net: don't allow CAP_NET_ADMIN to load non-netdev kernel modules
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / core / dev.c
blob29f936d2472922a909f6bca69c075a134ed43650
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <linux/if_bridge.h>
104 #include <linux/if_macvlan.h>
105 #include <net/dst.h>
106 #include <net/pkt_sched.h>
107 #include <net/checksum.h>
108 #include <net/xfrm.h>
109 #include <linux/highmem.h>
110 #include <linux/init.h>
111 #include <linux/kmod.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/wext.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
133 #include "net-sysfs.h"
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142 * The list of packet types we will receive (as opposed to discard)
143 * and the routines to invoke.
145 * Why 16. Because with 16 the only overlap we get on a hash of the
146 * low nibble of the protocol value is RARP/SNAP/X.25.
148 * NOTE: That is no longer true with the addition of VLAN tags. Not
149 * sure which should go first, but I bet it won't make much
150 * difference if we are running VLANs. The good news is that
151 * this protocol won't be in the list unless compiled in, so
152 * the average user (w/out VLANs) will not be adversely affected.
153 * --BLG
155 * 0800 IP
156 * 8100 802.1Q VLAN
157 * 0001 802.3
158 * 0002 AX.25
159 * 0004 802.2
160 * 8035 RARP
161 * 0005 SNAP
162 * 0805 X.25
163 * 0806 ARP
164 * 8137 IPX
165 * 0009 Localtalk
166 * 86DD IPv6
169 #define PTYPE_HASH_SIZE (16)
170 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
172 static DEFINE_SPINLOCK(ptype_lock);
173 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
174 static struct list_head ptype_all __read_mostly; /* Taps */
177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178 * semaphore.
180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
182 * Writers must hold the rtnl semaphore while they loop through the
183 * dev_base_head list, and hold dev_base_lock for writing when they do the
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
195 DEFINE_RWLOCK(dev_base_lock);
196 EXPORT_SYMBOL(dev_base_lock);
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 /* Device list insertion */
210 static int list_netdevice(struct net_device *dev)
212 struct net *net = dev_net(dev);
214 ASSERT_RTNL();
216 write_lock_bh(&dev_base_lock);
217 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
218 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
219 hlist_add_head_rcu(&dev->index_hlist,
220 dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
225 /* Device list removal
226 * caller must respect a RCU grace period before freeing/reusing dev
228 static void unlist_netdevice(struct net_device *dev)
230 ASSERT_RTNL();
232 /* Unlink dev from the device chain */
233 write_lock_bh(&dev_base_lock);
234 list_del_rcu(&dev->dev_list);
235 hlist_del_rcu(&dev->name_hlist);
236 hlist_del_rcu(&dev->index_hlist);
237 write_unlock_bh(&dev_base_lock);
241 * Our notifier list
244 static RAW_NOTIFIER_HEAD(netdev_chain);
247 * Device drivers call our routines to queue packets here. We empty the
248 * queue in the local softnet handler.
251 DEFINE_PER_CPU(struct softnet_data, softnet_data);
252 EXPORT_PER_CPU_SYMBOL(softnet_data);
254 #ifdef CONFIG_LOCKDEP
256 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
257 * according to dev->type
259 static const unsigned short netdev_lock_type[] =
260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
272 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
273 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
274 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
275 ARPHRD_VOID, ARPHRD_NONE};
277 static const char *const netdev_lock_name[] =
278 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
279 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
280 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
281 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
282 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
283 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
284 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
285 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
286 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
287 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
288 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
289 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
290 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
291 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
292 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
293 "_xmit_VOID", "_xmit_NONE"};
295 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
296 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
298 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
300 int i;
302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 if (netdev_lock_type[i] == dev_type)
304 return i;
305 /* the last key is used by default */
306 return ARRAY_SIZE(netdev_lock_type) - 1;
309 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
310 unsigned short dev_type)
312 int i;
314 i = netdev_lock_pos(dev_type);
315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 netdev_lock_name[i]);
319 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
321 int i;
323 i = netdev_lock_pos(dev->type);
324 lockdep_set_class_and_name(&dev->addr_list_lock,
325 &netdev_addr_lock_key[i],
326 netdev_lock_name[i]);
328 #else
329 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
330 unsigned short dev_type)
333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 #endif
338 /*******************************************************************************
340 Protocol management and registration routines
342 *******************************************************************************/
345 * Add a protocol ID to the list. Now that the input handler is
346 * smarter we can dispense with all the messy stuff that used to be
347 * here.
349 * BEWARE!!! Protocol handlers, mangling input packets,
350 * MUST BE last in hash buckets and checking protocol handlers
351 * MUST start from promiscuous ptype_all chain in net_bh.
352 * It is true now, do not change it.
353 * Explanation follows: if protocol handler, mangling packet, will
354 * be the first on list, it is not able to sense, that packet
355 * is cloned and should be copied-on-write, so that it will
356 * change it and subsequent readers will get broken packet.
357 * --ANK (980803)
361 * dev_add_pack - add packet handler
362 * @pt: packet type declaration
364 * Add a protocol handler to the networking stack. The passed &packet_type
365 * is linked into kernel lists and may not be freed until it has been
366 * removed from the kernel lists.
368 * This call does not sleep therefore it can not
369 * guarantee all CPU's that are in middle of receiving packets
370 * will see the new packet type (until the next received packet).
373 void dev_add_pack(struct packet_type *pt)
375 int hash;
377 spin_lock_bh(&ptype_lock);
378 if (pt->type == htons(ETH_P_ALL))
379 list_add_rcu(&pt->list, &ptype_all);
380 else {
381 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
382 list_add_rcu(&pt->list, &ptype_base[hash]);
384 spin_unlock_bh(&ptype_lock);
386 EXPORT_SYMBOL(dev_add_pack);
389 * __dev_remove_pack - remove packet handler
390 * @pt: packet type declaration
392 * Remove a protocol handler that was previously added to the kernel
393 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
394 * from the kernel lists and can be freed or reused once this function
395 * returns.
397 * The packet type might still be in use by receivers
398 * and must not be freed until after all the CPU's have gone
399 * through a quiescent state.
401 void __dev_remove_pack(struct packet_type *pt)
403 struct list_head *head;
404 struct packet_type *pt1;
406 spin_lock_bh(&ptype_lock);
408 if (pt->type == htons(ETH_P_ALL))
409 head = &ptype_all;
410 else
411 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
420 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
421 out:
422 spin_unlock_bh(&ptype_lock);
424 EXPORT_SYMBOL(__dev_remove_pack);
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
438 void dev_remove_pack(struct packet_type *pt)
440 __dev_remove_pack(pt);
442 synchronize_net();
444 EXPORT_SYMBOL(dev_remove_pack);
446 /******************************************************************************
448 Device Boot-time Settings Routines
450 *******************************************************************************/
452 /* Boot time configuration table */
453 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
456 * netdev_boot_setup_add - add new setup entry
457 * @name: name of the device
458 * @map: configured settings for the device
460 * Adds new setup entry to the dev_boot_setup list. The function
461 * returns 0 on error and 1 on success. This is a generic routine to
462 * all netdevices.
464 static int netdev_boot_setup_add(char *name, struct ifmap *map)
466 struct netdev_boot_setup *s;
467 int i;
469 s = dev_boot_setup;
470 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
471 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
472 memset(s[i].name, 0, sizeof(s[i].name));
473 strlcpy(s[i].name, name, IFNAMSIZ);
474 memcpy(&s[i].map, map, sizeof(s[i].map));
475 break;
479 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
483 * netdev_boot_setup_check - check boot time settings
484 * @dev: the netdevice
486 * Check boot time settings for the device.
487 * The found settings are set for the device to be used
488 * later in the device probing.
489 * Returns 0 if no settings found, 1 if they are.
491 int netdev_boot_setup_check(struct net_device *dev)
493 struct netdev_boot_setup *s = dev_boot_setup;
494 int i;
496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
497 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
498 !strcmp(dev->name, s[i].name)) {
499 dev->irq = s[i].map.irq;
500 dev->base_addr = s[i].map.base_addr;
501 dev->mem_start = s[i].map.mem_start;
502 dev->mem_end = s[i].map.mem_end;
503 return 1;
506 return 0;
508 EXPORT_SYMBOL(netdev_boot_setup_check);
512 * netdev_boot_base - get address from boot time settings
513 * @prefix: prefix for network device
514 * @unit: id for network device
516 * Check boot time settings for the base address of device.
517 * The found settings are set for the device to be used
518 * later in the device probing.
519 * Returns 0 if no settings found.
521 unsigned long netdev_boot_base(const char *prefix, int unit)
523 const struct netdev_boot_setup *s = dev_boot_setup;
524 char name[IFNAMSIZ];
525 int i;
527 sprintf(name, "%s%d", prefix, unit);
530 * If device already registered then return base of 1
531 * to indicate not to probe for this interface
533 if (__dev_get_by_name(&init_net, name))
534 return 1;
536 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
537 if (!strcmp(name, s[i].name))
538 return s[i].map.base_addr;
539 return 0;
543 * Saves at boot time configured settings for any netdevice.
545 int __init netdev_boot_setup(char *str)
547 int ints[5];
548 struct ifmap map;
550 str = get_options(str, ARRAY_SIZE(ints), ints);
551 if (!str || !*str)
552 return 0;
554 /* Save settings */
555 memset(&map, 0, sizeof(map));
556 if (ints[0] > 0)
557 map.irq = ints[1];
558 if (ints[0] > 1)
559 map.base_addr = ints[2];
560 if (ints[0] > 2)
561 map.mem_start = ints[3];
562 if (ints[0] > 3)
563 map.mem_end = ints[4];
565 /* Add new entry to the list */
566 return netdev_boot_setup_add(str, &map);
569 __setup("netdev=", netdev_boot_setup);
571 /*******************************************************************************
573 Device Interface Subroutines
575 *******************************************************************************/
578 * __dev_get_by_name - find a device by its name
579 * @net: the applicable net namespace
580 * @name: name to find
582 * Find an interface by name. Must be called under RTNL semaphore
583 * or @dev_base_lock. If the name is found a pointer to the device
584 * is returned. If the name is not found then %NULL is returned. The
585 * reference counters are not incremented so the caller must be
586 * careful with locks.
589 struct net_device *__dev_get_by_name(struct net *net, const char *name)
591 struct hlist_node *p;
592 struct net_device *dev;
593 struct hlist_head *head = dev_name_hash(net, name);
595 hlist_for_each_entry(dev, p, head, name_hlist)
596 if (!strncmp(dev->name, name, IFNAMSIZ))
597 return dev;
599 return NULL;
601 EXPORT_SYMBOL(__dev_get_by_name);
604 * dev_get_by_name_rcu - find a device by its name
605 * @net: the applicable net namespace
606 * @name: name to find
608 * Find an interface by name.
609 * If the name is found a pointer to the device is returned.
610 * If the name is not found then %NULL is returned.
611 * The reference counters are not incremented so the caller must be
612 * careful with locks. The caller must hold RCU lock.
615 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
617 struct hlist_node *p;
618 struct net_device *dev;
619 struct hlist_head *head = dev_name_hash(net, name);
621 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
622 if (!strncmp(dev->name, name, IFNAMSIZ))
623 return dev;
625 return NULL;
627 EXPORT_SYMBOL(dev_get_by_name_rcu);
630 * dev_get_by_name - find a device by its name
631 * @net: the applicable net namespace
632 * @name: name to find
634 * Find an interface by name. This can be called from any
635 * context and does its own locking. The returned handle has
636 * the usage count incremented and the caller must use dev_put() to
637 * release it when it is no longer needed. %NULL is returned if no
638 * matching device is found.
641 struct net_device *dev_get_by_name(struct net *net, const char *name)
643 struct net_device *dev;
645 rcu_read_lock();
646 dev = dev_get_by_name_rcu(net, name);
647 if (dev)
648 dev_hold(dev);
649 rcu_read_unlock();
650 return dev;
652 EXPORT_SYMBOL(dev_get_by_name);
655 * __dev_get_by_index - find a device by its ifindex
656 * @net: the applicable net namespace
657 * @ifindex: index of device
659 * Search for an interface by index. Returns %NULL if the device
660 * is not found or a pointer to the device. The device has not
661 * had its reference counter increased so the caller must be careful
662 * about locking. The caller must hold either the RTNL semaphore
663 * or @dev_base_lock.
666 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
668 struct hlist_node *p;
669 struct net_device *dev;
670 struct hlist_head *head = dev_index_hash(net, ifindex);
672 hlist_for_each_entry(dev, p, head, index_hlist)
673 if (dev->ifindex == ifindex)
674 return dev;
676 return NULL;
678 EXPORT_SYMBOL(__dev_get_by_index);
681 * dev_get_by_index_rcu - find a device by its ifindex
682 * @net: the applicable net namespace
683 * @ifindex: index of device
685 * Search for an interface by index. Returns %NULL if the device
686 * is not found or a pointer to the device. The device has not
687 * had its reference counter increased so the caller must be careful
688 * about locking. The caller must hold RCU lock.
691 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
693 struct hlist_node *p;
694 struct net_device *dev;
695 struct hlist_head *head = dev_index_hash(net, ifindex);
697 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
698 if (dev->ifindex == ifindex)
699 return dev;
701 return NULL;
703 EXPORT_SYMBOL(dev_get_by_index_rcu);
707 * dev_get_by_index - find a device by its ifindex
708 * @net: the applicable net namespace
709 * @ifindex: index of device
711 * Search for an interface by index. Returns NULL if the device
712 * is not found or a pointer to the device. The device returned has
713 * had a reference added and the pointer is safe until the user calls
714 * dev_put to indicate they have finished with it.
717 struct net_device *dev_get_by_index(struct net *net, int ifindex)
719 struct net_device *dev;
721 rcu_read_lock();
722 dev = dev_get_by_index_rcu(net, ifindex);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
728 EXPORT_SYMBOL(dev_get_by_index);
731 * dev_getbyhwaddr - find a device by its hardware address
732 * @net: the applicable net namespace
733 * @type: media type of device
734 * @ha: hardware address
736 * Search for an interface by MAC address. Returns NULL if the device
737 * is not found or a pointer to the device. The caller must hold the
738 * rtnl semaphore. The returned device has not had its ref count increased
739 * and the caller must therefore be careful about locking
741 * BUGS:
742 * If the API was consistent this would be __dev_get_by_hwaddr
745 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
747 struct net_device *dev;
749 ASSERT_RTNL();
751 for_each_netdev(net, dev)
752 if (dev->type == type &&
753 !memcmp(dev->dev_addr, ha, dev->addr_len))
754 return dev;
756 return NULL;
758 EXPORT_SYMBOL(dev_getbyhwaddr);
760 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
762 struct net_device *dev;
764 ASSERT_RTNL();
765 for_each_netdev(net, dev)
766 if (dev->type == type)
767 return dev;
769 return NULL;
771 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
773 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 struct net_device *dev;
777 rtnl_lock();
778 dev = __dev_getfirstbyhwtype(net, type);
779 if (dev)
780 dev_hold(dev);
781 rtnl_unlock();
782 return dev;
784 EXPORT_SYMBOL(dev_getfirstbyhwtype);
787 * dev_get_by_flags - find any device with given flags
788 * @net: the applicable net namespace
789 * @if_flags: IFF_* values
790 * @mask: bitmask of bits in if_flags to check
792 * Search for any interface with the given flags. Returns NULL if a device
793 * is not found or a pointer to the device. The device returned has
794 * had a reference added and the pointer is safe until the user calls
795 * dev_put to indicate they have finished with it.
798 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
799 unsigned short mask)
801 struct net_device *dev, *ret;
803 ret = NULL;
804 rcu_read_lock();
805 for_each_netdev_rcu(net, dev) {
806 if (((dev->flags ^ if_flags) & mask) == 0) {
807 dev_hold(dev);
808 ret = dev;
809 break;
812 rcu_read_unlock();
813 return ret;
815 EXPORT_SYMBOL(dev_get_by_flags);
818 * dev_valid_name - check if name is okay for network device
819 * @name: name string
821 * Network device names need to be valid file names to
822 * to allow sysfs to work. We also disallow any kind of
823 * whitespace.
825 int dev_valid_name(const char *name)
827 if (*name == '\0')
828 return 0;
829 if (strlen(name) >= IFNAMSIZ)
830 return 0;
831 if (!strcmp(name, ".") || !strcmp(name, ".."))
832 return 0;
834 while (*name) {
835 if (*name == '/' || isspace(*name))
836 return 0;
837 name++;
839 return 1;
841 EXPORT_SYMBOL(dev_valid_name);
844 * __dev_alloc_name - allocate a name for a device
845 * @net: network namespace to allocate the device name in
846 * @name: name format string
847 * @buf: scratch buffer and result name string
849 * Passed a format string - eg "lt%d" it will try and find a suitable
850 * id. It scans list of devices to build up a free map, then chooses
851 * the first empty slot. The caller must hold the dev_base or rtnl lock
852 * while allocating the name and adding the device in order to avoid
853 * duplicates.
854 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
855 * Returns the number of the unit assigned or a negative errno code.
858 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
860 int i = 0;
861 const char *p;
862 const int max_netdevices = 8*PAGE_SIZE;
863 unsigned long *inuse;
864 struct net_device *d;
866 p = strnchr(name, IFNAMSIZ-1, '%');
867 if (p) {
869 * Verify the string as this thing may have come from
870 * the user. There must be either one "%d" and no other "%"
871 * characters.
873 if (p[1] != 'd' || strchr(p + 2, '%'))
874 return -EINVAL;
876 /* Use one page as a bit array of possible slots */
877 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
878 if (!inuse)
879 return -ENOMEM;
881 for_each_netdev(net, d) {
882 if (!sscanf(d->name, name, &i))
883 continue;
884 if (i < 0 || i >= max_netdevices)
885 continue;
887 /* avoid cases where sscanf is not exact inverse of printf */
888 snprintf(buf, IFNAMSIZ, name, i);
889 if (!strncmp(buf, d->name, IFNAMSIZ))
890 set_bit(i, inuse);
893 i = find_first_zero_bit(inuse, max_netdevices);
894 free_page((unsigned long) inuse);
897 if (buf != name)
898 snprintf(buf, IFNAMSIZ, name, i);
899 if (!__dev_get_by_name(net, buf))
900 return i;
902 /* It is possible to run out of possible slots
903 * when the name is long and there isn't enough space left
904 * for the digits, or if all bits are used.
906 return -ENFILE;
910 * dev_alloc_name - allocate a name for a device
911 * @dev: device
912 * @name: name format string
914 * Passed a format string - eg "lt%d" it will try and find a suitable
915 * id. It scans list of devices to build up a free map, then chooses
916 * the first empty slot. The caller must hold the dev_base or rtnl lock
917 * while allocating the name and adding the device in order to avoid
918 * duplicates.
919 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
920 * Returns the number of the unit assigned or a negative errno code.
923 int dev_alloc_name(struct net_device *dev, const char *name)
925 char buf[IFNAMSIZ];
926 struct net *net;
927 int ret;
929 BUG_ON(!dev_net(dev));
930 net = dev_net(dev);
931 ret = __dev_alloc_name(net, name, buf);
932 if (ret >= 0)
933 strlcpy(dev->name, buf, IFNAMSIZ);
934 return ret;
936 EXPORT_SYMBOL(dev_alloc_name);
938 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
939 bool fmt)
941 if (!dev_valid_name(name))
942 return -EINVAL;
944 if (fmt && strchr(name, '%'))
945 return __dev_alloc_name(net, name, buf);
946 else if (__dev_get_by_name(net, name))
947 return -EEXIST;
948 else if (buf != name)
949 strlcpy(buf, name, IFNAMSIZ);
951 return 0;
955 * dev_change_name - change name of a device
956 * @dev: device
957 * @newname: name (or format string) must be at least IFNAMSIZ
959 * Change name of a device, can pass format strings "eth%d".
960 * for wildcarding.
962 int dev_change_name(struct net_device *dev, const char *newname)
964 char oldname[IFNAMSIZ];
965 int err = 0;
966 int ret;
967 struct net *net;
969 ASSERT_RTNL();
970 BUG_ON(!dev_net(dev));
972 net = dev_net(dev);
973 if (dev->flags & IFF_UP)
974 return -EBUSY;
976 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
977 return 0;
979 memcpy(oldname, dev->name, IFNAMSIZ);
981 err = dev_get_valid_name(net, newname, dev->name, 1);
982 if (err < 0)
983 return err;
985 rollback:
986 /* For now only devices in the initial network namespace
987 * are in sysfs.
989 if (net_eq(net, &init_net)) {
990 ret = device_rename(&dev->dev, dev->name);
991 if (ret) {
992 memcpy(dev->name, oldname, IFNAMSIZ);
993 return ret;
997 write_lock_bh(&dev_base_lock);
998 hlist_del(&dev->name_hlist);
999 write_unlock_bh(&dev_base_lock);
1001 synchronize_rcu();
1003 write_lock_bh(&dev_base_lock);
1004 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1005 write_unlock_bh(&dev_base_lock);
1007 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1008 ret = notifier_to_errno(ret);
1010 if (ret) {
1011 /* err >= 0 after dev_alloc_name() or stores the first errno */
1012 if (err >= 0) {
1013 err = ret;
1014 memcpy(dev->name, oldname, IFNAMSIZ);
1015 goto rollback;
1016 } else {
1017 printk(KERN_ERR
1018 "%s: name change rollback failed: %d.\n",
1019 dev->name, ret);
1023 return err;
1027 * dev_set_alias - change ifalias of a device
1028 * @dev: device
1029 * @alias: name up to IFALIASZ
1030 * @len: limit of bytes to copy from info
1032 * Set ifalias for a device,
1034 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1036 ASSERT_RTNL();
1038 if (len >= IFALIASZ)
1039 return -EINVAL;
1041 if (!len) {
1042 if (dev->ifalias) {
1043 kfree(dev->ifalias);
1044 dev->ifalias = NULL;
1046 return 0;
1049 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1050 if (!dev->ifalias)
1051 return -ENOMEM;
1053 strlcpy(dev->ifalias, alias, len+1);
1054 return len;
1059 * netdev_features_change - device changes features
1060 * @dev: device to cause notification
1062 * Called to indicate a device has changed features.
1064 void netdev_features_change(struct net_device *dev)
1066 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1068 EXPORT_SYMBOL(netdev_features_change);
1071 * netdev_state_change - device changes state
1072 * @dev: device to cause notification
1074 * Called to indicate a device has changed state. This function calls
1075 * the notifier chains for netdev_chain and sends a NEWLINK message
1076 * to the routing socket.
1078 void netdev_state_change(struct net_device *dev)
1080 if (dev->flags & IFF_UP) {
1081 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1082 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1085 EXPORT_SYMBOL(netdev_state_change);
1087 void netdev_bonding_change(struct net_device *dev, unsigned long event)
1089 call_netdevice_notifiers(event, dev);
1091 EXPORT_SYMBOL(netdev_bonding_change);
1094 * dev_load - load a network module
1095 * @net: the applicable net namespace
1096 * @name: name of interface
1098 * If a network interface is not present and the process has suitable
1099 * privileges this function loads the module. If module loading is not
1100 * available in this kernel then it becomes a nop.
1103 void dev_load(struct net *net, const char *name)
1105 struct net_device *dev;
1106 int no_module;
1108 rcu_read_lock();
1109 dev = dev_get_by_name_rcu(net, name);
1110 rcu_read_unlock();
1112 no_module = !dev;
1113 if (no_module && capable(CAP_NET_ADMIN))
1114 no_module = request_module("netdev-%s", name);
1115 if (no_module && capable(CAP_SYS_MODULE)) {
1116 if (!request_module("%s", name))
1117 pr_err("Loading kernel module for a network device "
1118 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1119 "instead\n", name);
1122 EXPORT_SYMBOL(dev_load);
1125 * dev_open - prepare an interface for use.
1126 * @dev: device to open
1128 * Takes a device from down to up state. The device's private open
1129 * function is invoked and then the multicast lists are loaded. Finally
1130 * the device is moved into the up state and a %NETDEV_UP message is
1131 * sent to the netdev notifier chain.
1133 * Calling this function on an active interface is a nop. On a failure
1134 * a negative errno code is returned.
1136 int dev_open(struct net_device *dev)
1138 const struct net_device_ops *ops = dev->netdev_ops;
1139 int ret;
1141 ASSERT_RTNL();
1144 * Is it already up?
1147 if (dev->flags & IFF_UP)
1148 return 0;
1151 * Is it even present?
1153 if (!netif_device_present(dev))
1154 return -ENODEV;
1156 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1157 ret = notifier_to_errno(ret);
1158 if (ret)
1159 return ret;
1162 * Call device private open method
1164 set_bit(__LINK_STATE_START, &dev->state);
1166 if (ops->ndo_validate_addr)
1167 ret = ops->ndo_validate_addr(dev);
1169 if (!ret && ops->ndo_open)
1170 ret = ops->ndo_open(dev);
1173 * If it went open OK then:
1176 if (ret)
1177 clear_bit(__LINK_STATE_START, &dev->state);
1178 else {
1180 * Set the flags.
1182 dev->flags |= IFF_UP;
1185 * Enable NET_DMA
1187 net_dmaengine_get();
1190 * Initialize multicasting status
1192 dev_set_rx_mode(dev);
1195 * Wakeup transmit queue engine
1197 dev_activate(dev);
1200 * ... and announce new interface.
1202 call_netdevice_notifiers(NETDEV_UP, dev);
1205 return ret;
1207 EXPORT_SYMBOL(dev_open);
1210 * dev_close - shutdown an interface.
1211 * @dev: device to shutdown
1213 * This function moves an active device into down state. A
1214 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1215 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1216 * chain.
1218 int dev_close(struct net_device *dev)
1220 const struct net_device_ops *ops = dev->netdev_ops;
1221 ASSERT_RTNL();
1223 might_sleep();
1225 if (!(dev->flags & IFF_UP))
1226 return 0;
1229 * Tell people we are going down, so that they can
1230 * prepare to death, when device is still operating.
1232 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1234 clear_bit(__LINK_STATE_START, &dev->state);
1236 /* Synchronize to scheduled poll. We cannot touch poll list,
1237 * it can be even on different cpu. So just clear netif_running().
1239 * dev->stop() will invoke napi_disable() on all of it's
1240 * napi_struct instances on this device.
1242 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1244 dev_deactivate(dev);
1247 * Call the device specific close. This cannot fail.
1248 * Only if device is UP
1250 * We allow it to be called even after a DETACH hot-plug
1251 * event.
1253 if (ops->ndo_stop)
1254 ops->ndo_stop(dev);
1257 * Device is now down.
1260 dev->flags &= ~IFF_UP;
1263 * Tell people we are down
1265 call_netdevice_notifiers(NETDEV_DOWN, dev);
1268 * Shutdown NET_DMA
1270 net_dmaengine_put();
1272 return 0;
1274 EXPORT_SYMBOL(dev_close);
1278 * dev_disable_lro - disable Large Receive Offload on a device
1279 * @dev: device
1281 * Disable Large Receive Offload (LRO) on a net device. Must be
1282 * called under RTNL. This is needed if received packets may be
1283 * forwarded to another interface.
1285 void dev_disable_lro(struct net_device *dev)
1287 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1288 dev->ethtool_ops->set_flags) {
1289 u32 flags = dev->ethtool_ops->get_flags(dev);
1290 if (flags & ETH_FLAG_LRO) {
1291 flags &= ~ETH_FLAG_LRO;
1292 dev->ethtool_ops->set_flags(dev, flags);
1295 WARN_ON(dev->features & NETIF_F_LRO);
1297 EXPORT_SYMBOL(dev_disable_lro);
1300 static int dev_boot_phase = 1;
1303 * Device change register/unregister. These are not inline or static
1304 * as we export them to the world.
1308 * register_netdevice_notifier - register a network notifier block
1309 * @nb: notifier
1311 * Register a notifier to be called when network device events occur.
1312 * The notifier passed is linked into the kernel structures and must
1313 * not be reused until it has been unregistered. A negative errno code
1314 * is returned on a failure.
1316 * When registered all registration and up events are replayed
1317 * to the new notifier to allow device to have a race free
1318 * view of the network device list.
1321 int register_netdevice_notifier(struct notifier_block *nb)
1323 struct net_device *dev;
1324 struct net_device *last;
1325 struct net *net;
1326 int err;
1328 rtnl_lock();
1329 err = raw_notifier_chain_register(&netdev_chain, nb);
1330 if (err)
1331 goto unlock;
1332 if (dev_boot_phase)
1333 goto unlock;
1334 for_each_net(net) {
1335 for_each_netdev(net, dev) {
1336 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1337 err = notifier_to_errno(err);
1338 if (err)
1339 goto rollback;
1341 if (!(dev->flags & IFF_UP))
1342 continue;
1344 nb->notifier_call(nb, NETDEV_UP, dev);
1348 unlock:
1349 rtnl_unlock();
1350 return err;
1352 rollback:
1353 last = dev;
1354 for_each_net(net) {
1355 for_each_netdev(net, dev) {
1356 if (dev == last)
1357 break;
1359 if (dev->flags & IFF_UP) {
1360 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1361 nb->notifier_call(nb, NETDEV_DOWN, dev);
1363 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1364 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1368 raw_notifier_chain_unregister(&netdev_chain, nb);
1369 goto unlock;
1371 EXPORT_SYMBOL(register_netdevice_notifier);
1374 * unregister_netdevice_notifier - unregister a network notifier block
1375 * @nb: notifier
1377 * Unregister a notifier previously registered by
1378 * register_netdevice_notifier(). The notifier is unlinked into the
1379 * kernel structures and may then be reused. A negative errno code
1380 * is returned on a failure.
1383 int unregister_netdevice_notifier(struct notifier_block *nb)
1385 int err;
1387 rtnl_lock();
1388 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1389 rtnl_unlock();
1390 return err;
1392 EXPORT_SYMBOL(unregister_netdevice_notifier);
1395 * call_netdevice_notifiers - call all network notifier blocks
1396 * @val: value passed unmodified to notifier function
1397 * @dev: net_device pointer passed unmodified to notifier function
1399 * Call all network notifier blocks. Parameters and return value
1400 * are as for raw_notifier_call_chain().
1403 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1405 return raw_notifier_call_chain(&netdev_chain, val, dev);
1408 /* When > 0 there are consumers of rx skb time stamps */
1409 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1411 void net_enable_timestamp(void)
1413 atomic_inc(&netstamp_needed);
1415 EXPORT_SYMBOL(net_enable_timestamp);
1417 void net_disable_timestamp(void)
1419 atomic_dec(&netstamp_needed);
1421 EXPORT_SYMBOL(net_disable_timestamp);
1423 static inline void net_timestamp(struct sk_buff *skb)
1425 if (atomic_read(&netstamp_needed))
1426 __net_timestamp(skb);
1427 else
1428 skb->tstamp.tv64 = 0;
1432 * dev_forward_skb - loopback an skb to another netif
1434 * @dev: destination network device
1435 * @skb: buffer to forward
1437 * return values:
1438 * NET_RX_SUCCESS (no congestion)
1439 * NET_RX_DROP (packet was dropped, but freed)
1441 * dev_forward_skb can be used for injecting an skb from the
1442 * start_xmit function of one device into the receive queue
1443 * of another device.
1445 * The receiving device may be in another namespace, so
1446 * we have to clear all information in the skb that could
1447 * impact namespace isolation.
1449 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1451 skb_orphan(skb);
1453 if (!(dev->flags & IFF_UP) ||
1454 (skb->len > (dev->mtu + dev->hard_header_len))) {
1455 kfree_skb(skb);
1456 return NET_RX_DROP;
1459 skb_dst_drop(skb);
1460 skb->tstamp.tv64 = 0;
1461 skb->pkt_type = PACKET_HOST;
1462 skb->protocol = eth_type_trans(skb, dev);
1463 skb->mark = 0;
1464 secpath_reset(skb);
1465 nf_reset(skb);
1466 return netif_rx(skb);
1468 EXPORT_SYMBOL_GPL(dev_forward_skb);
1471 * Support routine. Sends outgoing frames to any network
1472 * taps currently in use.
1475 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1477 struct packet_type *ptype;
1479 #ifdef CONFIG_NET_CLS_ACT
1480 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1481 net_timestamp(skb);
1482 #else
1483 net_timestamp(skb);
1484 #endif
1486 rcu_read_lock();
1487 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1488 /* Never send packets back to the socket
1489 * they originated from - MvS (miquels@drinkel.ow.org)
1491 if ((ptype->dev == dev || !ptype->dev) &&
1492 (ptype->af_packet_priv == NULL ||
1493 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1494 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1495 if (!skb2)
1496 break;
1498 /* skb->nh should be correctly
1499 set by sender, so that the second statement is
1500 just protection against buggy protocols.
1502 skb_reset_mac_header(skb2);
1504 if (skb_network_header(skb2) < skb2->data ||
1505 skb2->network_header > skb2->tail) {
1506 if (net_ratelimit())
1507 printk(KERN_CRIT "protocol %04x is "
1508 "buggy, dev %s\n",
1509 skb2->protocol, dev->name);
1510 skb_reset_network_header(skb2);
1513 skb2->transport_header = skb2->network_header;
1514 skb2->pkt_type = PACKET_OUTGOING;
1515 ptype->func(skb2, skb->dev, ptype, skb->dev);
1518 rcu_read_unlock();
1522 static inline void __netif_reschedule(struct Qdisc *q)
1524 struct softnet_data *sd;
1525 unsigned long flags;
1527 local_irq_save(flags);
1528 sd = &__get_cpu_var(softnet_data);
1529 q->next_sched = sd->output_queue;
1530 sd->output_queue = q;
1531 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1532 local_irq_restore(flags);
1535 void __netif_schedule(struct Qdisc *q)
1537 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1538 __netif_reschedule(q);
1540 EXPORT_SYMBOL(__netif_schedule);
1542 void dev_kfree_skb_irq(struct sk_buff *skb)
1544 if (atomic_dec_and_test(&skb->users)) {
1545 struct softnet_data *sd;
1546 unsigned long flags;
1548 local_irq_save(flags);
1549 sd = &__get_cpu_var(softnet_data);
1550 skb->next = sd->completion_queue;
1551 sd->completion_queue = skb;
1552 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1553 local_irq_restore(flags);
1556 EXPORT_SYMBOL(dev_kfree_skb_irq);
1558 void dev_kfree_skb_any(struct sk_buff *skb)
1560 if (in_irq() || irqs_disabled())
1561 dev_kfree_skb_irq(skb);
1562 else
1563 dev_kfree_skb(skb);
1565 EXPORT_SYMBOL(dev_kfree_skb_any);
1569 * netif_device_detach - mark device as removed
1570 * @dev: network device
1572 * Mark device as removed from system and therefore no longer available.
1574 void netif_device_detach(struct net_device *dev)
1576 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1577 netif_running(dev)) {
1578 netif_tx_stop_all_queues(dev);
1581 EXPORT_SYMBOL(netif_device_detach);
1584 * netif_device_attach - mark device as attached
1585 * @dev: network device
1587 * Mark device as attached from system and restart if needed.
1589 void netif_device_attach(struct net_device *dev)
1591 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1592 netif_running(dev)) {
1593 netif_tx_wake_all_queues(dev);
1594 __netdev_watchdog_up(dev);
1597 EXPORT_SYMBOL(netif_device_attach);
1599 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1601 return ((features & NETIF_F_NO_CSUM) ||
1602 ((features & NETIF_F_V4_CSUM) &&
1603 protocol == htons(ETH_P_IP)) ||
1604 ((features & NETIF_F_V6_CSUM) &&
1605 protocol == htons(ETH_P_IPV6)) ||
1606 ((features & NETIF_F_FCOE_CRC) &&
1607 protocol == htons(ETH_P_FCOE)));
1610 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1612 if (can_checksum_protocol(dev->features, skb->protocol))
1613 return true;
1615 if (skb->protocol == htons(ETH_P_8021Q)) {
1616 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1617 if (can_checksum_protocol(dev->features & dev->vlan_features,
1618 veh->h_vlan_encapsulated_proto))
1619 return true;
1622 return false;
1626 * Invalidate hardware checksum when packet is to be mangled, and
1627 * complete checksum manually on outgoing path.
1629 int skb_checksum_help(struct sk_buff *skb)
1631 __wsum csum;
1632 int ret = 0, offset;
1634 if (skb->ip_summed == CHECKSUM_COMPLETE)
1635 goto out_set_summed;
1637 if (unlikely(skb_shinfo(skb)->gso_size)) {
1638 /* Let GSO fix up the checksum. */
1639 goto out_set_summed;
1642 offset = skb->csum_start - skb_headroom(skb);
1643 BUG_ON(offset >= skb_headlen(skb));
1644 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1646 offset += skb->csum_offset;
1647 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1649 if (skb_cloned(skb) &&
1650 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1651 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1652 if (ret)
1653 goto out;
1656 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1657 out_set_summed:
1658 skb->ip_summed = CHECKSUM_NONE;
1659 out:
1660 return ret;
1662 EXPORT_SYMBOL(skb_checksum_help);
1665 * skb_gso_segment - Perform segmentation on skb.
1666 * @skb: buffer to segment
1667 * @features: features for the output path (see dev->features)
1669 * This function segments the given skb and returns a list of segments.
1671 * It may return NULL if the skb requires no segmentation. This is
1672 * only possible when GSO is used for verifying header integrity.
1674 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1676 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1677 struct packet_type *ptype;
1678 __be16 type = skb->protocol;
1679 int err;
1681 skb_reset_mac_header(skb);
1682 skb->mac_len = skb->network_header - skb->mac_header;
1683 __skb_pull(skb, skb->mac_len);
1685 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1686 struct net_device *dev = skb->dev;
1687 struct ethtool_drvinfo info = {};
1689 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1690 dev->ethtool_ops->get_drvinfo(dev, &info);
1692 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1693 "ip_summed=%d",
1694 info.driver, dev ? dev->features : 0L,
1695 skb->sk ? skb->sk->sk_route_caps : 0L,
1696 skb->len, skb->data_len, skb->ip_summed);
1698 if (skb_header_cloned(skb) &&
1699 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1700 return ERR_PTR(err);
1703 rcu_read_lock();
1704 list_for_each_entry_rcu(ptype,
1705 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1706 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1707 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1708 err = ptype->gso_send_check(skb);
1709 segs = ERR_PTR(err);
1710 if (err || skb_gso_ok(skb, features))
1711 break;
1712 __skb_push(skb, (skb->data -
1713 skb_network_header(skb)));
1715 segs = ptype->gso_segment(skb, features);
1716 break;
1719 rcu_read_unlock();
1721 __skb_push(skb, skb->data - skb_mac_header(skb));
1723 return segs;
1725 EXPORT_SYMBOL(skb_gso_segment);
1727 /* Take action when hardware reception checksum errors are detected. */
1728 #ifdef CONFIG_BUG
1729 void netdev_rx_csum_fault(struct net_device *dev)
1731 if (net_ratelimit()) {
1732 printk(KERN_ERR "%s: hw csum failure.\n",
1733 dev ? dev->name : "<unknown>");
1734 dump_stack();
1737 EXPORT_SYMBOL(netdev_rx_csum_fault);
1738 #endif
1740 /* Actually, we should eliminate this check as soon as we know, that:
1741 * 1. IOMMU is present and allows to map all the memory.
1742 * 2. No high memory really exists on this machine.
1745 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1747 #ifdef CONFIG_HIGHMEM
1748 int i;
1750 if (dev->features & NETIF_F_HIGHDMA)
1751 return 0;
1753 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1754 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1755 return 1;
1757 #endif
1758 return 0;
1761 struct dev_gso_cb {
1762 void (*destructor)(struct sk_buff *skb);
1765 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1767 static void dev_gso_skb_destructor(struct sk_buff *skb)
1769 struct dev_gso_cb *cb;
1771 do {
1772 struct sk_buff *nskb = skb->next;
1774 skb->next = nskb->next;
1775 nskb->next = NULL;
1776 kfree_skb(nskb);
1777 } while (skb->next);
1779 cb = DEV_GSO_CB(skb);
1780 if (cb->destructor)
1781 cb->destructor(skb);
1785 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1786 * @skb: buffer to segment
1788 * This function segments the given skb and stores the list of segments
1789 * in skb->next.
1791 static int dev_gso_segment(struct sk_buff *skb)
1793 struct net_device *dev = skb->dev;
1794 struct sk_buff *segs;
1795 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1796 NETIF_F_SG : 0);
1798 segs = skb_gso_segment(skb, features);
1800 /* Verifying header integrity only. */
1801 if (!segs)
1802 return 0;
1804 if (IS_ERR(segs))
1805 return PTR_ERR(segs);
1807 skb->next = segs;
1808 DEV_GSO_CB(skb)->destructor = skb->destructor;
1809 skb->destructor = dev_gso_skb_destructor;
1811 return 0;
1814 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1815 struct netdev_queue *txq)
1817 const struct net_device_ops *ops = dev->netdev_ops;
1818 int rc = NETDEV_TX_OK;
1820 if (likely(!skb->next)) {
1821 if (!list_empty(&ptype_all))
1822 dev_queue_xmit_nit(skb, dev);
1824 if (netif_needs_gso(dev, skb)) {
1825 if (unlikely(dev_gso_segment(skb)))
1826 goto out_kfree_skb;
1827 if (skb->next)
1828 goto gso;
1832 * If device doesnt need skb->dst, release it right now while
1833 * its hot in this cpu cache
1835 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1836 skb_dst_drop(skb);
1838 rc = ops->ndo_start_xmit(skb, dev);
1839 if (rc == NETDEV_TX_OK)
1840 txq_trans_update(txq);
1842 * TODO: if skb_orphan() was called by
1843 * dev->hard_start_xmit() (for example, the unmodified
1844 * igb driver does that; bnx2 doesn't), then
1845 * skb_tx_software_timestamp() will be unable to send
1846 * back the time stamp.
1848 * How can this be prevented? Always create another
1849 * reference to the socket before calling
1850 * dev->hard_start_xmit()? Prevent that skb_orphan()
1851 * does anything in dev->hard_start_xmit() by clearing
1852 * the skb destructor before the call and restoring it
1853 * afterwards, then doing the skb_orphan() ourselves?
1855 return rc;
1858 gso:
1859 do {
1860 struct sk_buff *nskb = skb->next;
1862 skb->next = nskb->next;
1863 nskb->next = NULL;
1864 rc = ops->ndo_start_xmit(nskb, dev);
1865 if (unlikely(rc != NETDEV_TX_OK)) {
1866 if (rc & ~NETDEV_TX_MASK)
1867 goto out_kfree_gso_skb;
1868 nskb->next = skb->next;
1869 skb->next = nskb;
1870 return rc;
1872 txq_trans_update(txq);
1873 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1874 return NETDEV_TX_BUSY;
1875 } while (skb->next);
1877 out_kfree_gso_skb:
1878 if (likely(skb->next == NULL))
1879 skb->destructor = DEV_GSO_CB(skb)->destructor;
1880 out_kfree_skb:
1881 kfree_skb(skb);
1882 return rc;
1885 static u32 skb_tx_hashrnd;
1887 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1889 u32 hash;
1891 if (skb_rx_queue_recorded(skb)) {
1892 hash = skb_get_rx_queue(skb);
1893 while (unlikely(hash >= dev->real_num_tx_queues))
1894 hash -= dev->real_num_tx_queues;
1895 return hash;
1898 if (skb->sk && skb->sk->sk_hash)
1899 hash = skb->sk->sk_hash;
1900 else
1901 hash = skb->protocol;
1903 hash = jhash_1word(hash, skb_tx_hashrnd);
1905 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1907 EXPORT_SYMBOL(skb_tx_hash);
1909 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1911 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1912 if (net_ratelimit()) {
1913 WARN(1, "%s selects TX queue %d, but "
1914 "real number of TX queues is %d\n",
1915 dev->name, queue_index,
1916 dev->real_num_tx_queues);
1918 return 0;
1920 return queue_index;
1923 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1924 struct sk_buff *skb)
1926 int queue_index;
1927 struct sock *sk = skb->sk;
1929 queue_index = sk_tx_queue_get(sk);
1930 if (queue_index < 0) {
1931 const struct net_device_ops *ops = dev->netdev_ops;
1933 if (ops->ndo_select_queue) {
1934 queue_index = ops->ndo_select_queue(dev, skb);
1935 queue_index = dev_cap_txqueue(dev, queue_index);
1936 } else {
1937 queue_index = 0;
1938 if (dev->real_num_tx_queues > 1)
1939 queue_index = skb_tx_hash(dev, skb);
1941 if (sk && sk->sk_dst_cache)
1942 sk_tx_queue_set(sk, queue_index);
1946 skb_set_queue_mapping(skb, queue_index);
1947 return netdev_get_tx_queue(dev, queue_index);
1950 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
1951 struct net_device *dev,
1952 struct netdev_queue *txq)
1954 spinlock_t *root_lock = qdisc_lock(q);
1955 int rc;
1957 spin_lock(root_lock);
1958 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1959 kfree_skb(skb);
1960 rc = NET_XMIT_DROP;
1961 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
1962 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
1964 * This is a work-conserving queue; there are no old skbs
1965 * waiting to be sent out; and the qdisc is not running -
1966 * xmit the skb directly.
1968 __qdisc_update_bstats(q, skb->len);
1969 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
1970 __qdisc_run(q);
1971 else
1972 clear_bit(__QDISC_STATE_RUNNING, &q->state);
1974 rc = NET_XMIT_SUCCESS;
1975 } else {
1976 rc = qdisc_enqueue_root(skb, q);
1977 qdisc_run(q);
1979 spin_unlock(root_lock);
1981 return rc;
1985 * dev_queue_xmit - transmit a buffer
1986 * @skb: buffer to transmit
1988 * Queue a buffer for transmission to a network device. The caller must
1989 * have set the device and priority and built the buffer before calling
1990 * this function. The function can be called from an interrupt.
1992 * A negative errno code is returned on a failure. A success does not
1993 * guarantee the frame will be transmitted as it may be dropped due
1994 * to congestion or traffic shaping.
1996 * -----------------------------------------------------------------------------------
1997 * I notice this method can also return errors from the queue disciplines,
1998 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1999 * be positive.
2001 * Regardless of the return value, the skb is consumed, so it is currently
2002 * difficult to retry a send to this method. (You can bump the ref count
2003 * before sending to hold a reference for retry if you are careful.)
2005 * When calling this method, interrupts MUST be enabled. This is because
2006 * the BH enable code must have IRQs enabled so that it will not deadlock.
2007 * --BLG
2009 int dev_queue_xmit(struct sk_buff *skb)
2011 struct net_device *dev = skb->dev;
2012 struct netdev_queue *txq;
2013 struct Qdisc *q;
2014 int rc = -ENOMEM;
2016 /* GSO will handle the following emulations directly. */
2017 if (netif_needs_gso(dev, skb))
2018 goto gso;
2020 if (skb_has_frags(skb) &&
2021 !(dev->features & NETIF_F_FRAGLIST) &&
2022 __skb_linearize(skb))
2023 goto out_kfree_skb;
2025 /* Fragmented skb is linearized if device does not support SG,
2026 * or if at least one of fragments is in highmem and device
2027 * does not support DMA from it.
2029 if (skb_shinfo(skb)->nr_frags &&
2030 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
2031 __skb_linearize(skb))
2032 goto out_kfree_skb;
2034 /* If packet is not checksummed and device does not support
2035 * checksumming for this protocol, complete checksumming here.
2037 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2038 skb_set_transport_header(skb, skb->csum_start -
2039 skb_headroom(skb));
2040 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2041 goto out_kfree_skb;
2044 gso:
2045 /* Disable soft irqs for various locks below. Also
2046 * stops preemption for RCU.
2048 rcu_read_lock_bh();
2050 txq = dev_pick_tx(dev, skb);
2051 q = rcu_dereference(txq->qdisc);
2053 #ifdef CONFIG_NET_CLS_ACT
2054 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2055 #endif
2056 if (q->enqueue) {
2057 rc = __dev_xmit_skb(skb, q, dev, txq);
2058 goto out;
2061 /* The device has no queue. Common case for software devices:
2062 loopback, all the sorts of tunnels...
2064 Really, it is unlikely that netif_tx_lock protection is necessary
2065 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2066 counters.)
2067 However, it is possible, that they rely on protection
2068 made by us here.
2070 Check this and shot the lock. It is not prone from deadlocks.
2071 Either shot noqueue qdisc, it is even simpler 8)
2073 if (dev->flags & IFF_UP) {
2074 int cpu = smp_processor_id(); /* ok because BHs are off */
2076 if (txq->xmit_lock_owner != cpu) {
2078 HARD_TX_LOCK(dev, txq, cpu);
2080 if (!netif_tx_queue_stopped(txq)) {
2081 rc = dev_hard_start_xmit(skb, dev, txq);
2082 if (dev_xmit_complete(rc)) {
2083 HARD_TX_UNLOCK(dev, txq);
2084 goto out;
2087 HARD_TX_UNLOCK(dev, txq);
2088 if (net_ratelimit())
2089 printk(KERN_CRIT "Virtual device %s asks to "
2090 "queue packet!\n", dev->name);
2091 } else {
2092 /* Recursion is detected! It is possible,
2093 * unfortunately */
2094 if (net_ratelimit())
2095 printk(KERN_CRIT "Dead loop on virtual device "
2096 "%s, fix it urgently!\n", dev->name);
2100 rc = -ENETDOWN;
2101 rcu_read_unlock_bh();
2103 out_kfree_skb:
2104 kfree_skb(skb);
2105 return rc;
2106 out:
2107 rcu_read_unlock_bh();
2108 return rc;
2110 EXPORT_SYMBOL(dev_queue_xmit);
2113 /*=======================================================================
2114 Receiver routines
2115 =======================================================================*/
2117 int netdev_max_backlog __read_mostly = 1000;
2118 int netdev_budget __read_mostly = 300;
2119 int weight_p __read_mostly = 64; /* old backlog weight */
2121 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2125 * netif_rx - post buffer to the network code
2126 * @skb: buffer to post
2128 * This function receives a packet from a device driver and queues it for
2129 * the upper (protocol) levels to process. It always succeeds. The buffer
2130 * may be dropped during processing for congestion control or by the
2131 * protocol layers.
2133 * return values:
2134 * NET_RX_SUCCESS (no congestion)
2135 * NET_RX_DROP (packet was dropped)
2139 int netif_rx(struct sk_buff *skb)
2141 struct softnet_data *queue;
2142 unsigned long flags;
2144 /* if netpoll wants it, pretend we never saw it */
2145 if (netpoll_rx(skb))
2146 return NET_RX_DROP;
2148 if (!skb->tstamp.tv64)
2149 net_timestamp(skb);
2152 * The code is rearranged so that the path is the most
2153 * short when CPU is congested, but is still operating.
2155 local_irq_save(flags);
2156 queue = &__get_cpu_var(softnet_data);
2158 __get_cpu_var(netdev_rx_stat).total++;
2159 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2160 if (queue->input_pkt_queue.qlen) {
2161 enqueue:
2162 __skb_queue_tail(&queue->input_pkt_queue, skb);
2163 local_irq_restore(flags);
2164 return NET_RX_SUCCESS;
2167 napi_schedule(&queue->backlog);
2168 goto enqueue;
2171 __get_cpu_var(netdev_rx_stat).dropped++;
2172 local_irq_restore(flags);
2174 kfree_skb(skb);
2175 return NET_RX_DROP;
2177 EXPORT_SYMBOL(netif_rx);
2179 int netif_rx_ni(struct sk_buff *skb)
2181 int err;
2183 preempt_disable();
2184 err = netif_rx(skb);
2185 if (local_softirq_pending())
2186 do_softirq();
2187 preempt_enable();
2189 return err;
2191 EXPORT_SYMBOL(netif_rx_ni);
2193 static void net_tx_action(struct softirq_action *h)
2195 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2197 if (sd->completion_queue) {
2198 struct sk_buff *clist;
2200 local_irq_disable();
2201 clist = sd->completion_queue;
2202 sd->completion_queue = NULL;
2203 local_irq_enable();
2205 while (clist) {
2206 struct sk_buff *skb = clist;
2207 clist = clist->next;
2209 WARN_ON(atomic_read(&skb->users));
2210 __kfree_skb(skb);
2214 if (sd->output_queue) {
2215 struct Qdisc *head;
2217 local_irq_disable();
2218 head = sd->output_queue;
2219 sd->output_queue = NULL;
2220 local_irq_enable();
2222 while (head) {
2223 struct Qdisc *q = head;
2224 spinlock_t *root_lock;
2226 head = head->next_sched;
2228 root_lock = qdisc_lock(q);
2229 if (spin_trylock(root_lock)) {
2230 smp_mb__before_clear_bit();
2231 clear_bit(__QDISC_STATE_SCHED,
2232 &q->state);
2233 qdisc_run(q);
2234 spin_unlock(root_lock);
2235 } else {
2236 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2237 &q->state)) {
2238 __netif_reschedule(q);
2239 } else {
2240 smp_mb__before_clear_bit();
2241 clear_bit(__QDISC_STATE_SCHED,
2242 &q->state);
2249 static inline int deliver_skb(struct sk_buff *skb,
2250 struct packet_type *pt_prev,
2251 struct net_device *orig_dev)
2253 atomic_inc(&skb->users);
2254 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2257 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2259 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2260 /* This hook is defined here for ATM LANE */
2261 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2262 unsigned char *addr) __read_mostly;
2263 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2264 #endif
2267 * If bridge module is loaded call bridging hook.
2268 * returns NULL if packet was consumed.
2270 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2271 struct sk_buff *skb) __read_mostly;
2272 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2274 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2275 struct packet_type **pt_prev, int *ret,
2276 struct net_device *orig_dev)
2278 struct net_bridge_port *port;
2280 if (skb->pkt_type == PACKET_LOOPBACK ||
2281 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2282 return skb;
2284 if (*pt_prev) {
2285 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2286 *pt_prev = NULL;
2289 return br_handle_frame_hook(port, skb);
2291 #else
2292 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2293 #endif
2295 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2296 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2297 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2299 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2300 struct packet_type **pt_prev,
2301 int *ret,
2302 struct net_device *orig_dev)
2304 if (skb->dev->macvlan_port == NULL)
2305 return skb;
2307 if (*pt_prev) {
2308 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2309 *pt_prev = NULL;
2311 return macvlan_handle_frame_hook(skb);
2313 #else
2314 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2315 #endif
2317 #ifdef CONFIG_NET_CLS_ACT
2318 /* TODO: Maybe we should just force sch_ingress to be compiled in
2319 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2320 * a compare and 2 stores extra right now if we dont have it on
2321 * but have CONFIG_NET_CLS_ACT
2322 * NOTE: This doesnt stop any functionality; if you dont have
2323 * the ingress scheduler, you just cant add policies on ingress.
2326 static int ing_filter(struct sk_buff *skb)
2328 struct net_device *dev = skb->dev;
2329 u32 ttl = G_TC_RTTL(skb->tc_verd);
2330 struct netdev_queue *rxq;
2331 int result = TC_ACT_OK;
2332 struct Qdisc *q;
2334 if (MAX_RED_LOOP < ttl++) {
2335 printk(KERN_WARNING
2336 "Redir loop detected Dropping packet (%d->%d)\n",
2337 skb->skb_iif, dev->ifindex);
2338 return TC_ACT_SHOT;
2341 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2342 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2344 rxq = &dev->rx_queue;
2346 q = rxq->qdisc;
2347 if (q != &noop_qdisc) {
2348 spin_lock(qdisc_lock(q));
2349 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2350 result = qdisc_enqueue_root(skb, q);
2351 spin_unlock(qdisc_lock(q));
2354 return result;
2357 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2358 struct packet_type **pt_prev,
2359 int *ret, struct net_device *orig_dev)
2361 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2362 goto out;
2364 if (*pt_prev) {
2365 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2366 *pt_prev = NULL;
2367 } else {
2368 /* Huh? Why does turning on AF_PACKET affect this? */
2369 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2372 switch (ing_filter(skb)) {
2373 case TC_ACT_SHOT:
2374 case TC_ACT_STOLEN:
2375 kfree_skb(skb);
2376 return NULL;
2379 out:
2380 skb->tc_verd = 0;
2381 return skb;
2383 #endif
2386 * netif_nit_deliver - deliver received packets to network taps
2387 * @skb: buffer
2389 * This function is used to deliver incoming packets to network
2390 * taps. It should be used when the normal netif_receive_skb path
2391 * is bypassed, for example because of VLAN acceleration.
2393 void netif_nit_deliver(struct sk_buff *skb)
2395 struct packet_type *ptype;
2397 if (list_empty(&ptype_all))
2398 return;
2400 skb_reset_network_header(skb);
2401 skb_reset_transport_header(skb);
2402 skb->mac_len = skb->network_header - skb->mac_header;
2404 rcu_read_lock();
2405 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2406 if (!ptype->dev || ptype->dev == skb->dev)
2407 deliver_skb(skb, ptype, skb->dev);
2409 rcu_read_unlock();
2413 * netif_receive_skb - process receive buffer from network
2414 * @skb: buffer to process
2416 * netif_receive_skb() is the main receive data processing function.
2417 * It always succeeds. The buffer may be dropped during processing
2418 * for congestion control or by the protocol layers.
2420 * This function may only be called from softirq context and interrupts
2421 * should be enabled.
2423 * Return values (usually ignored):
2424 * NET_RX_SUCCESS: no congestion
2425 * NET_RX_DROP: packet was dropped
2427 int netif_receive_skb(struct sk_buff *skb)
2429 struct packet_type *ptype, *pt_prev;
2430 struct net_device *orig_dev;
2431 struct net_device *master;
2432 struct net_device *null_or_orig;
2433 int ret = NET_RX_DROP;
2434 __be16 type;
2436 if (!skb->tstamp.tv64)
2437 net_timestamp(skb);
2439 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2440 return NET_RX_SUCCESS;
2442 /* if we've gotten here through NAPI, check netpoll */
2443 if (netpoll_receive_skb(skb))
2444 return NET_RX_DROP;
2446 if (!skb->skb_iif)
2447 skb->skb_iif = skb->dev->ifindex;
2449 null_or_orig = NULL;
2450 orig_dev = skb->dev;
2451 master = ACCESS_ONCE(orig_dev->master);
2452 if (master) {
2453 if (skb_bond_should_drop(skb, master))
2454 null_or_orig = orig_dev; /* deliver only exact match */
2455 else
2456 skb->dev = master;
2459 __get_cpu_var(netdev_rx_stat).total++;
2461 skb_reset_network_header(skb);
2462 skb_reset_transport_header(skb);
2463 skb->mac_len = skb->network_header - skb->mac_header;
2465 pt_prev = NULL;
2467 rcu_read_lock();
2469 #ifdef CONFIG_NET_CLS_ACT
2470 if (skb->tc_verd & TC_NCLS) {
2471 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2472 goto ncls;
2474 #endif
2476 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2477 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2478 ptype->dev == orig_dev) {
2479 if (pt_prev)
2480 ret = deliver_skb(skb, pt_prev, orig_dev);
2481 pt_prev = ptype;
2485 #ifdef CONFIG_NET_CLS_ACT
2486 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2487 if (!skb)
2488 goto out;
2489 ncls:
2490 #endif
2492 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2493 if (!skb)
2494 goto out;
2495 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2496 if (!skb)
2497 goto out;
2499 type = skb->protocol;
2500 list_for_each_entry_rcu(ptype,
2501 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2502 if (ptype->type == type &&
2503 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2504 ptype->dev == orig_dev)) {
2505 if (pt_prev)
2506 ret = deliver_skb(skb, pt_prev, orig_dev);
2507 pt_prev = ptype;
2511 if (pt_prev) {
2512 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2513 } else {
2514 kfree_skb(skb);
2515 /* Jamal, now you will not able to escape explaining
2516 * me how you were going to use this. :-)
2518 ret = NET_RX_DROP;
2521 out:
2522 rcu_read_unlock();
2523 return ret;
2525 EXPORT_SYMBOL(netif_receive_skb);
2527 /* Network device is going away, flush any packets still pending */
2528 static void flush_backlog(void *arg)
2530 struct net_device *dev = arg;
2531 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2532 struct sk_buff *skb, *tmp;
2534 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2535 if (skb->dev == dev) {
2536 __skb_unlink(skb, &queue->input_pkt_queue);
2537 kfree_skb(skb);
2541 static int napi_gro_complete(struct sk_buff *skb)
2543 struct packet_type *ptype;
2544 __be16 type = skb->protocol;
2545 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2546 int err = -ENOENT;
2548 if (NAPI_GRO_CB(skb)->count == 1) {
2549 skb_shinfo(skb)->gso_size = 0;
2550 goto out;
2553 rcu_read_lock();
2554 list_for_each_entry_rcu(ptype, head, list) {
2555 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2556 continue;
2558 err = ptype->gro_complete(skb);
2559 break;
2561 rcu_read_unlock();
2563 if (err) {
2564 WARN_ON(&ptype->list == head);
2565 kfree_skb(skb);
2566 return NET_RX_SUCCESS;
2569 out:
2570 return netif_receive_skb(skb);
2573 void napi_gro_flush(struct napi_struct *napi)
2575 struct sk_buff *skb, *next;
2577 for (skb = napi->gro_list; skb; skb = next) {
2578 next = skb->next;
2579 skb->next = NULL;
2580 napi_gro_complete(skb);
2583 napi->gro_count = 0;
2584 napi->gro_list = NULL;
2586 EXPORT_SYMBOL(napi_gro_flush);
2588 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2590 struct sk_buff **pp = NULL;
2591 struct packet_type *ptype;
2592 __be16 type = skb->protocol;
2593 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2594 int same_flow;
2595 int mac_len;
2596 enum gro_result ret;
2598 if (!(skb->dev->features & NETIF_F_GRO))
2599 goto normal;
2601 if (skb_is_gso(skb) || skb_has_frags(skb))
2602 goto normal;
2604 rcu_read_lock();
2605 list_for_each_entry_rcu(ptype, head, list) {
2606 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2607 continue;
2609 skb_set_network_header(skb, skb_gro_offset(skb));
2610 mac_len = skb->network_header - skb->mac_header;
2611 skb->mac_len = mac_len;
2612 NAPI_GRO_CB(skb)->same_flow = 0;
2613 NAPI_GRO_CB(skb)->flush = 0;
2614 NAPI_GRO_CB(skb)->free = 0;
2616 pp = ptype->gro_receive(&napi->gro_list, skb);
2617 break;
2619 rcu_read_unlock();
2621 if (&ptype->list == head)
2622 goto normal;
2624 same_flow = NAPI_GRO_CB(skb)->same_flow;
2625 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2627 if (pp) {
2628 struct sk_buff *nskb = *pp;
2630 *pp = nskb->next;
2631 nskb->next = NULL;
2632 napi_gro_complete(nskb);
2633 napi->gro_count--;
2636 if (same_flow)
2637 goto ok;
2639 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2640 goto normal;
2642 napi->gro_count++;
2643 NAPI_GRO_CB(skb)->count = 1;
2644 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2645 skb->next = napi->gro_list;
2646 napi->gro_list = skb;
2647 ret = GRO_HELD;
2649 pull:
2650 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2651 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2653 BUG_ON(skb->end - skb->tail < grow);
2655 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2657 skb->tail += grow;
2658 skb->data_len -= grow;
2660 skb_shinfo(skb)->frags[0].page_offset += grow;
2661 skb_shinfo(skb)->frags[0].size -= grow;
2663 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2664 put_page(skb_shinfo(skb)->frags[0].page);
2665 memmove(skb_shinfo(skb)->frags,
2666 skb_shinfo(skb)->frags + 1,
2667 --skb_shinfo(skb)->nr_frags);
2672 return ret;
2674 normal:
2675 ret = GRO_NORMAL;
2676 goto pull;
2678 EXPORT_SYMBOL(dev_gro_receive);
2680 static gro_result_t
2681 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2683 struct sk_buff *p;
2685 if (netpoll_rx_on(skb))
2686 return GRO_NORMAL;
2688 for (p = napi->gro_list; p; p = p->next) {
2689 NAPI_GRO_CB(p)->same_flow =
2690 (p->dev == skb->dev) &&
2691 !compare_ether_header(skb_mac_header(p),
2692 skb_gro_mac_header(skb));
2693 NAPI_GRO_CB(p)->flush = 0;
2696 return dev_gro_receive(napi, skb);
2699 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
2701 switch (ret) {
2702 case GRO_NORMAL:
2703 if (netif_receive_skb(skb))
2704 ret = GRO_DROP;
2705 break;
2707 case GRO_DROP:
2708 case GRO_MERGED_FREE:
2709 kfree_skb(skb);
2710 break;
2712 case GRO_HELD:
2713 case GRO_MERGED:
2714 break;
2717 return ret;
2719 EXPORT_SYMBOL(napi_skb_finish);
2721 void skb_gro_reset_offset(struct sk_buff *skb)
2723 NAPI_GRO_CB(skb)->data_offset = 0;
2724 NAPI_GRO_CB(skb)->frag0 = NULL;
2725 NAPI_GRO_CB(skb)->frag0_len = 0;
2727 if (skb->mac_header == skb->tail &&
2728 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2729 NAPI_GRO_CB(skb)->frag0 =
2730 page_address(skb_shinfo(skb)->frags[0].page) +
2731 skb_shinfo(skb)->frags[0].page_offset;
2732 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2735 EXPORT_SYMBOL(skb_gro_reset_offset);
2737 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2739 skb_gro_reset_offset(skb);
2741 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2743 EXPORT_SYMBOL(napi_gro_receive);
2745 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2747 __skb_pull(skb, skb_headlen(skb));
2748 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2750 napi->skb = skb;
2752 EXPORT_SYMBOL(napi_reuse_skb);
2754 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2756 struct sk_buff *skb = napi->skb;
2758 if (!skb) {
2759 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2760 if (skb)
2761 napi->skb = skb;
2763 return skb;
2765 EXPORT_SYMBOL(napi_get_frags);
2767 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
2768 gro_result_t ret)
2770 switch (ret) {
2771 case GRO_NORMAL:
2772 case GRO_HELD:
2773 skb->protocol = eth_type_trans(skb, skb->dev);
2775 if (ret == GRO_HELD)
2776 skb_gro_pull(skb, -ETH_HLEN);
2777 else if (netif_receive_skb(skb))
2778 ret = GRO_DROP;
2779 break;
2781 case GRO_DROP:
2782 case GRO_MERGED_FREE:
2783 napi_reuse_skb(napi, skb);
2784 break;
2786 case GRO_MERGED:
2787 break;
2790 return ret;
2792 EXPORT_SYMBOL(napi_frags_finish);
2794 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2796 struct sk_buff *skb = napi->skb;
2797 struct ethhdr *eth;
2798 unsigned int hlen;
2799 unsigned int off;
2801 napi->skb = NULL;
2803 skb_reset_mac_header(skb);
2804 skb_gro_reset_offset(skb);
2806 off = skb_gro_offset(skb);
2807 hlen = off + sizeof(*eth);
2808 eth = skb_gro_header_fast(skb, off);
2809 if (skb_gro_header_hard(skb, hlen)) {
2810 eth = skb_gro_header_slow(skb, hlen, off);
2811 if (unlikely(!eth)) {
2812 napi_reuse_skb(napi, skb);
2813 skb = NULL;
2814 goto out;
2818 skb_gro_pull(skb, sizeof(*eth));
2821 * This works because the only protocols we care about don't require
2822 * special handling. We'll fix it up properly at the end.
2824 skb->protocol = eth->h_proto;
2826 out:
2827 return skb;
2829 EXPORT_SYMBOL(napi_frags_skb);
2831 gro_result_t napi_gro_frags(struct napi_struct *napi)
2833 struct sk_buff *skb = napi_frags_skb(napi);
2835 if (!skb)
2836 return GRO_DROP;
2838 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2840 EXPORT_SYMBOL(napi_gro_frags);
2842 static int process_backlog(struct napi_struct *napi, int quota)
2844 int work = 0;
2845 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2846 unsigned long start_time = jiffies;
2848 napi->weight = weight_p;
2849 do {
2850 struct sk_buff *skb;
2852 local_irq_disable();
2853 skb = __skb_dequeue(&queue->input_pkt_queue);
2854 if (!skb) {
2855 __napi_complete(napi);
2856 local_irq_enable();
2857 break;
2859 local_irq_enable();
2861 netif_receive_skb(skb);
2862 } while (++work < quota && jiffies == start_time);
2864 return work;
2868 * __napi_schedule - schedule for receive
2869 * @n: entry to schedule
2871 * The entry's receive function will be scheduled to run
2873 void __napi_schedule(struct napi_struct *n)
2875 unsigned long flags;
2877 local_irq_save(flags);
2878 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2879 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2880 local_irq_restore(flags);
2882 EXPORT_SYMBOL(__napi_schedule);
2884 void __napi_complete(struct napi_struct *n)
2886 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2887 BUG_ON(n->gro_list);
2889 list_del(&n->poll_list);
2890 smp_mb__before_clear_bit();
2891 clear_bit(NAPI_STATE_SCHED, &n->state);
2893 EXPORT_SYMBOL(__napi_complete);
2895 void napi_complete(struct napi_struct *n)
2897 unsigned long flags;
2900 * don't let napi dequeue from the cpu poll list
2901 * just in case its running on a different cpu
2903 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2904 return;
2906 napi_gro_flush(n);
2907 local_irq_save(flags);
2908 __napi_complete(n);
2909 local_irq_restore(flags);
2911 EXPORT_SYMBOL(napi_complete);
2913 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2914 int (*poll)(struct napi_struct *, int), int weight)
2916 INIT_LIST_HEAD(&napi->poll_list);
2917 napi->gro_count = 0;
2918 napi->gro_list = NULL;
2919 napi->skb = NULL;
2920 napi->poll = poll;
2921 napi->weight = weight;
2922 list_add(&napi->dev_list, &dev->napi_list);
2923 napi->dev = dev;
2924 #ifdef CONFIG_NETPOLL
2925 spin_lock_init(&napi->poll_lock);
2926 napi->poll_owner = -1;
2927 #endif
2928 set_bit(NAPI_STATE_SCHED, &napi->state);
2930 EXPORT_SYMBOL(netif_napi_add);
2932 void netif_napi_del(struct napi_struct *napi)
2934 struct sk_buff *skb, *next;
2936 list_del_init(&napi->dev_list);
2937 napi_free_frags(napi);
2939 for (skb = napi->gro_list; skb; skb = next) {
2940 next = skb->next;
2941 skb->next = NULL;
2942 kfree_skb(skb);
2945 napi->gro_list = NULL;
2946 napi->gro_count = 0;
2948 EXPORT_SYMBOL(netif_napi_del);
2951 static void net_rx_action(struct softirq_action *h)
2953 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2954 unsigned long time_limit = jiffies + 2;
2955 int budget = netdev_budget;
2956 void *have;
2958 local_irq_disable();
2960 while (!list_empty(list)) {
2961 struct napi_struct *n;
2962 int work, weight;
2964 /* If softirq window is exhuasted then punt.
2965 * Allow this to run for 2 jiffies since which will allow
2966 * an average latency of 1.5/HZ.
2968 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2969 goto softnet_break;
2971 local_irq_enable();
2973 /* Even though interrupts have been re-enabled, this
2974 * access is safe because interrupts can only add new
2975 * entries to the tail of this list, and only ->poll()
2976 * calls can remove this head entry from the list.
2978 n = list_entry(list->next, struct napi_struct, poll_list);
2980 have = netpoll_poll_lock(n);
2982 weight = n->weight;
2984 /* This NAPI_STATE_SCHED test is for avoiding a race
2985 * with netpoll's poll_napi(). Only the entity which
2986 * obtains the lock and sees NAPI_STATE_SCHED set will
2987 * actually make the ->poll() call. Therefore we avoid
2988 * accidently calling ->poll() when NAPI is not scheduled.
2990 work = 0;
2991 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
2992 work = n->poll(n, weight);
2993 trace_napi_poll(n);
2996 WARN_ON_ONCE(work > weight);
2998 budget -= work;
3000 local_irq_disable();
3002 /* Drivers must not modify the NAPI state if they
3003 * consume the entire weight. In such cases this code
3004 * still "owns" the NAPI instance and therefore can
3005 * move the instance around on the list at-will.
3007 if (unlikely(work == weight)) {
3008 if (unlikely(napi_disable_pending(n))) {
3009 local_irq_enable();
3010 napi_complete(n);
3011 local_irq_disable();
3012 } else
3013 list_move_tail(&n->poll_list, list);
3016 netpoll_poll_unlock(have);
3018 out:
3019 local_irq_enable();
3021 #ifdef CONFIG_NET_DMA
3023 * There may not be any more sk_buffs coming right now, so push
3024 * any pending DMA copies to hardware
3026 dma_issue_pending_all();
3027 #endif
3029 return;
3031 softnet_break:
3032 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3033 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3034 goto out;
3037 static gifconf_func_t *gifconf_list[NPROTO];
3040 * register_gifconf - register a SIOCGIF handler
3041 * @family: Address family
3042 * @gifconf: Function handler
3044 * Register protocol dependent address dumping routines. The handler
3045 * that is passed must not be freed or reused until it has been replaced
3046 * by another handler.
3048 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3050 if (family >= NPROTO)
3051 return -EINVAL;
3052 gifconf_list[family] = gifconf;
3053 return 0;
3055 EXPORT_SYMBOL(register_gifconf);
3059 * Map an interface index to its name (SIOCGIFNAME)
3063 * We need this ioctl for efficient implementation of the
3064 * if_indextoname() function required by the IPv6 API. Without
3065 * it, we would have to search all the interfaces to find a
3066 * match. --pb
3069 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3071 struct net_device *dev;
3072 struct ifreq ifr;
3075 * Fetch the caller's info block.
3078 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3079 return -EFAULT;
3081 rcu_read_lock();
3082 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3083 if (!dev) {
3084 rcu_read_unlock();
3085 return -ENODEV;
3088 strcpy(ifr.ifr_name, dev->name);
3089 rcu_read_unlock();
3091 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3092 return -EFAULT;
3093 return 0;
3097 * Perform a SIOCGIFCONF call. This structure will change
3098 * size eventually, and there is nothing I can do about it.
3099 * Thus we will need a 'compatibility mode'.
3102 static int dev_ifconf(struct net *net, char __user *arg)
3104 struct ifconf ifc;
3105 struct net_device *dev;
3106 char __user *pos;
3107 int len;
3108 int total;
3109 int i;
3112 * Fetch the caller's info block.
3115 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3116 return -EFAULT;
3118 pos = ifc.ifc_buf;
3119 len = ifc.ifc_len;
3122 * Loop over the interfaces, and write an info block for each.
3125 total = 0;
3126 for_each_netdev(net, dev) {
3127 for (i = 0; i < NPROTO; i++) {
3128 if (gifconf_list[i]) {
3129 int done;
3130 if (!pos)
3131 done = gifconf_list[i](dev, NULL, 0);
3132 else
3133 done = gifconf_list[i](dev, pos + total,
3134 len - total);
3135 if (done < 0)
3136 return -EFAULT;
3137 total += done;
3143 * All done. Write the updated control block back to the caller.
3145 ifc.ifc_len = total;
3148 * Both BSD and Solaris return 0 here, so we do too.
3150 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3153 #ifdef CONFIG_PROC_FS
3155 * This is invoked by the /proc filesystem handler to display a device
3156 * in detail.
3158 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3159 __acquires(RCU)
3161 struct net *net = seq_file_net(seq);
3162 loff_t off;
3163 struct net_device *dev;
3165 rcu_read_lock();
3166 if (!*pos)
3167 return SEQ_START_TOKEN;
3169 off = 1;
3170 for_each_netdev_rcu(net, dev)
3171 if (off++ == *pos)
3172 return dev;
3174 return NULL;
3177 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3179 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3180 first_net_device(seq_file_net(seq)) :
3181 next_net_device((struct net_device *)v);
3183 ++*pos;
3184 return rcu_dereference(dev);
3187 void dev_seq_stop(struct seq_file *seq, void *v)
3188 __releases(RCU)
3190 rcu_read_unlock();
3193 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3195 const struct net_device_stats *stats = dev_get_stats(dev);
3197 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3198 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3199 dev->name, stats->rx_bytes, stats->rx_packets,
3200 stats->rx_errors,
3201 stats->rx_dropped + stats->rx_missed_errors,
3202 stats->rx_fifo_errors,
3203 stats->rx_length_errors + stats->rx_over_errors +
3204 stats->rx_crc_errors + stats->rx_frame_errors,
3205 stats->rx_compressed, stats->multicast,
3206 stats->tx_bytes, stats->tx_packets,
3207 stats->tx_errors, stats->tx_dropped,
3208 stats->tx_fifo_errors, stats->collisions,
3209 stats->tx_carrier_errors +
3210 stats->tx_aborted_errors +
3211 stats->tx_window_errors +
3212 stats->tx_heartbeat_errors,
3213 stats->tx_compressed);
3217 * Called from the PROCfs module. This now uses the new arbitrary sized
3218 * /proc/net interface to create /proc/net/dev
3220 static int dev_seq_show(struct seq_file *seq, void *v)
3222 if (v == SEQ_START_TOKEN)
3223 seq_puts(seq, "Inter-| Receive "
3224 " | Transmit\n"
3225 " face |bytes packets errs drop fifo frame "
3226 "compressed multicast|bytes packets errs "
3227 "drop fifo colls carrier compressed\n");
3228 else
3229 dev_seq_printf_stats(seq, v);
3230 return 0;
3233 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3235 struct netif_rx_stats *rc = NULL;
3237 while (*pos < nr_cpu_ids)
3238 if (cpu_online(*pos)) {
3239 rc = &per_cpu(netdev_rx_stat, *pos);
3240 break;
3241 } else
3242 ++*pos;
3243 return rc;
3246 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3248 return softnet_get_online(pos);
3251 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3253 ++*pos;
3254 return softnet_get_online(pos);
3257 static void softnet_seq_stop(struct seq_file *seq, void *v)
3261 static int softnet_seq_show(struct seq_file *seq, void *v)
3263 struct netif_rx_stats *s = v;
3265 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3266 s->total, s->dropped, s->time_squeeze, 0,
3267 0, 0, 0, 0, /* was fastroute */
3268 s->cpu_collision);
3269 return 0;
3272 static const struct seq_operations dev_seq_ops = {
3273 .start = dev_seq_start,
3274 .next = dev_seq_next,
3275 .stop = dev_seq_stop,
3276 .show = dev_seq_show,
3279 static int dev_seq_open(struct inode *inode, struct file *file)
3281 return seq_open_net(inode, file, &dev_seq_ops,
3282 sizeof(struct seq_net_private));
3285 static const struct file_operations dev_seq_fops = {
3286 .owner = THIS_MODULE,
3287 .open = dev_seq_open,
3288 .read = seq_read,
3289 .llseek = seq_lseek,
3290 .release = seq_release_net,
3293 static const struct seq_operations softnet_seq_ops = {
3294 .start = softnet_seq_start,
3295 .next = softnet_seq_next,
3296 .stop = softnet_seq_stop,
3297 .show = softnet_seq_show,
3300 static int softnet_seq_open(struct inode *inode, struct file *file)
3302 return seq_open(file, &softnet_seq_ops);
3305 static const struct file_operations softnet_seq_fops = {
3306 .owner = THIS_MODULE,
3307 .open = softnet_seq_open,
3308 .read = seq_read,
3309 .llseek = seq_lseek,
3310 .release = seq_release,
3313 static void *ptype_get_idx(loff_t pos)
3315 struct packet_type *pt = NULL;
3316 loff_t i = 0;
3317 int t;
3319 list_for_each_entry_rcu(pt, &ptype_all, list) {
3320 if (i == pos)
3321 return pt;
3322 ++i;
3325 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3326 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3327 if (i == pos)
3328 return pt;
3329 ++i;
3332 return NULL;
3335 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3336 __acquires(RCU)
3338 rcu_read_lock();
3339 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3342 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3344 struct packet_type *pt;
3345 struct list_head *nxt;
3346 int hash;
3348 ++*pos;
3349 if (v == SEQ_START_TOKEN)
3350 return ptype_get_idx(0);
3352 pt = v;
3353 nxt = pt->list.next;
3354 if (pt->type == htons(ETH_P_ALL)) {
3355 if (nxt != &ptype_all)
3356 goto found;
3357 hash = 0;
3358 nxt = ptype_base[0].next;
3359 } else
3360 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3362 while (nxt == &ptype_base[hash]) {
3363 if (++hash >= PTYPE_HASH_SIZE)
3364 return NULL;
3365 nxt = ptype_base[hash].next;
3367 found:
3368 return list_entry(nxt, struct packet_type, list);
3371 static void ptype_seq_stop(struct seq_file *seq, void *v)
3372 __releases(RCU)
3374 rcu_read_unlock();
3377 static int ptype_seq_show(struct seq_file *seq, void *v)
3379 struct packet_type *pt = v;
3381 if (v == SEQ_START_TOKEN)
3382 seq_puts(seq, "Type Device Function\n");
3383 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3384 if (pt->type == htons(ETH_P_ALL))
3385 seq_puts(seq, "ALL ");
3386 else
3387 seq_printf(seq, "%04x", ntohs(pt->type));
3389 seq_printf(seq, " %-8s %pF\n",
3390 pt->dev ? pt->dev->name : "", pt->func);
3393 return 0;
3396 static const struct seq_operations ptype_seq_ops = {
3397 .start = ptype_seq_start,
3398 .next = ptype_seq_next,
3399 .stop = ptype_seq_stop,
3400 .show = ptype_seq_show,
3403 static int ptype_seq_open(struct inode *inode, struct file *file)
3405 return seq_open_net(inode, file, &ptype_seq_ops,
3406 sizeof(struct seq_net_private));
3409 static const struct file_operations ptype_seq_fops = {
3410 .owner = THIS_MODULE,
3411 .open = ptype_seq_open,
3412 .read = seq_read,
3413 .llseek = seq_lseek,
3414 .release = seq_release_net,
3418 static int __net_init dev_proc_net_init(struct net *net)
3420 int rc = -ENOMEM;
3422 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3423 goto out;
3424 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3425 goto out_dev;
3426 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3427 goto out_softnet;
3429 if (wext_proc_init(net))
3430 goto out_ptype;
3431 rc = 0;
3432 out:
3433 return rc;
3434 out_ptype:
3435 proc_net_remove(net, "ptype");
3436 out_softnet:
3437 proc_net_remove(net, "softnet_stat");
3438 out_dev:
3439 proc_net_remove(net, "dev");
3440 goto out;
3443 static void __net_exit dev_proc_net_exit(struct net *net)
3445 wext_proc_exit(net);
3447 proc_net_remove(net, "ptype");
3448 proc_net_remove(net, "softnet_stat");
3449 proc_net_remove(net, "dev");
3452 static struct pernet_operations __net_initdata dev_proc_ops = {
3453 .init = dev_proc_net_init,
3454 .exit = dev_proc_net_exit,
3457 static int __init dev_proc_init(void)
3459 return register_pernet_subsys(&dev_proc_ops);
3461 #else
3462 #define dev_proc_init() 0
3463 #endif /* CONFIG_PROC_FS */
3467 * netdev_set_master - set up master/slave pair
3468 * @slave: slave device
3469 * @master: new master device
3471 * Changes the master device of the slave. Pass %NULL to break the
3472 * bonding. The caller must hold the RTNL semaphore. On a failure
3473 * a negative errno code is returned. On success the reference counts
3474 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3475 * function returns zero.
3477 int netdev_set_master(struct net_device *slave, struct net_device *master)
3479 struct net_device *old = slave->master;
3481 ASSERT_RTNL();
3483 if (master) {
3484 if (old)
3485 return -EBUSY;
3486 dev_hold(master);
3489 slave->master = master;
3491 synchronize_net();
3493 if (old)
3494 dev_put(old);
3496 if (master)
3497 slave->flags |= IFF_SLAVE;
3498 else
3499 slave->flags &= ~IFF_SLAVE;
3501 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3502 return 0;
3504 EXPORT_SYMBOL(netdev_set_master);
3506 static void dev_change_rx_flags(struct net_device *dev, int flags)
3508 const struct net_device_ops *ops = dev->netdev_ops;
3510 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3511 ops->ndo_change_rx_flags(dev, flags);
3514 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3516 unsigned short old_flags = dev->flags;
3517 uid_t uid;
3518 gid_t gid;
3520 ASSERT_RTNL();
3522 dev->flags |= IFF_PROMISC;
3523 dev->promiscuity += inc;
3524 if (dev->promiscuity == 0) {
3526 * Avoid overflow.
3527 * If inc causes overflow, untouch promisc and return error.
3529 if (inc < 0)
3530 dev->flags &= ~IFF_PROMISC;
3531 else {
3532 dev->promiscuity -= inc;
3533 printk(KERN_WARNING "%s: promiscuity touches roof, "
3534 "set promiscuity failed, promiscuity feature "
3535 "of device might be broken.\n", dev->name);
3536 return -EOVERFLOW;
3539 if (dev->flags != old_flags) {
3540 printk(KERN_INFO "device %s %s promiscuous mode\n",
3541 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3542 "left");
3543 if (audit_enabled) {
3544 current_uid_gid(&uid, &gid);
3545 audit_log(current->audit_context, GFP_ATOMIC,
3546 AUDIT_ANOM_PROMISCUOUS,
3547 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3548 dev->name, (dev->flags & IFF_PROMISC),
3549 (old_flags & IFF_PROMISC),
3550 audit_get_loginuid(current),
3551 uid, gid,
3552 audit_get_sessionid(current));
3555 dev_change_rx_flags(dev, IFF_PROMISC);
3557 return 0;
3561 * dev_set_promiscuity - update promiscuity count on a device
3562 * @dev: device
3563 * @inc: modifier
3565 * Add or remove promiscuity from a device. While the count in the device
3566 * remains above zero the interface remains promiscuous. Once it hits zero
3567 * the device reverts back to normal filtering operation. A negative inc
3568 * value is used to drop promiscuity on the device.
3569 * Return 0 if successful or a negative errno code on error.
3571 int dev_set_promiscuity(struct net_device *dev, int inc)
3573 unsigned short old_flags = dev->flags;
3574 int err;
3576 err = __dev_set_promiscuity(dev, inc);
3577 if (err < 0)
3578 return err;
3579 if (dev->flags != old_flags)
3580 dev_set_rx_mode(dev);
3581 return err;
3583 EXPORT_SYMBOL(dev_set_promiscuity);
3586 * dev_set_allmulti - update allmulti count on a device
3587 * @dev: device
3588 * @inc: modifier
3590 * Add or remove reception of all multicast frames to a device. While the
3591 * count in the device remains above zero the interface remains listening
3592 * to all interfaces. Once it hits zero the device reverts back to normal
3593 * filtering operation. A negative @inc value is used to drop the counter
3594 * when releasing a resource needing all multicasts.
3595 * Return 0 if successful or a negative errno code on error.
3598 int dev_set_allmulti(struct net_device *dev, int inc)
3600 unsigned short old_flags = dev->flags;
3602 ASSERT_RTNL();
3604 dev->flags |= IFF_ALLMULTI;
3605 dev->allmulti += inc;
3606 if (dev->allmulti == 0) {
3608 * Avoid overflow.
3609 * If inc causes overflow, untouch allmulti and return error.
3611 if (inc < 0)
3612 dev->flags &= ~IFF_ALLMULTI;
3613 else {
3614 dev->allmulti -= inc;
3615 printk(KERN_WARNING "%s: allmulti touches roof, "
3616 "set allmulti failed, allmulti feature of "
3617 "device might be broken.\n", dev->name);
3618 return -EOVERFLOW;
3621 if (dev->flags ^ old_flags) {
3622 dev_change_rx_flags(dev, IFF_ALLMULTI);
3623 dev_set_rx_mode(dev);
3625 return 0;
3627 EXPORT_SYMBOL(dev_set_allmulti);
3630 * Upload unicast and multicast address lists to device and
3631 * configure RX filtering. When the device doesn't support unicast
3632 * filtering it is put in promiscuous mode while unicast addresses
3633 * are present.
3635 void __dev_set_rx_mode(struct net_device *dev)
3637 const struct net_device_ops *ops = dev->netdev_ops;
3639 /* dev_open will call this function so the list will stay sane. */
3640 if (!(dev->flags&IFF_UP))
3641 return;
3643 if (!netif_device_present(dev))
3644 return;
3646 if (ops->ndo_set_rx_mode)
3647 ops->ndo_set_rx_mode(dev);
3648 else {
3649 /* Unicast addresses changes may only happen under the rtnl,
3650 * therefore calling __dev_set_promiscuity here is safe.
3652 if (dev->uc.count > 0 && !dev->uc_promisc) {
3653 __dev_set_promiscuity(dev, 1);
3654 dev->uc_promisc = 1;
3655 } else if (dev->uc.count == 0 && dev->uc_promisc) {
3656 __dev_set_promiscuity(dev, -1);
3657 dev->uc_promisc = 0;
3660 if (ops->ndo_set_multicast_list)
3661 ops->ndo_set_multicast_list(dev);
3665 void dev_set_rx_mode(struct net_device *dev)
3667 netif_addr_lock_bh(dev);
3668 __dev_set_rx_mode(dev);
3669 netif_addr_unlock_bh(dev);
3672 /* hw addresses list handling functions */
3674 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3675 int addr_len, unsigned char addr_type)
3677 struct netdev_hw_addr *ha;
3678 int alloc_size;
3680 if (addr_len > MAX_ADDR_LEN)
3681 return -EINVAL;
3683 list_for_each_entry(ha, &list->list, list) {
3684 if (!memcmp(ha->addr, addr, addr_len) &&
3685 ha->type == addr_type) {
3686 ha->refcount++;
3687 return 0;
3692 alloc_size = sizeof(*ha);
3693 if (alloc_size < L1_CACHE_BYTES)
3694 alloc_size = L1_CACHE_BYTES;
3695 ha = kmalloc(alloc_size, GFP_ATOMIC);
3696 if (!ha)
3697 return -ENOMEM;
3698 memcpy(ha->addr, addr, addr_len);
3699 ha->type = addr_type;
3700 ha->refcount = 1;
3701 ha->synced = false;
3702 list_add_tail_rcu(&ha->list, &list->list);
3703 list->count++;
3704 return 0;
3707 static void ha_rcu_free(struct rcu_head *head)
3709 struct netdev_hw_addr *ha;
3711 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3712 kfree(ha);
3715 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3716 int addr_len, unsigned char addr_type)
3718 struct netdev_hw_addr *ha;
3720 list_for_each_entry(ha, &list->list, list) {
3721 if (!memcmp(ha->addr, addr, addr_len) &&
3722 (ha->type == addr_type || !addr_type)) {
3723 if (--ha->refcount)
3724 return 0;
3725 list_del_rcu(&ha->list);
3726 call_rcu(&ha->rcu_head, ha_rcu_free);
3727 list->count--;
3728 return 0;
3731 return -ENOENT;
3734 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3735 struct netdev_hw_addr_list *from_list,
3736 int addr_len,
3737 unsigned char addr_type)
3739 int err;
3740 struct netdev_hw_addr *ha, *ha2;
3741 unsigned char type;
3743 list_for_each_entry(ha, &from_list->list, list) {
3744 type = addr_type ? addr_type : ha->type;
3745 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3746 if (err)
3747 goto unroll;
3749 return 0;
3751 unroll:
3752 list_for_each_entry(ha2, &from_list->list, list) {
3753 if (ha2 == ha)
3754 break;
3755 type = addr_type ? addr_type : ha2->type;
3756 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3758 return err;
3761 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3762 struct netdev_hw_addr_list *from_list,
3763 int addr_len,
3764 unsigned char addr_type)
3766 struct netdev_hw_addr *ha;
3767 unsigned char type;
3769 list_for_each_entry(ha, &from_list->list, list) {
3770 type = addr_type ? addr_type : ha->type;
3771 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3775 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3776 struct netdev_hw_addr_list *from_list,
3777 int addr_len)
3779 int err = 0;
3780 struct netdev_hw_addr *ha, *tmp;
3782 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3783 if (!ha->synced) {
3784 err = __hw_addr_add(to_list, ha->addr,
3785 addr_len, ha->type);
3786 if (err)
3787 break;
3788 ha->synced = true;
3789 ha->refcount++;
3790 } else if (ha->refcount == 1) {
3791 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3792 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3795 return err;
3798 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3799 struct netdev_hw_addr_list *from_list,
3800 int addr_len)
3802 struct netdev_hw_addr *ha, *tmp;
3804 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3805 if (ha->synced) {
3806 __hw_addr_del(to_list, ha->addr,
3807 addr_len, ha->type);
3808 ha->synced = false;
3809 __hw_addr_del(from_list, ha->addr,
3810 addr_len, ha->type);
3815 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3817 struct netdev_hw_addr *ha, *tmp;
3819 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3820 list_del_rcu(&ha->list);
3821 call_rcu(&ha->rcu_head, ha_rcu_free);
3823 list->count = 0;
3826 static void __hw_addr_init(struct netdev_hw_addr_list *list)
3828 INIT_LIST_HEAD(&list->list);
3829 list->count = 0;
3832 /* Device addresses handling functions */
3834 static void dev_addr_flush(struct net_device *dev)
3836 /* rtnl_mutex must be held here */
3838 __hw_addr_flush(&dev->dev_addrs);
3839 dev->dev_addr = NULL;
3842 static int dev_addr_init(struct net_device *dev)
3844 unsigned char addr[MAX_ADDR_LEN];
3845 struct netdev_hw_addr *ha;
3846 int err;
3848 /* rtnl_mutex must be held here */
3850 __hw_addr_init(&dev->dev_addrs);
3851 memset(addr, 0, sizeof(addr));
3852 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3853 NETDEV_HW_ADDR_T_LAN);
3854 if (!err) {
3856 * Get the first (previously created) address from the list
3857 * and set dev_addr pointer to this location.
3859 ha = list_first_entry(&dev->dev_addrs.list,
3860 struct netdev_hw_addr, list);
3861 dev->dev_addr = ha->addr;
3863 return err;
3867 * dev_addr_add - Add a device address
3868 * @dev: device
3869 * @addr: address to add
3870 * @addr_type: address type
3872 * Add a device address to the device or increase the reference count if
3873 * it already exists.
3875 * The caller must hold the rtnl_mutex.
3877 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3878 unsigned char addr_type)
3880 int err;
3882 ASSERT_RTNL();
3884 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3885 if (!err)
3886 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3887 return err;
3889 EXPORT_SYMBOL(dev_addr_add);
3892 * dev_addr_del - Release a device address.
3893 * @dev: device
3894 * @addr: address to delete
3895 * @addr_type: address type
3897 * Release reference to a device address and remove it from the device
3898 * if the reference count drops to zero.
3900 * The caller must hold the rtnl_mutex.
3902 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3903 unsigned char addr_type)
3905 int err;
3906 struct netdev_hw_addr *ha;
3908 ASSERT_RTNL();
3911 * We can not remove the first address from the list because
3912 * dev->dev_addr points to that.
3914 ha = list_first_entry(&dev->dev_addrs.list,
3915 struct netdev_hw_addr, list);
3916 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3917 return -ENOENT;
3919 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3920 addr_type);
3921 if (!err)
3922 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3923 return err;
3925 EXPORT_SYMBOL(dev_addr_del);
3928 * dev_addr_add_multiple - Add device addresses from another device
3929 * @to_dev: device to which addresses will be added
3930 * @from_dev: device from which addresses will be added
3931 * @addr_type: address type - 0 means type will be used from from_dev
3933 * Add device addresses of the one device to another.
3935 * The caller must hold the rtnl_mutex.
3937 int dev_addr_add_multiple(struct net_device *to_dev,
3938 struct net_device *from_dev,
3939 unsigned char addr_type)
3941 int err;
3943 ASSERT_RTNL();
3945 if (from_dev->addr_len != to_dev->addr_len)
3946 return -EINVAL;
3947 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3948 to_dev->addr_len, addr_type);
3949 if (!err)
3950 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3951 return err;
3953 EXPORT_SYMBOL(dev_addr_add_multiple);
3956 * dev_addr_del_multiple - Delete device addresses by another device
3957 * @to_dev: device where the addresses will be deleted
3958 * @from_dev: device by which addresses the addresses will be deleted
3959 * @addr_type: address type - 0 means type will used from from_dev
3961 * Deletes addresses in to device by the list of addresses in from device.
3963 * The caller must hold the rtnl_mutex.
3965 int dev_addr_del_multiple(struct net_device *to_dev,
3966 struct net_device *from_dev,
3967 unsigned char addr_type)
3969 ASSERT_RTNL();
3971 if (from_dev->addr_len != to_dev->addr_len)
3972 return -EINVAL;
3973 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3974 to_dev->addr_len, addr_type);
3975 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3976 return 0;
3978 EXPORT_SYMBOL(dev_addr_del_multiple);
3980 /* multicast addresses handling functions */
3982 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3983 void *addr, int alen, int glbl)
3985 struct dev_addr_list *da;
3987 for (; (da = *list) != NULL; list = &da->next) {
3988 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3989 alen == da->da_addrlen) {
3990 if (glbl) {
3991 int old_glbl = da->da_gusers;
3992 da->da_gusers = 0;
3993 if (old_glbl == 0)
3994 break;
3996 if (--da->da_users)
3997 return 0;
3999 *list = da->next;
4000 kfree(da);
4001 (*count)--;
4002 return 0;
4005 return -ENOENT;
4008 int __dev_addr_add(struct dev_addr_list **list, int *count,
4009 void *addr, int alen, int glbl)
4011 struct dev_addr_list *da;
4013 for (da = *list; da != NULL; da = da->next) {
4014 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4015 da->da_addrlen == alen) {
4016 if (glbl) {
4017 int old_glbl = da->da_gusers;
4018 da->da_gusers = 1;
4019 if (old_glbl)
4020 return 0;
4022 da->da_users++;
4023 return 0;
4027 da = kzalloc(sizeof(*da), GFP_ATOMIC);
4028 if (da == NULL)
4029 return -ENOMEM;
4030 memcpy(da->da_addr, addr, alen);
4031 da->da_addrlen = alen;
4032 da->da_users = 1;
4033 da->da_gusers = glbl ? 1 : 0;
4034 da->next = *list;
4035 *list = da;
4036 (*count)++;
4037 return 0;
4041 * dev_unicast_delete - Release secondary unicast address.
4042 * @dev: device
4043 * @addr: address to delete
4045 * Release reference to a secondary unicast address and remove it
4046 * from the device if the reference count drops to zero.
4048 * The caller must hold the rtnl_mutex.
4050 int dev_unicast_delete(struct net_device *dev, void *addr)
4052 int err;
4054 ASSERT_RTNL();
4056 netif_addr_lock_bh(dev);
4057 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4058 NETDEV_HW_ADDR_T_UNICAST);
4059 if (!err)
4060 __dev_set_rx_mode(dev);
4061 netif_addr_unlock_bh(dev);
4062 return err;
4064 EXPORT_SYMBOL(dev_unicast_delete);
4067 * dev_unicast_add - add a secondary unicast address
4068 * @dev: device
4069 * @addr: address to add
4071 * Add a secondary unicast address to the device or increase
4072 * the reference count if it already exists.
4074 * The caller must hold the rtnl_mutex.
4076 int dev_unicast_add(struct net_device *dev, void *addr)
4078 int err;
4080 ASSERT_RTNL();
4082 netif_addr_lock_bh(dev);
4083 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4084 NETDEV_HW_ADDR_T_UNICAST);
4085 if (!err)
4086 __dev_set_rx_mode(dev);
4087 netif_addr_unlock_bh(dev);
4088 return err;
4090 EXPORT_SYMBOL(dev_unicast_add);
4092 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4093 struct dev_addr_list **from, int *from_count)
4095 struct dev_addr_list *da, *next;
4096 int err = 0;
4098 da = *from;
4099 while (da != NULL) {
4100 next = da->next;
4101 if (!da->da_synced) {
4102 err = __dev_addr_add(to, to_count,
4103 da->da_addr, da->da_addrlen, 0);
4104 if (err < 0)
4105 break;
4106 da->da_synced = 1;
4107 da->da_users++;
4108 } else if (da->da_users == 1) {
4109 __dev_addr_delete(to, to_count,
4110 da->da_addr, da->da_addrlen, 0);
4111 __dev_addr_delete(from, from_count,
4112 da->da_addr, da->da_addrlen, 0);
4114 da = next;
4116 return err;
4118 EXPORT_SYMBOL_GPL(__dev_addr_sync);
4120 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4121 struct dev_addr_list **from, int *from_count)
4123 struct dev_addr_list *da, *next;
4125 da = *from;
4126 while (da != NULL) {
4127 next = da->next;
4128 if (da->da_synced) {
4129 __dev_addr_delete(to, to_count,
4130 da->da_addr, da->da_addrlen, 0);
4131 da->da_synced = 0;
4132 __dev_addr_delete(from, from_count,
4133 da->da_addr, da->da_addrlen, 0);
4135 da = next;
4138 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4141 * dev_unicast_sync - Synchronize device's unicast list to another device
4142 * @to: destination device
4143 * @from: source device
4145 * Add newly added addresses to the destination device and release
4146 * addresses that have no users left. The source device must be
4147 * locked by netif_tx_lock_bh.
4149 * This function is intended to be called from the dev->set_rx_mode
4150 * function of layered software devices.
4152 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4154 int err = 0;
4156 if (to->addr_len != from->addr_len)
4157 return -EINVAL;
4159 netif_addr_lock_bh(to);
4160 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4161 if (!err)
4162 __dev_set_rx_mode(to);
4163 netif_addr_unlock_bh(to);
4164 return err;
4166 EXPORT_SYMBOL(dev_unicast_sync);
4169 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4170 * @to: destination device
4171 * @from: source device
4173 * Remove all addresses that were added to the destination device by
4174 * dev_unicast_sync(). This function is intended to be called from the
4175 * dev->stop function of layered software devices.
4177 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4179 if (to->addr_len != from->addr_len)
4180 return;
4182 netif_addr_lock_bh(from);
4183 netif_addr_lock(to);
4184 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4185 __dev_set_rx_mode(to);
4186 netif_addr_unlock(to);
4187 netif_addr_unlock_bh(from);
4189 EXPORT_SYMBOL(dev_unicast_unsync);
4191 static void dev_unicast_flush(struct net_device *dev)
4193 netif_addr_lock_bh(dev);
4194 __hw_addr_flush(&dev->uc);
4195 netif_addr_unlock_bh(dev);
4198 static void dev_unicast_init(struct net_device *dev)
4200 __hw_addr_init(&dev->uc);
4204 static void __dev_addr_discard(struct dev_addr_list **list)
4206 struct dev_addr_list *tmp;
4208 while (*list != NULL) {
4209 tmp = *list;
4210 *list = tmp->next;
4211 if (tmp->da_users > tmp->da_gusers)
4212 printk("__dev_addr_discard: address leakage! "
4213 "da_users=%d\n", tmp->da_users);
4214 kfree(tmp);
4218 static void dev_addr_discard(struct net_device *dev)
4220 netif_addr_lock_bh(dev);
4222 __dev_addr_discard(&dev->mc_list);
4223 dev->mc_count = 0;
4225 netif_addr_unlock_bh(dev);
4229 * dev_get_flags - get flags reported to userspace
4230 * @dev: device
4232 * Get the combination of flag bits exported through APIs to userspace.
4234 unsigned dev_get_flags(const struct net_device *dev)
4236 unsigned flags;
4238 flags = (dev->flags & ~(IFF_PROMISC |
4239 IFF_ALLMULTI |
4240 IFF_RUNNING |
4241 IFF_LOWER_UP |
4242 IFF_DORMANT)) |
4243 (dev->gflags & (IFF_PROMISC |
4244 IFF_ALLMULTI));
4246 if (netif_running(dev)) {
4247 if (netif_oper_up(dev))
4248 flags |= IFF_RUNNING;
4249 if (netif_carrier_ok(dev))
4250 flags |= IFF_LOWER_UP;
4251 if (netif_dormant(dev))
4252 flags |= IFF_DORMANT;
4255 return flags;
4257 EXPORT_SYMBOL(dev_get_flags);
4260 * dev_change_flags - change device settings
4261 * @dev: device
4262 * @flags: device state flags
4264 * Change settings on device based state flags. The flags are
4265 * in the userspace exported format.
4267 int dev_change_flags(struct net_device *dev, unsigned flags)
4269 int ret, changes;
4270 int old_flags = dev->flags;
4272 ASSERT_RTNL();
4275 * Set the flags on our device.
4278 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4279 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4280 IFF_AUTOMEDIA)) |
4281 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4282 IFF_ALLMULTI));
4285 * Load in the correct multicast list now the flags have changed.
4288 if ((old_flags ^ flags) & IFF_MULTICAST)
4289 dev_change_rx_flags(dev, IFF_MULTICAST);
4291 dev_set_rx_mode(dev);
4294 * Have we downed the interface. We handle IFF_UP ourselves
4295 * according to user attempts to set it, rather than blindly
4296 * setting it.
4299 ret = 0;
4300 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4301 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4303 if (!ret)
4304 dev_set_rx_mode(dev);
4307 if (dev->flags & IFF_UP &&
4308 ((old_flags ^ dev->flags) & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4309 IFF_VOLATILE)))
4310 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4312 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4313 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4315 dev->gflags ^= IFF_PROMISC;
4316 dev_set_promiscuity(dev, inc);
4319 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4320 is important. Some (broken) drivers set IFF_PROMISC, when
4321 IFF_ALLMULTI is requested not asking us and not reporting.
4323 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4324 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4326 dev->gflags ^= IFF_ALLMULTI;
4327 dev_set_allmulti(dev, inc);
4330 /* Exclude state transition flags, already notified */
4331 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4332 if (changes)
4333 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4335 return ret;
4337 EXPORT_SYMBOL(dev_change_flags);
4340 * dev_set_mtu - Change maximum transfer unit
4341 * @dev: device
4342 * @new_mtu: new transfer unit
4344 * Change the maximum transfer size of the network device.
4346 int dev_set_mtu(struct net_device *dev, int new_mtu)
4348 const struct net_device_ops *ops = dev->netdev_ops;
4349 int err;
4351 if (new_mtu == dev->mtu)
4352 return 0;
4354 /* MTU must be positive. */
4355 if (new_mtu < 0)
4356 return -EINVAL;
4358 if (!netif_device_present(dev))
4359 return -ENODEV;
4361 err = 0;
4362 if (ops->ndo_change_mtu)
4363 err = ops->ndo_change_mtu(dev, new_mtu);
4364 else
4365 dev->mtu = new_mtu;
4367 if (!err && dev->flags & IFF_UP)
4368 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4369 return err;
4371 EXPORT_SYMBOL(dev_set_mtu);
4374 * dev_set_mac_address - Change Media Access Control Address
4375 * @dev: device
4376 * @sa: new address
4378 * Change the hardware (MAC) address of the device
4380 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4382 const struct net_device_ops *ops = dev->netdev_ops;
4383 int err;
4385 if (!ops->ndo_set_mac_address)
4386 return -EOPNOTSUPP;
4387 if (sa->sa_family != dev->type)
4388 return -EINVAL;
4389 if (!netif_device_present(dev))
4390 return -ENODEV;
4391 err = ops->ndo_set_mac_address(dev, sa);
4392 if (!err)
4393 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4394 return err;
4396 EXPORT_SYMBOL(dev_set_mac_address);
4399 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4401 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4403 int err;
4404 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4406 if (!dev)
4407 return -ENODEV;
4409 switch (cmd) {
4410 case SIOCGIFFLAGS: /* Get interface flags */
4411 ifr->ifr_flags = (short) dev_get_flags(dev);
4412 return 0;
4414 case SIOCGIFMETRIC: /* Get the metric on the interface
4415 (currently unused) */
4416 ifr->ifr_metric = 0;
4417 return 0;
4419 case SIOCGIFMTU: /* Get the MTU of a device */
4420 ifr->ifr_mtu = dev->mtu;
4421 return 0;
4423 case SIOCGIFHWADDR:
4424 if (!dev->addr_len)
4425 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4426 else
4427 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4428 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4429 ifr->ifr_hwaddr.sa_family = dev->type;
4430 return 0;
4432 case SIOCGIFSLAVE:
4433 err = -EINVAL;
4434 break;
4436 case SIOCGIFMAP:
4437 ifr->ifr_map.mem_start = dev->mem_start;
4438 ifr->ifr_map.mem_end = dev->mem_end;
4439 ifr->ifr_map.base_addr = dev->base_addr;
4440 ifr->ifr_map.irq = dev->irq;
4441 ifr->ifr_map.dma = dev->dma;
4442 ifr->ifr_map.port = dev->if_port;
4443 return 0;
4445 case SIOCGIFINDEX:
4446 ifr->ifr_ifindex = dev->ifindex;
4447 return 0;
4449 case SIOCGIFTXQLEN:
4450 ifr->ifr_qlen = dev->tx_queue_len;
4451 return 0;
4453 default:
4454 /* dev_ioctl() should ensure this case
4455 * is never reached
4457 WARN_ON(1);
4458 err = -EINVAL;
4459 break;
4462 return err;
4466 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4468 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4470 int err;
4471 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4472 const struct net_device_ops *ops;
4474 if (!dev)
4475 return -ENODEV;
4477 ops = dev->netdev_ops;
4479 switch (cmd) {
4480 case SIOCSIFFLAGS: /* Set interface flags */
4481 return dev_change_flags(dev, ifr->ifr_flags);
4483 case SIOCSIFMETRIC: /* Set the metric on the interface
4484 (currently unused) */
4485 return -EOPNOTSUPP;
4487 case SIOCSIFMTU: /* Set the MTU of a device */
4488 return dev_set_mtu(dev, ifr->ifr_mtu);
4490 case SIOCSIFHWADDR:
4491 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4493 case SIOCSIFHWBROADCAST:
4494 if (ifr->ifr_hwaddr.sa_family != dev->type)
4495 return -EINVAL;
4496 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4497 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4498 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4499 return 0;
4501 case SIOCSIFMAP:
4502 if (ops->ndo_set_config) {
4503 if (!netif_device_present(dev))
4504 return -ENODEV;
4505 return ops->ndo_set_config(dev, &ifr->ifr_map);
4507 return -EOPNOTSUPP;
4509 case SIOCADDMULTI:
4510 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4511 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4512 return -EINVAL;
4513 if (!netif_device_present(dev))
4514 return -ENODEV;
4515 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4516 dev->addr_len, 1);
4518 case SIOCDELMULTI:
4519 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4520 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4521 return -EINVAL;
4522 if (!netif_device_present(dev))
4523 return -ENODEV;
4524 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4525 dev->addr_len, 1);
4527 case SIOCSIFTXQLEN:
4528 if (ifr->ifr_qlen < 0)
4529 return -EINVAL;
4530 dev->tx_queue_len = ifr->ifr_qlen;
4531 return 0;
4533 case SIOCSIFNAME:
4534 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4535 return dev_change_name(dev, ifr->ifr_newname);
4538 * Unknown or private ioctl
4540 default:
4541 if ((cmd >= SIOCDEVPRIVATE &&
4542 cmd <= SIOCDEVPRIVATE + 15) ||
4543 cmd == SIOCBONDENSLAVE ||
4544 cmd == SIOCBONDRELEASE ||
4545 cmd == SIOCBONDSETHWADDR ||
4546 cmd == SIOCBONDSLAVEINFOQUERY ||
4547 cmd == SIOCBONDINFOQUERY ||
4548 cmd == SIOCBONDCHANGEACTIVE ||
4549 cmd == SIOCGMIIPHY ||
4550 cmd == SIOCGMIIREG ||
4551 cmd == SIOCSMIIREG ||
4552 cmd == SIOCBRADDIF ||
4553 cmd == SIOCBRDELIF ||
4554 cmd == SIOCSHWTSTAMP ||
4555 cmd == SIOCWANDEV) {
4556 err = -EOPNOTSUPP;
4557 if (ops->ndo_do_ioctl) {
4558 if (netif_device_present(dev))
4559 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4560 else
4561 err = -ENODEV;
4563 } else
4564 err = -EINVAL;
4567 return err;
4571 * This function handles all "interface"-type I/O control requests. The actual
4572 * 'doing' part of this is dev_ifsioc above.
4576 * dev_ioctl - network device ioctl
4577 * @net: the applicable net namespace
4578 * @cmd: command to issue
4579 * @arg: pointer to a struct ifreq in user space
4581 * Issue ioctl functions to devices. This is normally called by the
4582 * user space syscall interfaces but can sometimes be useful for
4583 * other purposes. The return value is the return from the syscall if
4584 * positive or a negative errno code on error.
4587 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4589 struct ifreq ifr;
4590 int ret;
4591 char *colon;
4593 /* One special case: SIOCGIFCONF takes ifconf argument
4594 and requires shared lock, because it sleeps writing
4595 to user space.
4598 if (cmd == SIOCGIFCONF) {
4599 rtnl_lock();
4600 ret = dev_ifconf(net, (char __user *) arg);
4601 rtnl_unlock();
4602 return ret;
4604 if (cmd == SIOCGIFNAME)
4605 return dev_ifname(net, (struct ifreq __user *)arg);
4607 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4608 return -EFAULT;
4610 ifr.ifr_name[IFNAMSIZ-1] = 0;
4612 colon = strchr(ifr.ifr_name, ':');
4613 if (colon)
4614 *colon = 0;
4617 * See which interface the caller is talking about.
4620 switch (cmd) {
4622 * These ioctl calls:
4623 * - can be done by all.
4624 * - atomic and do not require locking.
4625 * - return a value
4627 case SIOCGIFFLAGS:
4628 case SIOCGIFMETRIC:
4629 case SIOCGIFMTU:
4630 case SIOCGIFHWADDR:
4631 case SIOCGIFSLAVE:
4632 case SIOCGIFMAP:
4633 case SIOCGIFINDEX:
4634 case SIOCGIFTXQLEN:
4635 dev_load(net, ifr.ifr_name);
4636 rcu_read_lock();
4637 ret = dev_ifsioc_locked(net, &ifr, cmd);
4638 rcu_read_unlock();
4639 if (!ret) {
4640 if (colon)
4641 *colon = ':';
4642 if (copy_to_user(arg, &ifr,
4643 sizeof(struct ifreq)))
4644 ret = -EFAULT;
4646 return ret;
4648 case SIOCETHTOOL:
4649 dev_load(net, ifr.ifr_name);
4650 rtnl_lock();
4651 ret = dev_ethtool(net, &ifr);
4652 rtnl_unlock();
4653 if (!ret) {
4654 if (colon)
4655 *colon = ':';
4656 if (copy_to_user(arg, &ifr,
4657 sizeof(struct ifreq)))
4658 ret = -EFAULT;
4660 return ret;
4663 * These ioctl calls:
4664 * - require superuser power.
4665 * - require strict serialization.
4666 * - return a value
4668 case SIOCGMIIPHY:
4669 case SIOCGMIIREG:
4670 case SIOCSIFNAME:
4671 if (!capable(CAP_NET_ADMIN))
4672 return -EPERM;
4673 dev_load(net, ifr.ifr_name);
4674 rtnl_lock();
4675 ret = dev_ifsioc(net, &ifr, cmd);
4676 rtnl_unlock();
4677 if (!ret) {
4678 if (colon)
4679 *colon = ':';
4680 if (copy_to_user(arg, &ifr,
4681 sizeof(struct ifreq)))
4682 ret = -EFAULT;
4684 return ret;
4687 * These ioctl calls:
4688 * - require superuser power.
4689 * - require strict serialization.
4690 * - do not return a value
4692 case SIOCSIFFLAGS:
4693 case SIOCSIFMETRIC:
4694 case SIOCSIFMTU:
4695 case SIOCSIFMAP:
4696 case SIOCSIFHWADDR:
4697 case SIOCSIFSLAVE:
4698 case SIOCADDMULTI:
4699 case SIOCDELMULTI:
4700 case SIOCSIFHWBROADCAST:
4701 case SIOCSIFTXQLEN:
4702 case SIOCSMIIREG:
4703 case SIOCBONDENSLAVE:
4704 case SIOCBONDRELEASE:
4705 case SIOCBONDSETHWADDR:
4706 case SIOCBONDCHANGEACTIVE:
4707 case SIOCBRADDIF:
4708 case SIOCBRDELIF:
4709 case SIOCSHWTSTAMP:
4710 if (!capable(CAP_NET_ADMIN))
4711 return -EPERM;
4712 /* fall through */
4713 case SIOCBONDSLAVEINFOQUERY:
4714 case SIOCBONDINFOQUERY:
4715 dev_load(net, ifr.ifr_name);
4716 rtnl_lock();
4717 ret = dev_ifsioc(net, &ifr, cmd);
4718 rtnl_unlock();
4719 return ret;
4721 case SIOCGIFMEM:
4722 /* Get the per device memory space. We can add this but
4723 * currently do not support it */
4724 case SIOCSIFMEM:
4725 /* Set the per device memory buffer space.
4726 * Not applicable in our case */
4727 case SIOCSIFLINK:
4728 return -EINVAL;
4731 * Unknown or private ioctl.
4733 default:
4734 if (cmd == SIOCWANDEV ||
4735 (cmd >= SIOCDEVPRIVATE &&
4736 cmd <= SIOCDEVPRIVATE + 15)) {
4737 dev_load(net, ifr.ifr_name);
4738 rtnl_lock();
4739 ret = dev_ifsioc(net, &ifr, cmd);
4740 rtnl_unlock();
4741 if (!ret && copy_to_user(arg, &ifr,
4742 sizeof(struct ifreq)))
4743 ret = -EFAULT;
4744 return ret;
4746 /* Take care of Wireless Extensions */
4747 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4748 return wext_handle_ioctl(net, &ifr, cmd, arg);
4749 return -EINVAL;
4755 * dev_new_index - allocate an ifindex
4756 * @net: the applicable net namespace
4758 * Returns a suitable unique value for a new device interface
4759 * number. The caller must hold the rtnl semaphore or the
4760 * dev_base_lock to be sure it remains unique.
4762 static int dev_new_index(struct net *net)
4764 static int ifindex;
4765 for (;;) {
4766 if (++ifindex <= 0)
4767 ifindex = 1;
4768 if (!__dev_get_by_index(net, ifindex))
4769 return ifindex;
4773 /* Delayed registration/unregisteration */
4774 static LIST_HEAD(net_todo_list);
4776 static void net_set_todo(struct net_device *dev)
4778 list_add_tail(&dev->todo_list, &net_todo_list);
4781 static void rollback_registered_many(struct list_head *head)
4783 struct net_device *dev, *tmp;
4785 BUG_ON(dev_boot_phase);
4786 ASSERT_RTNL();
4788 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4789 /* Some devices call without registering
4790 * for initialization unwind. Remove those
4791 * devices and proceed with the remaining.
4793 if (dev->reg_state == NETREG_UNINITIALIZED) {
4794 pr_debug("unregister_netdevice: device %s/%p never "
4795 "was registered\n", dev->name, dev);
4797 WARN_ON(1);
4798 list_del(&dev->unreg_list);
4799 continue;
4802 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4804 /* If device is running, close it first. */
4805 dev_close(dev);
4807 /* And unlink it from device chain. */
4808 unlist_netdevice(dev);
4810 dev->reg_state = NETREG_UNREGISTERING;
4813 synchronize_net();
4815 list_for_each_entry(dev, head, unreg_list) {
4816 /* Shutdown queueing discipline. */
4817 dev_shutdown(dev);
4820 /* Notify protocols, that we are about to destroy
4821 this device. They should clean all the things.
4823 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4826 * Flush the unicast and multicast chains
4828 dev_unicast_flush(dev);
4829 dev_addr_discard(dev);
4831 if (dev->netdev_ops->ndo_uninit)
4832 dev->netdev_ops->ndo_uninit(dev);
4834 /* Notifier chain MUST detach us from master device. */
4835 WARN_ON(dev->master);
4837 /* Remove entries from kobject tree */
4838 netdev_unregister_kobject(dev);
4841 /* Process any work delayed until the end of the batch */
4842 dev = list_entry(head->next, struct net_device, unreg_list);
4843 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4845 synchronize_net();
4847 list_for_each_entry(dev, head, unreg_list)
4848 dev_put(dev);
4851 static void rollback_registered(struct net_device *dev)
4853 LIST_HEAD(single);
4855 list_add(&dev->unreg_list, &single);
4856 rollback_registered_many(&single);
4857 list_del(&single);
4860 static void __netdev_init_queue_locks_one(struct net_device *dev,
4861 struct netdev_queue *dev_queue,
4862 void *_unused)
4864 spin_lock_init(&dev_queue->_xmit_lock);
4865 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4866 dev_queue->xmit_lock_owner = -1;
4869 static void netdev_init_queue_locks(struct net_device *dev)
4871 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4872 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4875 unsigned long netdev_fix_features(unsigned long features, const char *name)
4877 /* Fix illegal SG+CSUM combinations. */
4878 if ((features & NETIF_F_SG) &&
4879 !(features & NETIF_F_ALL_CSUM)) {
4880 if (name)
4881 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4882 "checksum feature.\n", name);
4883 features &= ~NETIF_F_SG;
4886 /* TSO requires that SG is present as well. */
4887 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4888 if (name)
4889 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4890 "SG feature.\n", name);
4891 features &= ~NETIF_F_TSO;
4894 if (features & NETIF_F_UFO) {
4895 if (!(features & NETIF_F_GEN_CSUM)) {
4896 if (name)
4897 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4898 "since no NETIF_F_HW_CSUM feature.\n",
4899 name);
4900 features &= ~NETIF_F_UFO;
4903 if (!(features & NETIF_F_SG)) {
4904 if (name)
4905 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4906 "since no NETIF_F_SG feature.\n", name);
4907 features &= ~NETIF_F_UFO;
4911 return features;
4913 EXPORT_SYMBOL(netdev_fix_features);
4916 * netif_stacked_transfer_operstate - transfer operstate
4917 * @rootdev: the root or lower level device to transfer state from
4918 * @dev: the device to transfer operstate to
4920 * Transfer operational state from root to device. This is normally
4921 * called when a stacking relationship exists between the root
4922 * device and the device(a leaf device).
4924 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4925 struct net_device *dev)
4927 if (rootdev->operstate == IF_OPER_DORMANT)
4928 netif_dormant_on(dev);
4929 else
4930 netif_dormant_off(dev);
4932 if (netif_carrier_ok(rootdev)) {
4933 if (!netif_carrier_ok(dev))
4934 netif_carrier_on(dev);
4935 } else {
4936 if (netif_carrier_ok(dev))
4937 netif_carrier_off(dev);
4940 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4943 * register_netdevice - register a network device
4944 * @dev: device to register
4946 * Take a completed network device structure and add it to the kernel
4947 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4948 * chain. 0 is returned on success. A negative errno code is returned
4949 * on a failure to set up the device, or if the name is a duplicate.
4951 * Callers must hold the rtnl semaphore. You may want
4952 * register_netdev() instead of this.
4954 * BUGS:
4955 * The locking appears insufficient to guarantee two parallel registers
4956 * will not get the same name.
4959 int register_netdevice(struct net_device *dev)
4961 int ret;
4962 struct net *net = dev_net(dev);
4964 BUG_ON(dev_boot_phase);
4965 ASSERT_RTNL();
4967 might_sleep();
4969 /* When net_device's are persistent, this will be fatal. */
4970 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4971 BUG_ON(!net);
4973 spin_lock_init(&dev->addr_list_lock);
4974 netdev_set_addr_lockdep_class(dev);
4975 netdev_init_queue_locks(dev);
4977 dev->iflink = -1;
4979 /* Init, if this function is available */
4980 if (dev->netdev_ops->ndo_init) {
4981 ret = dev->netdev_ops->ndo_init(dev);
4982 if (ret) {
4983 if (ret > 0)
4984 ret = -EIO;
4985 goto out;
4989 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
4990 if (ret)
4991 goto err_uninit;
4993 dev->ifindex = dev_new_index(net);
4994 if (dev->iflink == -1)
4995 dev->iflink = dev->ifindex;
4997 /* Fix illegal checksum combinations */
4998 if ((dev->features & NETIF_F_HW_CSUM) &&
4999 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5000 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5001 dev->name);
5002 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5005 if ((dev->features & NETIF_F_NO_CSUM) &&
5006 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5007 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5008 dev->name);
5009 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5012 dev->features = netdev_fix_features(dev->features, dev->name);
5014 /* Enable software GSO if SG is supported. */
5015 if (dev->features & NETIF_F_SG)
5016 dev->features |= NETIF_F_GSO;
5018 netdev_initialize_kobject(dev);
5020 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5021 ret = notifier_to_errno(ret);
5022 if (ret)
5023 goto err_uninit;
5025 ret = netdev_register_kobject(dev);
5026 if (ret)
5027 goto err_uninit;
5028 dev->reg_state = NETREG_REGISTERED;
5031 * Default initial state at registry is that the
5032 * device is present.
5035 set_bit(__LINK_STATE_PRESENT, &dev->state);
5037 dev_init_scheduler(dev);
5038 dev_hold(dev);
5039 list_netdevice(dev);
5041 /* Notify protocols, that a new device appeared. */
5042 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5043 ret = notifier_to_errno(ret);
5044 if (ret) {
5045 rollback_registered(dev);
5046 dev->reg_state = NETREG_UNREGISTERED;
5049 * Prevent userspace races by waiting until the network
5050 * device is fully setup before sending notifications.
5052 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5054 out:
5055 return ret;
5057 err_uninit:
5058 if (dev->netdev_ops->ndo_uninit)
5059 dev->netdev_ops->ndo_uninit(dev);
5060 goto out;
5062 EXPORT_SYMBOL(register_netdevice);
5065 * init_dummy_netdev - init a dummy network device for NAPI
5066 * @dev: device to init
5068 * This takes a network device structure and initialize the minimum
5069 * amount of fields so it can be used to schedule NAPI polls without
5070 * registering a full blown interface. This is to be used by drivers
5071 * that need to tie several hardware interfaces to a single NAPI
5072 * poll scheduler due to HW limitations.
5074 int init_dummy_netdev(struct net_device *dev)
5076 /* Clear everything. Note we don't initialize spinlocks
5077 * are they aren't supposed to be taken by any of the
5078 * NAPI code and this dummy netdev is supposed to be
5079 * only ever used for NAPI polls
5081 memset(dev, 0, sizeof(struct net_device));
5083 /* make sure we BUG if trying to hit standard
5084 * register/unregister code path
5086 dev->reg_state = NETREG_DUMMY;
5088 /* initialize the ref count */
5089 atomic_set(&dev->refcnt, 1);
5091 /* NAPI wants this */
5092 INIT_LIST_HEAD(&dev->napi_list);
5094 /* a dummy interface is started by default */
5095 set_bit(__LINK_STATE_PRESENT, &dev->state);
5096 set_bit(__LINK_STATE_START, &dev->state);
5098 return 0;
5100 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5104 * register_netdev - register a network device
5105 * @dev: device to register
5107 * Take a completed network device structure and add it to the kernel
5108 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5109 * chain. 0 is returned on success. A negative errno code is returned
5110 * on a failure to set up the device, or if the name is a duplicate.
5112 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5113 * and expands the device name if you passed a format string to
5114 * alloc_netdev.
5116 int register_netdev(struct net_device *dev)
5118 int err;
5120 rtnl_lock();
5123 * If the name is a format string the caller wants us to do a
5124 * name allocation.
5126 if (strchr(dev->name, '%')) {
5127 err = dev_alloc_name(dev, dev->name);
5128 if (err < 0)
5129 goto out;
5132 err = register_netdevice(dev);
5133 out:
5134 rtnl_unlock();
5135 return err;
5137 EXPORT_SYMBOL(register_netdev);
5140 * netdev_wait_allrefs - wait until all references are gone.
5142 * This is called when unregistering network devices.
5144 * Any protocol or device that holds a reference should register
5145 * for netdevice notification, and cleanup and put back the
5146 * reference if they receive an UNREGISTER event.
5147 * We can get stuck here if buggy protocols don't correctly
5148 * call dev_put.
5150 static void netdev_wait_allrefs(struct net_device *dev)
5152 unsigned long rebroadcast_time, warning_time;
5154 linkwatch_forget_dev(dev);
5156 rebroadcast_time = warning_time = jiffies;
5157 while (atomic_read(&dev->refcnt) != 0) {
5158 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5159 rtnl_lock();
5161 /* Rebroadcast unregister notification */
5162 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5163 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5164 * should have already handle it the first time */
5166 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5167 &dev->state)) {
5168 /* We must not have linkwatch events
5169 * pending on unregister. If this
5170 * happens, we simply run the queue
5171 * unscheduled, resulting in a noop
5172 * for this device.
5174 linkwatch_run_queue();
5177 __rtnl_unlock();
5179 rebroadcast_time = jiffies;
5182 msleep(250);
5184 if (time_after(jiffies, warning_time + 10 * HZ)) {
5185 printk(KERN_EMERG "unregister_netdevice: "
5186 "waiting for %s to become free. Usage "
5187 "count = %d\n",
5188 dev->name, atomic_read(&dev->refcnt));
5189 warning_time = jiffies;
5194 /* The sequence is:
5196 * rtnl_lock();
5197 * ...
5198 * register_netdevice(x1);
5199 * register_netdevice(x2);
5200 * ...
5201 * unregister_netdevice(y1);
5202 * unregister_netdevice(y2);
5203 * ...
5204 * rtnl_unlock();
5205 * free_netdev(y1);
5206 * free_netdev(y2);
5208 * We are invoked by rtnl_unlock().
5209 * This allows us to deal with problems:
5210 * 1) We can delete sysfs objects which invoke hotplug
5211 * without deadlocking with linkwatch via keventd.
5212 * 2) Since we run with the RTNL semaphore not held, we can sleep
5213 * safely in order to wait for the netdev refcnt to drop to zero.
5215 * We must not return until all unregister events added during
5216 * the interval the lock was held have been completed.
5218 void netdev_run_todo(void)
5220 struct list_head list;
5222 /* Snapshot list, allow later requests */
5223 list_replace_init(&net_todo_list, &list);
5225 __rtnl_unlock();
5227 while (!list_empty(&list)) {
5228 struct net_device *dev
5229 = list_entry(list.next, struct net_device, todo_list);
5230 list_del(&dev->todo_list);
5232 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5233 printk(KERN_ERR "network todo '%s' but state %d\n",
5234 dev->name, dev->reg_state);
5235 dump_stack();
5236 continue;
5239 dev->reg_state = NETREG_UNREGISTERED;
5241 on_each_cpu(flush_backlog, dev, 1);
5243 netdev_wait_allrefs(dev);
5245 /* paranoia */
5246 BUG_ON(atomic_read(&dev->refcnt));
5247 WARN_ON(dev->ip_ptr);
5248 WARN_ON(dev->ip6_ptr);
5249 WARN_ON(dev->dn_ptr);
5251 if (dev->destructor)
5252 dev->destructor(dev);
5254 /* Free network device */
5255 kobject_put(&dev->dev.kobj);
5260 * dev_txq_stats_fold - fold tx_queues stats
5261 * @dev: device to get statistics from
5262 * @stats: struct net_device_stats to hold results
5264 void dev_txq_stats_fold(const struct net_device *dev,
5265 struct net_device_stats *stats)
5267 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5268 unsigned int i;
5269 struct netdev_queue *txq;
5271 for (i = 0; i < dev->num_tx_queues; i++) {
5272 txq = netdev_get_tx_queue(dev, i);
5273 tx_bytes += txq->tx_bytes;
5274 tx_packets += txq->tx_packets;
5275 tx_dropped += txq->tx_dropped;
5277 if (tx_bytes || tx_packets || tx_dropped) {
5278 stats->tx_bytes = tx_bytes;
5279 stats->tx_packets = tx_packets;
5280 stats->tx_dropped = tx_dropped;
5283 EXPORT_SYMBOL(dev_txq_stats_fold);
5286 * dev_get_stats - get network device statistics
5287 * @dev: device to get statistics from
5289 * Get network statistics from device. The device driver may provide
5290 * its own method by setting dev->netdev_ops->get_stats; otherwise
5291 * the internal statistics structure is used.
5293 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5295 const struct net_device_ops *ops = dev->netdev_ops;
5297 if (ops->ndo_get_stats)
5298 return ops->ndo_get_stats(dev);
5300 dev_txq_stats_fold(dev, &dev->stats);
5301 return &dev->stats;
5303 EXPORT_SYMBOL(dev_get_stats);
5305 static void netdev_init_one_queue(struct net_device *dev,
5306 struct netdev_queue *queue,
5307 void *_unused)
5309 queue->dev = dev;
5312 static void netdev_init_queues(struct net_device *dev)
5314 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5315 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5316 spin_lock_init(&dev->tx_global_lock);
5320 * alloc_netdev_mq - allocate network device
5321 * @sizeof_priv: size of private data to allocate space for
5322 * @name: device name format string
5323 * @setup: callback to initialize device
5324 * @queue_count: the number of subqueues to allocate
5326 * Allocates a struct net_device with private data area for driver use
5327 * and performs basic initialization. Also allocates subquue structs
5328 * for each queue on the device at the end of the netdevice.
5330 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5331 void (*setup)(struct net_device *), unsigned int queue_count)
5333 struct netdev_queue *tx;
5334 struct net_device *dev;
5335 size_t alloc_size;
5336 struct net_device *p;
5338 BUG_ON(strlen(name) >= sizeof(dev->name));
5340 alloc_size = sizeof(struct net_device);
5341 if (sizeof_priv) {
5342 /* ensure 32-byte alignment of private area */
5343 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5344 alloc_size += sizeof_priv;
5346 /* ensure 32-byte alignment of whole construct */
5347 alloc_size += NETDEV_ALIGN - 1;
5349 p = kzalloc(alloc_size, GFP_KERNEL);
5350 if (!p) {
5351 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5352 return NULL;
5355 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5356 if (!tx) {
5357 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5358 "tx qdiscs.\n");
5359 goto free_p;
5362 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5363 dev->padded = (char *)dev - (char *)p;
5365 if (dev_addr_init(dev))
5366 goto free_tx;
5368 dev_unicast_init(dev);
5370 dev_net_set(dev, &init_net);
5372 dev->_tx = tx;
5373 dev->num_tx_queues = queue_count;
5374 dev->real_num_tx_queues = queue_count;
5376 dev->gso_max_size = GSO_MAX_SIZE;
5378 netdev_init_queues(dev);
5380 INIT_LIST_HEAD(&dev->napi_list);
5381 INIT_LIST_HEAD(&dev->unreg_list);
5382 INIT_LIST_HEAD(&dev->link_watch_list);
5383 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5384 setup(dev);
5385 strcpy(dev->name, name);
5386 return dev;
5388 free_tx:
5389 kfree(tx);
5391 free_p:
5392 kfree(p);
5393 return NULL;
5395 EXPORT_SYMBOL(alloc_netdev_mq);
5398 * free_netdev - free network device
5399 * @dev: device
5401 * This function does the last stage of destroying an allocated device
5402 * interface. The reference to the device object is released.
5403 * If this is the last reference then it will be freed.
5405 void free_netdev(struct net_device *dev)
5407 struct napi_struct *p, *n;
5409 release_net(dev_net(dev));
5411 kfree(dev->_tx);
5413 /* Flush device addresses */
5414 dev_addr_flush(dev);
5416 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5417 netif_napi_del(p);
5419 /* Compatibility with error handling in drivers */
5420 if (dev->reg_state == NETREG_UNINITIALIZED) {
5421 kfree((char *)dev - dev->padded);
5422 return;
5425 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5426 dev->reg_state = NETREG_RELEASED;
5428 /* will free via device release */
5429 put_device(&dev->dev);
5431 EXPORT_SYMBOL(free_netdev);
5434 * synchronize_net - Synchronize with packet receive processing
5436 * Wait for packets currently being received to be done.
5437 * Does not block later packets from starting.
5439 void synchronize_net(void)
5441 might_sleep();
5442 synchronize_rcu();
5444 EXPORT_SYMBOL(synchronize_net);
5447 * unregister_netdevice_queue - remove device from the kernel
5448 * @dev: device
5449 * @head: list
5451 * This function shuts down a device interface and removes it
5452 * from the kernel tables.
5453 * If head not NULL, device is queued to be unregistered later.
5455 * Callers must hold the rtnl semaphore. You may want
5456 * unregister_netdev() instead of this.
5459 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5461 ASSERT_RTNL();
5463 if (head) {
5464 list_move_tail(&dev->unreg_list, head);
5465 } else {
5466 rollback_registered(dev);
5467 /* Finish processing unregister after unlock */
5468 net_set_todo(dev);
5471 EXPORT_SYMBOL(unregister_netdevice_queue);
5474 * unregister_netdevice_many - unregister many devices
5475 * @head: list of devices
5477 void unregister_netdevice_many(struct list_head *head)
5479 struct net_device *dev;
5481 if (!list_empty(head)) {
5482 rollback_registered_many(head);
5483 list_for_each_entry(dev, head, unreg_list)
5484 net_set_todo(dev);
5487 EXPORT_SYMBOL(unregister_netdevice_many);
5490 * unregister_netdev - remove device from the kernel
5491 * @dev: device
5493 * This function shuts down a device interface and removes it
5494 * from the kernel tables.
5496 * This is just a wrapper for unregister_netdevice that takes
5497 * the rtnl semaphore. In general you want to use this and not
5498 * unregister_netdevice.
5500 void unregister_netdev(struct net_device *dev)
5502 rtnl_lock();
5503 unregister_netdevice(dev);
5504 rtnl_unlock();
5506 EXPORT_SYMBOL(unregister_netdev);
5509 * dev_change_net_namespace - move device to different nethost namespace
5510 * @dev: device
5511 * @net: network namespace
5512 * @pat: If not NULL name pattern to try if the current device name
5513 * is already taken in the destination network namespace.
5515 * This function shuts down a device interface and moves it
5516 * to a new network namespace. On success 0 is returned, on
5517 * a failure a netagive errno code is returned.
5519 * Callers must hold the rtnl semaphore.
5522 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5524 int err;
5526 ASSERT_RTNL();
5528 /* Don't allow namespace local devices to be moved. */
5529 err = -EINVAL;
5530 if (dev->features & NETIF_F_NETNS_LOCAL)
5531 goto out;
5533 #ifdef CONFIG_SYSFS
5534 /* Don't allow real devices to be moved when sysfs
5535 * is enabled.
5537 err = -EINVAL;
5538 if (dev->dev.parent)
5539 goto out;
5540 #endif
5542 /* Ensure the device has been registrered */
5543 err = -EINVAL;
5544 if (dev->reg_state != NETREG_REGISTERED)
5545 goto out;
5547 /* Get out if there is nothing todo */
5548 err = 0;
5549 if (net_eq(dev_net(dev), net))
5550 goto out;
5552 /* Pick the destination device name, and ensure
5553 * we can use it in the destination network namespace.
5555 err = -EEXIST;
5556 if (__dev_get_by_name(net, dev->name)) {
5557 /* We get here if we can't use the current device name */
5558 if (!pat)
5559 goto out;
5560 if (dev_get_valid_name(net, pat, dev->name, 1))
5561 goto out;
5565 * And now a mini version of register_netdevice unregister_netdevice.
5568 /* If device is running close it first. */
5569 dev_close(dev);
5571 /* And unlink it from device chain */
5572 err = -ENODEV;
5573 unlist_netdevice(dev);
5575 synchronize_net();
5577 /* Shutdown queueing discipline. */
5578 dev_shutdown(dev);
5580 /* Notify protocols, that we are about to destroy
5581 this device. They should clean all the things.
5583 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5584 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5587 * Flush the unicast and multicast chains
5589 dev_unicast_flush(dev);
5590 dev_addr_discard(dev);
5592 netdev_unregister_kobject(dev);
5594 /* Actually switch the network namespace */
5595 dev_net_set(dev, net);
5597 /* If there is an ifindex conflict assign a new one */
5598 if (__dev_get_by_index(net, dev->ifindex)) {
5599 int iflink = (dev->iflink == dev->ifindex);
5600 dev->ifindex = dev_new_index(net);
5601 if (iflink)
5602 dev->iflink = dev->ifindex;
5605 /* Fixup kobjects */
5606 err = netdev_register_kobject(dev);
5607 WARN_ON(err);
5609 /* Add the device back in the hashes */
5610 list_netdevice(dev);
5612 /* Notify protocols, that a new device appeared. */
5613 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5616 * Prevent userspace races by waiting until the network
5617 * device is fully setup before sending notifications.
5619 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5621 synchronize_net();
5622 err = 0;
5623 out:
5624 return err;
5626 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5628 static int dev_cpu_callback(struct notifier_block *nfb,
5629 unsigned long action,
5630 void *ocpu)
5632 struct sk_buff **list_skb;
5633 struct Qdisc **list_net;
5634 struct sk_buff *skb;
5635 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5636 struct softnet_data *sd, *oldsd;
5638 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5639 return NOTIFY_OK;
5641 local_irq_disable();
5642 cpu = smp_processor_id();
5643 sd = &per_cpu(softnet_data, cpu);
5644 oldsd = &per_cpu(softnet_data, oldcpu);
5646 /* Find end of our completion_queue. */
5647 list_skb = &sd->completion_queue;
5648 while (*list_skb)
5649 list_skb = &(*list_skb)->next;
5650 /* Append completion queue from offline CPU. */
5651 *list_skb = oldsd->completion_queue;
5652 oldsd->completion_queue = NULL;
5654 /* Find end of our output_queue. */
5655 list_net = &sd->output_queue;
5656 while (*list_net)
5657 list_net = &(*list_net)->next_sched;
5658 /* Append output queue from offline CPU. */
5659 *list_net = oldsd->output_queue;
5660 oldsd->output_queue = NULL;
5662 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5663 local_irq_enable();
5665 /* Process offline CPU's input_pkt_queue */
5666 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5667 netif_rx(skb);
5669 return NOTIFY_OK;
5674 * netdev_increment_features - increment feature set by one
5675 * @all: current feature set
5676 * @one: new feature set
5677 * @mask: mask feature set
5679 * Computes a new feature set after adding a device with feature set
5680 * @one to the master device with current feature set @all. Will not
5681 * enable anything that is off in @mask. Returns the new feature set.
5683 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5684 unsigned long mask)
5686 /* If device needs checksumming, downgrade to it. */
5687 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5688 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5689 else if (mask & NETIF_F_ALL_CSUM) {
5690 /* If one device supports v4/v6 checksumming, set for all. */
5691 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5692 !(all & NETIF_F_GEN_CSUM)) {
5693 all &= ~NETIF_F_ALL_CSUM;
5694 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5697 /* If one device supports hw checksumming, set for all. */
5698 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5699 all &= ~NETIF_F_ALL_CSUM;
5700 all |= NETIF_F_HW_CSUM;
5704 one |= NETIF_F_ALL_CSUM;
5706 one |= all & NETIF_F_ONE_FOR_ALL;
5707 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5708 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5710 return all;
5712 EXPORT_SYMBOL(netdev_increment_features);
5714 static struct hlist_head *netdev_create_hash(void)
5716 int i;
5717 struct hlist_head *hash;
5719 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5720 if (hash != NULL)
5721 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5722 INIT_HLIST_HEAD(&hash[i]);
5724 return hash;
5727 /* Initialize per network namespace state */
5728 static int __net_init netdev_init(struct net *net)
5730 INIT_LIST_HEAD(&net->dev_base_head);
5732 net->dev_name_head = netdev_create_hash();
5733 if (net->dev_name_head == NULL)
5734 goto err_name;
5736 net->dev_index_head = netdev_create_hash();
5737 if (net->dev_index_head == NULL)
5738 goto err_idx;
5740 return 0;
5742 err_idx:
5743 kfree(net->dev_name_head);
5744 err_name:
5745 return -ENOMEM;
5749 * netdev_drivername - network driver for the device
5750 * @dev: network device
5751 * @buffer: buffer for resulting name
5752 * @len: size of buffer
5754 * Determine network driver for device.
5756 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5758 const struct device_driver *driver;
5759 const struct device *parent;
5761 if (len <= 0 || !buffer)
5762 return buffer;
5763 buffer[0] = 0;
5765 parent = dev->dev.parent;
5767 if (!parent)
5768 return buffer;
5770 driver = parent->driver;
5771 if (driver && driver->name)
5772 strlcpy(buffer, driver->name, len);
5773 return buffer;
5776 static void __net_exit netdev_exit(struct net *net)
5778 kfree(net->dev_name_head);
5779 kfree(net->dev_index_head);
5782 static struct pernet_operations __net_initdata netdev_net_ops = {
5783 .init = netdev_init,
5784 .exit = netdev_exit,
5787 static void __net_exit default_device_exit(struct net *net)
5789 struct net_device *dev, *aux;
5791 * Push all migratable network devices back to the
5792 * initial network namespace
5794 rtnl_lock();
5795 for_each_netdev_safe(net, dev, aux) {
5796 int err;
5797 char fb_name[IFNAMSIZ];
5799 /* Ignore unmoveable devices (i.e. loopback) */
5800 if (dev->features & NETIF_F_NETNS_LOCAL)
5801 continue;
5803 /* Leave virtual devices for the generic cleanup */
5804 if (dev->rtnl_link_ops)
5805 continue;
5807 /* Push remaing network devices to init_net */
5808 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5809 err = dev_change_net_namespace(dev, &init_net, fb_name);
5810 if (err) {
5811 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5812 __func__, dev->name, err);
5813 BUG();
5816 rtnl_unlock();
5819 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5821 /* At exit all network devices most be removed from a network
5822 * namespace. Do this in the reverse order of registeration.
5823 * Do this across as many network namespaces as possible to
5824 * improve batching efficiency.
5826 struct net_device *dev;
5827 struct net *net;
5828 LIST_HEAD(dev_kill_list);
5830 rtnl_lock();
5831 list_for_each_entry(net, net_list, exit_list) {
5832 for_each_netdev_reverse(net, dev) {
5833 if (dev->rtnl_link_ops)
5834 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5835 else
5836 unregister_netdevice_queue(dev, &dev_kill_list);
5839 unregister_netdevice_many(&dev_kill_list);
5840 list_del(&dev_kill_list);
5841 rtnl_unlock();
5844 static struct pernet_operations __net_initdata default_device_ops = {
5845 .exit = default_device_exit,
5846 .exit_batch = default_device_exit_batch,
5850 * Initialize the DEV module. At boot time this walks the device list and
5851 * unhooks any devices that fail to initialise (normally hardware not
5852 * present) and leaves us with a valid list of present and active devices.
5857 * This is called single threaded during boot, so no need
5858 * to take the rtnl semaphore.
5860 static int __init net_dev_init(void)
5862 int i, rc = -ENOMEM;
5864 BUG_ON(!dev_boot_phase);
5866 if (dev_proc_init())
5867 goto out;
5869 if (netdev_kobject_init())
5870 goto out;
5872 INIT_LIST_HEAD(&ptype_all);
5873 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5874 INIT_LIST_HEAD(&ptype_base[i]);
5876 if (register_pernet_subsys(&netdev_net_ops))
5877 goto out;
5880 * Initialise the packet receive queues.
5883 for_each_possible_cpu(i) {
5884 struct softnet_data *queue;
5886 queue = &per_cpu(softnet_data, i);
5887 skb_queue_head_init(&queue->input_pkt_queue);
5888 queue->completion_queue = NULL;
5889 INIT_LIST_HEAD(&queue->poll_list);
5891 queue->backlog.poll = process_backlog;
5892 queue->backlog.weight = weight_p;
5893 queue->backlog.gro_list = NULL;
5894 queue->backlog.gro_count = 0;
5897 dev_boot_phase = 0;
5899 /* The loopback device is special if any other network devices
5900 * is present in a network namespace the loopback device must
5901 * be present. Since we now dynamically allocate and free the
5902 * loopback device ensure this invariant is maintained by
5903 * keeping the loopback device as the first device on the
5904 * list of network devices. Ensuring the loopback devices
5905 * is the first device that appears and the last network device
5906 * that disappears.
5908 if (register_pernet_device(&loopback_net_ops))
5909 goto out;
5911 if (register_pernet_device(&default_device_ops))
5912 goto out;
5914 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5915 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5917 hotcpu_notifier(dev_cpu_callback, 0);
5918 dst_init();
5919 dev_mcast_init();
5920 rc = 0;
5921 out:
5922 return rc;
5925 subsys_initcall(net_dev_init);
5927 static int __init initialize_hashrnd(void)
5929 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5930 return 0;
5933 late_initcall_sync(initialize_hashrnd);