2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
25 #include "xfs_buf_item.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_mount.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_btree.h"
41 #include "xfs_ialloc.h"
43 #include "xfs_error.h"
46 kmem_zone_t
*xfs_ili_zone
; /* inode log item zone */
49 * This returns the number of iovecs needed to log the given inode item.
51 * We need one iovec for the inode log format structure, one for the
52 * inode core, and possibly one for the inode data/extents/b-tree root
53 * and one for the inode attribute data/extents/b-tree root.
57 xfs_inode_log_item_t
*iip
)
66 * Only log the data/extents/b-tree root if there is something
69 iip
->ili_format
.ilf_fields
|= XFS_ILOG_CORE
;
71 switch (ip
->i_d
.di_format
) {
72 case XFS_DINODE_FMT_EXTENTS
:
73 iip
->ili_format
.ilf_fields
&=
74 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
75 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
76 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
) &&
77 (ip
->i_d
.di_nextents
> 0) &&
78 (ip
->i_df
.if_bytes
> 0)) {
79 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
82 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DEXT
;
86 case XFS_DINODE_FMT_BTREE
:
87 ASSERT(ip
->i_df
.if_ext_max
==
88 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
));
89 iip
->ili_format
.ilf_fields
&=
90 ~(XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
91 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
92 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DBROOT
) &&
93 (ip
->i_df
.if_broot_bytes
> 0)) {
94 ASSERT(ip
->i_df
.if_broot
!= NULL
);
97 ASSERT(!(iip
->ili_format
.ilf_fields
&
99 #ifdef XFS_TRANS_DEBUG
100 if (iip
->ili_root_size
> 0) {
101 ASSERT(iip
->ili_root_size
==
102 ip
->i_df
.if_broot_bytes
);
103 ASSERT(memcmp(iip
->ili_orig_root
,
105 iip
->ili_root_size
) == 0);
107 ASSERT(ip
->i_df
.if_broot_bytes
== 0);
110 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DBROOT
;
114 case XFS_DINODE_FMT_LOCAL
:
115 iip
->ili_format
.ilf_fields
&=
116 ~(XFS_ILOG_DEXT
| XFS_ILOG_DBROOT
|
117 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
118 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DDATA
) &&
119 (ip
->i_df
.if_bytes
> 0)) {
120 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
121 ASSERT(ip
->i_d
.di_size
> 0);
124 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DDATA
;
128 case XFS_DINODE_FMT_DEV
:
129 iip
->ili_format
.ilf_fields
&=
130 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
131 XFS_ILOG_DEXT
| XFS_ILOG_UUID
);
134 case XFS_DINODE_FMT_UUID
:
135 iip
->ili_format
.ilf_fields
&=
136 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
137 XFS_ILOG_DEXT
| XFS_ILOG_DEV
);
146 * If there are no attributes associated with this file,
147 * then there cannot be anything more to log.
148 * Clear all attribute-related log flags.
150 if (!XFS_IFORK_Q(ip
)) {
151 iip
->ili_format
.ilf_fields
&=
152 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
);
157 * Log any necessary attribute data.
159 switch (ip
->i_d
.di_aformat
) {
160 case XFS_DINODE_FMT_EXTENTS
:
161 iip
->ili_format
.ilf_fields
&=
162 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
);
163 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
) &&
164 (ip
->i_d
.di_anextents
> 0) &&
165 (ip
->i_afp
->if_bytes
> 0)) {
166 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
169 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_AEXT
;
173 case XFS_DINODE_FMT_BTREE
:
174 iip
->ili_format
.ilf_fields
&=
175 ~(XFS_ILOG_ADATA
| XFS_ILOG_AEXT
);
176 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_ABROOT
) &&
177 (ip
->i_afp
->if_broot_bytes
> 0)) {
178 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
181 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_ABROOT
;
185 case XFS_DINODE_FMT_LOCAL
:
186 iip
->ili_format
.ilf_fields
&=
187 ~(XFS_ILOG_AEXT
| XFS_ILOG_ABROOT
);
188 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_ADATA
) &&
189 (ip
->i_afp
->if_bytes
> 0)) {
190 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
193 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_ADATA
;
206 * This is called to fill in the vector of log iovecs for the
207 * given inode log item. It fills the first item with an inode
208 * log format structure, the second with the on-disk inode structure,
209 * and a possible third and/or fourth with the inode data/extents/b-tree
210 * root and inode attributes data/extents/b-tree root.
213 xfs_inode_item_format(
214 xfs_inode_log_item_t
*iip
,
215 xfs_log_iovec_t
*log_vector
)
218 xfs_log_iovec_t
*vecp
;
221 xfs_bmbt_rec_t
*ext_buffer
;
228 vecp
->i_addr
= (xfs_caddr_t
)&iip
->ili_format
;
229 vecp
->i_len
= sizeof(xfs_inode_log_format_t
);
230 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IFORMAT
);
235 * Clear i_update_core if the timestamps (or any other
236 * non-transactional modification) need flushing/logging
237 * and we're about to log them with the rest of the core.
239 * This is the same logic as xfs_iflush() but this code can't
240 * run at the same time as xfs_iflush because we're in commit
241 * processing here and so we have the inode lock held in
242 * exclusive mode. Although it doesn't really matter
243 * for the timestamps if both routines were to grab the
244 * timestamps or not. That would be ok.
246 * We clear i_update_core before copying out the data.
247 * This is for coordination with our timestamp updates
248 * that don't hold the inode lock. They will always
249 * update the timestamps BEFORE setting i_update_core,
250 * so if we clear i_update_core after they set it we
251 * are guaranteed to see their updates to the timestamps
252 * either here. Likewise, if they set it after we clear it
253 * here, we'll see it either on the next commit of this
254 * inode or the next time the inode gets flushed via
255 * xfs_iflush(). This depends on strongly ordered memory
256 * semantics, but we have that. We use the SYNCHRONIZE
257 * macro to make sure that the compiler does not reorder
258 * the i_update_core access below the data copy below.
260 if (ip
->i_update_core
) {
261 ip
->i_update_core
= 0;
266 * We don't have to worry about re-ordering here because
267 * the update_size field is protected by the inode lock
268 * and we have that held in exclusive mode.
270 if (ip
->i_update_size
)
271 ip
->i_update_size
= 0;
274 * Make sure to get the latest atime from the Linux inode.
276 xfs_synchronize_atime(ip
);
279 * make sure the linux inode is dirty
281 xfs_mark_inode_dirty_sync(ip
);
283 vecp
->i_addr
= (xfs_caddr_t
)&ip
->i_d
;
284 vecp
->i_len
= sizeof(struct xfs_icdinode
);
285 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_ICORE
);
288 iip
->ili_format
.ilf_fields
|= XFS_ILOG_CORE
;
291 * If this is really an old format inode, then we need to
292 * log it as such. This means that we have to copy the link
293 * count from the new field to the old. We don't have to worry
294 * about the new fields, because nothing trusts them as long as
295 * the old inode version number is there. If the superblock already
296 * has a new version number, then we don't bother converting back.
299 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
300 if (ip
->i_d
.di_version
== 1) {
301 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
305 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
306 ip
->i_d
.di_onlink
= ip
->i_d
.di_nlink
;
309 * The superblock version has already been bumped,
310 * so just make the conversion to the new inode
313 ip
->i_d
.di_version
= 2;
314 ip
->i_d
.di_onlink
= 0;
315 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
319 switch (ip
->i_d
.di_format
) {
320 case XFS_DINODE_FMT_EXTENTS
:
321 ASSERT(!(iip
->ili_format
.ilf_fields
&
322 (XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
323 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
324 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
) {
325 ASSERT(ip
->i_df
.if_bytes
> 0);
326 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
327 ASSERT(ip
->i_d
.di_nextents
> 0);
328 ASSERT(iip
->ili_extents_buf
== NULL
);
329 nrecs
= ip
->i_df
.if_bytes
/
330 (uint
)sizeof(xfs_bmbt_rec_t
);
332 #ifdef XFS_NATIVE_HOST
333 if (nrecs
== ip
->i_d
.di_nextents
) {
335 * There are no delayed allocation
336 * extents, so just point to the
337 * real extents array.
340 (char *)(ip
->i_df
.if_u1
.if_extents
);
341 vecp
->i_len
= ip
->i_df
.if_bytes
;
342 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IEXT
);
347 * There are delayed allocation extents
348 * in the inode, or we need to convert
349 * the extents to on disk format.
350 * Use xfs_iextents_copy()
351 * to copy only the real extents into
352 * a separate buffer. We'll free the
353 * buffer in the unlock routine.
355 ext_buffer
= kmem_alloc(ip
->i_df
.if_bytes
,
357 iip
->ili_extents_buf
= ext_buffer
;
358 vecp
->i_addr
= (xfs_caddr_t
)ext_buffer
;
359 vecp
->i_len
= xfs_iextents_copy(ip
, ext_buffer
,
361 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IEXT
);
363 ASSERT(vecp
->i_len
<= ip
->i_df
.if_bytes
);
364 iip
->ili_format
.ilf_dsize
= vecp
->i_len
;
370 case XFS_DINODE_FMT_BTREE
:
371 ASSERT(!(iip
->ili_format
.ilf_fields
&
372 (XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
373 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
374 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DBROOT
) {
375 ASSERT(ip
->i_df
.if_broot_bytes
> 0);
376 ASSERT(ip
->i_df
.if_broot
!= NULL
);
377 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_df
.if_broot
;
378 vecp
->i_len
= ip
->i_df
.if_broot_bytes
;
379 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IBROOT
);
382 iip
->ili_format
.ilf_dsize
= ip
->i_df
.if_broot_bytes
;
386 case XFS_DINODE_FMT_LOCAL
:
387 ASSERT(!(iip
->ili_format
.ilf_fields
&
388 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
389 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
390 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DDATA
) {
391 ASSERT(ip
->i_df
.if_bytes
> 0);
392 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
393 ASSERT(ip
->i_d
.di_size
> 0);
395 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_df
.if_u1
.if_data
;
397 * Round i_bytes up to a word boundary.
398 * The underlying memory is guaranteed to
399 * to be there by xfs_idata_realloc().
401 data_bytes
= roundup(ip
->i_df
.if_bytes
, 4);
402 ASSERT((ip
->i_df
.if_real_bytes
== 0) ||
403 (ip
->i_df
.if_real_bytes
== data_bytes
));
404 vecp
->i_len
= (int)data_bytes
;
405 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_ILOCAL
);
408 iip
->ili_format
.ilf_dsize
= (unsigned)data_bytes
;
412 case XFS_DINODE_FMT_DEV
:
413 ASSERT(!(iip
->ili_format
.ilf_fields
&
414 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
415 XFS_ILOG_DDATA
| XFS_ILOG_UUID
)));
416 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
417 iip
->ili_format
.ilf_u
.ilfu_rdev
=
418 ip
->i_df
.if_u2
.if_rdev
;
422 case XFS_DINODE_FMT_UUID
:
423 ASSERT(!(iip
->ili_format
.ilf_fields
&
424 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
425 XFS_ILOG_DDATA
| XFS_ILOG_DEV
)));
426 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
427 iip
->ili_format
.ilf_u
.ilfu_uuid
=
428 ip
->i_df
.if_u2
.if_uuid
;
438 * If there are no attributes associated with the file,
440 * Assert that no attribute-related log flags are set.
442 if (!XFS_IFORK_Q(ip
)) {
443 ASSERT(nvecs
== iip
->ili_item
.li_desc
->lid_size
);
444 iip
->ili_format
.ilf_size
= nvecs
;
445 ASSERT(!(iip
->ili_format
.ilf_fields
&
446 (XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
)));
450 switch (ip
->i_d
.di_aformat
) {
451 case XFS_DINODE_FMT_EXTENTS
:
452 ASSERT(!(iip
->ili_format
.ilf_fields
&
453 (XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
)));
454 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
) {
455 ASSERT(ip
->i_afp
->if_bytes
> 0);
456 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
457 ASSERT(ip
->i_d
.di_anextents
> 0);
459 nrecs
= ip
->i_afp
->if_bytes
/
460 (uint
)sizeof(xfs_bmbt_rec_t
);
463 ASSERT(nrecs
== ip
->i_d
.di_anextents
);
464 #ifdef XFS_NATIVE_HOST
466 * There are not delayed allocation extents
467 * for attributes, so just point at the array.
469 vecp
->i_addr
= (char *)(ip
->i_afp
->if_u1
.if_extents
);
470 vecp
->i_len
= ip
->i_afp
->if_bytes
;
472 ASSERT(iip
->ili_aextents_buf
== NULL
);
474 * Need to endian flip before logging
476 ext_buffer
= kmem_alloc(ip
->i_afp
->if_bytes
,
478 iip
->ili_aextents_buf
= ext_buffer
;
479 vecp
->i_addr
= (xfs_caddr_t
)ext_buffer
;
480 vecp
->i_len
= xfs_iextents_copy(ip
, ext_buffer
,
483 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IATTR_EXT
);
484 iip
->ili_format
.ilf_asize
= vecp
->i_len
;
490 case XFS_DINODE_FMT_BTREE
:
491 ASSERT(!(iip
->ili_format
.ilf_fields
&
492 (XFS_ILOG_ADATA
| XFS_ILOG_AEXT
)));
493 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_ABROOT
) {
494 ASSERT(ip
->i_afp
->if_broot_bytes
> 0);
495 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
496 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_afp
->if_broot
;
497 vecp
->i_len
= ip
->i_afp
->if_broot_bytes
;
498 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IATTR_BROOT
);
501 iip
->ili_format
.ilf_asize
= ip
->i_afp
->if_broot_bytes
;
505 case XFS_DINODE_FMT_LOCAL
:
506 ASSERT(!(iip
->ili_format
.ilf_fields
&
507 (XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
)));
508 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_ADATA
) {
509 ASSERT(ip
->i_afp
->if_bytes
> 0);
510 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
512 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_afp
->if_u1
.if_data
;
514 * Round i_bytes up to a word boundary.
515 * The underlying memory is guaranteed to
516 * to be there by xfs_idata_realloc().
518 data_bytes
= roundup(ip
->i_afp
->if_bytes
, 4);
519 ASSERT((ip
->i_afp
->if_real_bytes
== 0) ||
520 (ip
->i_afp
->if_real_bytes
== data_bytes
));
521 vecp
->i_len
= (int)data_bytes
;
522 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IATTR_LOCAL
);
525 iip
->ili_format
.ilf_asize
= (unsigned)data_bytes
;
534 ASSERT(nvecs
== iip
->ili_item
.li_desc
->lid_size
);
535 iip
->ili_format
.ilf_size
= nvecs
;
540 * This is called to pin the inode associated with the inode log
541 * item in memory so it cannot be written out. Do this by calling
542 * xfs_ipin() to bump the pin count in the inode while holding the
547 xfs_inode_log_item_t
*iip
)
549 ASSERT(xfs_isilocked(iip
->ili_inode
, XFS_ILOCK_EXCL
));
550 xfs_ipin(iip
->ili_inode
);
555 * This is called to unpin the inode associated with the inode log
556 * item which was previously pinned with a call to xfs_inode_item_pin().
557 * Just call xfs_iunpin() on the inode to do this.
561 xfs_inode_item_unpin(
562 xfs_inode_log_item_t
*iip
,
565 xfs_iunpin(iip
->ili_inode
);
570 xfs_inode_item_unpin_remove(
571 xfs_inode_log_item_t
*iip
,
574 xfs_iunpin(iip
->ili_inode
);
578 * This is called to attempt to lock the inode associated with this
579 * inode log item, in preparation for the push routine which does the actual
580 * iflush. Don't sleep on the inode lock or the flush lock.
582 * If the flush lock is already held, indicating that the inode has
583 * been or is in the process of being flushed, then (ideally) we'd like to
584 * see if the inode's buffer is still incore, and if so give it a nudge.
585 * We delay doing so until the pushbuf routine, though, to avoid holding
586 * the AIL lock across a call to the blackhole which is the buffer cache.
587 * Also we don't want to sleep in any device strategy routines, which can happen
588 * if we do the subsequent bawrite in here.
591 xfs_inode_item_trylock(
592 xfs_inode_log_item_t
*iip
)
594 register xfs_inode_t
*ip
;
598 if (xfs_ipincount(ip
) > 0) {
599 return XFS_ITEM_PINNED
;
602 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
)) {
603 return XFS_ITEM_LOCKED
;
606 if (!xfs_iflock_nowait(ip
)) {
608 * If someone else isn't already trying to push the inode
609 * buffer, we get to do it.
611 if (iip
->ili_pushbuf_flag
== 0) {
612 iip
->ili_pushbuf_flag
= 1;
614 iip
->ili_push_owner
= current_pid();
617 * Inode is left locked in shared mode.
618 * Pushbuf routine gets to unlock it.
620 return XFS_ITEM_PUSHBUF
;
623 * We hold the AIL lock, so we must specify the
624 * NONOTIFY flag so that we won't double trip.
626 xfs_iunlock(ip
, XFS_ILOCK_SHARED
|XFS_IUNLOCK_NONOTIFY
);
627 return XFS_ITEM_FLUSHING
;
632 /* Stale items should force out the iclog */
633 if (ip
->i_flags
& XFS_ISTALE
) {
635 xfs_iunlock(ip
, XFS_ILOCK_SHARED
|XFS_IUNLOCK_NONOTIFY
);
636 return XFS_ITEM_PINNED
;
640 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
641 ASSERT(iip
->ili_format
.ilf_fields
!= 0);
642 ASSERT(iip
->ili_logged
== 0);
643 ASSERT(iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
);
646 return XFS_ITEM_SUCCESS
;
650 * Unlock the inode associated with the inode log item.
651 * Clear the fields of the inode and inode log item that
652 * are specific to the current transaction. If the
653 * hold flags is set, do not unlock the inode.
656 xfs_inode_item_unlock(
657 xfs_inode_log_item_t
*iip
)
665 ASSERT(iip
->ili_inode
->i_itemp
!= NULL
);
666 ASSERT(xfs_isilocked(iip
->ili_inode
, XFS_ILOCK_EXCL
));
667 ASSERT((!(iip
->ili_inode
->i_itemp
->ili_flags
&
668 XFS_ILI_IOLOCKED_EXCL
)) ||
669 xfs_isilocked(iip
->ili_inode
, XFS_IOLOCK_EXCL
));
670 ASSERT((!(iip
->ili_inode
->i_itemp
->ili_flags
&
671 XFS_ILI_IOLOCKED_SHARED
)) ||
672 xfs_isilocked(iip
->ili_inode
, XFS_IOLOCK_SHARED
));
674 * Clear the transaction pointer in the inode.
680 * If the inode needed a separate buffer with which to log
681 * its extents, then free it now.
683 if (iip
->ili_extents_buf
!= NULL
) {
684 ASSERT(ip
->i_d
.di_format
== XFS_DINODE_FMT_EXTENTS
);
685 ASSERT(ip
->i_d
.di_nextents
> 0);
686 ASSERT(iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
);
687 ASSERT(ip
->i_df
.if_bytes
> 0);
688 kmem_free(iip
->ili_extents_buf
);
689 iip
->ili_extents_buf
= NULL
;
691 if (iip
->ili_aextents_buf
!= NULL
) {
692 ASSERT(ip
->i_d
.di_aformat
== XFS_DINODE_FMT_EXTENTS
);
693 ASSERT(ip
->i_d
.di_anextents
> 0);
694 ASSERT(iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
);
695 ASSERT(ip
->i_afp
->if_bytes
> 0);
696 kmem_free(iip
->ili_aextents_buf
);
697 iip
->ili_aextents_buf
= NULL
;
701 * Figure out if we should unlock the inode or not.
703 hold
= iip
->ili_flags
& XFS_ILI_HOLD
;
706 * Before clearing out the flags, remember whether we
707 * are holding the inode's IO lock.
709 iolocked
= iip
->ili_flags
& XFS_ILI_IOLOCKED_ANY
;
712 * Clear out the fields of the inode log item particular
713 * to the current transaction.
715 iip
->ili_ilock_recur
= 0;
716 iip
->ili_iolock_recur
= 0;
720 * Unlock the inode if XFS_ILI_HOLD was not set.
723 lock_flags
= XFS_ILOCK_EXCL
;
724 if (iolocked
& XFS_ILI_IOLOCKED_EXCL
) {
725 lock_flags
|= XFS_IOLOCK_EXCL
;
726 } else if (iolocked
& XFS_ILI_IOLOCKED_SHARED
) {
727 lock_flags
|= XFS_IOLOCK_SHARED
;
729 xfs_iput(iip
->ili_inode
, lock_flags
);
734 * This is called to find out where the oldest active copy of the
735 * inode log item in the on disk log resides now that the last log
736 * write of it completed at the given lsn. Since we always re-log
737 * all dirty data in an inode, the latest copy in the on disk log
738 * is the only one that matters. Therefore, simply return the
743 xfs_inode_item_committed(
744 xfs_inode_log_item_t
*iip
,
751 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
752 * failed to get the inode flush lock but did get the inode locked SHARED.
753 * Here we're trying to see if the inode buffer is incore, and if so whether it's
754 * marked delayed write. If that's the case, we'll initiate a bawrite on that
755 * buffer to expedite the process.
757 * We aren't holding the AIL lock (or the flush lock) when this gets called,
758 * so it is inherently race-y.
761 xfs_inode_item_pushbuf(
762 xfs_inode_log_item_t
*iip
)
771 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_SHARED
));
774 * The ili_pushbuf_flag keeps others from
775 * trying to duplicate our effort.
777 ASSERT(iip
->ili_pushbuf_flag
!= 0);
778 ASSERT(iip
->ili_push_owner
== current_pid());
781 * If a flush is not in progress anymore, chances are that the
782 * inode was taken off the AIL. So, just get out.
784 if (completion_done(&ip
->i_flush
) ||
785 ((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0)) {
786 iip
->ili_pushbuf_flag
= 0;
787 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
792 bp
= xfs_incore(mp
->m_ddev_targp
, iip
->ili_format
.ilf_blkno
,
793 iip
->ili_format
.ilf_len
, XFS_INCORE_TRYLOCK
);
796 if (XFS_BUF_ISDELAYWRITE(bp
)) {
798 * We were racing with iflush because we don't hold
799 * the AIL lock or the flush lock. However, at this point,
800 * we have the buffer, and we know that it's dirty.
801 * So, it's possible that iflush raced with us, and
802 * this item is already taken off the AIL.
803 * If not, we can flush it async.
805 dopush
= ((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) &&
806 !completion_done(&ip
->i_flush
));
807 iip
->ili_pushbuf_flag
= 0;
808 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
809 xfs_buftrace("INODE ITEM PUSH", bp
);
810 if (XFS_BUF_ISPINNED(bp
)) {
811 xfs_log_force(mp
, (xfs_lsn_t
)0,
816 error
= xfs_bawrite(mp
, bp
);
818 xfs_fs_cmn_err(CE_WARN
, mp
,
819 "xfs_inode_item_pushbuf: pushbuf error %d on iip %p, bp %p",
825 iip
->ili_pushbuf_flag
= 0;
826 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
832 * We have to be careful about resetting pushbuf flag too early (above).
833 * Even though in theory we can do it as soon as we have the buflock,
834 * we don't want others to be doing work needlessly. They'll come to
835 * this function thinking that pushing the buffer is their
836 * responsibility only to find that the buffer is still locked by
837 * another doing the same thing
839 iip
->ili_pushbuf_flag
= 0;
840 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
846 * This is called to asynchronously write the inode associated with this
847 * inode log item out to disk. The inode will already have been locked by
848 * a successful call to xfs_inode_item_trylock().
852 xfs_inode_log_item_t
*iip
)
858 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_SHARED
));
859 ASSERT(!completion_done(&ip
->i_flush
));
861 * Since we were able to lock the inode's flush lock and
862 * we found it on the AIL, the inode must be dirty. This
863 * is because the inode is removed from the AIL while still
864 * holding the flush lock in xfs_iflush_done(). Thus, if
865 * we found it in the AIL and were able to obtain the flush
866 * lock without sleeping, then there must not have been
867 * anyone in the process of flushing the inode.
869 ASSERT(XFS_FORCED_SHUTDOWN(ip
->i_mount
) ||
870 iip
->ili_format
.ilf_fields
!= 0);
873 * Write out the inode. The completion routine ('iflush_done') will
874 * pull it from the AIL, mark it clean, unlock the flush lock.
876 (void) xfs_iflush(ip
, XFS_IFLUSH_ASYNC
);
877 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
883 * XXX rcc - this one really has to do something. Probably needs
884 * to stamp in a new field in the incore inode.
888 xfs_inode_item_committing(
889 xfs_inode_log_item_t
*iip
,
892 iip
->ili_last_lsn
= lsn
;
897 * This is the ops vector shared by all buf log items.
899 static struct xfs_item_ops xfs_inode_item_ops
= {
900 .iop_size
= (uint(*)(xfs_log_item_t
*))xfs_inode_item_size
,
901 .iop_format
= (void(*)(xfs_log_item_t
*, xfs_log_iovec_t
*))
902 xfs_inode_item_format
,
903 .iop_pin
= (void(*)(xfs_log_item_t
*))xfs_inode_item_pin
,
904 .iop_unpin
= (void(*)(xfs_log_item_t
*, int))xfs_inode_item_unpin
,
905 .iop_unpin_remove
= (void(*)(xfs_log_item_t
*, xfs_trans_t
*))
906 xfs_inode_item_unpin_remove
,
907 .iop_trylock
= (uint(*)(xfs_log_item_t
*))xfs_inode_item_trylock
,
908 .iop_unlock
= (void(*)(xfs_log_item_t
*))xfs_inode_item_unlock
,
909 .iop_committed
= (xfs_lsn_t(*)(xfs_log_item_t
*, xfs_lsn_t
))
910 xfs_inode_item_committed
,
911 .iop_push
= (void(*)(xfs_log_item_t
*))xfs_inode_item_push
,
912 .iop_pushbuf
= (void(*)(xfs_log_item_t
*))xfs_inode_item_pushbuf
,
913 .iop_committing
= (void(*)(xfs_log_item_t
*, xfs_lsn_t
))
914 xfs_inode_item_committing
919 * Initialize the inode log item for a newly allocated (in-core) inode.
926 xfs_inode_log_item_t
*iip
;
928 ASSERT(ip
->i_itemp
== NULL
);
929 iip
= ip
->i_itemp
= kmem_zone_zalloc(xfs_ili_zone
, KM_SLEEP
);
931 iip
->ili_item
.li_type
= XFS_LI_INODE
;
932 iip
->ili_item
.li_ops
= &xfs_inode_item_ops
;
933 iip
->ili_item
.li_mountp
= mp
;
934 iip
->ili_item
.li_ailp
= mp
->m_ail
;
938 We have zeroed memory. No need ...
939 iip->ili_extents_buf = NULL;
940 iip->ili_pushbuf_flag = 0;
943 iip
->ili_format
.ilf_type
= XFS_LI_INODE
;
944 iip
->ili_format
.ilf_ino
= ip
->i_ino
;
945 iip
->ili_format
.ilf_blkno
= ip
->i_imap
.im_blkno
;
946 iip
->ili_format
.ilf_len
= ip
->i_imap
.im_len
;
947 iip
->ili_format
.ilf_boffset
= ip
->i_imap
.im_boffset
;
951 * Free the inode log item and any memory hanging off of it.
954 xfs_inode_item_destroy(
957 #ifdef XFS_TRANS_DEBUG
958 if (ip
->i_itemp
->ili_root_size
!= 0) {
959 kmem_free(ip
->i_itemp
->ili_orig_root
);
962 kmem_zone_free(xfs_ili_zone
, ip
->i_itemp
);
967 * This is the inode flushing I/O completion routine. It is called
968 * from interrupt level when the buffer containing the inode is
969 * flushed to disk. It is responsible for removing the inode item
970 * from the AIL if it has not been re-logged, and unlocking the inode's
977 xfs_inode_log_item_t
*iip
)
979 xfs_inode_t
*ip
= iip
->ili_inode
;
980 struct xfs_ail
*ailp
= iip
->ili_item
.li_ailp
;
983 * We only want to pull the item from the AIL if it is
984 * actually there and its location in the log has not
985 * changed since we started the flush. Thus, we only bother
986 * if the ili_logged flag is set and the inode's lsn has not
987 * changed. First we check the lsn outside
988 * the lock since it's cheaper, and then we recheck while
989 * holding the lock before removing the inode from the AIL.
991 if (iip
->ili_logged
&&
992 (iip
->ili_item
.li_lsn
== iip
->ili_flush_lsn
)) {
993 spin_lock(&ailp
->xa_lock
);
994 if (iip
->ili_item
.li_lsn
== iip
->ili_flush_lsn
) {
995 /* xfs_trans_ail_delete() drops the AIL lock. */
996 xfs_trans_ail_delete(ailp
, (xfs_log_item_t
*)iip
);
998 spin_unlock(&ailp
->xa_lock
);
1002 iip
->ili_logged
= 0;
1005 * Clear the ili_last_fields bits now that we know that the
1006 * data corresponding to them is safely on disk.
1008 iip
->ili_last_fields
= 0;
1011 * Release the inode's flush lock since we're done with it.
1019 * This is the inode flushing abort routine. It is called
1020 * from xfs_iflush when the filesystem is shutting down to clean
1021 * up the inode state.
1022 * It is responsible for removing the inode item
1023 * from the AIL if it has not been re-logged, and unlocking the inode's
1030 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
1036 struct xfs_ail
*ailp
= iip
->ili_item
.li_ailp
;
1037 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
1038 spin_lock(&ailp
->xa_lock
);
1039 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
1040 /* xfs_trans_ail_delete() drops the AIL lock. */
1041 xfs_trans_ail_delete(ailp
, (xfs_log_item_t
*)iip
);
1043 spin_unlock(&ailp
->xa_lock
);
1045 iip
->ili_logged
= 0;
1047 * Clear the ili_last_fields bits now that we know that the
1048 * data corresponding to them is safely on disk.
1050 iip
->ili_last_fields
= 0;
1052 * Clear the inode logging fields so no more flushes are
1055 iip
->ili_format
.ilf_fields
= 0;
1058 * Release the inode's flush lock since we're done with it.
1066 xfs_inode_log_item_t
*iip
)
1068 xfs_iflush_abort(iip
->ili_inode
);
1072 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1073 * (which can have different field alignments) to the native version
1076 xfs_inode_item_format_convert(
1077 xfs_log_iovec_t
*buf
,
1078 xfs_inode_log_format_t
*in_f
)
1080 if (buf
->i_len
== sizeof(xfs_inode_log_format_32_t
)) {
1081 xfs_inode_log_format_32_t
*in_f32
;
1083 in_f32
= (xfs_inode_log_format_32_t
*)buf
->i_addr
;
1084 in_f
->ilf_type
= in_f32
->ilf_type
;
1085 in_f
->ilf_size
= in_f32
->ilf_size
;
1086 in_f
->ilf_fields
= in_f32
->ilf_fields
;
1087 in_f
->ilf_asize
= in_f32
->ilf_asize
;
1088 in_f
->ilf_dsize
= in_f32
->ilf_dsize
;
1089 in_f
->ilf_ino
= in_f32
->ilf_ino
;
1090 /* copy biggest field of ilf_u */
1091 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
1092 in_f32
->ilf_u
.ilfu_uuid
.__u_bits
,
1094 in_f
->ilf_blkno
= in_f32
->ilf_blkno
;
1095 in_f
->ilf_len
= in_f32
->ilf_len
;
1096 in_f
->ilf_boffset
= in_f32
->ilf_boffset
;
1098 } else if (buf
->i_len
== sizeof(xfs_inode_log_format_64_t
)){
1099 xfs_inode_log_format_64_t
*in_f64
;
1101 in_f64
= (xfs_inode_log_format_64_t
*)buf
->i_addr
;
1102 in_f
->ilf_type
= in_f64
->ilf_type
;
1103 in_f
->ilf_size
= in_f64
->ilf_size
;
1104 in_f
->ilf_fields
= in_f64
->ilf_fields
;
1105 in_f
->ilf_asize
= in_f64
->ilf_asize
;
1106 in_f
->ilf_dsize
= in_f64
->ilf_dsize
;
1107 in_f
->ilf_ino
= in_f64
->ilf_ino
;
1108 /* copy biggest field of ilf_u */
1109 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
1110 in_f64
->ilf_u
.ilfu_uuid
.__u_bits
,
1112 in_f
->ilf_blkno
= in_f64
->ilf_blkno
;
1113 in_f
->ilf_len
= in_f64
->ilf_len
;
1114 in_f
->ilf_boffset
= in_f64
->ilf_boffset
;
1117 return EFSCORRUPTED
;