xfs: always use iget in bulkstat
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / exec.c
blob68083fab2c9f8422f8be9b793e67b5b824893126
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/ima.h>
50 #include <linux/syscalls.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
54 #include <linux/tracehook.h>
55 #include <linux/kmod.h>
56 #include <linux/fsnotify.h>
57 #include <linux/fs_struct.h>
58 #include <linux/pipe_fs_i.h>
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
63 #include "internal.h"
65 int core_uses_pid;
66 char core_pattern[CORENAME_MAX_SIZE] = "core";
67 unsigned int core_pipe_limit;
68 int suid_dumpable = 0;
70 /* The maximal length of core_pattern is also specified in sysctl.c */
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
75 int __register_binfmt(struct linux_binfmt * fmt, int insert)
77 if (!fmt)
78 return -EINVAL;
79 write_lock(&binfmt_lock);
80 insert ? list_add(&fmt->lh, &formats) :
81 list_add_tail(&fmt->lh, &formats);
82 write_unlock(&binfmt_lock);
83 return 0;
86 EXPORT_SYMBOL(__register_binfmt);
88 void unregister_binfmt(struct linux_binfmt * fmt)
90 write_lock(&binfmt_lock);
91 list_del(&fmt->lh);
92 write_unlock(&binfmt_lock);
95 EXPORT_SYMBOL(unregister_binfmt);
97 static inline void put_binfmt(struct linux_binfmt * fmt)
99 module_put(fmt->module);
103 * Note that a shared library must be both readable and executable due to
104 * security reasons.
106 * Also note that we take the address to load from from the file itself.
108 SYSCALL_DEFINE1(uselib, const char __user *, library)
110 struct file *file;
111 char *tmp = getname(library);
112 int error = PTR_ERR(tmp);
114 if (IS_ERR(tmp))
115 goto out;
117 file = do_filp_open(AT_FDCWD, tmp,
118 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
119 MAY_READ | MAY_EXEC | MAY_OPEN);
120 putname(tmp);
121 error = PTR_ERR(file);
122 if (IS_ERR(file))
123 goto out;
125 error = -EINVAL;
126 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
127 goto exit;
129 error = -EACCES;
130 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
131 goto exit;
133 fsnotify_open(file->f_path.dentry);
135 error = -ENOEXEC;
136 if(file->f_op) {
137 struct linux_binfmt * fmt;
139 read_lock(&binfmt_lock);
140 list_for_each_entry(fmt, &formats, lh) {
141 if (!fmt->load_shlib)
142 continue;
143 if (!try_module_get(fmt->module))
144 continue;
145 read_unlock(&binfmt_lock);
146 error = fmt->load_shlib(file);
147 read_lock(&binfmt_lock);
148 put_binfmt(fmt);
149 if (error != -ENOEXEC)
150 break;
152 read_unlock(&binfmt_lock);
154 exit:
155 fput(file);
156 out:
157 return error;
160 #ifdef CONFIG_MMU
162 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
163 int write)
165 struct page *page;
166 int ret;
168 #ifdef CONFIG_STACK_GROWSUP
169 if (write) {
170 ret = expand_stack_downwards(bprm->vma, pos);
171 if (ret < 0)
172 return NULL;
174 #endif
175 ret = get_user_pages(current, bprm->mm, pos,
176 1, write, 1, &page, NULL);
177 if (ret <= 0)
178 return NULL;
180 if (write) {
181 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
182 struct rlimit *rlim;
185 * We've historically supported up to 32 pages (ARG_MAX)
186 * of argument strings even with small stacks
188 if (size <= ARG_MAX)
189 return page;
192 * Limit to 1/4-th the stack size for the argv+env strings.
193 * This ensures that:
194 * - the remaining binfmt code will not run out of stack space,
195 * - the program will have a reasonable amount of stack left
196 * to work from.
198 rlim = current->signal->rlim;
199 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
200 put_page(page);
201 return NULL;
205 return page;
208 static void put_arg_page(struct page *page)
210 put_page(page);
213 static void free_arg_page(struct linux_binprm *bprm, int i)
217 static void free_arg_pages(struct linux_binprm *bprm)
221 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
222 struct page *page)
224 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
227 static int __bprm_mm_init(struct linux_binprm *bprm)
229 int err;
230 struct vm_area_struct *vma = NULL;
231 struct mm_struct *mm = bprm->mm;
233 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
234 if (!vma)
235 return -ENOMEM;
237 down_write(&mm->mmap_sem);
238 vma->vm_mm = mm;
241 * Place the stack at the largest stack address the architecture
242 * supports. Later, we'll move this to an appropriate place. We don't
243 * use STACK_TOP because that can depend on attributes which aren't
244 * configured yet.
246 vma->vm_end = STACK_TOP_MAX;
247 vma->vm_start = vma->vm_end - PAGE_SIZE;
248 vma->vm_flags = VM_STACK_FLAGS;
249 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
251 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
252 if (err)
253 goto err;
255 err = insert_vm_struct(mm, vma);
256 if (err)
257 goto err;
259 mm->stack_vm = mm->total_vm = 1;
260 up_write(&mm->mmap_sem);
261 bprm->p = vma->vm_end - sizeof(void *);
262 return 0;
263 err:
264 up_write(&mm->mmap_sem);
265 bprm->vma = NULL;
266 kmem_cache_free(vm_area_cachep, vma);
267 return err;
270 static bool valid_arg_len(struct linux_binprm *bprm, long len)
272 return len <= MAX_ARG_STRLEN;
275 #else
277 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
278 int write)
280 struct page *page;
282 page = bprm->page[pos / PAGE_SIZE];
283 if (!page && write) {
284 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
285 if (!page)
286 return NULL;
287 bprm->page[pos / PAGE_SIZE] = page;
290 return page;
293 static void put_arg_page(struct page *page)
297 static void free_arg_page(struct linux_binprm *bprm, int i)
299 if (bprm->page[i]) {
300 __free_page(bprm->page[i]);
301 bprm->page[i] = NULL;
305 static void free_arg_pages(struct linux_binprm *bprm)
307 int i;
309 for (i = 0; i < MAX_ARG_PAGES; i++)
310 free_arg_page(bprm, i);
313 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
314 struct page *page)
318 static int __bprm_mm_init(struct linux_binprm *bprm)
320 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
321 return 0;
324 static bool valid_arg_len(struct linux_binprm *bprm, long len)
326 return len <= bprm->p;
329 #endif /* CONFIG_MMU */
332 * Create a new mm_struct and populate it with a temporary stack
333 * vm_area_struct. We don't have enough context at this point to set the stack
334 * flags, permissions, and offset, so we use temporary values. We'll update
335 * them later in setup_arg_pages().
337 int bprm_mm_init(struct linux_binprm *bprm)
339 int err;
340 struct mm_struct *mm = NULL;
342 bprm->mm = mm = mm_alloc();
343 err = -ENOMEM;
344 if (!mm)
345 goto err;
347 err = init_new_context(current, mm);
348 if (err)
349 goto err;
351 err = __bprm_mm_init(bprm);
352 if (err)
353 goto err;
355 return 0;
357 err:
358 if (mm) {
359 bprm->mm = NULL;
360 mmdrop(mm);
363 return err;
367 * count() counts the number of strings in array ARGV.
369 static int count(char __user * __user * argv, int max)
371 int i = 0;
373 if (argv != NULL) {
374 for (;;) {
375 char __user * p;
377 if (get_user(p, argv))
378 return -EFAULT;
379 if (!p)
380 break;
381 argv++;
382 if (i++ >= max)
383 return -E2BIG;
385 if (fatal_signal_pending(current))
386 return -ERESTARTNOHAND;
387 cond_resched();
390 return i;
394 * 'copy_strings()' copies argument/environment strings from the old
395 * processes's memory to the new process's stack. The call to get_user_pages()
396 * ensures the destination page is created and not swapped out.
398 static int copy_strings(int argc, char __user * __user * argv,
399 struct linux_binprm *bprm)
401 struct page *kmapped_page = NULL;
402 char *kaddr = NULL;
403 unsigned long kpos = 0;
404 int ret;
406 while (argc-- > 0) {
407 char __user *str;
408 int len;
409 unsigned long pos;
411 if (get_user(str, argv+argc) ||
412 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
413 ret = -EFAULT;
414 goto out;
417 if (!valid_arg_len(bprm, len)) {
418 ret = -E2BIG;
419 goto out;
422 /* We're going to work our way backwords. */
423 pos = bprm->p;
424 str += len;
425 bprm->p -= len;
427 while (len > 0) {
428 int offset, bytes_to_copy;
430 if (fatal_signal_pending(current)) {
431 ret = -ERESTARTNOHAND;
432 goto out;
434 cond_resched();
436 offset = pos % PAGE_SIZE;
437 if (offset == 0)
438 offset = PAGE_SIZE;
440 bytes_to_copy = offset;
441 if (bytes_to_copy > len)
442 bytes_to_copy = len;
444 offset -= bytes_to_copy;
445 pos -= bytes_to_copy;
446 str -= bytes_to_copy;
447 len -= bytes_to_copy;
449 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
450 struct page *page;
452 page = get_arg_page(bprm, pos, 1);
453 if (!page) {
454 ret = -E2BIG;
455 goto out;
458 if (kmapped_page) {
459 flush_kernel_dcache_page(kmapped_page);
460 kunmap(kmapped_page);
461 put_arg_page(kmapped_page);
463 kmapped_page = page;
464 kaddr = kmap(kmapped_page);
465 kpos = pos & PAGE_MASK;
466 flush_arg_page(bprm, kpos, kmapped_page);
468 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
469 ret = -EFAULT;
470 goto out;
474 ret = 0;
475 out:
476 if (kmapped_page) {
477 flush_kernel_dcache_page(kmapped_page);
478 kunmap(kmapped_page);
479 put_arg_page(kmapped_page);
481 return ret;
485 * Like copy_strings, but get argv and its values from kernel memory.
487 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
489 int r;
490 mm_segment_t oldfs = get_fs();
491 set_fs(KERNEL_DS);
492 r = copy_strings(argc, (char __user * __user *)argv, bprm);
493 set_fs(oldfs);
494 return r;
496 EXPORT_SYMBOL(copy_strings_kernel);
498 #ifdef CONFIG_MMU
501 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
502 * the binfmt code determines where the new stack should reside, we shift it to
503 * its final location. The process proceeds as follows:
505 * 1) Use shift to calculate the new vma endpoints.
506 * 2) Extend vma to cover both the old and new ranges. This ensures the
507 * arguments passed to subsequent functions are consistent.
508 * 3) Move vma's page tables to the new range.
509 * 4) Free up any cleared pgd range.
510 * 5) Shrink the vma to cover only the new range.
512 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
514 struct mm_struct *mm = vma->vm_mm;
515 unsigned long old_start = vma->vm_start;
516 unsigned long old_end = vma->vm_end;
517 unsigned long length = old_end - old_start;
518 unsigned long new_start = old_start - shift;
519 unsigned long new_end = old_end - shift;
520 struct mmu_gather *tlb;
522 BUG_ON(new_start > new_end);
525 * ensure there are no vmas between where we want to go
526 * and where we are
528 if (vma != find_vma(mm, new_start))
529 return -EFAULT;
532 * cover the whole range: [new_start, old_end)
534 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
537 * move the page tables downwards, on failure we rely on
538 * process cleanup to remove whatever mess we made.
540 if (length != move_page_tables(vma, old_start,
541 vma, new_start, length))
542 return -ENOMEM;
544 lru_add_drain();
545 tlb = tlb_gather_mmu(mm, 0);
546 if (new_end > old_start) {
548 * when the old and new regions overlap clear from new_end.
550 free_pgd_range(tlb, new_end, old_end, new_end,
551 vma->vm_next ? vma->vm_next->vm_start : 0);
552 } else {
554 * otherwise, clean from old_start; this is done to not touch
555 * the address space in [new_end, old_start) some architectures
556 * have constraints on va-space that make this illegal (IA64) -
557 * for the others its just a little faster.
559 free_pgd_range(tlb, old_start, old_end, new_end,
560 vma->vm_next ? vma->vm_next->vm_start : 0);
562 tlb_finish_mmu(tlb, new_end, old_end);
565 * shrink the vma to just the new range.
567 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
569 return 0;
572 #define EXTRA_STACK_VM_PAGES 20 /* random */
575 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
576 * the stack is optionally relocated, and some extra space is added.
578 int setup_arg_pages(struct linux_binprm *bprm,
579 unsigned long stack_top,
580 int executable_stack)
582 unsigned long ret;
583 unsigned long stack_shift;
584 struct mm_struct *mm = current->mm;
585 struct vm_area_struct *vma = bprm->vma;
586 struct vm_area_struct *prev = NULL;
587 unsigned long vm_flags;
588 unsigned long stack_base;
589 unsigned long stack_size;
590 unsigned long stack_expand;
591 unsigned long rlim_stack;
593 #ifdef CONFIG_STACK_GROWSUP
594 /* Limit stack size to 1GB */
595 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
596 if (stack_base > (1 << 30))
597 stack_base = 1 << 30;
599 /* Make sure we didn't let the argument array grow too large. */
600 if (vma->vm_end - vma->vm_start > stack_base)
601 return -ENOMEM;
603 stack_base = PAGE_ALIGN(stack_top - stack_base);
605 stack_shift = vma->vm_start - stack_base;
606 mm->arg_start = bprm->p - stack_shift;
607 bprm->p = vma->vm_end - stack_shift;
608 #else
609 stack_top = arch_align_stack(stack_top);
610 stack_top = PAGE_ALIGN(stack_top);
612 if (unlikely(stack_top < mmap_min_addr) ||
613 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
614 return -ENOMEM;
616 stack_shift = vma->vm_end - stack_top;
618 bprm->p -= stack_shift;
619 mm->arg_start = bprm->p;
620 #endif
622 if (bprm->loader)
623 bprm->loader -= stack_shift;
624 bprm->exec -= stack_shift;
626 down_write(&mm->mmap_sem);
627 vm_flags = VM_STACK_FLAGS;
630 * Adjust stack execute permissions; explicitly enable for
631 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
632 * (arch default) otherwise.
634 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
635 vm_flags |= VM_EXEC;
636 else if (executable_stack == EXSTACK_DISABLE_X)
637 vm_flags &= ~VM_EXEC;
638 vm_flags |= mm->def_flags;
640 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
641 vm_flags);
642 if (ret)
643 goto out_unlock;
644 BUG_ON(prev != vma);
646 /* Move stack pages down in memory. */
647 if (stack_shift) {
648 ret = shift_arg_pages(vma, stack_shift);
649 if (ret)
650 goto out_unlock;
653 stack_expand = EXTRA_STACK_VM_PAGES * PAGE_SIZE;
654 stack_size = vma->vm_end - vma->vm_start;
656 * Align this down to a page boundary as expand_stack
657 * will align it up.
659 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
660 #ifdef CONFIG_STACK_GROWSUP
661 if (stack_size + stack_expand > rlim_stack)
662 stack_base = vma->vm_start + rlim_stack;
663 else
664 stack_base = vma->vm_end + stack_expand;
665 #else
666 if (stack_size + stack_expand > rlim_stack)
667 stack_base = vma->vm_end - rlim_stack;
668 else
669 stack_base = vma->vm_start - stack_expand;
670 #endif
671 ret = expand_stack(vma, stack_base);
672 if (ret)
673 ret = -EFAULT;
675 out_unlock:
676 up_write(&mm->mmap_sem);
677 return ret;
679 EXPORT_SYMBOL(setup_arg_pages);
681 #endif /* CONFIG_MMU */
683 struct file *open_exec(const char *name)
685 struct file *file;
686 int err;
688 file = do_filp_open(AT_FDCWD, name,
689 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
690 MAY_EXEC | MAY_OPEN);
691 if (IS_ERR(file))
692 goto out;
694 err = -EACCES;
695 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
696 goto exit;
698 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
699 goto exit;
701 fsnotify_open(file->f_path.dentry);
703 err = deny_write_access(file);
704 if (err)
705 goto exit;
707 out:
708 return file;
710 exit:
711 fput(file);
712 return ERR_PTR(err);
714 EXPORT_SYMBOL(open_exec);
716 int kernel_read(struct file *file, loff_t offset,
717 char *addr, unsigned long count)
719 mm_segment_t old_fs;
720 loff_t pos = offset;
721 int result;
723 old_fs = get_fs();
724 set_fs(get_ds());
725 /* The cast to a user pointer is valid due to the set_fs() */
726 result = vfs_read(file, (void __user *)addr, count, &pos);
727 set_fs(old_fs);
728 return result;
731 EXPORT_SYMBOL(kernel_read);
733 static int exec_mmap(struct mm_struct *mm)
735 struct task_struct *tsk;
736 struct mm_struct * old_mm, *active_mm;
738 /* Notify parent that we're no longer interested in the old VM */
739 tsk = current;
740 old_mm = current->mm;
741 mm_release(tsk, old_mm);
743 if (old_mm) {
745 * Make sure that if there is a core dump in progress
746 * for the old mm, we get out and die instead of going
747 * through with the exec. We must hold mmap_sem around
748 * checking core_state and changing tsk->mm.
750 down_read(&old_mm->mmap_sem);
751 if (unlikely(old_mm->core_state)) {
752 up_read(&old_mm->mmap_sem);
753 return -EINTR;
756 task_lock(tsk);
757 active_mm = tsk->active_mm;
758 tsk->mm = mm;
759 tsk->active_mm = mm;
760 activate_mm(active_mm, mm);
761 task_unlock(tsk);
762 arch_pick_mmap_layout(mm);
763 if (old_mm) {
764 up_read(&old_mm->mmap_sem);
765 BUG_ON(active_mm != old_mm);
766 mm_update_next_owner(old_mm);
767 mmput(old_mm);
768 return 0;
770 mmdrop(active_mm);
771 return 0;
775 * This function makes sure the current process has its own signal table,
776 * so that flush_signal_handlers can later reset the handlers without
777 * disturbing other processes. (Other processes might share the signal
778 * table via the CLONE_SIGHAND option to clone().)
780 static int de_thread(struct task_struct *tsk)
782 struct signal_struct *sig = tsk->signal;
783 struct sighand_struct *oldsighand = tsk->sighand;
784 spinlock_t *lock = &oldsighand->siglock;
785 int count;
787 if (thread_group_empty(tsk))
788 goto no_thread_group;
791 * Kill all other threads in the thread group.
793 spin_lock_irq(lock);
794 if (signal_group_exit(sig)) {
796 * Another group action in progress, just
797 * return so that the signal is processed.
799 spin_unlock_irq(lock);
800 return -EAGAIN;
802 sig->group_exit_task = tsk;
803 zap_other_threads(tsk);
805 /* Account for the thread group leader hanging around: */
806 count = thread_group_leader(tsk) ? 1 : 2;
807 sig->notify_count = count;
808 while (atomic_read(&sig->count) > count) {
809 __set_current_state(TASK_UNINTERRUPTIBLE);
810 spin_unlock_irq(lock);
811 schedule();
812 spin_lock_irq(lock);
814 spin_unlock_irq(lock);
817 * At this point all other threads have exited, all we have to
818 * do is to wait for the thread group leader to become inactive,
819 * and to assume its PID:
821 if (!thread_group_leader(tsk)) {
822 struct task_struct *leader = tsk->group_leader;
824 sig->notify_count = -1; /* for exit_notify() */
825 for (;;) {
826 write_lock_irq(&tasklist_lock);
827 if (likely(leader->exit_state))
828 break;
829 __set_current_state(TASK_UNINTERRUPTIBLE);
830 write_unlock_irq(&tasklist_lock);
831 schedule();
835 * The only record we have of the real-time age of a
836 * process, regardless of execs it's done, is start_time.
837 * All the past CPU time is accumulated in signal_struct
838 * from sister threads now dead. But in this non-leader
839 * exec, nothing survives from the original leader thread,
840 * whose birth marks the true age of this process now.
841 * When we take on its identity by switching to its PID, we
842 * also take its birthdate (always earlier than our own).
844 tsk->start_time = leader->start_time;
846 BUG_ON(!same_thread_group(leader, tsk));
847 BUG_ON(has_group_leader_pid(tsk));
849 * An exec() starts a new thread group with the
850 * TGID of the previous thread group. Rehash the
851 * two threads with a switched PID, and release
852 * the former thread group leader:
855 /* Become a process group leader with the old leader's pid.
856 * The old leader becomes a thread of the this thread group.
857 * Note: The old leader also uses this pid until release_task
858 * is called. Odd but simple and correct.
860 detach_pid(tsk, PIDTYPE_PID);
861 tsk->pid = leader->pid;
862 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
863 transfer_pid(leader, tsk, PIDTYPE_PGID);
864 transfer_pid(leader, tsk, PIDTYPE_SID);
865 list_replace_rcu(&leader->tasks, &tsk->tasks);
867 tsk->group_leader = tsk;
868 leader->group_leader = tsk;
870 tsk->exit_signal = SIGCHLD;
872 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
873 leader->exit_state = EXIT_DEAD;
874 write_unlock_irq(&tasklist_lock);
876 release_task(leader);
879 sig->group_exit_task = NULL;
880 sig->notify_count = 0;
882 no_thread_group:
883 if (current->mm)
884 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
886 exit_itimers(sig);
887 flush_itimer_signals();
889 if (atomic_read(&oldsighand->count) != 1) {
890 struct sighand_struct *newsighand;
892 * This ->sighand is shared with the CLONE_SIGHAND
893 * but not CLONE_THREAD task, switch to the new one.
895 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
896 if (!newsighand)
897 return -ENOMEM;
899 atomic_set(&newsighand->count, 1);
900 memcpy(newsighand->action, oldsighand->action,
901 sizeof(newsighand->action));
903 write_lock_irq(&tasklist_lock);
904 spin_lock(&oldsighand->siglock);
905 rcu_assign_pointer(tsk->sighand, newsighand);
906 spin_unlock(&oldsighand->siglock);
907 write_unlock_irq(&tasklist_lock);
909 __cleanup_sighand(oldsighand);
912 BUG_ON(!thread_group_leader(tsk));
913 return 0;
917 * These functions flushes out all traces of the currently running executable
918 * so that a new one can be started
920 static void flush_old_files(struct files_struct * files)
922 long j = -1;
923 struct fdtable *fdt;
925 spin_lock(&files->file_lock);
926 for (;;) {
927 unsigned long set, i;
929 j++;
930 i = j * __NFDBITS;
931 fdt = files_fdtable(files);
932 if (i >= fdt->max_fds)
933 break;
934 set = fdt->close_on_exec->fds_bits[j];
935 if (!set)
936 continue;
937 fdt->close_on_exec->fds_bits[j] = 0;
938 spin_unlock(&files->file_lock);
939 for ( ; set ; i++,set >>= 1) {
940 if (set & 1) {
941 sys_close(i);
944 spin_lock(&files->file_lock);
947 spin_unlock(&files->file_lock);
950 char *get_task_comm(char *buf, struct task_struct *tsk)
952 /* buf must be at least sizeof(tsk->comm) in size */
953 task_lock(tsk);
954 strncpy(buf, tsk->comm, sizeof(tsk->comm));
955 task_unlock(tsk);
956 return buf;
959 void set_task_comm(struct task_struct *tsk, char *buf)
961 task_lock(tsk);
962 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
963 task_unlock(tsk);
964 perf_event_comm(tsk);
967 int flush_old_exec(struct linux_binprm * bprm)
969 int retval;
972 * Make sure we have a private signal table and that
973 * we are unassociated from the previous thread group.
975 retval = de_thread(current);
976 if (retval)
977 goto out;
979 set_mm_exe_file(bprm->mm, bprm->file);
982 * Release all of the old mmap stuff
984 retval = exec_mmap(bprm->mm);
985 if (retval)
986 goto out;
988 bprm->mm = NULL; /* We're using it now */
990 current->flags &= ~PF_RANDOMIZE;
991 flush_thread();
992 current->personality &= ~bprm->per_clear;
994 return 0;
996 out:
997 return retval;
999 EXPORT_SYMBOL(flush_old_exec);
1001 void setup_new_exec(struct linux_binprm * bprm)
1003 int i, ch;
1004 char * name;
1005 char tcomm[sizeof(current->comm)];
1007 arch_pick_mmap_layout(current->mm);
1009 /* This is the point of no return */
1010 current->sas_ss_sp = current->sas_ss_size = 0;
1012 if (current_euid() == current_uid() && current_egid() == current_gid())
1013 set_dumpable(current->mm, 1);
1014 else
1015 set_dumpable(current->mm, suid_dumpable);
1017 name = bprm->filename;
1019 /* Copies the binary name from after last slash */
1020 for (i=0; (ch = *(name++)) != '\0';) {
1021 if (ch == '/')
1022 i = 0; /* overwrite what we wrote */
1023 else
1024 if (i < (sizeof(tcomm) - 1))
1025 tcomm[i++] = ch;
1027 tcomm[i] = '\0';
1028 set_task_comm(current, tcomm);
1030 /* Set the new mm task size. We have to do that late because it may
1031 * depend on TIF_32BIT which is only updated in flush_thread() on
1032 * some architectures like powerpc
1034 current->mm->task_size = TASK_SIZE;
1036 /* install the new credentials */
1037 if (bprm->cred->uid != current_euid() ||
1038 bprm->cred->gid != current_egid()) {
1039 current->pdeath_signal = 0;
1040 } else if (file_permission(bprm->file, MAY_READ) ||
1041 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1042 set_dumpable(current->mm, suid_dumpable);
1046 * Flush performance counters when crossing a
1047 * security domain:
1049 if (!get_dumpable(current->mm))
1050 perf_event_exit_task(current);
1052 /* An exec changes our domain. We are no longer part of the thread
1053 group */
1055 current->self_exec_id++;
1057 flush_signal_handlers(current, 0);
1058 flush_old_files(current->files);
1060 EXPORT_SYMBOL(setup_new_exec);
1063 * Prepare credentials and lock ->cred_guard_mutex.
1064 * install_exec_creds() commits the new creds and drops the lock.
1065 * Or, if exec fails before, free_bprm() should release ->cred and
1066 * and unlock.
1068 int prepare_bprm_creds(struct linux_binprm *bprm)
1070 if (mutex_lock_interruptible(&current->cred_guard_mutex))
1071 return -ERESTARTNOINTR;
1073 bprm->cred = prepare_exec_creds();
1074 if (likely(bprm->cred))
1075 return 0;
1077 mutex_unlock(&current->cred_guard_mutex);
1078 return -ENOMEM;
1081 void free_bprm(struct linux_binprm *bprm)
1083 free_arg_pages(bprm);
1084 if (bprm->cred) {
1085 mutex_unlock(&current->cred_guard_mutex);
1086 abort_creds(bprm->cred);
1088 kfree(bprm);
1092 * install the new credentials for this executable
1094 void install_exec_creds(struct linux_binprm *bprm)
1096 security_bprm_committing_creds(bprm);
1098 commit_creds(bprm->cred);
1099 bprm->cred = NULL;
1101 * cred_guard_mutex must be held at least to this point to prevent
1102 * ptrace_attach() from altering our determination of the task's
1103 * credentials; any time after this it may be unlocked.
1105 security_bprm_committed_creds(bprm);
1106 mutex_unlock(&current->cred_guard_mutex);
1108 EXPORT_SYMBOL(install_exec_creds);
1111 * determine how safe it is to execute the proposed program
1112 * - the caller must hold current->cred_guard_mutex to protect against
1113 * PTRACE_ATTACH
1115 int check_unsafe_exec(struct linux_binprm *bprm)
1117 struct task_struct *p = current, *t;
1118 unsigned n_fs;
1119 int res = 0;
1121 bprm->unsafe = tracehook_unsafe_exec(p);
1123 n_fs = 1;
1124 write_lock(&p->fs->lock);
1125 rcu_read_lock();
1126 for (t = next_thread(p); t != p; t = next_thread(t)) {
1127 if (t->fs == p->fs)
1128 n_fs++;
1130 rcu_read_unlock();
1132 if (p->fs->users > n_fs) {
1133 bprm->unsafe |= LSM_UNSAFE_SHARE;
1134 } else {
1135 res = -EAGAIN;
1136 if (!p->fs->in_exec) {
1137 p->fs->in_exec = 1;
1138 res = 1;
1141 write_unlock(&p->fs->lock);
1143 return res;
1147 * Fill the binprm structure from the inode.
1148 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1150 * This may be called multiple times for binary chains (scripts for example).
1152 int prepare_binprm(struct linux_binprm *bprm)
1154 umode_t mode;
1155 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1156 int retval;
1158 mode = inode->i_mode;
1159 if (bprm->file->f_op == NULL)
1160 return -EACCES;
1162 /* clear any previous set[ug]id data from a previous binary */
1163 bprm->cred->euid = current_euid();
1164 bprm->cred->egid = current_egid();
1166 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1167 /* Set-uid? */
1168 if (mode & S_ISUID) {
1169 bprm->per_clear |= PER_CLEAR_ON_SETID;
1170 bprm->cred->euid = inode->i_uid;
1173 /* Set-gid? */
1175 * If setgid is set but no group execute bit then this
1176 * is a candidate for mandatory locking, not a setgid
1177 * executable.
1179 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1180 bprm->per_clear |= PER_CLEAR_ON_SETID;
1181 bprm->cred->egid = inode->i_gid;
1185 /* fill in binprm security blob */
1186 retval = security_bprm_set_creds(bprm);
1187 if (retval)
1188 return retval;
1189 bprm->cred_prepared = 1;
1191 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1192 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1195 EXPORT_SYMBOL(prepare_binprm);
1198 * Arguments are '\0' separated strings found at the location bprm->p
1199 * points to; chop off the first by relocating brpm->p to right after
1200 * the first '\0' encountered.
1202 int remove_arg_zero(struct linux_binprm *bprm)
1204 int ret = 0;
1205 unsigned long offset;
1206 char *kaddr;
1207 struct page *page;
1209 if (!bprm->argc)
1210 return 0;
1212 do {
1213 offset = bprm->p & ~PAGE_MASK;
1214 page = get_arg_page(bprm, bprm->p, 0);
1215 if (!page) {
1216 ret = -EFAULT;
1217 goto out;
1219 kaddr = kmap_atomic(page, KM_USER0);
1221 for (; offset < PAGE_SIZE && kaddr[offset];
1222 offset++, bprm->p++)
1225 kunmap_atomic(kaddr, KM_USER0);
1226 put_arg_page(page);
1228 if (offset == PAGE_SIZE)
1229 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1230 } while (offset == PAGE_SIZE);
1232 bprm->p++;
1233 bprm->argc--;
1234 ret = 0;
1236 out:
1237 return ret;
1239 EXPORT_SYMBOL(remove_arg_zero);
1242 * cycle the list of binary formats handler, until one recognizes the image
1244 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1246 unsigned int depth = bprm->recursion_depth;
1247 int try,retval;
1248 struct linux_binfmt *fmt;
1250 retval = security_bprm_check(bprm);
1251 if (retval)
1252 return retval;
1253 retval = ima_bprm_check(bprm);
1254 if (retval)
1255 return retval;
1257 /* kernel module loader fixup */
1258 /* so we don't try to load run modprobe in kernel space. */
1259 set_fs(USER_DS);
1261 retval = audit_bprm(bprm);
1262 if (retval)
1263 return retval;
1265 retval = -ENOENT;
1266 for (try=0; try<2; try++) {
1267 read_lock(&binfmt_lock);
1268 list_for_each_entry(fmt, &formats, lh) {
1269 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1270 if (!fn)
1271 continue;
1272 if (!try_module_get(fmt->module))
1273 continue;
1274 read_unlock(&binfmt_lock);
1275 retval = fn(bprm, regs);
1277 * Restore the depth counter to its starting value
1278 * in this call, so we don't have to rely on every
1279 * load_binary function to restore it on return.
1281 bprm->recursion_depth = depth;
1282 if (retval >= 0) {
1283 if (depth == 0)
1284 tracehook_report_exec(fmt, bprm, regs);
1285 put_binfmt(fmt);
1286 allow_write_access(bprm->file);
1287 if (bprm->file)
1288 fput(bprm->file);
1289 bprm->file = NULL;
1290 current->did_exec = 1;
1291 proc_exec_connector(current);
1292 return retval;
1294 read_lock(&binfmt_lock);
1295 put_binfmt(fmt);
1296 if (retval != -ENOEXEC || bprm->mm == NULL)
1297 break;
1298 if (!bprm->file) {
1299 read_unlock(&binfmt_lock);
1300 return retval;
1303 read_unlock(&binfmt_lock);
1304 if (retval != -ENOEXEC || bprm->mm == NULL) {
1305 break;
1306 #ifdef CONFIG_MODULES
1307 } else {
1308 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1309 if (printable(bprm->buf[0]) &&
1310 printable(bprm->buf[1]) &&
1311 printable(bprm->buf[2]) &&
1312 printable(bprm->buf[3]))
1313 break; /* -ENOEXEC */
1314 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1315 #endif
1318 return retval;
1321 EXPORT_SYMBOL(search_binary_handler);
1324 * sys_execve() executes a new program.
1326 int do_execve(char * filename,
1327 char __user *__user *argv,
1328 char __user *__user *envp,
1329 struct pt_regs * regs)
1331 struct linux_binprm *bprm;
1332 struct file *file;
1333 struct files_struct *displaced;
1334 bool clear_in_exec;
1335 int retval;
1337 retval = unshare_files(&displaced);
1338 if (retval)
1339 goto out_ret;
1341 retval = -ENOMEM;
1342 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1343 if (!bprm)
1344 goto out_files;
1346 retval = prepare_bprm_creds(bprm);
1347 if (retval)
1348 goto out_free;
1350 retval = check_unsafe_exec(bprm);
1351 if (retval < 0)
1352 goto out_free;
1353 clear_in_exec = retval;
1354 current->in_execve = 1;
1356 file = open_exec(filename);
1357 retval = PTR_ERR(file);
1358 if (IS_ERR(file))
1359 goto out_unmark;
1361 sched_exec();
1363 bprm->file = file;
1364 bprm->filename = filename;
1365 bprm->interp = filename;
1367 retval = bprm_mm_init(bprm);
1368 if (retval)
1369 goto out_file;
1371 bprm->argc = count(argv, MAX_ARG_STRINGS);
1372 if ((retval = bprm->argc) < 0)
1373 goto out;
1375 bprm->envc = count(envp, MAX_ARG_STRINGS);
1376 if ((retval = bprm->envc) < 0)
1377 goto out;
1379 retval = prepare_binprm(bprm);
1380 if (retval < 0)
1381 goto out;
1383 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1384 if (retval < 0)
1385 goto out;
1387 bprm->exec = bprm->p;
1388 retval = copy_strings(bprm->envc, envp, bprm);
1389 if (retval < 0)
1390 goto out;
1392 retval = copy_strings(bprm->argc, argv, bprm);
1393 if (retval < 0)
1394 goto out;
1396 current->flags &= ~PF_KTHREAD;
1397 retval = search_binary_handler(bprm,regs);
1398 if (retval < 0)
1399 goto out;
1401 /* execve succeeded */
1402 current->fs->in_exec = 0;
1403 current->in_execve = 0;
1404 acct_update_integrals(current);
1405 free_bprm(bprm);
1406 if (displaced)
1407 put_files_struct(displaced);
1408 return retval;
1410 out:
1411 if (bprm->mm)
1412 mmput (bprm->mm);
1414 out_file:
1415 if (bprm->file) {
1416 allow_write_access(bprm->file);
1417 fput(bprm->file);
1420 out_unmark:
1421 if (clear_in_exec)
1422 current->fs->in_exec = 0;
1423 current->in_execve = 0;
1425 out_free:
1426 free_bprm(bprm);
1428 out_files:
1429 if (displaced)
1430 reset_files_struct(displaced);
1431 out_ret:
1432 return retval;
1435 void set_binfmt(struct linux_binfmt *new)
1437 struct mm_struct *mm = current->mm;
1439 if (mm->binfmt)
1440 module_put(mm->binfmt->module);
1442 mm->binfmt = new;
1443 if (new)
1444 __module_get(new->module);
1447 EXPORT_SYMBOL(set_binfmt);
1449 /* format_corename will inspect the pattern parameter, and output a
1450 * name into corename, which must have space for at least
1451 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1453 static int format_corename(char *corename, long signr)
1455 const struct cred *cred = current_cred();
1456 const char *pat_ptr = core_pattern;
1457 int ispipe = (*pat_ptr == '|');
1458 char *out_ptr = corename;
1459 char *const out_end = corename + CORENAME_MAX_SIZE;
1460 int rc;
1461 int pid_in_pattern = 0;
1463 /* Repeat as long as we have more pattern to process and more output
1464 space */
1465 while (*pat_ptr) {
1466 if (*pat_ptr != '%') {
1467 if (out_ptr == out_end)
1468 goto out;
1469 *out_ptr++ = *pat_ptr++;
1470 } else {
1471 switch (*++pat_ptr) {
1472 case 0:
1473 goto out;
1474 /* Double percent, output one percent */
1475 case '%':
1476 if (out_ptr == out_end)
1477 goto out;
1478 *out_ptr++ = '%';
1479 break;
1480 /* pid */
1481 case 'p':
1482 pid_in_pattern = 1;
1483 rc = snprintf(out_ptr, out_end - out_ptr,
1484 "%d", task_tgid_vnr(current));
1485 if (rc > out_end - out_ptr)
1486 goto out;
1487 out_ptr += rc;
1488 break;
1489 /* uid */
1490 case 'u':
1491 rc = snprintf(out_ptr, out_end - out_ptr,
1492 "%d", cred->uid);
1493 if (rc > out_end - out_ptr)
1494 goto out;
1495 out_ptr += rc;
1496 break;
1497 /* gid */
1498 case 'g':
1499 rc = snprintf(out_ptr, out_end - out_ptr,
1500 "%d", cred->gid);
1501 if (rc > out_end - out_ptr)
1502 goto out;
1503 out_ptr += rc;
1504 break;
1505 /* signal that caused the coredump */
1506 case 's':
1507 rc = snprintf(out_ptr, out_end - out_ptr,
1508 "%ld", signr);
1509 if (rc > out_end - out_ptr)
1510 goto out;
1511 out_ptr += rc;
1512 break;
1513 /* UNIX time of coredump */
1514 case 't': {
1515 struct timeval tv;
1516 do_gettimeofday(&tv);
1517 rc = snprintf(out_ptr, out_end - out_ptr,
1518 "%lu", tv.tv_sec);
1519 if (rc > out_end - out_ptr)
1520 goto out;
1521 out_ptr += rc;
1522 break;
1524 /* hostname */
1525 case 'h':
1526 down_read(&uts_sem);
1527 rc = snprintf(out_ptr, out_end - out_ptr,
1528 "%s", utsname()->nodename);
1529 up_read(&uts_sem);
1530 if (rc > out_end - out_ptr)
1531 goto out;
1532 out_ptr += rc;
1533 break;
1534 /* executable */
1535 case 'e':
1536 rc = snprintf(out_ptr, out_end - out_ptr,
1537 "%s", current->comm);
1538 if (rc > out_end - out_ptr)
1539 goto out;
1540 out_ptr += rc;
1541 break;
1542 /* core limit size */
1543 case 'c':
1544 rc = snprintf(out_ptr, out_end - out_ptr,
1545 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1546 if (rc > out_end - out_ptr)
1547 goto out;
1548 out_ptr += rc;
1549 break;
1550 default:
1551 break;
1553 ++pat_ptr;
1556 /* Backward compatibility with core_uses_pid:
1558 * If core_pattern does not include a %p (as is the default)
1559 * and core_uses_pid is set, then .%pid will be appended to
1560 * the filename. Do not do this for piped commands. */
1561 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1562 rc = snprintf(out_ptr, out_end - out_ptr,
1563 ".%d", task_tgid_vnr(current));
1564 if (rc > out_end - out_ptr)
1565 goto out;
1566 out_ptr += rc;
1568 out:
1569 *out_ptr = 0;
1570 return ispipe;
1573 static int zap_process(struct task_struct *start)
1575 struct task_struct *t;
1576 int nr = 0;
1578 start->signal->flags = SIGNAL_GROUP_EXIT;
1579 start->signal->group_stop_count = 0;
1581 t = start;
1582 do {
1583 if (t != current && t->mm) {
1584 sigaddset(&t->pending.signal, SIGKILL);
1585 signal_wake_up(t, 1);
1586 nr++;
1588 } while_each_thread(start, t);
1590 return nr;
1593 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1594 struct core_state *core_state, int exit_code)
1596 struct task_struct *g, *p;
1597 unsigned long flags;
1598 int nr = -EAGAIN;
1600 spin_lock_irq(&tsk->sighand->siglock);
1601 if (!signal_group_exit(tsk->signal)) {
1602 mm->core_state = core_state;
1603 tsk->signal->group_exit_code = exit_code;
1604 nr = zap_process(tsk);
1606 spin_unlock_irq(&tsk->sighand->siglock);
1607 if (unlikely(nr < 0))
1608 return nr;
1610 if (atomic_read(&mm->mm_users) == nr + 1)
1611 goto done;
1613 * We should find and kill all tasks which use this mm, and we should
1614 * count them correctly into ->nr_threads. We don't take tasklist
1615 * lock, but this is safe wrt:
1617 * fork:
1618 * None of sub-threads can fork after zap_process(leader). All
1619 * processes which were created before this point should be
1620 * visible to zap_threads() because copy_process() adds the new
1621 * process to the tail of init_task.tasks list, and lock/unlock
1622 * of ->siglock provides a memory barrier.
1624 * do_exit:
1625 * The caller holds mm->mmap_sem. This means that the task which
1626 * uses this mm can't pass exit_mm(), so it can't exit or clear
1627 * its ->mm.
1629 * de_thread:
1630 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1631 * we must see either old or new leader, this does not matter.
1632 * However, it can change p->sighand, so lock_task_sighand(p)
1633 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1634 * it can't fail.
1636 * Note also that "g" can be the old leader with ->mm == NULL
1637 * and already unhashed and thus removed from ->thread_group.
1638 * This is OK, __unhash_process()->list_del_rcu() does not
1639 * clear the ->next pointer, we will find the new leader via
1640 * next_thread().
1642 rcu_read_lock();
1643 for_each_process(g) {
1644 if (g == tsk->group_leader)
1645 continue;
1646 if (g->flags & PF_KTHREAD)
1647 continue;
1648 p = g;
1649 do {
1650 if (p->mm) {
1651 if (unlikely(p->mm == mm)) {
1652 lock_task_sighand(p, &flags);
1653 nr += zap_process(p);
1654 unlock_task_sighand(p, &flags);
1656 break;
1658 } while_each_thread(g, p);
1660 rcu_read_unlock();
1661 done:
1662 atomic_set(&core_state->nr_threads, nr);
1663 return nr;
1666 static int coredump_wait(int exit_code, struct core_state *core_state)
1668 struct task_struct *tsk = current;
1669 struct mm_struct *mm = tsk->mm;
1670 struct completion *vfork_done;
1671 int core_waiters;
1673 init_completion(&core_state->startup);
1674 core_state->dumper.task = tsk;
1675 core_state->dumper.next = NULL;
1676 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1677 up_write(&mm->mmap_sem);
1679 if (unlikely(core_waiters < 0))
1680 goto fail;
1683 * Make sure nobody is waiting for us to release the VM,
1684 * otherwise we can deadlock when we wait on each other
1686 vfork_done = tsk->vfork_done;
1687 if (vfork_done) {
1688 tsk->vfork_done = NULL;
1689 complete(vfork_done);
1692 if (core_waiters)
1693 wait_for_completion(&core_state->startup);
1694 fail:
1695 return core_waiters;
1698 static void coredump_finish(struct mm_struct *mm)
1700 struct core_thread *curr, *next;
1701 struct task_struct *task;
1703 next = mm->core_state->dumper.next;
1704 while ((curr = next) != NULL) {
1705 next = curr->next;
1706 task = curr->task;
1708 * see exit_mm(), curr->task must not see
1709 * ->task == NULL before we read ->next.
1711 smp_mb();
1712 curr->task = NULL;
1713 wake_up_process(task);
1716 mm->core_state = NULL;
1720 * set_dumpable converts traditional three-value dumpable to two flags and
1721 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1722 * these bits are not changed atomically. So get_dumpable can observe the
1723 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1724 * return either old dumpable or new one by paying attention to the order of
1725 * modifying the bits.
1727 * dumpable | mm->flags (binary)
1728 * old new | initial interim final
1729 * ---------+-----------------------
1730 * 0 1 | 00 01 01
1731 * 0 2 | 00 10(*) 11
1732 * 1 0 | 01 00 00
1733 * 1 2 | 01 11 11
1734 * 2 0 | 11 10(*) 00
1735 * 2 1 | 11 11 01
1737 * (*) get_dumpable regards interim value of 10 as 11.
1739 void set_dumpable(struct mm_struct *mm, int value)
1741 switch (value) {
1742 case 0:
1743 clear_bit(MMF_DUMPABLE, &mm->flags);
1744 smp_wmb();
1745 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1746 break;
1747 case 1:
1748 set_bit(MMF_DUMPABLE, &mm->flags);
1749 smp_wmb();
1750 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1751 break;
1752 case 2:
1753 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1754 smp_wmb();
1755 set_bit(MMF_DUMPABLE, &mm->flags);
1756 break;
1760 int get_dumpable(struct mm_struct *mm)
1762 int ret;
1764 ret = mm->flags & 0x3;
1765 return (ret >= 2) ? 2 : ret;
1768 static void wait_for_dump_helpers(struct file *file)
1770 struct pipe_inode_info *pipe;
1772 pipe = file->f_path.dentry->d_inode->i_pipe;
1774 pipe_lock(pipe);
1775 pipe->readers++;
1776 pipe->writers--;
1778 while ((pipe->readers > 1) && (!signal_pending(current))) {
1779 wake_up_interruptible_sync(&pipe->wait);
1780 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1781 pipe_wait(pipe);
1784 pipe->readers--;
1785 pipe->writers++;
1786 pipe_unlock(pipe);
1791 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1793 struct core_state core_state;
1794 char corename[CORENAME_MAX_SIZE + 1];
1795 struct mm_struct *mm = current->mm;
1796 struct linux_binfmt * binfmt;
1797 struct inode * inode;
1798 struct file * file;
1799 const struct cred *old_cred;
1800 struct cred *cred;
1801 int retval = 0;
1802 int flag = 0;
1803 int ispipe = 0;
1804 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1805 char **helper_argv = NULL;
1806 int helper_argc = 0;
1807 int dump_count = 0;
1808 static atomic_t core_dump_count = ATOMIC_INIT(0);
1810 audit_core_dumps(signr);
1812 binfmt = mm->binfmt;
1813 if (!binfmt || !binfmt->core_dump)
1814 goto fail;
1816 cred = prepare_creds();
1817 if (!cred) {
1818 retval = -ENOMEM;
1819 goto fail;
1822 down_write(&mm->mmap_sem);
1824 * If another thread got here first, or we are not dumpable, bail out.
1826 if (mm->core_state || !get_dumpable(mm)) {
1827 up_write(&mm->mmap_sem);
1828 put_cred(cred);
1829 goto fail;
1833 * We cannot trust fsuid as being the "true" uid of the
1834 * process nor do we know its entire history. We only know it
1835 * was tainted so we dump it as root in mode 2.
1837 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1838 flag = O_EXCL; /* Stop rewrite attacks */
1839 cred->fsuid = 0; /* Dump root private */
1842 retval = coredump_wait(exit_code, &core_state);
1843 if (retval < 0) {
1844 put_cred(cred);
1845 goto fail;
1848 old_cred = override_creds(cred);
1851 * Clear any false indication of pending signals that might
1852 * be seen by the filesystem code called to write the core file.
1854 clear_thread_flag(TIF_SIGPENDING);
1857 * lock_kernel() because format_corename() is controlled by sysctl, which
1858 * uses lock_kernel()
1860 lock_kernel();
1861 ispipe = format_corename(corename, signr);
1862 unlock_kernel();
1864 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1865 goto fail_unlock;
1867 if (ispipe) {
1868 if (core_limit == 0) {
1870 * Normally core limits are irrelevant to pipes, since
1871 * we're not writing to the file system, but we use
1872 * core_limit of 0 here as a speacial value. Any
1873 * non-zero limit gets set to RLIM_INFINITY below, but
1874 * a limit of 0 skips the dump. This is a consistent
1875 * way to catch recursive crashes. We can still crash
1876 * if the core_pattern binary sets RLIM_CORE = !0
1877 * but it runs as root, and can do lots of stupid things
1878 * Note that we use task_tgid_vnr here to grab the pid
1879 * of the process group leader. That way we get the
1880 * right pid if a thread in a multi-threaded
1881 * core_pattern process dies.
1883 printk(KERN_WARNING
1884 "Process %d(%s) has RLIMIT_CORE set to 0\n",
1885 task_tgid_vnr(current), current->comm);
1886 printk(KERN_WARNING "Aborting core\n");
1887 goto fail_unlock;
1890 dump_count = atomic_inc_return(&core_dump_count);
1891 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1892 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1893 task_tgid_vnr(current), current->comm);
1894 printk(KERN_WARNING "Skipping core dump\n");
1895 goto fail_dropcount;
1898 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1899 if (!helper_argv) {
1900 printk(KERN_WARNING "%s failed to allocate memory\n",
1901 __func__);
1902 goto fail_dropcount;
1905 core_limit = RLIM_INFINITY;
1907 /* SIGPIPE can happen, but it's just never processed */
1908 if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
1909 &file)) {
1910 printk(KERN_INFO "Core dump to %s pipe failed\n",
1911 corename);
1912 goto fail_dropcount;
1914 } else
1915 file = filp_open(corename,
1916 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1917 0600);
1918 if (IS_ERR(file))
1919 goto fail_dropcount;
1920 inode = file->f_path.dentry->d_inode;
1921 if (inode->i_nlink > 1)
1922 goto close_fail; /* multiple links - don't dump */
1923 if (!ispipe && d_unhashed(file->f_path.dentry))
1924 goto close_fail;
1926 /* AK: actually i see no reason to not allow this for named pipes etc.,
1927 but keep the previous behaviour for now. */
1928 if (!ispipe && !S_ISREG(inode->i_mode))
1929 goto close_fail;
1931 * Dont allow local users get cute and trick others to coredump
1932 * into their pre-created files:
1933 * Note, this is not relevant for pipes
1935 if (!ispipe && (inode->i_uid != current_fsuid()))
1936 goto close_fail;
1937 if (!file->f_op)
1938 goto close_fail;
1939 if (!file->f_op->write)
1940 goto close_fail;
1941 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1942 goto close_fail;
1944 retval = binfmt->core_dump(signr, regs, file, core_limit);
1946 if (retval)
1947 current->signal->group_exit_code |= 0x80;
1948 close_fail:
1949 if (ispipe && core_pipe_limit)
1950 wait_for_dump_helpers(file);
1951 filp_close(file, NULL);
1952 fail_dropcount:
1953 if (dump_count)
1954 atomic_dec(&core_dump_count);
1955 fail_unlock:
1956 if (helper_argv)
1957 argv_free(helper_argv);
1959 revert_creds(old_cred);
1960 put_cred(cred);
1961 coredump_finish(mm);
1962 fail:
1963 return;