0))
2328 goto balance_counter;
2329 icsbp->icsb_icount = lcounter;
2330 break;
2332 case XFS_SBS_IFREE:
2333 lcounter = icsbp->icsb_ifree;
2334 lcounter += delta;
2335 if (unlikely(lcounter < 0))
2336 goto balance_counter;
2337 icsbp->icsb_ifree = lcounter;
2338 break;
2340 case XFS_SBS_FDBLOCKS:
2341 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2343 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2344 lcounter += delta;
2345 if (unlikely(lcounter < 0))
2346 goto balance_counter;
2347 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2348 break;
2349 default:
2350 BUG();
2351 break;
2353 xfs_icsb_unlock_cntr(icsbp);
2354 put_cpu();
2355 return 0;
2357 slow_path:
2358 put_cpu();
2361 * serialise with a mutex so we don't burn lots of cpu on
2362 * the superblock lock. We still need to hold the superblock
2363 * lock, however, when we modify the global structures.
2365 xfs_icsb_lock(mp);
2368 * Now running atomically.
2370 * If the counter is enabled, someone has beaten us to rebalancing.
2371 * Drop the lock and try again in the fast path....
2373 if (!(xfs_icsb_counter_disabled(mp, field))) {
2374 xfs_icsb_unlock(mp);
2375 goto again;
2379 * The counter is currently disabled. Because we are
2380 * running atomically here, we know a rebalance cannot
2381 * be in progress. Hence we can go straight to operating
2382 * on the global superblock. We do not call xfs_mod_incore_sb()
2383 * here even though we need to get the SB_LOCK. Doing so
2384 * will cause us to re-enter this function and deadlock.
2385 * Hence we get the SB_LOCK ourselves and then call
2386 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2387 * directly on the global counters.
2389 s = XFS_SB_LOCK(mp);
2390 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2391 XFS_SB_UNLOCK(mp, s);
2394 * Now that we've modified the global superblock, we
2395 * may be able to re-enable the distributed counters
2396 * (e.g. lots of space just got freed). After that
2397 * we are done.
2399 if (ret != ENOSPC)
2400 xfs_icsb_balance_counter(mp, field, 0, 0);
2401 xfs_icsb_unlock(mp);
2402 return ret;
2404 balance_counter:
2405 xfs_icsb_unlock_cntr(icsbp);
2406 put_cpu();
2409 * We may have multiple threads here if multiple per-cpu
2410 * counters run dry at the same time. This will mean we can
2411 * do more balances than strictly necessary but it is not
2412 * the common slowpath case.
2414 xfs_icsb_lock(mp);
2417 * running atomically.
2419 * This will leave the counter in the correct state for future
2420 * accesses. After the rebalance, we simply try again and our retry
2421 * will either succeed through the fast path or slow path without
2422 * another balance operation being required.
2424 xfs_icsb_balance_counter(mp, field, 0, delta);
2425 xfs_icsb_unlock(mp);
2426 goto again;
2429 #endif