[ARM] introduce dma_cache_maint_page()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_inode_item.c
blob977c4aec587eeb3ea316408a73f147082c14c5ba
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_buf_item.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_mount.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_btree.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_rw.h"
43 #include "xfs_error.h"
46 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
49 * This returns the number of iovecs needed to log the given inode item.
51 * We need one iovec for the inode log format structure, one for the
52 * inode core, and possibly one for the inode data/extents/b-tree root
53 * and one for the inode attribute data/extents/b-tree root.
55 STATIC uint
56 xfs_inode_item_size(
57 xfs_inode_log_item_t *iip)
59 uint nvecs;
60 xfs_inode_t *ip;
62 ip = iip->ili_inode;
63 nvecs = 2;
66 * Only log the data/extents/b-tree root if there is something
67 * left to log.
69 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
71 switch (ip->i_d.di_format) {
72 case XFS_DINODE_FMT_EXTENTS:
73 iip->ili_format.ilf_fields &=
74 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
75 XFS_ILOG_DEV | XFS_ILOG_UUID);
76 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
77 (ip->i_d.di_nextents > 0) &&
78 (ip->i_df.if_bytes > 0)) {
79 ASSERT(ip->i_df.if_u1.if_extents != NULL);
80 nvecs++;
81 } else {
82 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
84 break;
86 case XFS_DINODE_FMT_BTREE:
87 ASSERT(ip->i_df.if_ext_max ==
88 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
89 iip->ili_format.ilf_fields &=
90 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
91 XFS_ILOG_DEV | XFS_ILOG_UUID);
92 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
93 (ip->i_df.if_broot_bytes > 0)) {
94 ASSERT(ip->i_df.if_broot != NULL);
95 nvecs++;
96 } else {
97 ASSERT(!(iip->ili_format.ilf_fields &
98 XFS_ILOG_DBROOT));
99 #ifdef XFS_TRANS_DEBUG
100 if (iip->ili_root_size > 0) {
101 ASSERT(iip->ili_root_size ==
102 ip->i_df.if_broot_bytes);
103 ASSERT(memcmp(iip->ili_orig_root,
104 ip->i_df.if_broot,
105 iip->ili_root_size) == 0);
106 } else {
107 ASSERT(ip->i_df.if_broot_bytes == 0);
109 #endif
110 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
112 break;
114 case XFS_DINODE_FMT_LOCAL:
115 iip->ili_format.ilf_fields &=
116 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
117 XFS_ILOG_DEV | XFS_ILOG_UUID);
118 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
119 (ip->i_df.if_bytes > 0)) {
120 ASSERT(ip->i_df.if_u1.if_data != NULL);
121 ASSERT(ip->i_d.di_size > 0);
122 nvecs++;
123 } else {
124 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
126 break;
128 case XFS_DINODE_FMT_DEV:
129 iip->ili_format.ilf_fields &=
130 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
131 XFS_ILOG_DEXT | XFS_ILOG_UUID);
132 break;
134 case XFS_DINODE_FMT_UUID:
135 iip->ili_format.ilf_fields &=
136 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
137 XFS_ILOG_DEXT | XFS_ILOG_DEV);
138 break;
140 default:
141 ASSERT(0);
142 break;
146 * If there are no attributes associated with this file,
147 * then there cannot be anything more to log.
148 * Clear all attribute-related log flags.
150 if (!XFS_IFORK_Q(ip)) {
151 iip->ili_format.ilf_fields &=
152 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
153 return nvecs;
157 * Log any necessary attribute data.
159 switch (ip->i_d.di_aformat) {
160 case XFS_DINODE_FMT_EXTENTS:
161 iip->ili_format.ilf_fields &=
162 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
163 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
164 (ip->i_d.di_anextents > 0) &&
165 (ip->i_afp->if_bytes > 0)) {
166 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
167 nvecs++;
168 } else {
169 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
171 break;
173 case XFS_DINODE_FMT_BTREE:
174 iip->ili_format.ilf_fields &=
175 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
176 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
177 (ip->i_afp->if_broot_bytes > 0)) {
178 ASSERT(ip->i_afp->if_broot != NULL);
179 nvecs++;
180 } else {
181 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
183 break;
185 case XFS_DINODE_FMT_LOCAL:
186 iip->ili_format.ilf_fields &=
187 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
188 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
189 (ip->i_afp->if_bytes > 0)) {
190 ASSERT(ip->i_afp->if_u1.if_data != NULL);
191 nvecs++;
192 } else {
193 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
195 break;
197 default:
198 ASSERT(0);
199 break;
202 return nvecs;
206 * This is called to fill in the vector of log iovecs for the
207 * given inode log item. It fills the first item with an inode
208 * log format structure, the second with the on-disk inode structure,
209 * and a possible third and/or fourth with the inode data/extents/b-tree
210 * root and inode attributes data/extents/b-tree root.
212 STATIC void
213 xfs_inode_item_format(
214 xfs_inode_log_item_t *iip,
215 xfs_log_iovec_t *log_vector)
217 uint nvecs;
218 xfs_log_iovec_t *vecp;
219 xfs_inode_t *ip;
220 size_t data_bytes;
221 xfs_bmbt_rec_t *ext_buffer;
222 int nrecs;
223 xfs_mount_t *mp;
225 ip = iip->ili_inode;
226 vecp = log_vector;
228 vecp->i_addr = (xfs_caddr_t)&iip->ili_format;
229 vecp->i_len = sizeof(xfs_inode_log_format_t);
230 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IFORMAT);
231 vecp++;
232 nvecs = 1;
235 * Clear i_update_core if the timestamps (or any other
236 * non-transactional modification) need flushing/logging
237 * and we're about to log them with the rest of the core.
239 * This is the same logic as xfs_iflush() but this code can't
240 * run at the same time as xfs_iflush because we're in commit
241 * processing here and so we have the inode lock held in
242 * exclusive mode. Although it doesn't really matter
243 * for the timestamps if both routines were to grab the
244 * timestamps or not. That would be ok.
246 * We clear i_update_core before copying out the data.
247 * This is for coordination with our timestamp updates
248 * that don't hold the inode lock. They will always
249 * update the timestamps BEFORE setting i_update_core,
250 * so if we clear i_update_core after they set it we
251 * are guaranteed to see their updates to the timestamps
252 * either here. Likewise, if they set it after we clear it
253 * here, we'll see it either on the next commit of this
254 * inode or the next time the inode gets flushed via
255 * xfs_iflush(). This depends on strongly ordered memory
256 * semantics, but we have that. We use the SYNCHRONIZE
257 * macro to make sure that the compiler does not reorder
258 * the i_update_core access below the data copy below.
260 if (ip->i_update_core) {
261 ip->i_update_core = 0;
262 SYNCHRONIZE();
266 * We don't have to worry about re-ordering here because
267 * the update_size field is protected by the inode lock
268 * and we have that held in exclusive mode.
270 if (ip->i_update_size)
271 ip->i_update_size = 0;
274 * Make sure to get the latest atime from the Linux inode.
276 xfs_synchronize_atime(ip);
279 * make sure the linux inode is dirty
281 xfs_mark_inode_dirty_sync(ip);
283 vecp->i_addr = (xfs_caddr_t)&ip->i_d;
284 vecp->i_len = sizeof(struct xfs_icdinode);
285 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ICORE);
286 vecp++;
287 nvecs++;
288 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
291 * If this is really an old format inode, then we need to
292 * log it as such. This means that we have to copy the link
293 * count from the new field to the old. We don't have to worry
294 * about the new fields, because nothing trusts them as long as
295 * the old inode version number is there. If the superblock already
296 * has a new version number, then we don't bother converting back.
298 mp = ip->i_mount;
299 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
300 if (ip->i_d.di_version == 1) {
301 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
303 * Convert it back.
305 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
306 ip->i_d.di_onlink = ip->i_d.di_nlink;
307 } else {
309 * The superblock version has already been bumped,
310 * so just make the conversion to the new inode
311 * format permanent.
313 ip->i_d.di_version = 2;
314 ip->i_d.di_onlink = 0;
315 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
319 switch (ip->i_d.di_format) {
320 case XFS_DINODE_FMT_EXTENTS:
321 ASSERT(!(iip->ili_format.ilf_fields &
322 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
323 XFS_ILOG_DEV | XFS_ILOG_UUID)));
324 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
325 ASSERT(ip->i_df.if_bytes > 0);
326 ASSERT(ip->i_df.if_u1.if_extents != NULL);
327 ASSERT(ip->i_d.di_nextents > 0);
328 ASSERT(iip->ili_extents_buf == NULL);
329 nrecs = ip->i_df.if_bytes /
330 (uint)sizeof(xfs_bmbt_rec_t);
331 ASSERT(nrecs > 0);
332 #ifdef XFS_NATIVE_HOST
333 if (nrecs == ip->i_d.di_nextents) {
335 * There are no delayed allocation
336 * extents, so just point to the
337 * real extents array.
339 vecp->i_addr =
340 (char *)(ip->i_df.if_u1.if_extents);
341 vecp->i_len = ip->i_df.if_bytes;
342 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
343 } else
344 #endif
347 * There are delayed allocation extents
348 * in the inode, or we need to convert
349 * the extents to on disk format.
350 * Use xfs_iextents_copy()
351 * to copy only the real extents into
352 * a separate buffer. We'll free the
353 * buffer in the unlock routine.
355 ext_buffer = kmem_alloc(ip->i_df.if_bytes,
356 KM_SLEEP);
357 iip->ili_extents_buf = ext_buffer;
358 vecp->i_addr = (xfs_caddr_t)ext_buffer;
359 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
360 XFS_DATA_FORK);
361 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
363 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
364 iip->ili_format.ilf_dsize = vecp->i_len;
365 vecp++;
366 nvecs++;
368 break;
370 case XFS_DINODE_FMT_BTREE:
371 ASSERT(!(iip->ili_format.ilf_fields &
372 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
373 XFS_ILOG_DEV | XFS_ILOG_UUID)));
374 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
375 ASSERT(ip->i_df.if_broot_bytes > 0);
376 ASSERT(ip->i_df.if_broot != NULL);
377 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot;
378 vecp->i_len = ip->i_df.if_broot_bytes;
379 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IBROOT);
380 vecp++;
381 nvecs++;
382 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
384 break;
386 case XFS_DINODE_FMT_LOCAL:
387 ASSERT(!(iip->ili_format.ilf_fields &
388 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
389 XFS_ILOG_DEV | XFS_ILOG_UUID)));
390 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
391 ASSERT(ip->i_df.if_bytes > 0);
392 ASSERT(ip->i_df.if_u1.if_data != NULL);
393 ASSERT(ip->i_d.di_size > 0);
395 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data;
397 * Round i_bytes up to a word boundary.
398 * The underlying memory is guaranteed to
399 * to be there by xfs_idata_realloc().
401 data_bytes = roundup(ip->i_df.if_bytes, 4);
402 ASSERT((ip->i_df.if_real_bytes == 0) ||
403 (ip->i_df.if_real_bytes == data_bytes));
404 vecp->i_len = (int)data_bytes;
405 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ILOCAL);
406 vecp++;
407 nvecs++;
408 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
410 break;
412 case XFS_DINODE_FMT_DEV:
413 ASSERT(!(iip->ili_format.ilf_fields &
414 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
415 XFS_ILOG_DDATA | XFS_ILOG_UUID)));
416 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
417 iip->ili_format.ilf_u.ilfu_rdev =
418 ip->i_df.if_u2.if_rdev;
420 break;
422 case XFS_DINODE_FMT_UUID:
423 ASSERT(!(iip->ili_format.ilf_fields &
424 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
425 XFS_ILOG_DDATA | XFS_ILOG_DEV)));
426 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
427 iip->ili_format.ilf_u.ilfu_uuid =
428 ip->i_df.if_u2.if_uuid;
430 break;
432 default:
433 ASSERT(0);
434 break;
438 * If there are no attributes associated with the file,
439 * then we're done.
440 * Assert that no attribute-related log flags are set.
442 if (!XFS_IFORK_Q(ip)) {
443 ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
444 iip->ili_format.ilf_size = nvecs;
445 ASSERT(!(iip->ili_format.ilf_fields &
446 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
447 return;
450 switch (ip->i_d.di_aformat) {
451 case XFS_DINODE_FMT_EXTENTS:
452 ASSERT(!(iip->ili_format.ilf_fields &
453 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
454 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
455 ASSERT(ip->i_afp->if_bytes > 0);
456 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
457 ASSERT(ip->i_d.di_anextents > 0);
458 #ifdef DEBUG
459 nrecs = ip->i_afp->if_bytes /
460 (uint)sizeof(xfs_bmbt_rec_t);
461 #endif
462 ASSERT(nrecs > 0);
463 ASSERT(nrecs == ip->i_d.di_anextents);
464 #ifdef XFS_NATIVE_HOST
466 * There are not delayed allocation extents
467 * for attributes, so just point at the array.
469 vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents);
470 vecp->i_len = ip->i_afp->if_bytes;
471 #else
472 ASSERT(iip->ili_aextents_buf == NULL);
474 * Need to endian flip before logging
476 ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
477 KM_SLEEP);
478 iip->ili_aextents_buf = ext_buffer;
479 vecp->i_addr = (xfs_caddr_t)ext_buffer;
480 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
481 XFS_ATTR_FORK);
482 #endif
483 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_EXT);
484 iip->ili_format.ilf_asize = vecp->i_len;
485 vecp++;
486 nvecs++;
488 break;
490 case XFS_DINODE_FMT_BTREE:
491 ASSERT(!(iip->ili_format.ilf_fields &
492 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
493 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
494 ASSERT(ip->i_afp->if_broot_bytes > 0);
495 ASSERT(ip->i_afp->if_broot != NULL);
496 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot;
497 vecp->i_len = ip->i_afp->if_broot_bytes;
498 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_BROOT);
499 vecp++;
500 nvecs++;
501 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
503 break;
505 case XFS_DINODE_FMT_LOCAL:
506 ASSERT(!(iip->ili_format.ilf_fields &
507 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
508 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
509 ASSERT(ip->i_afp->if_bytes > 0);
510 ASSERT(ip->i_afp->if_u1.if_data != NULL);
512 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data;
514 * Round i_bytes up to a word boundary.
515 * The underlying memory is guaranteed to
516 * to be there by xfs_idata_realloc().
518 data_bytes = roundup(ip->i_afp->if_bytes, 4);
519 ASSERT((ip->i_afp->if_real_bytes == 0) ||
520 (ip->i_afp->if_real_bytes == data_bytes));
521 vecp->i_len = (int)data_bytes;
522 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_LOCAL);
523 vecp++;
524 nvecs++;
525 iip->ili_format.ilf_asize = (unsigned)data_bytes;
527 break;
529 default:
530 ASSERT(0);
531 break;
534 ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
535 iip->ili_format.ilf_size = nvecs;
540 * This is called to pin the inode associated with the inode log
541 * item in memory so it cannot be written out. Do this by calling
542 * xfs_ipin() to bump the pin count in the inode while holding the
543 * inode pin lock.
545 STATIC void
546 xfs_inode_item_pin(
547 xfs_inode_log_item_t *iip)
549 ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
550 xfs_ipin(iip->ili_inode);
555 * This is called to unpin the inode associated with the inode log
556 * item which was previously pinned with a call to xfs_inode_item_pin().
557 * Just call xfs_iunpin() on the inode to do this.
559 /* ARGSUSED */
560 STATIC void
561 xfs_inode_item_unpin(
562 xfs_inode_log_item_t *iip,
563 int stale)
565 xfs_iunpin(iip->ili_inode);
568 /* ARGSUSED */
569 STATIC void
570 xfs_inode_item_unpin_remove(
571 xfs_inode_log_item_t *iip,
572 xfs_trans_t *tp)
574 xfs_iunpin(iip->ili_inode);
578 * This is called to attempt to lock the inode associated with this
579 * inode log item, in preparation for the push routine which does the actual
580 * iflush. Don't sleep on the inode lock or the flush lock.
582 * If the flush lock is already held, indicating that the inode has
583 * been or is in the process of being flushed, then (ideally) we'd like to
584 * see if the inode's buffer is still incore, and if so give it a nudge.
585 * We delay doing so until the pushbuf routine, though, to avoid holding
586 * the AIL lock across a call to the blackhole which is the buffer cache.
587 * Also we don't want to sleep in any device strategy routines, which can happen
588 * if we do the subsequent bawrite in here.
590 STATIC uint
591 xfs_inode_item_trylock(
592 xfs_inode_log_item_t *iip)
594 register xfs_inode_t *ip;
596 ip = iip->ili_inode;
598 if (xfs_ipincount(ip) > 0) {
599 return XFS_ITEM_PINNED;
602 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
603 return XFS_ITEM_LOCKED;
606 if (!xfs_iflock_nowait(ip)) {
608 * If someone else isn't already trying to push the inode
609 * buffer, we get to do it.
611 if (iip->ili_pushbuf_flag == 0) {
612 iip->ili_pushbuf_flag = 1;
613 #ifdef DEBUG
614 iip->ili_push_owner = current_pid();
615 #endif
617 * Inode is left locked in shared mode.
618 * Pushbuf routine gets to unlock it.
620 return XFS_ITEM_PUSHBUF;
621 } else {
623 * We hold the AIL lock, so we must specify the
624 * NONOTIFY flag so that we won't double trip.
626 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
627 return XFS_ITEM_FLUSHING;
629 /* NOTREACHED */
632 /* Stale items should force out the iclog */
633 if (ip->i_flags & XFS_ISTALE) {
634 xfs_ifunlock(ip);
635 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
636 return XFS_ITEM_PINNED;
639 #ifdef DEBUG
640 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
641 ASSERT(iip->ili_format.ilf_fields != 0);
642 ASSERT(iip->ili_logged == 0);
643 ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL);
645 #endif
646 return XFS_ITEM_SUCCESS;
650 * Unlock the inode associated with the inode log item.
651 * Clear the fields of the inode and inode log item that
652 * are specific to the current transaction. If the
653 * hold flags is set, do not unlock the inode.
655 STATIC void
656 xfs_inode_item_unlock(
657 xfs_inode_log_item_t *iip)
659 uint hold;
660 uint iolocked;
661 uint lock_flags;
662 xfs_inode_t *ip;
664 ASSERT(iip != NULL);
665 ASSERT(iip->ili_inode->i_itemp != NULL);
666 ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
667 ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
668 XFS_ILI_IOLOCKED_EXCL)) ||
669 xfs_isilocked(iip->ili_inode, XFS_IOLOCK_EXCL));
670 ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
671 XFS_ILI_IOLOCKED_SHARED)) ||
672 xfs_isilocked(iip->ili_inode, XFS_IOLOCK_SHARED));
674 * Clear the transaction pointer in the inode.
676 ip = iip->ili_inode;
677 ip->i_transp = NULL;
680 * If the inode needed a separate buffer with which to log
681 * its extents, then free it now.
683 if (iip->ili_extents_buf != NULL) {
684 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
685 ASSERT(ip->i_d.di_nextents > 0);
686 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
687 ASSERT(ip->i_df.if_bytes > 0);
688 kmem_free(iip->ili_extents_buf);
689 iip->ili_extents_buf = NULL;
691 if (iip->ili_aextents_buf != NULL) {
692 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
693 ASSERT(ip->i_d.di_anextents > 0);
694 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
695 ASSERT(ip->i_afp->if_bytes > 0);
696 kmem_free(iip->ili_aextents_buf);
697 iip->ili_aextents_buf = NULL;
701 * Figure out if we should unlock the inode or not.
703 hold = iip->ili_flags & XFS_ILI_HOLD;
706 * Before clearing out the flags, remember whether we
707 * are holding the inode's IO lock.
709 iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY;
712 * Clear out the fields of the inode log item particular
713 * to the current transaction.
715 iip->ili_ilock_recur = 0;
716 iip->ili_iolock_recur = 0;
717 iip->ili_flags = 0;
720 * Unlock the inode if XFS_ILI_HOLD was not set.
722 if (!hold) {
723 lock_flags = XFS_ILOCK_EXCL;
724 if (iolocked & XFS_ILI_IOLOCKED_EXCL) {
725 lock_flags |= XFS_IOLOCK_EXCL;
726 } else if (iolocked & XFS_ILI_IOLOCKED_SHARED) {
727 lock_flags |= XFS_IOLOCK_SHARED;
729 xfs_iput(iip->ili_inode, lock_flags);
734 * This is called to find out where the oldest active copy of the
735 * inode log item in the on disk log resides now that the last log
736 * write of it completed at the given lsn. Since we always re-log
737 * all dirty data in an inode, the latest copy in the on disk log
738 * is the only one that matters. Therefore, simply return the
739 * given lsn.
741 /*ARGSUSED*/
742 STATIC xfs_lsn_t
743 xfs_inode_item_committed(
744 xfs_inode_log_item_t *iip,
745 xfs_lsn_t lsn)
747 return (lsn);
751 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
752 * failed to get the inode flush lock but did get the inode locked SHARED.
753 * Here we're trying to see if the inode buffer is incore, and if so whether it's
754 * marked delayed write. If that's the case, we'll initiate a bawrite on that
755 * buffer to expedite the process.
757 * We aren't holding the AIL lock (or the flush lock) when this gets called,
758 * so it is inherently race-y.
760 STATIC void
761 xfs_inode_item_pushbuf(
762 xfs_inode_log_item_t *iip)
764 xfs_inode_t *ip;
765 xfs_mount_t *mp;
766 xfs_buf_t *bp;
767 uint dopush;
769 ip = iip->ili_inode;
771 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
774 * The ili_pushbuf_flag keeps others from
775 * trying to duplicate our effort.
777 ASSERT(iip->ili_pushbuf_flag != 0);
778 ASSERT(iip->ili_push_owner == current_pid());
781 * If a flush is not in progress anymore, chances are that the
782 * inode was taken off the AIL. So, just get out.
784 if (completion_done(&ip->i_flush) ||
785 ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
786 iip->ili_pushbuf_flag = 0;
787 xfs_iunlock(ip, XFS_ILOCK_SHARED);
788 return;
791 mp = ip->i_mount;
792 bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno,
793 iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);
795 if (bp != NULL) {
796 if (XFS_BUF_ISDELAYWRITE(bp)) {
798 * We were racing with iflush because we don't hold
799 * the AIL lock or the flush lock. However, at this point,
800 * we have the buffer, and we know that it's dirty.
801 * So, it's possible that iflush raced with us, and
802 * this item is already taken off the AIL.
803 * If not, we can flush it async.
805 dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) &&
806 !completion_done(&ip->i_flush));
807 iip->ili_pushbuf_flag = 0;
808 xfs_iunlock(ip, XFS_ILOCK_SHARED);
809 xfs_buftrace("INODE ITEM PUSH", bp);
810 if (XFS_BUF_ISPINNED(bp)) {
811 xfs_log_force(mp, (xfs_lsn_t)0,
812 XFS_LOG_FORCE);
814 if (dopush) {
815 int error;
816 error = xfs_bawrite(mp, bp);
817 if (error)
818 xfs_fs_cmn_err(CE_WARN, mp,
819 "xfs_inode_item_pushbuf: pushbuf error %d on iip %p, bp %p",
820 error, iip, bp);
821 } else {
822 xfs_buf_relse(bp);
824 } else {
825 iip->ili_pushbuf_flag = 0;
826 xfs_iunlock(ip, XFS_ILOCK_SHARED);
827 xfs_buf_relse(bp);
829 return;
832 * We have to be careful about resetting pushbuf flag too early (above).
833 * Even though in theory we can do it as soon as we have the buflock,
834 * we don't want others to be doing work needlessly. They'll come to
835 * this function thinking that pushing the buffer is their
836 * responsibility only to find that the buffer is still locked by
837 * another doing the same thing
839 iip->ili_pushbuf_flag = 0;
840 xfs_iunlock(ip, XFS_ILOCK_SHARED);
841 return;
846 * This is called to asynchronously write the inode associated with this
847 * inode log item out to disk. The inode will already have been locked by
848 * a successful call to xfs_inode_item_trylock().
850 STATIC void
851 xfs_inode_item_push(
852 xfs_inode_log_item_t *iip)
854 xfs_inode_t *ip;
856 ip = iip->ili_inode;
858 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
859 ASSERT(!completion_done(&ip->i_flush));
861 * Since we were able to lock the inode's flush lock and
862 * we found it on the AIL, the inode must be dirty. This
863 * is because the inode is removed from the AIL while still
864 * holding the flush lock in xfs_iflush_done(). Thus, if
865 * we found it in the AIL and were able to obtain the flush
866 * lock without sleeping, then there must not have been
867 * anyone in the process of flushing the inode.
869 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
870 iip->ili_format.ilf_fields != 0);
873 * Write out the inode. The completion routine ('iflush_done') will
874 * pull it from the AIL, mark it clean, unlock the flush lock.
876 (void) xfs_iflush(ip, XFS_IFLUSH_ASYNC);
877 xfs_iunlock(ip, XFS_ILOCK_SHARED);
879 return;
883 * XXX rcc - this one really has to do something. Probably needs
884 * to stamp in a new field in the incore inode.
886 /* ARGSUSED */
887 STATIC void
888 xfs_inode_item_committing(
889 xfs_inode_log_item_t *iip,
890 xfs_lsn_t lsn)
892 iip->ili_last_lsn = lsn;
893 return;
897 * This is the ops vector shared by all buf log items.
899 static struct xfs_item_ops xfs_inode_item_ops = {
900 .iop_size = (uint(*)(xfs_log_item_t*))xfs_inode_item_size,
901 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
902 xfs_inode_item_format,
903 .iop_pin = (void(*)(xfs_log_item_t*))xfs_inode_item_pin,
904 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin,
905 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
906 xfs_inode_item_unpin_remove,
907 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock,
908 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_inode_item_unlock,
909 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
910 xfs_inode_item_committed,
911 .iop_push = (void(*)(xfs_log_item_t*))xfs_inode_item_push,
912 .iop_pushbuf = (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf,
913 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
914 xfs_inode_item_committing
919 * Initialize the inode log item for a newly allocated (in-core) inode.
921 void
922 xfs_inode_item_init(
923 xfs_inode_t *ip,
924 xfs_mount_t *mp)
926 xfs_inode_log_item_t *iip;
928 ASSERT(ip->i_itemp == NULL);
929 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
931 iip->ili_item.li_type = XFS_LI_INODE;
932 iip->ili_item.li_ops = &xfs_inode_item_ops;
933 iip->ili_item.li_mountp = mp;
934 iip->ili_item.li_ailp = mp->m_ail;
935 iip->ili_inode = ip;
938 We have zeroed memory. No need ...
939 iip->ili_extents_buf = NULL;
940 iip->ili_pushbuf_flag = 0;
943 iip->ili_format.ilf_type = XFS_LI_INODE;
944 iip->ili_format.ilf_ino = ip->i_ino;
945 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
946 iip->ili_format.ilf_len = ip->i_imap.im_len;
947 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
951 * Free the inode log item and any memory hanging off of it.
953 void
954 xfs_inode_item_destroy(
955 xfs_inode_t *ip)
957 #ifdef XFS_TRANS_DEBUG
958 if (ip->i_itemp->ili_root_size != 0) {
959 kmem_free(ip->i_itemp->ili_orig_root);
961 #endif
962 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
967 * This is the inode flushing I/O completion routine. It is called
968 * from interrupt level when the buffer containing the inode is
969 * flushed to disk. It is responsible for removing the inode item
970 * from the AIL if it has not been re-logged, and unlocking the inode's
971 * flush lock.
973 /*ARGSUSED*/
974 void
975 xfs_iflush_done(
976 xfs_buf_t *bp,
977 xfs_inode_log_item_t *iip)
979 xfs_inode_t *ip = iip->ili_inode;
980 struct xfs_ail *ailp = iip->ili_item.li_ailp;
983 * We only want to pull the item from the AIL if it is
984 * actually there and its location in the log has not
985 * changed since we started the flush. Thus, we only bother
986 * if the ili_logged flag is set and the inode's lsn has not
987 * changed. First we check the lsn outside
988 * the lock since it's cheaper, and then we recheck while
989 * holding the lock before removing the inode from the AIL.
991 if (iip->ili_logged &&
992 (iip->ili_item.li_lsn == iip->ili_flush_lsn)) {
993 spin_lock(&ailp->xa_lock);
994 if (iip->ili_item.li_lsn == iip->ili_flush_lsn) {
995 /* xfs_trans_ail_delete() drops the AIL lock. */
996 xfs_trans_ail_delete(ailp, (xfs_log_item_t*)iip);
997 } else {
998 spin_unlock(&ailp->xa_lock);
1002 iip->ili_logged = 0;
1005 * Clear the ili_last_fields bits now that we know that the
1006 * data corresponding to them is safely on disk.
1008 iip->ili_last_fields = 0;
1011 * Release the inode's flush lock since we're done with it.
1013 xfs_ifunlock(ip);
1015 return;
1019 * This is the inode flushing abort routine. It is called
1020 * from xfs_iflush when the filesystem is shutting down to clean
1021 * up the inode state.
1022 * It is responsible for removing the inode item
1023 * from the AIL if it has not been re-logged, and unlocking the inode's
1024 * flush lock.
1026 void
1027 xfs_iflush_abort(
1028 xfs_inode_t *ip)
1030 xfs_inode_log_item_t *iip = ip->i_itemp;
1031 xfs_mount_t *mp;
1033 iip = ip->i_itemp;
1034 mp = ip->i_mount;
1035 if (iip) {
1036 struct xfs_ail *ailp = iip->ili_item.li_ailp;
1037 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1038 spin_lock(&ailp->xa_lock);
1039 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1040 /* xfs_trans_ail_delete() drops the AIL lock. */
1041 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
1042 } else
1043 spin_unlock(&ailp->xa_lock);
1045 iip->ili_logged = 0;
1047 * Clear the ili_last_fields bits now that we know that the
1048 * data corresponding to them is safely on disk.
1050 iip->ili_last_fields = 0;
1052 * Clear the inode logging fields so no more flushes are
1053 * attempted.
1055 iip->ili_format.ilf_fields = 0;
1058 * Release the inode's flush lock since we're done with it.
1060 xfs_ifunlock(ip);
1063 void
1064 xfs_istale_done(
1065 xfs_buf_t *bp,
1066 xfs_inode_log_item_t *iip)
1068 xfs_iflush_abort(iip->ili_inode);
1072 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1073 * (which can have different field alignments) to the native version
1076 xfs_inode_item_format_convert(
1077 xfs_log_iovec_t *buf,
1078 xfs_inode_log_format_t *in_f)
1080 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
1081 xfs_inode_log_format_32_t *in_f32;
1083 in_f32 = (xfs_inode_log_format_32_t *)buf->i_addr;
1084 in_f->ilf_type = in_f32->ilf_type;
1085 in_f->ilf_size = in_f32->ilf_size;
1086 in_f->ilf_fields = in_f32->ilf_fields;
1087 in_f->ilf_asize = in_f32->ilf_asize;
1088 in_f->ilf_dsize = in_f32->ilf_dsize;
1089 in_f->ilf_ino = in_f32->ilf_ino;
1090 /* copy biggest field of ilf_u */
1091 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1092 in_f32->ilf_u.ilfu_uuid.__u_bits,
1093 sizeof(uuid_t));
1094 in_f->ilf_blkno = in_f32->ilf_blkno;
1095 in_f->ilf_len = in_f32->ilf_len;
1096 in_f->ilf_boffset = in_f32->ilf_boffset;
1097 return 0;
1098 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
1099 xfs_inode_log_format_64_t *in_f64;
1101 in_f64 = (xfs_inode_log_format_64_t *)buf->i_addr;
1102 in_f->ilf_type = in_f64->ilf_type;
1103 in_f->ilf_size = in_f64->ilf_size;
1104 in_f->ilf_fields = in_f64->ilf_fields;
1105 in_f->ilf_asize = in_f64->ilf_asize;
1106 in_f->ilf_dsize = in_f64->ilf_dsize;
1107 in_f->ilf_ino = in_f64->ilf_ino;
1108 /* copy biggest field of ilf_u */
1109 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1110 in_f64->ilf_u.ilfu_uuid.__u_bits,
1111 sizeof(uuid_t));
1112 in_f->ilf_blkno = in_f64->ilf_blkno;
1113 in_f->ilf_len = in_f64->ilf_len;
1114 in_f->ilf_boffset = in_f64->ilf_boffset;
1115 return 0;
1117 return EFSCORRUPTED;