qlge: Expand coverage of hw lock for config register.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / qlge / qlge_main.c
blob7f372672ac4efecced38b569017829d233c384d3
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
44 #include "qlge.h"
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
54 static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 /* NETIF_MSG_TX_QUEUED | */
62 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66 static int debug = 0x00007fff; /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
79 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
80 /* required last entry */
81 {0,}
84 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
86 /* This hardware semaphore causes exclusive access to
87 * resources shared between the NIC driver, MPI firmware,
88 * FCOE firmware and the FC driver.
90 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
92 u32 sem_bits = 0;
94 switch (sem_mask) {
95 case SEM_XGMAC0_MASK:
96 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
97 break;
98 case SEM_XGMAC1_MASK:
99 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
100 break;
101 case SEM_ICB_MASK:
102 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103 break;
104 case SEM_MAC_ADDR_MASK:
105 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
106 break;
107 case SEM_FLASH_MASK:
108 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
109 break;
110 case SEM_PROBE_MASK:
111 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112 break;
113 case SEM_RT_IDX_MASK:
114 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115 break;
116 case SEM_PROC_REG_MASK:
117 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
118 break;
119 default:
120 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
121 return -EINVAL;
124 ql_write32(qdev, SEM, sem_bits | sem_mask);
125 return !(ql_read32(qdev, SEM) & sem_bits);
128 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
130 unsigned int wait_count = 30;
131 do {
132 if (!ql_sem_trylock(qdev, sem_mask))
133 return 0;
134 udelay(100);
135 } while (--wait_count);
136 return -ETIMEDOUT;
139 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
141 ql_write32(qdev, SEM, sem_mask);
142 ql_read32(qdev, SEM); /* flush */
145 /* This function waits for a specific bit to come ready
146 * in a given register. It is used mostly by the initialize
147 * process, but is also used in kernel thread API such as
148 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
150 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
152 u32 temp;
153 int count = UDELAY_COUNT;
155 while (count) {
156 temp = ql_read32(qdev, reg);
158 /* check for errors */
159 if (temp & err_bit) {
160 QPRINTK(qdev, PROBE, ALERT,
161 "register 0x%.08x access error, value = 0x%.08x!.\n",
162 reg, temp);
163 return -EIO;
164 } else if (temp & bit)
165 return 0;
166 udelay(UDELAY_DELAY);
167 count--;
169 QPRINTK(qdev, PROBE, ALERT,
170 "Timed out waiting for reg %x to come ready.\n", reg);
171 return -ETIMEDOUT;
174 /* The CFG register is used to download TX and RX control blocks
175 * to the chip. This function waits for an operation to complete.
177 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
179 int count = UDELAY_COUNT;
180 u32 temp;
182 while (count) {
183 temp = ql_read32(qdev, CFG);
184 if (temp & CFG_LE)
185 return -EIO;
186 if (!(temp & bit))
187 return 0;
188 udelay(UDELAY_DELAY);
189 count--;
191 return -ETIMEDOUT;
195 /* Used to issue init control blocks to hw. Maps control block,
196 * sets address, triggers download, waits for completion.
198 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
199 u16 q_id)
201 u64 map;
202 int status = 0;
203 int direction;
204 u32 mask;
205 u32 value;
207 direction =
208 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
209 PCI_DMA_FROMDEVICE;
211 map = pci_map_single(qdev->pdev, ptr, size, direction);
212 if (pci_dma_mapping_error(qdev->pdev, map)) {
213 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
214 return -ENOMEM;
217 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
218 if (status)
219 return status;
221 status = ql_wait_cfg(qdev, bit);
222 if (status) {
223 QPRINTK(qdev, IFUP, ERR,
224 "Timed out waiting for CFG to come ready.\n");
225 goto exit;
228 ql_write32(qdev, ICB_L, (u32) map);
229 ql_write32(qdev, ICB_H, (u32) (map >> 32));
231 mask = CFG_Q_MASK | (bit << 16);
232 value = bit | (q_id << CFG_Q_SHIFT);
233 ql_write32(qdev, CFG, (mask | value));
236 * Wait for the bit to clear after signaling hw.
238 status = ql_wait_cfg(qdev, bit);
239 exit:
240 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
241 pci_unmap_single(qdev->pdev, map, size, direction);
242 return status;
245 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
246 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
247 u32 *value)
249 u32 offset = 0;
250 int status;
252 switch (type) {
253 case MAC_ADDR_TYPE_MULTI_MAC:
254 case MAC_ADDR_TYPE_CAM_MAC:
256 status =
257 ql_wait_reg_rdy(qdev,
258 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
259 if (status)
260 goto exit;
261 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
262 (index << MAC_ADDR_IDX_SHIFT) | /* index */
263 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
264 status =
265 ql_wait_reg_rdy(qdev,
266 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
267 if (status)
268 goto exit;
269 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
270 status =
271 ql_wait_reg_rdy(qdev,
272 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
273 if (status)
274 goto exit;
275 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
276 (index << MAC_ADDR_IDX_SHIFT) | /* index */
277 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
278 status =
279 ql_wait_reg_rdy(qdev,
280 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
281 if (status)
282 goto exit;
283 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
284 if (type == MAC_ADDR_TYPE_CAM_MAC) {
285 status =
286 ql_wait_reg_rdy(qdev,
287 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
288 if (status)
289 goto exit;
290 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
291 (index << MAC_ADDR_IDX_SHIFT) | /* index */
292 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
293 status =
294 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
295 MAC_ADDR_MR, 0);
296 if (status)
297 goto exit;
298 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300 break;
302 case MAC_ADDR_TYPE_VLAN:
303 case MAC_ADDR_TYPE_MULTI_FLTR:
304 default:
305 QPRINTK(qdev, IFUP, CRIT,
306 "Address type %d not yet supported.\n", type);
307 status = -EPERM;
309 exit:
310 return status;
313 /* Set up a MAC, multicast or VLAN address for the
314 * inbound frame matching.
316 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
317 u16 index)
319 u32 offset = 0;
320 int status = 0;
322 switch (type) {
323 case MAC_ADDR_TYPE_MULTI_MAC:
324 case MAC_ADDR_TYPE_CAM_MAC:
326 u32 cam_output;
327 u32 upper = (addr[0] << 8) | addr[1];
328 u32 lower =
329 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
330 (addr[5]);
332 QPRINTK(qdev, IFUP, DEBUG,
333 "Adding %s address %pM"
334 " at index %d in the CAM.\n",
335 ((type ==
336 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
337 "UNICAST"), addr, index);
339 status =
340 ql_wait_reg_rdy(qdev,
341 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
342 if (status)
343 goto exit;
344 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
345 (index << MAC_ADDR_IDX_SHIFT) | /* index */
346 type); /* type */
347 ql_write32(qdev, MAC_ADDR_DATA, lower);
348 status =
349 ql_wait_reg_rdy(qdev,
350 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
351 if (status)
352 goto exit;
353 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
354 (index << MAC_ADDR_IDX_SHIFT) | /* index */
355 type); /* type */
356 ql_write32(qdev, MAC_ADDR_DATA, upper);
357 status =
358 ql_wait_reg_rdy(qdev,
359 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
360 if (status)
361 goto exit;
362 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
363 (index << MAC_ADDR_IDX_SHIFT) | /* index */
364 type); /* type */
365 /* This field should also include the queue id
366 and possibly the function id. Right now we hardcode
367 the route field to NIC core.
369 if (type == MAC_ADDR_TYPE_CAM_MAC) {
370 cam_output = (CAM_OUT_ROUTE_NIC |
371 (qdev->
372 func << CAM_OUT_FUNC_SHIFT) |
373 (qdev->
374 rss_ring_first_cq_id <<
375 CAM_OUT_CQ_ID_SHIFT));
376 if (qdev->vlgrp)
377 cam_output |= CAM_OUT_RV;
378 /* route to NIC core */
379 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
381 break;
383 case MAC_ADDR_TYPE_VLAN:
385 u32 enable_bit = *((u32 *) &addr[0]);
386 /* For VLAN, the addr actually holds a bit that
387 * either enables or disables the vlan id we are
388 * addressing. It's either MAC_ADDR_E on or off.
389 * That's bit-27 we're talking about.
391 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
392 (enable_bit ? "Adding" : "Removing"),
393 index, (enable_bit ? "to" : "from"));
395 status =
396 ql_wait_reg_rdy(qdev,
397 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
398 if (status)
399 goto exit;
400 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
401 (index << MAC_ADDR_IDX_SHIFT) | /* index */
402 type | /* type */
403 enable_bit); /* enable/disable */
404 break;
406 case MAC_ADDR_TYPE_MULTI_FLTR:
407 default:
408 QPRINTK(qdev, IFUP, CRIT,
409 "Address type %d not yet supported.\n", type);
410 status = -EPERM;
412 exit:
413 return status;
416 /* Get a specific frame routing value from the CAM.
417 * Used for debug and reg dump.
419 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
421 int status = 0;
423 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
424 if (status)
425 goto exit;
427 ql_write32(qdev, RT_IDX,
428 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
429 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
430 if (status)
431 goto exit;
432 *value = ql_read32(qdev, RT_DATA);
433 exit:
434 return status;
437 /* The NIC function for this chip has 16 routing indexes. Each one can be used
438 * to route different frame types to various inbound queues. We send broadcast/
439 * multicast/error frames to the default queue for slow handling,
440 * and CAM hit/RSS frames to the fast handling queues.
442 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
443 int enable)
445 int status = -EINVAL; /* Return error if no mask match. */
446 u32 value = 0;
448 QPRINTK(qdev, IFUP, DEBUG,
449 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
450 (enable ? "Adding" : "Removing"),
451 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
452 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
453 ((index ==
454 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
455 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
456 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
457 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
458 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
459 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
460 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
461 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
462 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
463 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
464 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
465 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
466 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
467 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
468 (enable ? "to" : "from"));
470 switch (mask) {
471 case RT_IDX_CAM_HIT:
473 value = RT_IDX_DST_CAM_Q | /* dest */
474 RT_IDX_TYPE_NICQ | /* type */
475 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
476 break;
478 case RT_IDX_VALID: /* Promiscuous Mode frames. */
480 value = RT_IDX_DST_DFLT_Q | /* dest */
481 RT_IDX_TYPE_NICQ | /* type */
482 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
483 break;
485 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
487 value = RT_IDX_DST_DFLT_Q | /* dest */
488 RT_IDX_TYPE_NICQ | /* type */
489 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
490 break;
492 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
494 value = RT_IDX_DST_DFLT_Q | /* dest */
495 RT_IDX_TYPE_NICQ | /* type */
496 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
497 break;
499 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
501 value = RT_IDX_DST_CAM_Q | /* dest */
502 RT_IDX_TYPE_NICQ | /* type */
503 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
504 break;
506 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
508 value = RT_IDX_DST_CAM_Q | /* dest */
509 RT_IDX_TYPE_NICQ | /* type */
510 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
511 break;
513 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
515 value = RT_IDX_DST_RSS | /* dest */
516 RT_IDX_TYPE_NICQ | /* type */
517 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
518 break;
520 case 0: /* Clear the E-bit on an entry. */
522 value = RT_IDX_DST_DFLT_Q | /* dest */
523 RT_IDX_TYPE_NICQ | /* type */
524 (index << RT_IDX_IDX_SHIFT);/* index */
525 break;
527 default:
528 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
529 mask);
530 status = -EPERM;
531 goto exit;
534 if (value) {
535 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
536 if (status)
537 goto exit;
538 value |= (enable ? RT_IDX_E : 0);
539 ql_write32(qdev, RT_IDX, value);
540 ql_write32(qdev, RT_DATA, enable ? mask : 0);
542 exit:
543 return status;
546 static void ql_enable_interrupts(struct ql_adapter *qdev)
548 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
551 static void ql_disable_interrupts(struct ql_adapter *qdev)
553 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
556 /* If we're running with multiple MSI-X vectors then we enable on the fly.
557 * Otherwise, we may have multiple outstanding workers and don't want to
558 * enable until the last one finishes. In this case, the irq_cnt gets
559 * incremented everytime we queue a worker and decremented everytime
560 * a worker finishes. Once it hits zero we enable the interrupt.
562 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
564 u32 var = 0;
565 unsigned long hw_flags = 0;
566 struct intr_context *ctx = qdev->intr_context + intr;
568 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
569 /* Always enable if we're MSIX multi interrupts and
570 * it's not the default (zeroeth) interrupt.
572 ql_write32(qdev, INTR_EN,
573 ctx->intr_en_mask);
574 var = ql_read32(qdev, STS);
575 return var;
578 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
579 if (atomic_dec_and_test(&ctx->irq_cnt)) {
580 ql_write32(qdev, INTR_EN,
581 ctx->intr_en_mask);
582 var = ql_read32(qdev, STS);
584 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
585 return var;
588 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
590 u32 var = 0;
591 struct intr_context *ctx;
593 /* HW disables for us if we're MSIX multi interrupts and
594 * it's not the default (zeroeth) interrupt.
596 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
597 return 0;
599 ctx = qdev->intr_context + intr;
600 spin_lock(&qdev->hw_lock);
601 if (!atomic_read(&ctx->irq_cnt)) {
602 ql_write32(qdev, INTR_EN,
603 ctx->intr_dis_mask);
604 var = ql_read32(qdev, STS);
606 atomic_inc(&ctx->irq_cnt);
607 spin_unlock(&qdev->hw_lock);
608 return var;
611 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
613 int i;
614 for (i = 0; i < qdev->intr_count; i++) {
615 /* The enable call does a atomic_dec_and_test
616 * and enables only if the result is zero.
617 * So we precharge it here.
619 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
620 i == 0))
621 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
622 ql_enable_completion_interrupt(qdev, i);
627 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
629 int status, i;
630 u16 csum = 0;
631 __le16 *flash = (__le16 *)&qdev->flash;
633 status = strncmp((char *)&qdev->flash, str, 4);
634 if (status) {
635 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
636 return status;
639 for (i = 0; i < size; i++)
640 csum += le16_to_cpu(*flash++);
642 if (csum)
643 QPRINTK(qdev, IFUP, ERR,
644 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
646 return csum;
649 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
651 int status = 0;
652 /* wait for reg to come ready */
653 status = ql_wait_reg_rdy(qdev,
654 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
655 if (status)
656 goto exit;
657 /* set up for reg read */
658 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
659 /* wait for reg to come ready */
660 status = ql_wait_reg_rdy(qdev,
661 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
662 if (status)
663 goto exit;
664 /* This data is stored on flash as an array of
665 * __le32. Since ql_read32() returns cpu endian
666 * we need to swap it back.
668 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
669 exit:
670 return status;
673 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
675 u32 i, size;
676 int status;
677 __le32 *p = (__le32 *)&qdev->flash;
678 u32 offset;
679 u8 mac_addr[6];
681 /* Get flash offset for function and adjust
682 * for dword access.
684 if (!qdev->port)
685 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
686 else
687 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
689 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
690 return -ETIMEDOUT;
692 size = sizeof(struct flash_params_8000) / sizeof(u32);
693 for (i = 0; i < size; i++, p++) {
694 status = ql_read_flash_word(qdev, i+offset, p);
695 if (status) {
696 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
697 goto exit;
701 status = ql_validate_flash(qdev,
702 sizeof(struct flash_params_8000) / sizeof(u16),
703 "8000");
704 if (status) {
705 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
706 status = -EINVAL;
707 goto exit;
710 /* Extract either manufacturer or BOFM modified
711 * MAC address.
713 if (qdev->flash.flash_params_8000.data_type1 == 2)
714 memcpy(mac_addr,
715 qdev->flash.flash_params_8000.mac_addr1,
716 qdev->ndev->addr_len);
717 else
718 memcpy(mac_addr,
719 qdev->flash.flash_params_8000.mac_addr,
720 qdev->ndev->addr_len);
722 if (!is_valid_ether_addr(mac_addr)) {
723 QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
724 status = -EINVAL;
725 goto exit;
728 memcpy(qdev->ndev->dev_addr,
729 mac_addr,
730 qdev->ndev->addr_len);
732 exit:
733 ql_sem_unlock(qdev, SEM_FLASH_MASK);
734 return status;
737 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
739 int i;
740 int status;
741 __le32 *p = (__le32 *)&qdev->flash;
742 u32 offset = 0;
743 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
745 /* Second function's parameters follow the first
746 * function's.
748 if (qdev->port)
749 offset = size;
751 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
752 return -ETIMEDOUT;
754 for (i = 0; i < size; i++, p++) {
755 status = ql_read_flash_word(qdev, i+offset, p);
756 if (status) {
757 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
758 goto exit;
763 status = ql_validate_flash(qdev,
764 sizeof(struct flash_params_8012) / sizeof(u16),
765 "8012");
766 if (status) {
767 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
768 status = -EINVAL;
769 goto exit;
772 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
773 status = -EINVAL;
774 goto exit;
777 memcpy(qdev->ndev->dev_addr,
778 qdev->flash.flash_params_8012.mac_addr,
779 qdev->ndev->addr_len);
781 exit:
782 ql_sem_unlock(qdev, SEM_FLASH_MASK);
783 return status;
786 /* xgmac register are located behind the xgmac_addr and xgmac_data
787 * register pair. Each read/write requires us to wait for the ready
788 * bit before reading/writing the data.
790 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
792 int status;
793 /* wait for reg to come ready */
794 status = ql_wait_reg_rdy(qdev,
795 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
796 if (status)
797 return status;
798 /* write the data to the data reg */
799 ql_write32(qdev, XGMAC_DATA, data);
800 /* trigger the write */
801 ql_write32(qdev, XGMAC_ADDR, reg);
802 return status;
805 /* xgmac register are located behind the xgmac_addr and xgmac_data
806 * register pair. Each read/write requires us to wait for the ready
807 * bit before reading/writing the data.
809 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
811 int status = 0;
812 /* wait for reg to come ready */
813 status = ql_wait_reg_rdy(qdev,
814 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
815 if (status)
816 goto exit;
817 /* set up for reg read */
818 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
819 /* wait for reg to come ready */
820 status = ql_wait_reg_rdy(qdev,
821 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
822 if (status)
823 goto exit;
824 /* get the data */
825 *data = ql_read32(qdev, XGMAC_DATA);
826 exit:
827 return status;
830 /* This is used for reading the 64-bit statistics regs. */
831 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
833 int status = 0;
834 u32 hi = 0;
835 u32 lo = 0;
837 status = ql_read_xgmac_reg(qdev, reg, &lo);
838 if (status)
839 goto exit;
841 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
842 if (status)
843 goto exit;
845 *data = (u64) lo | ((u64) hi << 32);
847 exit:
848 return status;
851 static int ql_8000_port_initialize(struct ql_adapter *qdev)
853 int status;
855 * Get MPI firmware version for driver banner
856 * and ethool info.
858 status = ql_mb_about_fw(qdev);
859 if (status)
860 goto exit;
861 status = ql_mb_get_fw_state(qdev);
862 if (status)
863 goto exit;
864 /* Wake up a worker to get/set the TX/RX frame sizes. */
865 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
866 exit:
867 return status;
870 /* Take the MAC Core out of reset.
871 * Enable statistics counting.
872 * Take the transmitter/receiver out of reset.
873 * This functionality may be done in the MPI firmware at a
874 * later date.
876 static int ql_8012_port_initialize(struct ql_adapter *qdev)
878 int status = 0;
879 u32 data;
881 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
882 /* Another function has the semaphore, so
883 * wait for the port init bit to come ready.
885 QPRINTK(qdev, LINK, INFO,
886 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
887 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
888 if (status) {
889 QPRINTK(qdev, LINK, CRIT,
890 "Port initialize timed out.\n");
892 return status;
895 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
896 /* Set the core reset. */
897 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
898 if (status)
899 goto end;
900 data |= GLOBAL_CFG_RESET;
901 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
902 if (status)
903 goto end;
905 /* Clear the core reset and turn on jumbo for receiver. */
906 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
907 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
908 data |= GLOBAL_CFG_TX_STAT_EN;
909 data |= GLOBAL_CFG_RX_STAT_EN;
910 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
911 if (status)
912 goto end;
914 /* Enable transmitter, and clear it's reset. */
915 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
916 if (status)
917 goto end;
918 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
919 data |= TX_CFG_EN; /* Enable the transmitter. */
920 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
921 if (status)
922 goto end;
924 /* Enable receiver and clear it's reset. */
925 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
926 if (status)
927 goto end;
928 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
929 data |= RX_CFG_EN; /* Enable the receiver. */
930 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
931 if (status)
932 goto end;
934 /* Turn on jumbo. */
935 status =
936 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
937 if (status)
938 goto end;
939 status =
940 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
941 if (status)
942 goto end;
944 /* Signal to the world that the port is enabled. */
945 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
946 end:
947 ql_sem_unlock(qdev, qdev->xg_sem_mask);
948 return status;
951 /* Get the next large buffer. */
952 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
954 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
955 rx_ring->lbq_curr_idx++;
956 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
957 rx_ring->lbq_curr_idx = 0;
958 rx_ring->lbq_free_cnt++;
959 return lbq_desc;
962 /* Get the next small buffer. */
963 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
965 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
966 rx_ring->sbq_curr_idx++;
967 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
968 rx_ring->sbq_curr_idx = 0;
969 rx_ring->sbq_free_cnt++;
970 return sbq_desc;
973 /* Update an rx ring index. */
974 static void ql_update_cq(struct rx_ring *rx_ring)
976 rx_ring->cnsmr_idx++;
977 rx_ring->curr_entry++;
978 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
979 rx_ring->cnsmr_idx = 0;
980 rx_ring->curr_entry = rx_ring->cq_base;
984 static void ql_write_cq_idx(struct rx_ring *rx_ring)
986 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
989 /* Process (refill) a large buffer queue. */
990 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
992 u32 clean_idx = rx_ring->lbq_clean_idx;
993 u32 start_idx = clean_idx;
994 struct bq_desc *lbq_desc;
995 u64 map;
996 int i;
998 while (rx_ring->lbq_free_cnt > 16) {
999 for (i = 0; i < 16; i++) {
1000 QPRINTK(qdev, RX_STATUS, DEBUG,
1001 "lbq: try cleaning clean_idx = %d.\n",
1002 clean_idx);
1003 lbq_desc = &rx_ring->lbq[clean_idx];
1004 if (lbq_desc->p.lbq_page == NULL) {
1005 QPRINTK(qdev, RX_STATUS, DEBUG,
1006 "lbq: getting new page for index %d.\n",
1007 lbq_desc->index);
1008 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
1009 if (lbq_desc->p.lbq_page == NULL) {
1010 rx_ring->lbq_clean_idx = clean_idx;
1011 QPRINTK(qdev, RX_STATUS, ERR,
1012 "Couldn't get a page.\n");
1013 return;
1015 map = pci_map_page(qdev->pdev,
1016 lbq_desc->p.lbq_page,
1017 0, PAGE_SIZE,
1018 PCI_DMA_FROMDEVICE);
1019 if (pci_dma_mapping_error(qdev->pdev, map)) {
1020 rx_ring->lbq_clean_idx = clean_idx;
1021 put_page(lbq_desc->p.lbq_page);
1022 lbq_desc->p.lbq_page = NULL;
1023 QPRINTK(qdev, RX_STATUS, ERR,
1024 "PCI mapping failed.\n");
1025 return;
1027 pci_unmap_addr_set(lbq_desc, mapaddr, map);
1028 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
1029 *lbq_desc->addr = cpu_to_le64(map);
1031 clean_idx++;
1032 if (clean_idx == rx_ring->lbq_len)
1033 clean_idx = 0;
1036 rx_ring->lbq_clean_idx = clean_idx;
1037 rx_ring->lbq_prod_idx += 16;
1038 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1039 rx_ring->lbq_prod_idx = 0;
1040 rx_ring->lbq_free_cnt -= 16;
1043 if (start_idx != clean_idx) {
1044 QPRINTK(qdev, RX_STATUS, DEBUG,
1045 "lbq: updating prod idx = %d.\n",
1046 rx_ring->lbq_prod_idx);
1047 ql_write_db_reg(rx_ring->lbq_prod_idx,
1048 rx_ring->lbq_prod_idx_db_reg);
1052 /* Process (refill) a small buffer queue. */
1053 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1055 u32 clean_idx = rx_ring->sbq_clean_idx;
1056 u32 start_idx = clean_idx;
1057 struct bq_desc *sbq_desc;
1058 u64 map;
1059 int i;
1061 while (rx_ring->sbq_free_cnt > 16) {
1062 for (i = 0; i < 16; i++) {
1063 sbq_desc = &rx_ring->sbq[clean_idx];
1064 QPRINTK(qdev, RX_STATUS, DEBUG,
1065 "sbq: try cleaning clean_idx = %d.\n",
1066 clean_idx);
1067 if (sbq_desc->p.skb == NULL) {
1068 QPRINTK(qdev, RX_STATUS, DEBUG,
1069 "sbq: getting new skb for index %d.\n",
1070 sbq_desc->index);
1071 sbq_desc->p.skb =
1072 netdev_alloc_skb(qdev->ndev,
1073 rx_ring->sbq_buf_size);
1074 if (sbq_desc->p.skb == NULL) {
1075 QPRINTK(qdev, PROBE, ERR,
1076 "Couldn't get an skb.\n");
1077 rx_ring->sbq_clean_idx = clean_idx;
1078 return;
1080 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1081 map = pci_map_single(qdev->pdev,
1082 sbq_desc->p.skb->data,
1083 rx_ring->sbq_buf_size /
1084 2, PCI_DMA_FROMDEVICE);
1085 if (pci_dma_mapping_error(qdev->pdev, map)) {
1086 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1087 rx_ring->sbq_clean_idx = clean_idx;
1088 dev_kfree_skb_any(sbq_desc->p.skb);
1089 sbq_desc->p.skb = NULL;
1090 return;
1092 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1093 pci_unmap_len_set(sbq_desc, maplen,
1094 rx_ring->sbq_buf_size / 2);
1095 *sbq_desc->addr = cpu_to_le64(map);
1098 clean_idx++;
1099 if (clean_idx == rx_ring->sbq_len)
1100 clean_idx = 0;
1102 rx_ring->sbq_clean_idx = clean_idx;
1103 rx_ring->sbq_prod_idx += 16;
1104 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1105 rx_ring->sbq_prod_idx = 0;
1106 rx_ring->sbq_free_cnt -= 16;
1109 if (start_idx != clean_idx) {
1110 QPRINTK(qdev, RX_STATUS, DEBUG,
1111 "sbq: updating prod idx = %d.\n",
1112 rx_ring->sbq_prod_idx);
1113 ql_write_db_reg(rx_ring->sbq_prod_idx,
1114 rx_ring->sbq_prod_idx_db_reg);
1118 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1119 struct rx_ring *rx_ring)
1121 ql_update_sbq(qdev, rx_ring);
1122 ql_update_lbq(qdev, rx_ring);
1125 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1126 * fails at some stage, or from the interrupt when a tx completes.
1128 static void ql_unmap_send(struct ql_adapter *qdev,
1129 struct tx_ring_desc *tx_ring_desc, int mapped)
1131 int i;
1132 for (i = 0; i < mapped; i++) {
1133 if (i == 0 || (i == 7 && mapped > 7)) {
1135 * Unmap the skb->data area, or the
1136 * external sglist (AKA the Outbound
1137 * Address List (OAL)).
1138 * If its the zeroeth element, then it's
1139 * the skb->data area. If it's the 7th
1140 * element and there is more than 6 frags,
1141 * then its an OAL.
1143 if (i == 7) {
1144 QPRINTK(qdev, TX_DONE, DEBUG,
1145 "unmapping OAL area.\n");
1147 pci_unmap_single(qdev->pdev,
1148 pci_unmap_addr(&tx_ring_desc->map[i],
1149 mapaddr),
1150 pci_unmap_len(&tx_ring_desc->map[i],
1151 maplen),
1152 PCI_DMA_TODEVICE);
1153 } else {
1154 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1156 pci_unmap_page(qdev->pdev,
1157 pci_unmap_addr(&tx_ring_desc->map[i],
1158 mapaddr),
1159 pci_unmap_len(&tx_ring_desc->map[i],
1160 maplen), PCI_DMA_TODEVICE);
1166 /* Map the buffers for this transmit. This will return
1167 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1169 static int ql_map_send(struct ql_adapter *qdev,
1170 struct ob_mac_iocb_req *mac_iocb_ptr,
1171 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1173 int len = skb_headlen(skb);
1174 dma_addr_t map;
1175 int frag_idx, err, map_idx = 0;
1176 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1177 int frag_cnt = skb_shinfo(skb)->nr_frags;
1179 if (frag_cnt) {
1180 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1183 * Map the skb buffer first.
1185 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1187 err = pci_dma_mapping_error(qdev->pdev, map);
1188 if (err) {
1189 QPRINTK(qdev, TX_QUEUED, ERR,
1190 "PCI mapping failed with error: %d\n", err);
1192 return NETDEV_TX_BUSY;
1195 tbd->len = cpu_to_le32(len);
1196 tbd->addr = cpu_to_le64(map);
1197 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1198 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1199 map_idx++;
1202 * This loop fills the remainder of the 8 address descriptors
1203 * in the IOCB. If there are more than 7 fragments, then the
1204 * eighth address desc will point to an external list (OAL).
1205 * When this happens, the remainder of the frags will be stored
1206 * in this list.
1208 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1209 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1210 tbd++;
1211 if (frag_idx == 6 && frag_cnt > 7) {
1212 /* Let's tack on an sglist.
1213 * Our control block will now
1214 * look like this:
1215 * iocb->seg[0] = skb->data
1216 * iocb->seg[1] = frag[0]
1217 * iocb->seg[2] = frag[1]
1218 * iocb->seg[3] = frag[2]
1219 * iocb->seg[4] = frag[3]
1220 * iocb->seg[5] = frag[4]
1221 * iocb->seg[6] = frag[5]
1222 * iocb->seg[7] = ptr to OAL (external sglist)
1223 * oal->seg[0] = frag[6]
1224 * oal->seg[1] = frag[7]
1225 * oal->seg[2] = frag[8]
1226 * oal->seg[3] = frag[9]
1227 * oal->seg[4] = frag[10]
1228 * etc...
1230 /* Tack on the OAL in the eighth segment of IOCB. */
1231 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1232 sizeof(struct oal),
1233 PCI_DMA_TODEVICE);
1234 err = pci_dma_mapping_error(qdev->pdev, map);
1235 if (err) {
1236 QPRINTK(qdev, TX_QUEUED, ERR,
1237 "PCI mapping outbound address list with error: %d\n",
1238 err);
1239 goto map_error;
1242 tbd->addr = cpu_to_le64(map);
1244 * The length is the number of fragments
1245 * that remain to be mapped times the length
1246 * of our sglist (OAL).
1248 tbd->len =
1249 cpu_to_le32((sizeof(struct tx_buf_desc) *
1250 (frag_cnt - frag_idx)) | TX_DESC_C);
1251 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1252 map);
1253 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1254 sizeof(struct oal));
1255 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1256 map_idx++;
1259 map =
1260 pci_map_page(qdev->pdev, frag->page,
1261 frag->page_offset, frag->size,
1262 PCI_DMA_TODEVICE);
1264 err = pci_dma_mapping_error(qdev->pdev, map);
1265 if (err) {
1266 QPRINTK(qdev, TX_QUEUED, ERR,
1267 "PCI mapping frags failed with error: %d.\n",
1268 err);
1269 goto map_error;
1272 tbd->addr = cpu_to_le64(map);
1273 tbd->len = cpu_to_le32(frag->size);
1274 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1275 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1276 frag->size);
1279 /* Save the number of segments we've mapped. */
1280 tx_ring_desc->map_cnt = map_idx;
1281 /* Terminate the last segment. */
1282 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1283 return NETDEV_TX_OK;
1285 map_error:
1287 * If the first frag mapping failed, then i will be zero.
1288 * This causes the unmap of the skb->data area. Otherwise
1289 * we pass in the number of frags that mapped successfully
1290 * so they can be umapped.
1292 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1293 return NETDEV_TX_BUSY;
1296 static void ql_realign_skb(struct sk_buff *skb, int len)
1298 void *temp_addr = skb->data;
1300 /* Undo the skb_reserve(skb,32) we did before
1301 * giving to hardware, and realign data on
1302 * a 2-byte boundary.
1304 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1305 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1306 skb_copy_to_linear_data(skb, temp_addr,
1307 (unsigned int)len);
1311 * This function builds an skb for the given inbound
1312 * completion. It will be rewritten for readability in the near
1313 * future, but for not it works well.
1315 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1316 struct rx_ring *rx_ring,
1317 struct ib_mac_iocb_rsp *ib_mac_rsp)
1319 struct bq_desc *lbq_desc;
1320 struct bq_desc *sbq_desc;
1321 struct sk_buff *skb = NULL;
1322 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1323 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1326 * Handle the header buffer if present.
1328 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1329 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1330 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1332 * Headers fit nicely into a small buffer.
1334 sbq_desc = ql_get_curr_sbuf(rx_ring);
1335 pci_unmap_single(qdev->pdev,
1336 pci_unmap_addr(sbq_desc, mapaddr),
1337 pci_unmap_len(sbq_desc, maplen),
1338 PCI_DMA_FROMDEVICE);
1339 skb = sbq_desc->p.skb;
1340 ql_realign_skb(skb, hdr_len);
1341 skb_put(skb, hdr_len);
1342 sbq_desc->p.skb = NULL;
1346 * Handle the data buffer(s).
1348 if (unlikely(!length)) { /* Is there data too? */
1349 QPRINTK(qdev, RX_STATUS, DEBUG,
1350 "No Data buffer in this packet.\n");
1351 return skb;
1354 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1355 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1356 QPRINTK(qdev, RX_STATUS, DEBUG,
1357 "Headers in small, data of %d bytes in small, combine them.\n", length);
1359 * Data is less than small buffer size so it's
1360 * stuffed in a small buffer.
1361 * For this case we append the data
1362 * from the "data" small buffer to the "header" small
1363 * buffer.
1365 sbq_desc = ql_get_curr_sbuf(rx_ring);
1366 pci_dma_sync_single_for_cpu(qdev->pdev,
1367 pci_unmap_addr
1368 (sbq_desc, mapaddr),
1369 pci_unmap_len
1370 (sbq_desc, maplen),
1371 PCI_DMA_FROMDEVICE);
1372 memcpy(skb_put(skb, length),
1373 sbq_desc->p.skb->data, length);
1374 pci_dma_sync_single_for_device(qdev->pdev,
1375 pci_unmap_addr
1376 (sbq_desc,
1377 mapaddr),
1378 pci_unmap_len
1379 (sbq_desc,
1380 maplen),
1381 PCI_DMA_FROMDEVICE);
1382 } else {
1383 QPRINTK(qdev, RX_STATUS, DEBUG,
1384 "%d bytes in a single small buffer.\n", length);
1385 sbq_desc = ql_get_curr_sbuf(rx_ring);
1386 skb = sbq_desc->p.skb;
1387 ql_realign_skb(skb, length);
1388 skb_put(skb, length);
1389 pci_unmap_single(qdev->pdev,
1390 pci_unmap_addr(sbq_desc,
1391 mapaddr),
1392 pci_unmap_len(sbq_desc,
1393 maplen),
1394 PCI_DMA_FROMDEVICE);
1395 sbq_desc->p.skb = NULL;
1397 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1398 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1399 QPRINTK(qdev, RX_STATUS, DEBUG,
1400 "Header in small, %d bytes in large. Chain large to small!\n", length);
1402 * The data is in a single large buffer. We
1403 * chain it to the header buffer's skb and let
1404 * it rip.
1406 lbq_desc = ql_get_curr_lbuf(rx_ring);
1407 pci_unmap_page(qdev->pdev,
1408 pci_unmap_addr(lbq_desc,
1409 mapaddr),
1410 pci_unmap_len(lbq_desc, maplen),
1411 PCI_DMA_FROMDEVICE);
1412 QPRINTK(qdev, RX_STATUS, DEBUG,
1413 "Chaining page to skb.\n");
1414 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1415 0, length);
1416 skb->len += length;
1417 skb->data_len += length;
1418 skb->truesize += length;
1419 lbq_desc->p.lbq_page = NULL;
1420 } else {
1422 * The headers and data are in a single large buffer. We
1423 * copy it to a new skb and let it go. This can happen with
1424 * jumbo mtu on a non-TCP/UDP frame.
1426 lbq_desc = ql_get_curr_lbuf(rx_ring);
1427 skb = netdev_alloc_skb(qdev->ndev, length);
1428 if (skb == NULL) {
1429 QPRINTK(qdev, PROBE, DEBUG,
1430 "No skb available, drop the packet.\n");
1431 return NULL;
1433 pci_unmap_page(qdev->pdev,
1434 pci_unmap_addr(lbq_desc,
1435 mapaddr),
1436 pci_unmap_len(lbq_desc, maplen),
1437 PCI_DMA_FROMDEVICE);
1438 skb_reserve(skb, NET_IP_ALIGN);
1439 QPRINTK(qdev, RX_STATUS, DEBUG,
1440 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1441 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1442 0, length);
1443 skb->len += length;
1444 skb->data_len += length;
1445 skb->truesize += length;
1446 length -= length;
1447 lbq_desc->p.lbq_page = NULL;
1448 __pskb_pull_tail(skb,
1449 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1450 VLAN_ETH_HLEN : ETH_HLEN);
1452 } else {
1454 * The data is in a chain of large buffers
1455 * pointed to by a small buffer. We loop
1456 * thru and chain them to the our small header
1457 * buffer's skb.
1458 * frags: There are 18 max frags and our small
1459 * buffer will hold 32 of them. The thing is,
1460 * we'll use 3 max for our 9000 byte jumbo
1461 * frames. If the MTU goes up we could
1462 * eventually be in trouble.
1464 int size, offset, i = 0;
1465 __le64 *bq, bq_array[8];
1466 sbq_desc = ql_get_curr_sbuf(rx_ring);
1467 pci_unmap_single(qdev->pdev,
1468 pci_unmap_addr(sbq_desc, mapaddr),
1469 pci_unmap_len(sbq_desc, maplen),
1470 PCI_DMA_FROMDEVICE);
1471 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1473 * This is an non TCP/UDP IP frame, so
1474 * the headers aren't split into a small
1475 * buffer. We have to use the small buffer
1476 * that contains our sg list as our skb to
1477 * send upstairs. Copy the sg list here to
1478 * a local buffer and use it to find the
1479 * pages to chain.
1481 QPRINTK(qdev, RX_STATUS, DEBUG,
1482 "%d bytes of headers & data in chain of large.\n", length);
1483 skb = sbq_desc->p.skb;
1484 bq = &bq_array[0];
1485 memcpy(bq, skb->data, sizeof(bq_array));
1486 sbq_desc->p.skb = NULL;
1487 skb_reserve(skb, NET_IP_ALIGN);
1488 } else {
1489 QPRINTK(qdev, RX_STATUS, DEBUG,
1490 "Headers in small, %d bytes of data in chain of large.\n", length);
1491 bq = (__le64 *)sbq_desc->p.skb->data;
1493 while (length > 0) {
1494 lbq_desc = ql_get_curr_lbuf(rx_ring);
1495 pci_unmap_page(qdev->pdev,
1496 pci_unmap_addr(lbq_desc,
1497 mapaddr),
1498 pci_unmap_len(lbq_desc,
1499 maplen),
1500 PCI_DMA_FROMDEVICE);
1501 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1502 offset = 0;
1504 QPRINTK(qdev, RX_STATUS, DEBUG,
1505 "Adding page %d to skb for %d bytes.\n",
1506 i, size);
1507 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1508 offset, size);
1509 skb->len += size;
1510 skb->data_len += size;
1511 skb->truesize += size;
1512 length -= size;
1513 lbq_desc->p.lbq_page = NULL;
1514 bq++;
1515 i++;
1517 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1518 VLAN_ETH_HLEN : ETH_HLEN);
1520 return skb;
1523 /* Process an inbound completion from an rx ring. */
1524 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1525 struct rx_ring *rx_ring,
1526 struct ib_mac_iocb_rsp *ib_mac_rsp)
1528 struct net_device *ndev = qdev->ndev;
1529 struct sk_buff *skb = NULL;
1530 u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
1531 IB_MAC_IOCB_RSP_VLAN_MASK)
1533 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1535 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1536 if (unlikely(!skb)) {
1537 QPRINTK(qdev, RX_STATUS, DEBUG,
1538 "No skb available, drop packet.\n");
1539 return;
1542 /* Frame error, so drop the packet. */
1543 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1544 QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
1545 ib_mac_rsp->flags2);
1546 dev_kfree_skb_any(skb);
1547 return;
1550 /* The max framesize filter on this chip is set higher than
1551 * MTU since FCoE uses 2k frames.
1553 if (skb->len > ndev->mtu + ETH_HLEN) {
1554 dev_kfree_skb_any(skb);
1555 return;
1558 prefetch(skb->data);
1559 skb->dev = ndev;
1560 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1561 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1562 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1563 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1564 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1565 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1566 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1567 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1569 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1570 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1573 skb->protocol = eth_type_trans(skb, ndev);
1574 skb->ip_summed = CHECKSUM_NONE;
1576 /* If rx checksum is on, and there are no
1577 * csum or frame errors.
1579 if (qdev->rx_csum &&
1580 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1581 /* TCP frame. */
1582 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1583 QPRINTK(qdev, RX_STATUS, DEBUG,
1584 "TCP checksum done!\n");
1585 skb->ip_summed = CHECKSUM_UNNECESSARY;
1586 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1587 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1588 /* Unfragmented ipv4 UDP frame. */
1589 struct iphdr *iph = (struct iphdr *) skb->data;
1590 if (!(iph->frag_off &
1591 cpu_to_be16(IP_MF|IP_OFFSET))) {
1592 skb->ip_summed = CHECKSUM_UNNECESSARY;
1593 QPRINTK(qdev, RX_STATUS, DEBUG,
1594 "TCP checksum done!\n");
1599 qdev->stats.rx_packets++;
1600 qdev->stats.rx_bytes += skb->len;
1601 skb_record_rx_queue(skb,
1602 rx_ring->cq_id - qdev->rss_ring_first_cq_id);
1603 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1604 if (qdev->vlgrp &&
1605 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1606 (vlan_id != 0))
1607 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1608 vlan_id, skb);
1609 else
1610 napi_gro_receive(&rx_ring->napi, skb);
1611 } else {
1612 if (qdev->vlgrp &&
1613 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1614 (vlan_id != 0))
1615 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1616 else
1617 netif_receive_skb(skb);
1621 /* Process an outbound completion from an rx ring. */
1622 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1623 struct ob_mac_iocb_rsp *mac_rsp)
1625 struct tx_ring *tx_ring;
1626 struct tx_ring_desc *tx_ring_desc;
1628 QL_DUMP_OB_MAC_RSP(mac_rsp);
1629 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1630 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1631 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1632 qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1633 qdev->stats.tx_packets++;
1634 dev_kfree_skb(tx_ring_desc->skb);
1635 tx_ring_desc->skb = NULL;
1637 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1638 OB_MAC_IOCB_RSP_S |
1639 OB_MAC_IOCB_RSP_L |
1640 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1641 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1642 QPRINTK(qdev, TX_DONE, WARNING,
1643 "Total descriptor length did not match transfer length.\n");
1645 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1646 QPRINTK(qdev, TX_DONE, WARNING,
1647 "Frame too short to be legal, not sent.\n");
1649 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1650 QPRINTK(qdev, TX_DONE, WARNING,
1651 "Frame too long, but sent anyway.\n");
1653 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1654 QPRINTK(qdev, TX_DONE, WARNING,
1655 "PCI backplane error. Frame not sent.\n");
1658 atomic_inc(&tx_ring->tx_count);
1661 /* Fire up a handler to reset the MPI processor. */
1662 void ql_queue_fw_error(struct ql_adapter *qdev)
1664 netif_carrier_off(qdev->ndev);
1665 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1668 void ql_queue_asic_error(struct ql_adapter *qdev)
1670 netif_carrier_off(qdev->ndev);
1671 ql_disable_interrupts(qdev);
1672 /* Clear adapter up bit to signal the recovery
1673 * process that it shouldn't kill the reset worker
1674 * thread
1676 clear_bit(QL_ADAPTER_UP, &qdev->flags);
1677 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1680 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1681 struct ib_ae_iocb_rsp *ib_ae_rsp)
1683 switch (ib_ae_rsp->event) {
1684 case MGMT_ERR_EVENT:
1685 QPRINTK(qdev, RX_ERR, ERR,
1686 "Management Processor Fatal Error.\n");
1687 ql_queue_fw_error(qdev);
1688 return;
1690 case CAM_LOOKUP_ERR_EVENT:
1691 QPRINTK(qdev, LINK, ERR,
1692 "Multiple CAM hits lookup occurred.\n");
1693 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1694 ql_queue_asic_error(qdev);
1695 return;
1697 case SOFT_ECC_ERROR_EVENT:
1698 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1699 ql_queue_asic_error(qdev);
1700 break;
1702 case PCI_ERR_ANON_BUF_RD:
1703 QPRINTK(qdev, RX_ERR, ERR,
1704 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1705 ib_ae_rsp->q_id);
1706 ql_queue_asic_error(qdev);
1707 break;
1709 default:
1710 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1711 ib_ae_rsp->event);
1712 ql_queue_asic_error(qdev);
1713 break;
1717 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1719 struct ql_adapter *qdev = rx_ring->qdev;
1720 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1721 struct ob_mac_iocb_rsp *net_rsp = NULL;
1722 int count = 0;
1724 struct tx_ring *tx_ring;
1725 /* While there are entries in the completion queue. */
1726 while (prod != rx_ring->cnsmr_idx) {
1728 QPRINTK(qdev, RX_STATUS, DEBUG,
1729 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1730 prod, rx_ring->cnsmr_idx);
1732 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1733 rmb();
1734 switch (net_rsp->opcode) {
1736 case OPCODE_OB_MAC_TSO_IOCB:
1737 case OPCODE_OB_MAC_IOCB:
1738 ql_process_mac_tx_intr(qdev, net_rsp);
1739 break;
1740 default:
1741 QPRINTK(qdev, RX_STATUS, DEBUG,
1742 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1743 net_rsp->opcode);
1745 count++;
1746 ql_update_cq(rx_ring);
1747 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1749 ql_write_cq_idx(rx_ring);
1750 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1751 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
1752 net_rsp != NULL) {
1753 if (atomic_read(&tx_ring->queue_stopped) &&
1754 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1756 * The queue got stopped because the tx_ring was full.
1757 * Wake it up, because it's now at least 25% empty.
1759 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
1762 return count;
1765 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1767 struct ql_adapter *qdev = rx_ring->qdev;
1768 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1769 struct ql_net_rsp_iocb *net_rsp;
1770 int count = 0;
1772 /* While there are entries in the completion queue. */
1773 while (prod != rx_ring->cnsmr_idx) {
1775 QPRINTK(qdev, RX_STATUS, DEBUG,
1776 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1777 prod, rx_ring->cnsmr_idx);
1779 net_rsp = rx_ring->curr_entry;
1780 rmb();
1781 switch (net_rsp->opcode) {
1782 case OPCODE_IB_MAC_IOCB:
1783 ql_process_mac_rx_intr(qdev, rx_ring,
1784 (struct ib_mac_iocb_rsp *)
1785 net_rsp);
1786 break;
1788 case OPCODE_IB_AE_IOCB:
1789 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1790 net_rsp);
1791 break;
1792 default:
1794 QPRINTK(qdev, RX_STATUS, DEBUG,
1795 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1796 net_rsp->opcode);
1799 count++;
1800 ql_update_cq(rx_ring);
1801 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1802 if (count == budget)
1803 break;
1805 ql_update_buffer_queues(qdev, rx_ring);
1806 ql_write_cq_idx(rx_ring);
1807 return count;
1810 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1812 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1813 struct ql_adapter *qdev = rx_ring->qdev;
1814 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1816 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1817 rx_ring->cq_id);
1819 if (work_done < budget) {
1820 napi_complete(napi);
1821 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1823 return work_done;
1826 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1828 struct ql_adapter *qdev = netdev_priv(ndev);
1830 qdev->vlgrp = grp;
1831 if (grp) {
1832 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1833 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1834 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1835 } else {
1836 QPRINTK(qdev, IFUP, DEBUG,
1837 "Turning off VLAN in NIC_RCV_CFG.\n");
1838 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1842 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1844 struct ql_adapter *qdev = netdev_priv(ndev);
1845 u32 enable_bit = MAC_ADDR_E;
1846 int status;
1848 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1849 if (status)
1850 return;
1851 spin_lock(&qdev->hw_lock);
1852 if (ql_set_mac_addr_reg
1853 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1854 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1856 spin_unlock(&qdev->hw_lock);
1857 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1860 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1862 struct ql_adapter *qdev = netdev_priv(ndev);
1863 u32 enable_bit = 0;
1864 int status;
1866 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1867 if (status)
1868 return;
1870 spin_lock(&qdev->hw_lock);
1871 if (ql_set_mac_addr_reg
1872 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1873 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1875 spin_unlock(&qdev->hw_lock);
1876 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1880 /* Worker thread to process a given rx_ring that is dedicated
1881 * to outbound completions.
1883 static void ql_tx_clean(struct work_struct *work)
1885 struct rx_ring *rx_ring =
1886 container_of(work, struct rx_ring, rx_work.work);
1887 ql_clean_outbound_rx_ring(rx_ring);
1888 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1892 /* Worker thread to process a given rx_ring that is dedicated
1893 * to inbound completions.
1895 static void ql_rx_clean(struct work_struct *work)
1897 struct rx_ring *rx_ring =
1898 container_of(work, struct rx_ring, rx_work.work);
1899 ql_clean_inbound_rx_ring(rx_ring, 64);
1900 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1903 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1904 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1906 struct rx_ring *rx_ring = dev_id;
1907 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1908 &rx_ring->rx_work, 0);
1909 return IRQ_HANDLED;
1912 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1913 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1915 struct rx_ring *rx_ring = dev_id;
1916 napi_schedule(&rx_ring->napi);
1917 return IRQ_HANDLED;
1920 /* This handles a fatal error, MPI activity, and the default
1921 * rx_ring in an MSI-X multiple vector environment.
1922 * In MSI/Legacy environment it also process the rest of
1923 * the rx_rings.
1925 static irqreturn_t qlge_isr(int irq, void *dev_id)
1927 struct rx_ring *rx_ring = dev_id;
1928 struct ql_adapter *qdev = rx_ring->qdev;
1929 struct intr_context *intr_context = &qdev->intr_context[0];
1930 u32 var;
1931 int i;
1932 int work_done = 0;
1934 spin_lock(&qdev->hw_lock);
1935 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1936 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1937 spin_unlock(&qdev->hw_lock);
1938 return IRQ_NONE;
1940 spin_unlock(&qdev->hw_lock);
1942 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1945 * Check for fatal error.
1947 if (var & STS_FE) {
1948 ql_queue_asic_error(qdev);
1949 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1950 var = ql_read32(qdev, ERR_STS);
1951 QPRINTK(qdev, INTR, ERR,
1952 "Resetting chip. Error Status Register = 0x%x\n", var);
1953 return IRQ_HANDLED;
1957 * Check MPI processor activity.
1959 if (var & STS_PI) {
1961 * We've got an async event or mailbox completion.
1962 * Handle it and clear the source of the interrupt.
1964 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1965 ql_disable_completion_interrupt(qdev, intr_context->intr);
1966 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1967 &qdev->mpi_work, 0);
1968 work_done++;
1972 * Check the default queue and wake handler if active.
1974 rx_ring = &qdev->rx_ring[0];
1975 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1976 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1977 ql_disable_completion_interrupt(qdev, intr_context->intr);
1978 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1979 &rx_ring->rx_work, 0);
1980 work_done++;
1983 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1985 * Start the DPC for each active queue.
1987 for (i = 1; i < qdev->rx_ring_count; i++) {
1988 rx_ring = &qdev->rx_ring[i];
1989 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1990 rx_ring->cnsmr_idx) {
1991 QPRINTK(qdev, INTR, INFO,
1992 "Waking handler for rx_ring[%d].\n", i);
1993 ql_disable_completion_interrupt(qdev,
1994 intr_context->
1995 intr);
1996 if (i < qdev->rss_ring_first_cq_id)
1997 queue_delayed_work_on(rx_ring->cpu,
1998 qdev->q_workqueue,
1999 &rx_ring->rx_work,
2001 else
2002 napi_schedule(&rx_ring->napi);
2003 work_done++;
2007 ql_enable_completion_interrupt(qdev, intr_context->intr);
2008 return work_done ? IRQ_HANDLED : IRQ_NONE;
2011 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2014 if (skb_is_gso(skb)) {
2015 int err;
2016 if (skb_header_cloned(skb)) {
2017 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2018 if (err)
2019 return err;
2022 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2023 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2024 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2025 mac_iocb_ptr->total_hdrs_len =
2026 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2027 mac_iocb_ptr->net_trans_offset =
2028 cpu_to_le16(skb_network_offset(skb) |
2029 skb_transport_offset(skb)
2030 << OB_MAC_TRANSPORT_HDR_SHIFT);
2031 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2032 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2033 if (likely(skb->protocol == htons(ETH_P_IP))) {
2034 struct iphdr *iph = ip_hdr(skb);
2035 iph->check = 0;
2036 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2037 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2038 iph->daddr, 0,
2039 IPPROTO_TCP,
2041 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2042 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2043 tcp_hdr(skb)->check =
2044 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2045 &ipv6_hdr(skb)->daddr,
2046 0, IPPROTO_TCP, 0);
2048 return 1;
2050 return 0;
2053 static void ql_hw_csum_setup(struct sk_buff *skb,
2054 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2056 int len;
2057 struct iphdr *iph = ip_hdr(skb);
2058 __sum16 *check;
2059 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2060 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2061 mac_iocb_ptr->net_trans_offset =
2062 cpu_to_le16(skb_network_offset(skb) |
2063 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2065 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2066 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2067 if (likely(iph->protocol == IPPROTO_TCP)) {
2068 check = &(tcp_hdr(skb)->check);
2069 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2070 mac_iocb_ptr->total_hdrs_len =
2071 cpu_to_le16(skb_transport_offset(skb) +
2072 (tcp_hdr(skb)->doff << 2));
2073 } else {
2074 check = &(udp_hdr(skb)->check);
2075 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2076 mac_iocb_ptr->total_hdrs_len =
2077 cpu_to_le16(skb_transport_offset(skb) +
2078 sizeof(struct udphdr));
2080 *check = ~csum_tcpudp_magic(iph->saddr,
2081 iph->daddr, len, iph->protocol, 0);
2084 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
2086 struct tx_ring_desc *tx_ring_desc;
2087 struct ob_mac_iocb_req *mac_iocb_ptr;
2088 struct ql_adapter *qdev = netdev_priv(ndev);
2089 int tso;
2090 struct tx_ring *tx_ring;
2091 u32 tx_ring_idx = (u32) skb->queue_mapping;
2093 tx_ring = &qdev->tx_ring[tx_ring_idx];
2095 if (skb_padto(skb, ETH_ZLEN))
2096 return NETDEV_TX_OK;
2098 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2099 QPRINTK(qdev, TX_QUEUED, INFO,
2100 "%s: shutting down tx queue %d du to lack of resources.\n",
2101 __func__, tx_ring_idx);
2102 netif_stop_subqueue(ndev, tx_ring->wq_id);
2103 atomic_inc(&tx_ring->queue_stopped);
2104 return NETDEV_TX_BUSY;
2106 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2107 mac_iocb_ptr = tx_ring_desc->queue_entry;
2108 memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
2110 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2111 mac_iocb_ptr->tid = tx_ring_desc->index;
2112 /* We use the upper 32-bits to store the tx queue for this IO.
2113 * When we get the completion we can use it to establish the context.
2115 mac_iocb_ptr->txq_idx = tx_ring_idx;
2116 tx_ring_desc->skb = skb;
2118 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2120 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2121 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
2122 vlan_tx_tag_get(skb));
2123 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2124 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2126 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2127 if (tso < 0) {
2128 dev_kfree_skb_any(skb);
2129 return NETDEV_TX_OK;
2130 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2131 ql_hw_csum_setup(skb,
2132 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2134 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2135 NETDEV_TX_OK) {
2136 QPRINTK(qdev, TX_QUEUED, ERR,
2137 "Could not map the segments.\n");
2138 return NETDEV_TX_BUSY;
2140 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2141 tx_ring->prod_idx++;
2142 if (tx_ring->prod_idx == tx_ring->wq_len)
2143 tx_ring->prod_idx = 0;
2144 wmb();
2146 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2147 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2148 tx_ring->prod_idx, skb->len);
2150 atomic_dec(&tx_ring->tx_count);
2151 return NETDEV_TX_OK;
2154 static void ql_free_shadow_space(struct ql_adapter *qdev)
2156 if (qdev->rx_ring_shadow_reg_area) {
2157 pci_free_consistent(qdev->pdev,
2158 PAGE_SIZE,
2159 qdev->rx_ring_shadow_reg_area,
2160 qdev->rx_ring_shadow_reg_dma);
2161 qdev->rx_ring_shadow_reg_area = NULL;
2163 if (qdev->tx_ring_shadow_reg_area) {
2164 pci_free_consistent(qdev->pdev,
2165 PAGE_SIZE,
2166 qdev->tx_ring_shadow_reg_area,
2167 qdev->tx_ring_shadow_reg_dma);
2168 qdev->tx_ring_shadow_reg_area = NULL;
2172 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2174 qdev->rx_ring_shadow_reg_area =
2175 pci_alloc_consistent(qdev->pdev,
2176 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2177 if (qdev->rx_ring_shadow_reg_area == NULL) {
2178 QPRINTK(qdev, IFUP, ERR,
2179 "Allocation of RX shadow space failed.\n");
2180 return -ENOMEM;
2182 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2183 qdev->tx_ring_shadow_reg_area =
2184 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2185 &qdev->tx_ring_shadow_reg_dma);
2186 if (qdev->tx_ring_shadow_reg_area == NULL) {
2187 QPRINTK(qdev, IFUP, ERR,
2188 "Allocation of TX shadow space failed.\n");
2189 goto err_wqp_sh_area;
2191 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2192 return 0;
2194 err_wqp_sh_area:
2195 pci_free_consistent(qdev->pdev,
2196 PAGE_SIZE,
2197 qdev->rx_ring_shadow_reg_area,
2198 qdev->rx_ring_shadow_reg_dma);
2199 return -ENOMEM;
2202 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2204 struct tx_ring_desc *tx_ring_desc;
2205 int i;
2206 struct ob_mac_iocb_req *mac_iocb_ptr;
2208 mac_iocb_ptr = tx_ring->wq_base;
2209 tx_ring_desc = tx_ring->q;
2210 for (i = 0; i < tx_ring->wq_len; i++) {
2211 tx_ring_desc->index = i;
2212 tx_ring_desc->skb = NULL;
2213 tx_ring_desc->queue_entry = mac_iocb_ptr;
2214 mac_iocb_ptr++;
2215 tx_ring_desc++;
2217 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2218 atomic_set(&tx_ring->queue_stopped, 0);
2221 static void ql_free_tx_resources(struct ql_adapter *qdev,
2222 struct tx_ring *tx_ring)
2224 if (tx_ring->wq_base) {
2225 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2226 tx_ring->wq_base, tx_ring->wq_base_dma);
2227 tx_ring->wq_base = NULL;
2229 kfree(tx_ring->q);
2230 tx_ring->q = NULL;
2233 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2234 struct tx_ring *tx_ring)
2236 tx_ring->wq_base =
2237 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2238 &tx_ring->wq_base_dma);
2240 if ((tx_ring->wq_base == NULL)
2241 || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
2242 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2243 return -ENOMEM;
2245 tx_ring->q =
2246 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2247 if (tx_ring->q == NULL)
2248 goto err;
2250 return 0;
2251 err:
2252 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2253 tx_ring->wq_base, tx_ring->wq_base_dma);
2254 return -ENOMEM;
2257 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2259 int i;
2260 struct bq_desc *lbq_desc;
2262 for (i = 0; i < rx_ring->lbq_len; i++) {
2263 lbq_desc = &rx_ring->lbq[i];
2264 if (lbq_desc->p.lbq_page) {
2265 pci_unmap_page(qdev->pdev,
2266 pci_unmap_addr(lbq_desc, mapaddr),
2267 pci_unmap_len(lbq_desc, maplen),
2268 PCI_DMA_FROMDEVICE);
2270 put_page(lbq_desc->p.lbq_page);
2271 lbq_desc->p.lbq_page = NULL;
2276 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2278 int i;
2279 struct bq_desc *sbq_desc;
2281 for (i = 0; i < rx_ring->sbq_len; i++) {
2282 sbq_desc = &rx_ring->sbq[i];
2283 if (sbq_desc == NULL) {
2284 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2285 return;
2287 if (sbq_desc->p.skb) {
2288 pci_unmap_single(qdev->pdev,
2289 pci_unmap_addr(sbq_desc, mapaddr),
2290 pci_unmap_len(sbq_desc, maplen),
2291 PCI_DMA_FROMDEVICE);
2292 dev_kfree_skb(sbq_desc->p.skb);
2293 sbq_desc->p.skb = NULL;
2298 /* Free all large and small rx buffers associated
2299 * with the completion queues for this device.
2301 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2303 int i;
2304 struct rx_ring *rx_ring;
2306 for (i = 0; i < qdev->rx_ring_count; i++) {
2307 rx_ring = &qdev->rx_ring[i];
2308 if (rx_ring->lbq)
2309 ql_free_lbq_buffers(qdev, rx_ring);
2310 if (rx_ring->sbq)
2311 ql_free_sbq_buffers(qdev, rx_ring);
2315 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2317 struct rx_ring *rx_ring;
2318 int i;
2320 for (i = 0; i < qdev->rx_ring_count; i++) {
2321 rx_ring = &qdev->rx_ring[i];
2322 if (rx_ring->type != TX_Q)
2323 ql_update_buffer_queues(qdev, rx_ring);
2327 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2328 struct rx_ring *rx_ring)
2330 int i;
2331 struct bq_desc *lbq_desc;
2332 __le64 *bq = rx_ring->lbq_base;
2334 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2335 for (i = 0; i < rx_ring->lbq_len; i++) {
2336 lbq_desc = &rx_ring->lbq[i];
2337 memset(lbq_desc, 0, sizeof(*lbq_desc));
2338 lbq_desc->index = i;
2339 lbq_desc->addr = bq;
2340 bq++;
2344 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2345 struct rx_ring *rx_ring)
2347 int i;
2348 struct bq_desc *sbq_desc;
2349 __le64 *bq = rx_ring->sbq_base;
2351 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2352 for (i = 0; i < rx_ring->sbq_len; i++) {
2353 sbq_desc = &rx_ring->sbq[i];
2354 memset(sbq_desc, 0, sizeof(*sbq_desc));
2355 sbq_desc->index = i;
2356 sbq_desc->addr = bq;
2357 bq++;
2361 static void ql_free_rx_resources(struct ql_adapter *qdev,
2362 struct rx_ring *rx_ring)
2364 /* Free the small buffer queue. */
2365 if (rx_ring->sbq_base) {
2366 pci_free_consistent(qdev->pdev,
2367 rx_ring->sbq_size,
2368 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2369 rx_ring->sbq_base = NULL;
2372 /* Free the small buffer queue control blocks. */
2373 kfree(rx_ring->sbq);
2374 rx_ring->sbq = NULL;
2376 /* Free the large buffer queue. */
2377 if (rx_ring->lbq_base) {
2378 pci_free_consistent(qdev->pdev,
2379 rx_ring->lbq_size,
2380 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2381 rx_ring->lbq_base = NULL;
2384 /* Free the large buffer queue control blocks. */
2385 kfree(rx_ring->lbq);
2386 rx_ring->lbq = NULL;
2388 /* Free the rx queue. */
2389 if (rx_ring->cq_base) {
2390 pci_free_consistent(qdev->pdev,
2391 rx_ring->cq_size,
2392 rx_ring->cq_base, rx_ring->cq_base_dma);
2393 rx_ring->cq_base = NULL;
2397 /* Allocate queues and buffers for this completions queue based
2398 * on the values in the parameter structure. */
2399 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2400 struct rx_ring *rx_ring)
2404 * Allocate the completion queue for this rx_ring.
2406 rx_ring->cq_base =
2407 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2408 &rx_ring->cq_base_dma);
2410 if (rx_ring->cq_base == NULL) {
2411 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2412 return -ENOMEM;
2415 if (rx_ring->sbq_len) {
2417 * Allocate small buffer queue.
2419 rx_ring->sbq_base =
2420 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2421 &rx_ring->sbq_base_dma);
2423 if (rx_ring->sbq_base == NULL) {
2424 QPRINTK(qdev, IFUP, ERR,
2425 "Small buffer queue allocation failed.\n");
2426 goto err_mem;
2430 * Allocate small buffer queue control blocks.
2432 rx_ring->sbq =
2433 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2434 GFP_KERNEL);
2435 if (rx_ring->sbq == NULL) {
2436 QPRINTK(qdev, IFUP, ERR,
2437 "Small buffer queue control block allocation failed.\n");
2438 goto err_mem;
2441 ql_init_sbq_ring(qdev, rx_ring);
2444 if (rx_ring->lbq_len) {
2446 * Allocate large buffer queue.
2448 rx_ring->lbq_base =
2449 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2450 &rx_ring->lbq_base_dma);
2452 if (rx_ring->lbq_base == NULL) {
2453 QPRINTK(qdev, IFUP, ERR,
2454 "Large buffer queue allocation failed.\n");
2455 goto err_mem;
2458 * Allocate large buffer queue control blocks.
2460 rx_ring->lbq =
2461 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2462 GFP_KERNEL);
2463 if (rx_ring->lbq == NULL) {
2464 QPRINTK(qdev, IFUP, ERR,
2465 "Large buffer queue control block allocation failed.\n");
2466 goto err_mem;
2469 ql_init_lbq_ring(qdev, rx_ring);
2472 return 0;
2474 err_mem:
2475 ql_free_rx_resources(qdev, rx_ring);
2476 return -ENOMEM;
2479 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2481 struct tx_ring *tx_ring;
2482 struct tx_ring_desc *tx_ring_desc;
2483 int i, j;
2486 * Loop through all queues and free
2487 * any resources.
2489 for (j = 0; j < qdev->tx_ring_count; j++) {
2490 tx_ring = &qdev->tx_ring[j];
2491 for (i = 0; i < tx_ring->wq_len; i++) {
2492 tx_ring_desc = &tx_ring->q[i];
2493 if (tx_ring_desc && tx_ring_desc->skb) {
2494 QPRINTK(qdev, IFDOWN, ERR,
2495 "Freeing lost SKB %p, from queue %d, index %d.\n",
2496 tx_ring_desc->skb, j,
2497 tx_ring_desc->index);
2498 ql_unmap_send(qdev, tx_ring_desc,
2499 tx_ring_desc->map_cnt);
2500 dev_kfree_skb(tx_ring_desc->skb);
2501 tx_ring_desc->skb = NULL;
2507 static void ql_free_mem_resources(struct ql_adapter *qdev)
2509 int i;
2511 for (i = 0; i < qdev->tx_ring_count; i++)
2512 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2513 for (i = 0; i < qdev->rx_ring_count; i++)
2514 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2515 ql_free_shadow_space(qdev);
2518 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2520 int i;
2522 /* Allocate space for our shadow registers and such. */
2523 if (ql_alloc_shadow_space(qdev))
2524 return -ENOMEM;
2526 for (i = 0; i < qdev->rx_ring_count; i++) {
2527 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2528 QPRINTK(qdev, IFUP, ERR,
2529 "RX resource allocation failed.\n");
2530 goto err_mem;
2533 /* Allocate tx queue resources */
2534 for (i = 0; i < qdev->tx_ring_count; i++) {
2535 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2536 QPRINTK(qdev, IFUP, ERR,
2537 "TX resource allocation failed.\n");
2538 goto err_mem;
2541 return 0;
2543 err_mem:
2544 ql_free_mem_resources(qdev);
2545 return -ENOMEM;
2548 /* Set up the rx ring control block and pass it to the chip.
2549 * The control block is defined as
2550 * "Completion Queue Initialization Control Block", or cqicb.
2552 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2554 struct cqicb *cqicb = &rx_ring->cqicb;
2555 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2556 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
2557 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2558 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
2559 void __iomem *doorbell_area =
2560 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2561 int err = 0;
2562 u16 bq_len;
2563 u64 tmp;
2564 __le64 *base_indirect_ptr;
2565 int page_entries;
2567 /* Set up the shadow registers for this ring. */
2568 rx_ring->prod_idx_sh_reg = shadow_reg;
2569 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2570 shadow_reg += sizeof(u64);
2571 shadow_reg_dma += sizeof(u64);
2572 rx_ring->lbq_base_indirect = shadow_reg;
2573 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2574 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2575 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2576 rx_ring->sbq_base_indirect = shadow_reg;
2577 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2579 /* PCI doorbell mem area + 0x00 for consumer index register */
2580 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2581 rx_ring->cnsmr_idx = 0;
2582 rx_ring->curr_entry = rx_ring->cq_base;
2584 /* PCI doorbell mem area + 0x04 for valid register */
2585 rx_ring->valid_db_reg = doorbell_area + 0x04;
2587 /* PCI doorbell mem area + 0x18 for large buffer consumer */
2588 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2590 /* PCI doorbell mem area + 0x1c */
2591 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2593 memset((void *)cqicb, 0, sizeof(struct cqicb));
2594 cqicb->msix_vect = rx_ring->irq;
2596 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2597 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2599 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2601 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2604 * Set up the control block load flags.
2606 cqicb->flags = FLAGS_LC | /* Load queue base address */
2607 FLAGS_LV | /* Load MSI-X vector */
2608 FLAGS_LI; /* Load irq delay values */
2609 if (rx_ring->lbq_len) {
2610 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2611 tmp = (u64)rx_ring->lbq_base_dma;;
2612 base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
2613 page_entries = 0;
2614 do {
2615 *base_indirect_ptr = cpu_to_le64(tmp);
2616 tmp += DB_PAGE_SIZE;
2617 base_indirect_ptr++;
2618 page_entries++;
2619 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2620 cqicb->lbq_addr =
2621 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2622 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2623 (u16) rx_ring->lbq_buf_size;
2624 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2625 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2626 (u16) rx_ring->lbq_len;
2627 cqicb->lbq_len = cpu_to_le16(bq_len);
2628 rx_ring->lbq_prod_idx = 0;
2629 rx_ring->lbq_curr_idx = 0;
2630 rx_ring->lbq_clean_idx = 0;
2631 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
2633 if (rx_ring->sbq_len) {
2634 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2635 tmp = (u64)rx_ring->sbq_base_dma;;
2636 base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
2637 page_entries = 0;
2638 do {
2639 *base_indirect_ptr = cpu_to_le64(tmp);
2640 tmp += DB_PAGE_SIZE;
2641 base_indirect_ptr++;
2642 page_entries++;
2643 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
2644 cqicb->sbq_addr =
2645 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2646 cqicb->sbq_buf_size =
2647 cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
2648 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2649 (u16) rx_ring->sbq_len;
2650 cqicb->sbq_len = cpu_to_le16(bq_len);
2651 rx_ring->sbq_prod_idx = 0;
2652 rx_ring->sbq_curr_idx = 0;
2653 rx_ring->sbq_clean_idx = 0;
2654 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
2656 switch (rx_ring->type) {
2657 case TX_Q:
2658 /* If there's only one interrupt, then we use
2659 * worker threads to process the outbound
2660 * completion handling rx_rings. We do this so
2661 * they can be run on multiple CPUs. There is
2662 * room to play with this more where we would only
2663 * run in a worker if there are more than x number
2664 * of outbound completions on the queue and more
2665 * than one queue active. Some threshold that
2666 * would indicate a benefit in spite of the cost
2667 * of a context switch.
2668 * If there's more than one interrupt, then the
2669 * outbound completions are processed in the ISR.
2671 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2672 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2673 else {
2674 /* With all debug warnings on we see a WARN_ON message
2675 * when we free the skb in the interrupt context.
2677 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2679 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2680 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2681 break;
2682 case DEFAULT_Q:
2683 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2684 cqicb->irq_delay = 0;
2685 cqicb->pkt_delay = 0;
2686 break;
2687 case RX_Q:
2688 /* Inbound completion handling rx_rings run in
2689 * separate NAPI contexts.
2691 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2692 64);
2693 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2694 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2695 break;
2696 default:
2697 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2698 rx_ring->type);
2700 QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
2701 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2702 CFG_LCQ, rx_ring->cq_id);
2703 if (err) {
2704 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2705 return err;
2707 return err;
2710 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2712 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2713 void __iomem *doorbell_area =
2714 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2715 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2716 (tx_ring->wq_id * sizeof(u64));
2717 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2718 (tx_ring->wq_id * sizeof(u64));
2719 int err = 0;
2722 * Assign doorbell registers for this tx_ring.
2724 /* TX PCI doorbell mem area for tx producer index */
2725 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2726 tx_ring->prod_idx = 0;
2727 /* TX PCI doorbell mem area + 0x04 */
2728 tx_ring->valid_db_reg = doorbell_area + 0x04;
2731 * Assign shadow registers for this tx_ring.
2733 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2734 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2736 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2737 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2738 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2739 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2740 wqicb->rid = 0;
2741 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2743 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2745 ql_init_tx_ring(qdev, tx_ring);
2747 err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2748 (u16) tx_ring->wq_id);
2749 if (err) {
2750 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2751 return err;
2753 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
2754 return err;
2757 static void ql_disable_msix(struct ql_adapter *qdev)
2759 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2760 pci_disable_msix(qdev->pdev);
2761 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2762 kfree(qdev->msi_x_entry);
2763 qdev->msi_x_entry = NULL;
2764 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2765 pci_disable_msi(qdev->pdev);
2766 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2770 static void ql_enable_msix(struct ql_adapter *qdev)
2772 int i;
2774 qdev->intr_count = 1;
2775 /* Get the MSIX vectors. */
2776 if (irq_type == MSIX_IRQ) {
2777 /* Try to alloc space for the msix struct,
2778 * if it fails then go to MSI/legacy.
2780 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2781 sizeof(struct msix_entry),
2782 GFP_KERNEL);
2783 if (!qdev->msi_x_entry) {
2784 irq_type = MSI_IRQ;
2785 goto msi;
2788 for (i = 0; i < qdev->rx_ring_count; i++)
2789 qdev->msi_x_entry[i].entry = i;
2791 if (!pci_enable_msix
2792 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2793 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2794 qdev->intr_count = qdev->rx_ring_count;
2795 QPRINTK(qdev, IFUP, DEBUG,
2796 "MSI-X Enabled, got %d vectors.\n",
2797 qdev->intr_count);
2798 return;
2799 } else {
2800 kfree(qdev->msi_x_entry);
2801 qdev->msi_x_entry = NULL;
2802 QPRINTK(qdev, IFUP, WARNING,
2803 "MSI-X Enable failed, trying MSI.\n");
2804 irq_type = MSI_IRQ;
2807 msi:
2808 if (irq_type == MSI_IRQ) {
2809 if (!pci_enable_msi(qdev->pdev)) {
2810 set_bit(QL_MSI_ENABLED, &qdev->flags);
2811 QPRINTK(qdev, IFUP, INFO,
2812 "Running with MSI interrupts.\n");
2813 return;
2816 irq_type = LEG_IRQ;
2817 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2821 * Here we build the intr_context structures based on
2822 * our rx_ring count and intr vector count.
2823 * The intr_context structure is used to hook each vector
2824 * to possibly different handlers.
2826 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2828 int i = 0;
2829 struct intr_context *intr_context = &qdev->intr_context[0];
2831 ql_enable_msix(qdev);
2833 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2834 /* Each rx_ring has it's
2835 * own intr_context since we have separate
2836 * vectors for each queue.
2837 * This only true when MSI-X is enabled.
2839 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2840 qdev->rx_ring[i].irq = i;
2841 intr_context->intr = i;
2842 intr_context->qdev = qdev;
2844 * We set up each vectors enable/disable/read bits so
2845 * there's no bit/mask calculations in the critical path.
2847 intr_context->intr_en_mask =
2848 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2849 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2850 | i;
2851 intr_context->intr_dis_mask =
2852 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2853 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2854 INTR_EN_IHD | i;
2855 intr_context->intr_read_mask =
2856 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2857 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2860 if (i == 0) {
2862 * Default queue handles bcast/mcast plus
2863 * async events. Needs buffers.
2865 intr_context->handler = qlge_isr;
2866 sprintf(intr_context->name, "%s-default-queue",
2867 qdev->ndev->name);
2868 } else if (i < qdev->rss_ring_first_cq_id) {
2870 * Outbound queue is for outbound completions only.
2872 intr_context->handler = qlge_msix_tx_isr;
2873 sprintf(intr_context->name, "%s-tx-%d",
2874 qdev->ndev->name, i);
2875 } else {
2877 * Inbound queues handle unicast frames only.
2879 intr_context->handler = qlge_msix_rx_isr;
2880 sprintf(intr_context->name, "%s-rx-%d",
2881 qdev->ndev->name, i);
2884 } else {
2886 * All rx_rings use the same intr_context since
2887 * there is only one vector.
2889 intr_context->intr = 0;
2890 intr_context->qdev = qdev;
2892 * We set up each vectors enable/disable/read bits so
2893 * there's no bit/mask calculations in the critical path.
2895 intr_context->intr_en_mask =
2896 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2897 intr_context->intr_dis_mask =
2898 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2899 INTR_EN_TYPE_DISABLE;
2900 intr_context->intr_read_mask =
2901 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2903 * Single interrupt means one handler for all rings.
2905 intr_context->handler = qlge_isr;
2906 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2907 for (i = 0; i < qdev->rx_ring_count; i++)
2908 qdev->rx_ring[i].irq = 0;
2912 static void ql_free_irq(struct ql_adapter *qdev)
2914 int i;
2915 struct intr_context *intr_context = &qdev->intr_context[0];
2917 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2918 if (intr_context->hooked) {
2919 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2920 free_irq(qdev->msi_x_entry[i].vector,
2921 &qdev->rx_ring[i]);
2922 QPRINTK(qdev, IFDOWN, DEBUG,
2923 "freeing msix interrupt %d.\n", i);
2924 } else {
2925 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2926 QPRINTK(qdev, IFDOWN, DEBUG,
2927 "freeing msi interrupt %d.\n", i);
2931 ql_disable_msix(qdev);
2934 static int ql_request_irq(struct ql_adapter *qdev)
2936 int i;
2937 int status = 0;
2938 struct pci_dev *pdev = qdev->pdev;
2939 struct intr_context *intr_context = &qdev->intr_context[0];
2941 ql_resolve_queues_to_irqs(qdev);
2943 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2944 atomic_set(&intr_context->irq_cnt, 0);
2945 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2946 status = request_irq(qdev->msi_x_entry[i].vector,
2947 intr_context->handler,
2949 intr_context->name,
2950 &qdev->rx_ring[i]);
2951 if (status) {
2952 QPRINTK(qdev, IFUP, ERR,
2953 "Failed request for MSIX interrupt %d.\n",
2955 goto err_irq;
2956 } else {
2957 QPRINTK(qdev, IFUP, DEBUG,
2958 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2960 qdev->rx_ring[i].type ==
2961 DEFAULT_Q ? "DEFAULT_Q" : "",
2962 qdev->rx_ring[i].type ==
2963 TX_Q ? "TX_Q" : "",
2964 qdev->rx_ring[i].type ==
2965 RX_Q ? "RX_Q" : "", intr_context->name);
2967 } else {
2968 QPRINTK(qdev, IFUP, DEBUG,
2969 "trying msi or legacy interrupts.\n");
2970 QPRINTK(qdev, IFUP, DEBUG,
2971 "%s: irq = %d.\n", __func__, pdev->irq);
2972 QPRINTK(qdev, IFUP, DEBUG,
2973 "%s: context->name = %s.\n", __func__,
2974 intr_context->name);
2975 QPRINTK(qdev, IFUP, DEBUG,
2976 "%s: dev_id = 0x%p.\n", __func__,
2977 &qdev->rx_ring[0]);
2978 status =
2979 request_irq(pdev->irq, qlge_isr,
2980 test_bit(QL_MSI_ENABLED,
2981 &qdev->
2982 flags) ? 0 : IRQF_SHARED,
2983 intr_context->name, &qdev->rx_ring[0]);
2984 if (status)
2985 goto err_irq;
2987 QPRINTK(qdev, IFUP, ERR,
2988 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2990 qdev->rx_ring[0].type ==
2991 DEFAULT_Q ? "DEFAULT_Q" : "",
2992 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2993 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2994 intr_context->name);
2996 intr_context->hooked = 1;
2998 return status;
2999 err_irq:
3000 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
3001 ql_free_irq(qdev);
3002 return status;
3005 static int ql_start_rss(struct ql_adapter *qdev)
3007 struct ricb *ricb = &qdev->ricb;
3008 int status = 0;
3009 int i;
3010 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3012 memset((void *)ricb, 0, sizeof(ricb));
3014 ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
3015 ricb->flags =
3016 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
3017 RSS_RT6);
3018 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
3021 * Fill out the Indirection Table.
3023 for (i = 0; i < 256; i++)
3024 hash_id[i] = i & (qdev->rss_ring_count - 1);
3027 * Random values for the IPv6 and IPv4 Hash Keys.
3029 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
3030 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
3032 QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
3034 status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
3035 if (status) {
3036 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
3037 return status;
3039 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
3040 return status;
3043 /* Initialize the frame-to-queue routing. */
3044 static int ql_route_initialize(struct ql_adapter *qdev)
3046 int status = 0;
3047 int i;
3049 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3050 if (status)
3051 return status;
3053 /* Clear all the entries in the routing table. */
3054 for (i = 0; i < 16; i++) {
3055 status = ql_set_routing_reg(qdev, i, 0, 0);
3056 if (status) {
3057 QPRINTK(qdev, IFUP, ERR,
3058 "Failed to init routing register for CAM packets.\n");
3059 goto exit;
3063 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
3064 if (status) {
3065 QPRINTK(qdev, IFUP, ERR,
3066 "Failed to init routing register for error packets.\n");
3067 goto exit;
3069 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3070 if (status) {
3071 QPRINTK(qdev, IFUP, ERR,
3072 "Failed to init routing register for broadcast packets.\n");
3073 goto exit;
3075 /* If we have more than one inbound queue, then turn on RSS in the
3076 * routing block.
3078 if (qdev->rss_ring_count > 1) {
3079 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3080 RT_IDX_RSS_MATCH, 1);
3081 if (status) {
3082 QPRINTK(qdev, IFUP, ERR,
3083 "Failed to init routing register for MATCH RSS packets.\n");
3084 goto exit;
3088 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3089 RT_IDX_CAM_HIT, 1);
3090 if (status)
3091 QPRINTK(qdev, IFUP, ERR,
3092 "Failed to init routing register for CAM packets.\n");
3093 exit:
3094 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3095 return status;
3098 int ql_cam_route_initialize(struct ql_adapter *qdev)
3100 int status;
3102 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3103 if (status)
3104 return status;
3105 status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3106 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
3107 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3108 if (status) {
3109 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3110 return status;
3113 status = ql_route_initialize(qdev);
3114 if (status)
3115 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3117 return status;
3120 static int ql_adapter_initialize(struct ql_adapter *qdev)
3122 u32 value, mask;
3123 int i;
3124 int status = 0;
3127 * Set up the System register to halt on errors.
3129 value = SYS_EFE | SYS_FAE;
3130 mask = value << 16;
3131 ql_write32(qdev, SYS, mask | value);
3133 /* Set the default queue, and VLAN behavior. */
3134 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3135 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3136 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3138 /* Set the MPI interrupt to enabled. */
3139 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3141 /* Enable the function, set pagesize, enable error checking. */
3142 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3143 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3145 /* Set/clear header splitting. */
3146 mask = FSC_VM_PAGESIZE_MASK |
3147 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3148 ql_write32(qdev, FSC, mask | value);
3150 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3151 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3153 /* Start up the rx queues. */
3154 for (i = 0; i < qdev->rx_ring_count; i++) {
3155 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3156 if (status) {
3157 QPRINTK(qdev, IFUP, ERR,
3158 "Failed to start rx ring[%d].\n", i);
3159 return status;
3163 /* If there is more than one inbound completion queue
3164 * then download a RICB to configure RSS.
3166 if (qdev->rss_ring_count > 1) {
3167 status = ql_start_rss(qdev);
3168 if (status) {
3169 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3170 return status;
3174 /* Start up the tx queues. */
3175 for (i = 0; i < qdev->tx_ring_count; i++) {
3176 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3177 if (status) {
3178 QPRINTK(qdev, IFUP, ERR,
3179 "Failed to start tx ring[%d].\n", i);
3180 return status;
3184 /* Initialize the port and set the max framesize. */
3185 status = qdev->nic_ops->port_initialize(qdev);
3186 if (status) {
3187 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3188 return status;
3191 /* Set up the MAC address and frame routing filter. */
3192 status = ql_cam_route_initialize(qdev);
3193 if (status) {
3194 QPRINTK(qdev, IFUP, ERR,
3195 "Failed to init CAM/Routing tables.\n");
3196 return status;
3199 /* Start NAPI for the RSS queues. */
3200 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3201 QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
3203 napi_enable(&qdev->rx_ring[i].napi);
3206 return status;
3209 /* Issue soft reset to chip. */
3210 static int ql_adapter_reset(struct ql_adapter *qdev)
3212 u32 value;
3213 int status = 0;
3214 unsigned long end_jiffies = jiffies +
3215 max((unsigned long)1, usecs_to_jiffies(30));
3217 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3219 do {
3220 value = ql_read32(qdev, RST_FO);
3221 if ((value & RST_FO_FR) == 0)
3222 break;
3223 cpu_relax();
3224 } while (time_before(jiffies, end_jiffies));
3226 if (value & RST_FO_FR) {
3227 QPRINTK(qdev, IFDOWN, ERR,
3228 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3229 status = -ETIMEDOUT;
3232 return status;
3235 static void ql_display_dev_info(struct net_device *ndev)
3237 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3239 QPRINTK(qdev, PROBE, INFO,
3240 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3241 "XG Roll = %d, XG Rev = %d.\n",
3242 qdev->func,
3243 qdev->port,
3244 qdev->chip_rev_id & 0x0000000f,
3245 qdev->chip_rev_id >> 4 & 0x0000000f,
3246 qdev->chip_rev_id >> 8 & 0x0000000f,
3247 qdev->chip_rev_id >> 12 & 0x0000000f);
3248 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3251 static int ql_adapter_down(struct ql_adapter *qdev)
3253 int i, status = 0;
3254 struct rx_ring *rx_ring;
3256 netif_carrier_off(qdev->ndev);
3258 /* Don't kill the reset worker thread if we
3259 * are in the process of recovery.
3261 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3262 cancel_delayed_work_sync(&qdev->asic_reset_work);
3263 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3264 cancel_delayed_work_sync(&qdev->mpi_work);
3265 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3266 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3268 /* The default queue at index 0 is always processed in
3269 * a workqueue.
3271 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3273 /* The rest of the rx_rings are processed in
3274 * a workqueue only if it's a single interrupt
3275 * environment (MSI/Legacy).
3277 for (i = 1; i < qdev->rx_ring_count; i++) {
3278 rx_ring = &qdev->rx_ring[i];
3279 /* Only the RSS rings use NAPI on multi irq
3280 * environment. Outbound completion processing
3281 * is done in interrupt context.
3283 if (i >= qdev->rss_ring_first_cq_id) {
3284 napi_disable(&rx_ring->napi);
3285 } else {
3286 cancel_delayed_work_sync(&rx_ring->rx_work);
3290 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3292 ql_disable_interrupts(qdev);
3294 ql_tx_ring_clean(qdev);
3296 /* Call netif_napi_del() from common point.
3298 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3299 netif_napi_del(&qdev->rx_ring[i].napi);
3301 ql_free_rx_buffers(qdev);
3303 spin_lock(&qdev->hw_lock);
3304 status = ql_adapter_reset(qdev);
3305 if (status)
3306 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3307 qdev->func);
3308 spin_unlock(&qdev->hw_lock);
3309 return status;
3312 static int ql_adapter_up(struct ql_adapter *qdev)
3314 int err = 0;
3316 err = ql_adapter_initialize(qdev);
3317 if (err) {
3318 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3319 goto err_init;
3321 set_bit(QL_ADAPTER_UP, &qdev->flags);
3322 ql_alloc_rx_buffers(qdev);
3323 if ((ql_read32(qdev, STS) & qdev->port_init))
3324 netif_carrier_on(qdev->ndev);
3325 ql_enable_interrupts(qdev);
3326 ql_enable_all_completion_interrupts(qdev);
3327 netif_tx_start_all_queues(qdev->ndev);
3329 return 0;
3330 err_init:
3331 ql_adapter_reset(qdev);
3332 return err;
3335 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3337 ql_free_mem_resources(qdev);
3338 ql_free_irq(qdev);
3341 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3343 int status = 0;
3345 if (ql_alloc_mem_resources(qdev)) {
3346 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3347 return -ENOMEM;
3349 status = ql_request_irq(qdev);
3350 if (status)
3351 goto err_irq;
3352 return status;
3353 err_irq:
3354 ql_free_mem_resources(qdev);
3355 return status;
3358 static int qlge_close(struct net_device *ndev)
3360 struct ql_adapter *qdev = netdev_priv(ndev);
3363 * Wait for device to recover from a reset.
3364 * (Rarely happens, but possible.)
3366 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3367 msleep(1);
3368 ql_adapter_down(qdev);
3369 ql_release_adapter_resources(qdev);
3370 return 0;
3373 static int ql_configure_rings(struct ql_adapter *qdev)
3375 int i;
3376 struct rx_ring *rx_ring;
3377 struct tx_ring *tx_ring;
3378 int cpu_cnt = num_online_cpus();
3381 * For each processor present we allocate one
3382 * rx_ring for outbound completions, and one
3383 * rx_ring for inbound completions. Plus there is
3384 * always the one default queue. For the CPU
3385 * counts we end up with the following rx_rings:
3386 * rx_ring count =
3387 * one default queue +
3388 * (CPU count * outbound completion rx_ring) +
3389 * (CPU count * inbound (RSS) completion rx_ring)
3390 * To keep it simple we limit the total number of
3391 * queues to < 32, so we truncate CPU to 8.
3392 * This limitation can be removed when requested.
3395 if (cpu_cnt > MAX_CPUS)
3396 cpu_cnt = MAX_CPUS;
3399 * rx_ring[0] is always the default queue.
3401 /* Allocate outbound completion ring for each CPU. */
3402 qdev->tx_ring_count = cpu_cnt;
3403 /* Allocate inbound completion (RSS) ring for each CPU. */
3404 qdev->rss_ring_count = cpu_cnt;
3405 /* cq_id for the first inbound ring handler. */
3406 qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3408 * qdev->rx_ring_count:
3409 * Total number of rx_rings. This includes the one
3410 * default queue, a number of outbound completion
3411 * handler rx_rings, and the number of inbound
3412 * completion handler rx_rings.
3414 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3416 for (i = 0; i < qdev->tx_ring_count; i++) {
3417 tx_ring = &qdev->tx_ring[i];
3418 memset((void *)tx_ring, 0, sizeof(tx_ring));
3419 tx_ring->qdev = qdev;
3420 tx_ring->wq_id = i;
3421 tx_ring->wq_len = qdev->tx_ring_size;
3422 tx_ring->wq_size =
3423 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3426 * The completion queue ID for the tx rings start
3427 * immediately after the default Q ID, which is zero.
3429 tx_ring->cq_id = i + 1;
3432 for (i = 0; i < qdev->rx_ring_count; i++) {
3433 rx_ring = &qdev->rx_ring[i];
3434 memset((void *)rx_ring, 0, sizeof(rx_ring));
3435 rx_ring->qdev = qdev;
3436 rx_ring->cq_id = i;
3437 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3438 if (i == 0) { /* Default queue at index 0. */
3440 * Default queue handles bcast/mcast plus
3441 * async events. Needs buffers.
3443 rx_ring->cq_len = qdev->rx_ring_size;
3444 rx_ring->cq_size =
3445 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3446 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3447 rx_ring->lbq_size =
3448 rx_ring->lbq_len * sizeof(__le64);
3449 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3450 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3451 rx_ring->sbq_size =
3452 rx_ring->sbq_len * sizeof(__le64);
3453 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3454 rx_ring->type = DEFAULT_Q;
3455 } else if (i < qdev->rss_ring_first_cq_id) {
3457 * Outbound queue handles outbound completions only.
3459 /* outbound cq is same size as tx_ring it services. */
3460 rx_ring->cq_len = qdev->tx_ring_size;
3461 rx_ring->cq_size =
3462 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3463 rx_ring->lbq_len = 0;
3464 rx_ring->lbq_size = 0;
3465 rx_ring->lbq_buf_size = 0;
3466 rx_ring->sbq_len = 0;
3467 rx_ring->sbq_size = 0;
3468 rx_ring->sbq_buf_size = 0;
3469 rx_ring->type = TX_Q;
3470 } else { /* Inbound completions (RSS) queues */
3472 * Inbound queues handle unicast frames only.
3474 rx_ring->cq_len = qdev->rx_ring_size;
3475 rx_ring->cq_size =
3476 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3477 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3478 rx_ring->lbq_size =
3479 rx_ring->lbq_len * sizeof(__le64);
3480 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3481 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3482 rx_ring->sbq_size =
3483 rx_ring->sbq_len * sizeof(__le64);
3484 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3485 rx_ring->type = RX_Q;
3488 return 0;
3491 static int qlge_open(struct net_device *ndev)
3493 int err = 0;
3494 struct ql_adapter *qdev = netdev_priv(ndev);
3496 err = ql_configure_rings(qdev);
3497 if (err)
3498 return err;
3500 err = ql_get_adapter_resources(qdev);
3501 if (err)
3502 goto error_up;
3504 err = ql_adapter_up(qdev);
3505 if (err)
3506 goto error_up;
3508 return err;
3510 error_up:
3511 ql_release_adapter_resources(qdev);
3512 return err;
3515 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3517 struct ql_adapter *qdev = netdev_priv(ndev);
3519 if (ndev->mtu == 1500 && new_mtu == 9000) {
3520 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3521 queue_delayed_work(qdev->workqueue,
3522 &qdev->mpi_port_cfg_work, 0);
3523 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3524 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3525 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3526 (ndev->mtu == 9000 && new_mtu == 9000)) {
3527 return 0;
3528 } else
3529 return -EINVAL;
3530 ndev->mtu = new_mtu;
3531 return 0;
3534 static struct net_device_stats *qlge_get_stats(struct net_device
3535 *ndev)
3537 struct ql_adapter *qdev = netdev_priv(ndev);
3538 return &qdev->stats;
3541 static void qlge_set_multicast_list(struct net_device *ndev)
3543 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3544 struct dev_mc_list *mc_ptr;
3545 int i, status;
3547 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3548 if (status)
3549 return;
3550 spin_lock(&qdev->hw_lock);
3552 * Set or clear promiscuous mode if a
3553 * transition is taking place.
3555 if (ndev->flags & IFF_PROMISC) {
3556 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3557 if (ql_set_routing_reg
3558 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3559 QPRINTK(qdev, HW, ERR,
3560 "Failed to set promiscous mode.\n");
3561 } else {
3562 set_bit(QL_PROMISCUOUS, &qdev->flags);
3565 } else {
3566 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3567 if (ql_set_routing_reg
3568 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3569 QPRINTK(qdev, HW, ERR,
3570 "Failed to clear promiscous mode.\n");
3571 } else {
3572 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3578 * Set or clear all multicast mode if a
3579 * transition is taking place.
3581 if ((ndev->flags & IFF_ALLMULTI) ||
3582 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3583 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3584 if (ql_set_routing_reg
3585 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3586 QPRINTK(qdev, HW, ERR,
3587 "Failed to set all-multi mode.\n");
3588 } else {
3589 set_bit(QL_ALLMULTI, &qdev->flags);
3592 } else {
3593 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3594 if (ql_set_routing_reg
3595 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3596 QPRINTK(qdev, HW, ERR,
3597 "Failed to clear all-multi mode.\n");
3598 } else {
3599 clear_bit(QL_ALLMULTI, &qdev->flags);
3604 if (ndev->mc_count) {
3605 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3606 if (status)
3607 goto exit;
3608 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3609 i++, mc_ptr = mc_ptr->next)
3610 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3611 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3612 QPRINTK(qdev, HW, ERR,
3613 "Failed to loadmulticast address.\n");
3614 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3615 goto exit;
3617 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3618 if (ql_set_routing_reg
3619 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3620 QPRINTK(qdev, HW, ERR,
3621 "Failed to set multicast match mode.\n");
3622 } else {
3623 set_bit(QL_ALLMULTI, &qdev->flags);
3626 exit:
3627 spin_unlock(&qdev->hw_lock);
3628 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3631 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3633 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3634 struct sockaddr *addr = p;
3635 int status;
3637 if (netif_running(ndev))
3638 return -EBUSY;
3640 if (!is_valid_ether_addr(addr->sa_data))
3641 return -EADDRNOTAVAIL;
3642 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3644 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3645 if (status)
3646 return status;
3647 spin_lock(&qdev->hw_lock);
3648 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3649 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
3650 spin_unlock(&qdev->hw_lock);
3651 if (status)
3652 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3653 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3654 return status;
3657 static void qlge_tx_timeout(struct net_device *ndev)
3659 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3660 ql_queue_asic_error(qdev);
3663 static void ql_asic_reset_work(struct work_struct *work)
3665 struct ql_adapter *qdev =
3666 container_of(work, struct ql_adapter, asic_reset_work.work);
3667 int status;
3669 status = ql_adapter_down(qdev);
3670 if (status)
3671 goto error;
3673 status = ql_adapter_up(qdev);
3674 if (status)
3675 goto error;
3677 return;
3678 error:
3679 QPRINTK(qdev, IFUP, ALERT,
3680 "Driver up/down cycle failed, closing device\n");
3681 rtnl_lock();
3682 set_bit(QL_ADAPTER_UP, &qdev->flags);
3683 dev_close(qdev->ndev);
3684 rtnl_unlock();
3687 static struct nic_operations qla8012_nic_ops = {
3688 .get_flash = ql_get_8012_flash_params,
3689 .port_initialize = ql_8012_port_initialize,
3692 static struct nic_operations qla8000_nic_ops = {
3693 .get_flash = ql_get_8000_flash_params,
3694 .port_initialize = ql_8000_port_initialize,
3697 /* Find the pcie function number for the other NIC
3698 * on this chip. Since both NIC functions share a
3699 * common firmware we have the lowest enabled function
3700 * do any common work. Examples would be resetting
3701 * after a fatal firmware error, or doing a firmware
3702 * coredump.
3704 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
3706 int status = 0;
3707 u32 temp;
3708 u32 nic_func1, nic_func2;
3710 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
3711 &temp);
3712 if (status)
3713 return status;
3715 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
3716 MPI_TEST_NIC_FUNC_MASK);
3717 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
3718 MPI_TEST_NIC_FUNC_MASK);
3720 if (qdev->func == nic_func1)
3721 qdev->alt_func = nic_func2;
3722 else if (qdev->func == nic_func2)
3723 qdev->alt_func = nic_func1;
3724 else
3725 status = -EIO;
3727 return status;
3730 static int ql_get_board_info(struct ql_adapter *qdev)
3732 int status;
3733 qdev->func =
3734 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3735 if (qdev->func > 3)
3736 return -EIO;
3738 status = ql_get_alt_pcie_func(qdev);
3739 if (status)
3740 return status;
3742 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
3743 if (qdev->port) {
3744 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3745 qdev->port_link_up = STS_PL1;
3746 qdev->port_init = STS_PI1;
3747 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3748 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3749 } else {
3750 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3751 qdev->port_link_up = STS_PL0;
3752 qdev->port_init = STS_PI0;
3753 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3754 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3756 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3757 qdev->device_id = qdev->pdev->device;
3758 if (qdev->device_id == QLGE_DEVICE_ID_8012)
3759 qdev->nic_ops = &qla8012_nic_ops;
3760 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
3761 qdev->nic_ops = &qla8000_nic_ops;
3762 return status;
3765 static void ql_release_all(struct pci_dev *pdev)
3767 struct net_device *ndev = pci_get_drvdata(pdev);
3768 struct ql_adapter *qdev = netdev_priv(ndev);
3770 if (qdev->workqueue) {
3771 destroy_workqueue(qdev->workqueue);
3772 qdev->workqueue = NULL;
3774 if (qdev->q_workqueue) {
3775 destroy_workqueue(qdev->q_workqueue);
3776 qdev->q_workqueue = NULL;
3778 if (qdev->reg_base)
3779 iounmap(qdev->reg_base);
3780 if (qdev->doorbell_area)
3781 iounmap(qdev->doorbell_area);
3782 pci_release_regions(pdev);
3783 pci_set_drvdata(pdev, NULL);
3786 static int __devinit ql_init_device(struct pci_dev *pdev,
3787 struct net_device *ndev, int cards_found)
3789 struct ql_adapter *qdev = netdev_priv(ndev);
3790 int pos, err = 0;
3791 u16 val16;
3793 memset((void *)qdev, 0, sizeof(qdev));
3794 err = pci_enable_device(pdev);
3795 if (err) {
3796 dev_err(&pdev->dev, "PCI device enable failed.\n");
3797 return err;
3800 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3801 if (pos <= 0) {
3802 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3803 "aborting.\n");
3804 goto err_out;
3805 } else {
3806 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3807 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3808 val16 |= (PCI_EXP_DEVCTL_CERE |
3809 PCI_EXP_DEVCTL_NFERE |
3810 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3811 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3814 err = pci_request_regions(pdev, DRV_NAME);
3815 if (err) {
3816 dev_err(&pdev->dev, "PCI region request failed.\n");
3817 goto err_out;
3820 pci_set_master(pdev);
3821 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3822 set_bit(QL_DMA64, &qdev->flags);
3823 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3824 } else {
3825 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3826 if (!err)
3827 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3830 if (err) {
3831 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3832 goto err_out;
3835 pci_set_drvdata(pdev, ndev);
3836 qdev->reg_base =
3837 ioremap_nocache(pci_resource_start(pdev, 1),
3838 pci_resource_len(pdev, 1));
3839 if (!qdev->reg_base) {
3840 dev_err(&pdev->dev, "Register mapping failed.\n");
3841 err = -ENOMEM;
3842 goto err_out;
3845 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3846 qdev->doorbell_area =
3847 ioremap_nocache(pci_resource_start(pdev, 3),
3848 pci_resource_len(pdev, 3));
3849 if (!qdev->doorbell_area) {
3850 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3851 err = -ENOMEM;
3852 goto err_out;
3855 qdev->ndev = ndev;
3856 qdev->pdev = pdev;
3857 err = ql_get_board_info(qdev);
3858 if (err) {
3859 dev_err(&pdev->dev, "Register access failed.\n");
3860 err = -EIO;
3861 goto err_out;
3863 qdev->msg_enable = netif_msg_init(debug, default_msg);
3864 spin_lock_init(&qdev->hw_lock);
3865 spin_lock_init(&qdev->stats_lock);
3867 /* make sure the EEPROM is good */
3868 err = qdev->nic_ops->get_flash(qdev);
3869 if (err) {
3870 dev_err(&pdev->dev, "Invalid FLASH.\n");
3871 goto err_out;
3874 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3876 /* Set up the default ring sizes. */
3877 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3878 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3880 /* Set up the coalescing parameters. */
3881 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3882 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3883 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3884 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3887 * Set up the operating parameters.
3889 qdev->rx_csum = 1;
3891 qdev->q_workqueue = create_workqueue(ndev->name);
3892 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3893 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3894 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3895 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3896 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
3897 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
3898 mutex_init(&qdev->mpi_mutex);
3899 init_completion(&qdev->ide_completion);
3901 if (!cards_found) {
3902 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3903 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3904 DRV_NAME, DRV_VERSION);
3906 return 0;
3907 err_out:
3908 ql_release_all(pdev);
3909 pci_disable_device(pdev);
3910 return err;
3914 static const struct net_device_ops qlge_netdev_ops = {
3915 .ndo_open = qlge_open,
3916 .ndo_stop = qlge_close,
3917 .ndo_start_xmit = qlge_send,
3918 .ndo_change_mtu = qlge_change_mtu,
3919 .ndo_get_stats = qlge_get_stats,
3920 .ndo_set_multicast_list = qlge_set_multicast_list,
3921 .ndo_set_mac_address = qlge_set_mac_address,
3922 .ndo_validate_addr = eth_validate_addr,
3923 .ndo_tx_timeout = qlge_tx_timeout,
3924 .ndo_vlan_rx_register = ql_vlan_rx_register,
3925 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
3926 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
3929 static int __devinit qlge_probe(struct pci_dev *pdev,
3930 const struct pci_device_id *pci_entry)
3932 struct net_device *ndev = NULL;
3933 struct ql_adapter *qdev = NULL;
3934 static int cards_found = 0;
3935 int err = 0;
3937 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
3938 min(MAX_CPUS, (int)num_online_cpus()));
3939 if (!ndev)
3940 return -ENOMEM;
3942 err = ql_init_device(pdev, ndev, cards_found);
3943 if (err < 0) {
3944 free_netdev(ndev);
3945 return err;
3948 qdev = netdev_priv(ndev);
3949 SET_NETDEV_DEV(ndev, &pdev->dev);
3950 ndev->features = (0
3951 | NETIF_F_IP_CSUM
3952 | NETIF_F_SG
3953 | NETIF_F_TSO
3954 | NETIF_F_TSO6
3955 | NETIF_F_TSO_ECN
3956 | NETIF_F_HW_VLAN_TX
3957 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3958 ndev->features |= NETIF_F_GRO;
3960 if (test_bit(QL_DMA64, &qdev->flags))
3961 ndev->features |= NETIF_F_HIGHDMA;
3964 * Set up net_device structure.
3966 ndev->tx_queue_len = qdev->tx_ring_size;
3967 ndev->irq = pdev->irq;
3969 ndev->netdev_ops = &qlge_netdev_ops;
3970 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3971 ndev->watchdog_timeo = 10 * HZ;
3973 err = register_netdev(ndev);
3974 if (err) {
3975 dev_err(&pdev->dev, "net device registration failed.\n");
3976 ql_release_all(pdev);
3977 pci_disable_device(pdev);
3978 return err;
3980 netif_carrier_off(ndev);
3981 ql_display_dev_info(ndev);
3982 cards_found++;
3983 return 0;
3986 static void __devexit qlge_remove(struct pci_dev *pdev)
3988 struct net_device *ndev = pci_get_drvdata(pdev);
3989 unregister_netdev(ndev);
3990 ql_release_all(pdev);
3991 pci_disable_device(pdev);
3992 free_netdev(ndev);
3996 * This callback is called by the PCI subsystem whenever
3997 * a PCI bus error is detected.
3999 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4000 enum pci_channel_state state)
4002 struct net_device *ndev = pci_get_drvdata(pdev);
4003 struct ql_adapter *qdev = netdev_priv(ndev);
4005 if (netif_running(ndev))
4006 ql_adapter_down(qdev);
4008 pci_disable_device(pdev);
4010 /* Request a slot reset. */
4011 return PCI_ERS_RESULT_NEED_RESET;
4015 * This callback is called after the PCI buss has been reset.
4016 * Basically, this tries to restart the card from scratch.
4017 * This is a shortened version of the device probe/discovery code,
4018 * it resembles the first-half of the () routine.
4020 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4022 struct net_device *ndev = pci_get_drvdata(pdev);
4023 struct ql_adapter *qdev = netdev_priv(ndev);
4025 if (pci_enable_device(pdev)) {
4026 QPRINTK(qdev, IFUP, ERR,
4027 "Cannot re-enable PCI device after reset.\n");
4028 return PCI_ERS_RESULT_DISCONNECT;
4031 pci_set_master(pdev);
4033 netif_carrier_off(ndev);
4034 ql_adapter_reset(qdev);
4036 /* Make sure the EEPROM is good */
4037 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4039 if (!is_valid_ether_addr(ndev->perm_addr)) {
4040 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
4041 return PCI_ERS_RESULT_DISCONNECT;
4044 return PCI_ERS_RESULT_RECOVERED;
4047 static void qlge_io_resume(struct pci_dev *pdev)
4049 struct net_device *ndev = pci_get_drvdata(pdev);
4050 struct ql_adapter *qdev = netdev_priv(ndev);
4052 pci_set_master(pdev);
4054 if (netif_running(ndev)) {
4055 if (ql_adapter_up(qdev)) {
4056 QPRINTK(qdev, IFUP, ERR,
4057 "Device initialization failed after reset.\n");
4058 return;
4062 netif_device_attach(ndev);
4065 static struct pci_error_handlers qlge_err_handler = {
4066 .error_detected = qlge_io_error_detected,
4067 .slot_reset = qlge_io_slot_reset,
4068 .resume = qlge_io_resume,
4071 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4073 struct net_device *ndev = pci_get_drvdata(pdev);
4074 struct ql_adapter *qdev = netdev_priv(ndev);
4075 int err;
4077 netif_device_detach(ndev);
4079 if (netif_running(ndev)) {
4080 err = ql_adapter_down(qdev);
4081 if (!err)
4082 return err;
4085 err = pci_save_state(pdev);
4086 if (err)
4087 return err;
4089 pci_disable_device(pdev);
4091 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4093 return 0;
4096 #ifdef CONFIG_PM
4097 static int qlge_resume(struct pci_dev *pdev)
4099 struct net_device *ndev = pci_get_drvdata(pdev);
4100 struct ql_adapter *qdev = netdev_priv(ndev);
4101 int err;
4103 pci_set_power_state(pdev, PCI_D0);
4104 pci_restore_state(pdev);
4105 err = pci_enable_device(pdev);
4106 if (err) {
4107 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
4108 return err;
4110 pci_set_master(pdev);
4112 pci_enable_wake(pdev, PCI_D3hot, 0);
4113 pci_enable_wake(pdev, PCI_D3cold, 0);
4115 if (netif_running(ndev)) {
4116 err = ql_adapter_up(qdev);
4117 if (err)
4118 return err;
4121 netif_device_attach(ndev);
4123 return 0;
4125 #endif /* CONFIG_PM */
4127 static void qlge_shutdown(struct pci_dev *pdev)
4129 qlge_suspend(pdev, PMSG_SUSPEND);
4132 static struct pci_driver qlge_driver = {
4133 .name = DRV_NAME,
4134 .id_table = qlge_pci_tbl,
4135 .probe = qlge_probe,
4136 .remove = __devexit_p(qlge_remove),
4137 #ifdef CONFIG_PM
4138 .suspend = qlge_suspend,
4139 .resume = qlge_resume,
4140 #endif
4141 .shutdown = qlge_shutdown,
4142 .err_handler = &qlge_err_handler
4145 static int __init qlge_init_module(void)
4147 return pci_register_driver(&qlge_driver);
4150 static void __exit qlge_exit(void)
4152 pci_unregister_driver(&qlge_driver);
4155 module_init(qlge_init_module);
4156 module_exit(qlge_exit);