2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
39 /* Slab cache for UBIFS inodes */
40 struct kmem_cache
*ubifs_inode_slab
;
42 /* UBIFS TNC shrinker description */
43 static struct shrinker ubifs_shrinker_info
= {
44 .shrink
= ubifs_shrinker
,
45 .seeks
= DEFAULT_SEEKS
,
49 * validate_inode - validate inode.
50 * @c: UBIFS file-system description object
51 * @inode: the inode to validate
53 * This is a helper function for 'ubifs_iget()' which validates various fields
54 * of a newly built inode to make sure they contain sane values and prevent
55 * possible vulnerabilities. Returns zero if the inode is all right and
56 * a non-zero error code if not.
58 static int validate_inode(struct ubifs_info
*c
, const struct inode
*inode
)
61 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
63 if (inode
->i_size
> c
->max_inode_sz
) {
64 ubifs_err("inode is too large (%lld)",
65 (long long)inode
->i_size
);
69 if (ui
->compr_type
< 0 || ui
->compr_type
>= UBIFS_COMPR_TYPES_CNT
) {
70 ubifs_err("unknown compression type %d", ui
->compr_type
);
74 if (ui
->xattr_names
+ ui
->xattr_cnt
> XATTR_LIST_MAX
)
77 if (ui
->data_len
< 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
)
80 if (ui
->xattr
&& (inode
->i_mode
& S_IFMT
) != S_IFREG
)
83 if (!ubifs_compr_present(ui
->compr_type
)) {
84 ubifs_warn("inode %lu uses '%s' compression, but it was not "
85 "compiled in", inode
->i_ino
,
86 ubifs_compr_name(ui
->compr_type
));
89 err
= dbg_check_dir_size(c
, inode
);
93 struct inode
*ubifs_iget(struct super_block
*sb
, unsigned long inum
)
97 struct ubifs_ino_node
*ino
;
98 struct ubifs_info
*c
= sb
->s_fs_info
;
100 struct ubifs_inode
*ui
;
102 dbg_gen("inode %lu", inum
);
104 inode
= iget_locked(sb
, inum
);
106 return ERR_PTR(-ENOMEM
);
107 if (!(inode
->i_state
& I_NEW
))
109 ui
= ubifs_inode(inode
);
111 ino
= kmalloc(UBIFS_MAX_INO_NODE_SZ
, GFP_NOFS
);
117 ino_key_init(c
, &key
, inode
->i_ino
);
119 err
= ubifs_tnc_lookup(c
, &key
, ino
);
123 inode
->i_flags
|= (S_NOCMTIME
| S_NOATIME
);
124 inode
->i_nlink
= le32_to_cpu(ino
->nlink
);
125 inode
->i_uid
= le32_to_cpu(ino
->uid
);
126 inode
->i_gid
= le32_to_cpu(ino
->gid
);
127 inode
->i_atime
.tv_sec
= (int64_t)le64_to_cpu(ino
->atime_sec
);
128 inode
->i_atime
.tv_nsec
= le32_to_cpu(ino
->atime_nsec
);
129 inode
->i_mtime
.tv_sec
= (int64_t)le64_to_cpu(ino
->mtime_sec
);
130 inode
->i_mtime
.tv_nsec
= le32_to_cpu(ino
->mtime_nsec
);
131 inode
->i_ctime
.tv_sec
= (int64_t)le64_to_cpu(ino
->ctime_sec
);
132 inode
->i_ctime
.tv_nsec
= le32_to_cpu(ino
->ctime_nsec
);
133 inode
->i_mode
= le32_to_cpu(ino
->mode
);
134 inode
->i_size
= le64_to_cpu(ino
->size
);
136 ui
->data_len
= le32_to_cpu(ino
->data_len
);
137 ui
->flags
= le32_to_cpu(ino
->flags
);
138 ui
->compr_type
= le16_to_cpu(ino
->compr_type
);
139 ui
->creat_sqnum
= le64_to_cpu(ino
->creat_sqnum
);
140 ui
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
141 ui
->xattr_size
= le32_to_cpu(ino
->xattr_size
);
142 ui
->xattr_names
= le32_to_cpu(ino
->xattr_names
);
143 ui
->synced_i_size
= ui
->ui_size
= inode
->i_size
;
145 ui
->xattr
= (ui
->flags
& UBIFS_XATTR_FL
) ? 1 : 0;
147 err
= validate_inode(c
, inode
);
151 /* Disable read-ahead */
152 inode
->i_mapping
->backing_dev_info
= &c
->bdi
;
154 switch (inode
->i_mode
& S_IFMT
) {
156 inode
->i_mapping
->a_ops
= &ubifs_file_address_operations
;
157 inode
->i_op
= &ubifs_file_inode_operations
;
158 inode
->i_fop
= &ubifs_file_operations
;
160 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
165 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
166 ((char *)ui
->data
)[ui
->data_len
] = '\0';
167 } else if (ui
->data_len
!= 0) {
173 inode
->i_op
= &ubifs_dir_inode_operations
;
174 inode
->i_fop
= &ubifs_dir_operations
;
175 if (ui
->data_len
!= 0) {
181 inode
->i_op
= &ubifs_symlink_inode_operations
;
182 if (ui
->data_len
<= 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
) {
186 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
191 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
192 ((char *)ui
->data
)[ui
->data_len
] = '\0';
198 union ubifs_dev_desc
*dev
;
200 ui
->data
= kmalloc(sizeof(union ubifs_dev_desc
), GFP_NOFS
);
206 dev
= (union ubifs_dev_desc
*)ino
->data
;
207 if (ui
->data_len
== sizeof(dev
->new))
208 rdev
= new_decode_dev(le32_to_cpu(dev
->new));
209 else if (ui
->data_len
== sizeof(dev
->huge
))
210 rdev
= huge_decode_dev(le64_to_cpu(dev
->huge
));
215 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
216 inode
->i_op
= &ubifs_file_inode_operations
;
217 init_special_inode(inode
, inode
->i_mode
, rdev
);
222 inode
->i_op
= &ubifs_file_inode_operations
;
223 init_special_inode(inode
, inode
->i_mode
, 0);
224 if (ui
->data_len
!= 0) {
235 ubifs_set_inode_flags(inode
);
236 unlock_new_inode(inode
);
240 ubifs_err("inode %lu validation failed, error %d", inode
->i_ino
, err
);
241 dbg_dump_node(c
, ino
);
242 dbg_dump_inode(c
, inode
);
247 ubifs_err("failed to read inode %lu, error %d", inode
->i_ino
, err
);
252 static struct inode
*ubifs_alloc_inode(struct super_block
*sb
)
254 struct ubifs_inode
*ui
;
256 ui
= kmem_cache_alloc(ubifs_inode_slab
, GFP_NOFS
);
260 memset((void *)ui
+ sizeof(struct inode
), 0,
261 sizeof(struct ubifs_inode
) - sizeof(struct inode
));
262 mutex_init(&ui
->ui_mutex
);
263 spin_lock_init(&ui
->ui_lock
);
264 return &ui
->vfs_inode
;
267 static void ubifs_destroy_inode(struct inode
*inode
)
269 struct ubifs_inode
*ui
= ubifs_inode(inode
);
272 kmem_cache_free(ubifs_inode_slab
, inode
);
276 * Note, Linux write-back code calls this without 'i_mutex'.
278 static int ubifs_write_inode(struct inode
*inode
, int wait
)
281 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
282 struct ubifs_inode
*ui
= ubifs_inode(inode
);
284 ubifs_assert(!ui
->xattr
);
285 if (is_bad_inode(inode
))
288 mutex_lock(&ui
->ui_mutex
);
290 * Due to races between write-back forced by budgeting
291 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
292 * have already been synchronized, do not do this again. This might
293 * also happen if it was synchronized in an VFS operation, e.g.
297 mutex_unlock(&ui
->ui_mutex
);
302 * As an optimization, do not write orphan inodes to the media just
303 * because this is not needed.
305 dbg_gen("inode %lu, mode %#x, nlink %u",
306 inode
->i_ino
, (int)inode
->i_mode
, inode
->i_nlink
);
307 if (inode
->i_nlink
) {
308 err
= ubifs_jnl_write_inode(c
, inode
);
310 ubifs_err("can't write inode %lu, error %d",
315 mutex_unlock(&ui
->ui_mutex
);
316 ubifs_release_dirty_inode_budget(c
, ui
);
320 static void ubifs_delete_inode(struct inode
*inode
)
323 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
324 struct ubifs_inode
*ui
= ubifs_inode(inode
);
328 * Extended attribute inode deletions are fully handled in
329 * 'ubifs_removexattr()'. These inodes are special and have
330 * limited usage, so there is nothing to do here.
334 dbg_gen("inode %lu, mode %#x", inode
->i_ino
, (int)inode
->i_mode
);
335 ubifs_assert(!atomic_read(&inode
->i_count
));
336 ubifs_assert(inode
->i_nlink
== 0);
338 truncate_inode_pages(&inode
->i_data
, 0);
339 if (is_bad_inode(inode
))
342 ui
->ui_size
= inode
->i_size
= 0;
343 err
= ubifs_jnl_delete_inode(c
, inode
);
346 * Worst case we have a lost orphan inode wasting space, so a
347 * simple error message is OK here.
349 ubifs_err("can't delete inode %lu, error %d",
354 ubifs_release_dirty_inode_budget(c
, ui
);
358 static void ubifs_dirty_inode(struct inode
*inode
)
360 struct ubifs_inode
*ui
= ubifs_inode(inode
);
362 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
365 dbg_gen("inode %lu", inode
->i_ino
);
369 static int ubifs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
371 struct ubifs_info
*c
= dentry
->d_sb
->s_fs_info
;
372 unsigned long long free
;
373 __le32
*uuid
= (__le32
*)c
->uuid
;
375 free
= ubifs_get_free_space(c
);
376 dbg_gen("free space %lld bytes (%lld blocks)",
377 free
, free
>> UBIFS_BLOCK_SHIFT
);
379 buf
->f_type
= UBIFS_SUPER_MAGIC
;
380 buf
->f_bsize
= UBIFS_BLOCK_SIZE
;
381 buf
->f_blocks
= c
->block_cnt
;
382 buf
->f_bfree
= free
>> UBIFS_BLOCK_SHIFT
;
383 if (free
> c
->report_rp_size
)
384 buf
->f_bavail
= (free
- c
->report_rp_size
) >> UBIFS_BLOCK_SHIFT
;
389 buf
->f_namelen
= UBIFS_MAX_NLEN
;
390 buf
->f_fsid
.val
[0] = le32_to_cpu(uuid
[0]) ^ le32_to_cpu(uuid
[2]);
391 buf
->f_fsid
.val
[1] = le32_to_cpu(uuid
[1]) ^ le32_to_cpu(uuid
[3]);
395 static int ubifs_show_options(struct seq_file
*s
, struct vfsmount
*mnt
)
397 struct ubifs_info
*c
= mnt
->mnt_sb
->s_fs_info
;
399 if (c
->mount_opts
.unmount_mode
== 2)
400 seq_printf(s
, ",fast_unmount");
401 else if (c
->mount_opts
.unmount_mode
== 1)
402 seq_printf(s
, ",norm_unmount");
407 static int ubifs_sync_fs(struct super_block
*sb
, int wait
)
409 struct ubifs_info
*c
= sb
->s_fs_info
;
413 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
414 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
419 * We ought to call sync for c->ubi but it does not have one. If it had
420 * it would in turn call mtd->sync, however mtd operations are
421 * synchronous anyway, so we don't lose any sleep here.
427 * init_constants_early - initialize UBIFS constants.
428 * @c: UBIFS file-system description object
430 * This function initialize UBIFS constants which do not need the superblock to
431 * be read. It also checks that the UBI volume satisfies basic UBIFS
432 * requirements. Returns zero in case of success and a negative error code in
435 static int init_constants_early(struct ubifs_info
*c
)
437 if (c
->vi
.corrupted
) {
438 ubifs_warn("UBI volume is corrupted - read-only mode");
443 ubifs_msg("read-only UBI device");
447 if (c
->vi
.vol_type
== UBI_STATIC_VOLUME
) {
448 ubifs_msg("static UBI volume - read-only mode");
452 c
->leb_cnt
= c
->vi
.size
;
453 c
->leb_size
= c
->vi
.usable_leb_size
;
454 c
->half_leb_size
= c
->leb_size
/ 2;
455 c
->min_io_size
= c
->di
.min_io_size
;
456 c
->min_io_shift
= fls(c
->min_io_size
) - 1;
458 if (c
->leb_size
< UBIFS_MIN_LEB_SZ
) {
459 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
460 c
->leb_size
, UBIFS_MIN_LEB_SZ
);
464 if (c
->leb_cnt
< UBIFS_MIN_LEB_CNT
) {
465 ubifs_err("too few LEBs (%d), min. is %d",
466 c
->leb_cnt
, UBIFS_MIN_LEB_CNT
);
470 if (!is_power_of_2(c
->min_io_size
)) {
471 ubifs_err("bad min. I/O size %d", c
->min_io_size
);
476 * UBIFS aligns all node to 8-byte boundary, so to make function in
477 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
480 if (c
->min_io_size
< 8) {
485 c
->ref_node_alsz
= ALIGN(UBIFS_REF_NODE_SZ
, c
->min_io_size
);
486 c
->mst_node_alsz
= ALIGN(UBIFS_MST_NODE_SZ
, c
->min_io_size
);
489 * Initialize node length ranges which are mostly needed for node
492 c
->ranges
[UBIFS_PAD_NODE
].len
= UBIFS_PAD_NODE_SZ
;
493 c
->ranges
[UBIFS_SB_NODE
].len
= UBIFS_SB_NODE_SZ
;
494 c
->ranges
[UBIFS_MST_NODE
].len
= UBIFS_MST_NODE_SZ
;
495 c
->ranges
[UBIFS_REF_NODE
].len
= UBIFS_REF_NODE_SZ
;
496 c
->ranges
[UBIFS_TRUN_NODE
].len
= UBIFS_TRUN_NODE_SZ
;
497 c
->ranges
[UBIFS_CS_NODE
].len
= UBIFS_CS_NODE_SZ
;
499 c
->ranges
[UBIFS_INO_NODE
].min_len
= UBIFS_INO_NODE_SZ
;
500 c
->ranges
[UBIFS_INO_NODE
].max_len
= UBIFS_MAX_INO_NODE_SZ
;
501 c
->ranges
[UBIFS_ORPH_NODE
].min_len
=
502 UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
);
503 c
->ranges
[UBIFS_ORPH_NODE
].max_len
= c
->leb_size
;
504 c
->ranges
[UBIFS_DENT_NODE
].min_len
= UBIFS_DENT_NODE_SZ
;
505 c
->ranges
[UBIFS_DENT_NODE
].max_len
= UBIFS_MAX_DENT_NODE_SZ
;
506 c
->ranges
[UBIFS_XENT_NODE
].min_len
= UBIFS_XENT_NODE_SZ
;
507 c
->ranges
[UBIFS_XENT_NODE
].max_len
= UBIFS_MAX_XENT_NODE_SZ
;
508 c
->ranges
[UBIFS_DATA_NODE
].min_len
= UBIFS_DATA_NODE_SZ
;
509 c
->ranges
[UBIFS_DATA_NODE
].max_len
= UBIFS_MAX_DATA_NODE_SZ
;
511 * Minimum indexing node size is amended later when superblock is
512 * read and the key length is known.
514 c
->ranges
[UBIFS_IDX_NODE
].min_len
= UBIFS_IDX_NODE_SZ
+ UBIFS_BRANCH_SZ
;
516 * Maximum indexing node size is amended later when superblock is
517 * read and the fanout is known.
519 c
->ranges
[UBIFS_IDX_NODE
].max_len
= INT_MAX
;
522 * Initialize dead and dark LEB space watermarks.
524 * Dead space is the space which cannot be used. Its watermark is
525 * equivalent to min. I/O unit or minimum node size if it is greater
526 * then min. I/O unit.
528 * Dark space is the space which might be used, or might not, depending
529 * on which node should be written to the LEB. Its watermark is
530 * equivalent to maximum UBIFS node size.
532 c
->dead_wm
= ALIGN(MIN_WRITE_SZ
, c
->min_io_size
);
533 c
->dark_wm
= ALIGN(UBIFS_MAX_NODE_SZ
, c
->min_io_size
);
536 * Calculate how many bytes would be wasted at the end of LEB if it was
537 * fully filled with data nodes of maximum size. This is used in
538 * calculations when reporting free space.
540 c
->leb_overhead
= c
->leb_size
% UBIFS_MAX_DATA_NODE_SZ
;
545 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
546 * @c: UBIFS file-system description object
547 * @lnum: LEB the write-buffer was synchronized to
548 * @free: how many free bytes left in this LEB
549 * @pad: how many bytes were padded
551 * This is a callback function which is called by the I/O unit when the
552 * write-buffer is synchronized. We need this to correctly maintain space
553 * accounting in bud logical eraseblocks. This function returns zero in case of
554 * success and a negative error code in case of failure.
556 * This function actually belongs to the journal, but we keep it here because
557 * we want to keep it static.
559 static int bud_wbuf_callback(struct ubifs_info
*c
, int lnum
, int free
, int pad
)
561 return ubifs_update_one_lp(c
, lnum
, free
, pad
, 0, 0);
565 * init_constants_late - initialize UBIFS constants.
566 * @c: UBIFS file-system description object
568 * This is a helper function which initializes various UBIFS constants after
569 * the superblock has been read. It also checks various UBIFS parameters and
570 * makes sure they are all right. Returns zero in case of success and a
571 * negative error code in case of failure.
573 static int init_constants_late(struct ubifs_info
*c
)
578 c
->main_bytes
= (long long)c
->main_lebs
* c
->leb_size
;
579 c
->max_znode_sz
= sizeof(struct ubifs_znode
) +
580 c
->fanout
* sizeof(struct ubifs_zbranch
);
582 tmp
= ubifs_idx_node_sz(c
, 1);
583 c
->ranges
[UBIFS_IDX_NODE
].min_len
= tmp
;
584 c
->min_idx_node_sz
= ALIGN(tmp
, 8);
586 tmp
= ubifs_idx_node_sz(c
, c
->fanout
);
587 c
->ranges
[UBIFS_IDX_NODE
].max_len
= tmp
;
588 c
->max_idx_node_sz
= ALIGN(tmp
, 8);
590 /* Make sure LEB size is large enough to fit full commit */
591 tmp
= UBIFS_CS_NODE_SZ
+ UBIFS_REF_NODE_SZ
* c
->jhead_cnt
;
592 tmp
= ALIGN(tmp
, c
->min_io_size
);
593 if (tmp
> c
->leb_size
) {
594 dbg_err("too small LEB size %d, at least %d needed",
600 * Make sure that the log is large enough to fit reference nodes for
601 * all buds plus one reserved LEB.
603 tmp64
= c
->max_bud_bytes
;
604 tmp
= do_div(tmp64
, c
->leb_size
);
605 c
->max_bud_cnt
= tmp64
+ !!tmp
;
606 tmp
= (c
->ref_node_alsz
* c
->max_bud_cnt
+ c
->leb_size
- 1);
609 if (c
->log_lebs
< tmp
) {
610 dbg_err("too small log %d LEBs, required min. %d LEBs",
616 * When budgeting we assume worst-case scenarios when the pages are not
617 * be compressed and direntries are of the maximum size.
619 * Note, data, which may be stored in inodes is budgeted separately, so
620 * it is not included into 'c->inode_budget'.
622 c
->page_budget
= UBIFS_MAX_DATA_NODE_SZ
* UBIFS_BLOCKS_PER_PAGE
;
623 c
->inode_budget
= UBIFS_INO_NODE_SZ
;
624 c
->dent_budget
= UBIFS_MAX_DENT_NODE_SZ
;
627 * When the amount of flash space used by buds becomes
628 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
629 * The writers are unblocked when the commit is finished. To avoid
630 * writers to be blocked UBIFS initiates background commit in advance,
631 * when number of bud bytes becomes above the limit defined below.
633 c
->bg_bud_bytes
= (c
->max_bud_bytes
* 13) >> 4;
636 * Ensure minimum journal size. All the bytes in the journal heads are
637 * considered to be used, when calculating the current journal usage.
638 * Consequently, if the journal is too small, UBIFS will treat it as
641 tmp64
= (uint64_t)(c
->jhead_cnt
+ 1) * c
->leb_size
+ 1;
642 if (c
->bg_bud_bytes
< tmp64
)
643 c
->bg_bud_bytes
= tmp64
;
644 if (c
->max_bud_bytes
< tmp64
+ c
->leb_size
)
645 c
->max_bud_bytes
= tmp64
+ c
->leb_size
;
647 err
= ubifs_calc_lpt_geom(c
);
651 c
->min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
654 * Calculate total amount of FS blocks. This number is not used
655 * internally because it does not make much sense for UBIFS, but it is
656 * necessary to report something for the 'statfs()' call.
658 * Subtract the LEB reserved for GC, the LEB which is reserved for
659 * deletions, and assume only one journal head is available.
661 tmp64
= c
->main_lebs
- 2 - c
->jhead_cnt
+ 1;
662 tmp64
*= (uint64_t)c
->leb_size
- c
->leb_overhead
;
663 tmp64
= ubifs_reported_space(c
, tmp64
);
664 c
->block_cnt
= tmp64
>> UBIFS_BLOCK_SHIFT
;
670 * take_gc_lnum - reserve GC LEB.
671 * @c: UBIFS file-system description object
673 * This function ensures that the LEB reserved for garbage collection is
674 * unmapped and is marked as "taken" in lprops. We also have to set free space
675 * to LEB size and dirty space to zero, because lprops may contain out-of-date
676 * information if the file-system was un-mounted before it has been committed.
677 * This function returns zero in case of success and a negative error code in
680 static int take_gc_lnum(struct ubifs_info
*c
)
684 if (c
->gc_lnum
== -1) {
685 ubifs_err("no LEB for GC");
689 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
693 /* And we have to tell lprops that this LEB is taken */
694 err
= ubifs_change_one_lp(c
, c
->gc_lnum
, c
->leb_size
, 0,
700 * alloc_wbufs - allocate write-buffers.
701 * @c: UBIFS file-system description object
703 * This helper function allocates and initializes UBIFS write-buffers. Returns
704 * zero in case of success and %-ENOMEM in case of failure.
706 static int alloc_wbufs(struct ubifs_info
*c
)
710 c
->jheads
= kzalloc(c
->jhead_cnt
* sizeof(struct ubifs_jhead
),
715 /* Initialize journal heads */
716 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
717 INIT_LIST_HEAD(&c
->jheads
[i
].buds_list
);
718 err
= ubifs_wbuf_init(c
, &c
->jheads
[i
].wbuf
);
722 c
->jheads
[i
].wbuf
.sync_callback
= &bud_wbuf_callback
;
723 c
->jheads
[i
].wbuf
.jhead
= i
;
726 c
->jheads
[BASEHD
].wbuf
.dtype
= UBI_SHORTTERM
;
728 * Garbage Collector head likely contains long-term data and
729 * does not need to be synchronized by timer.
731 c
->jheads
[GCHD
].wbuf
.dtype
= UBI_LONGTERM
;
732 c
->jheads
[GCHD
].wbuf
.timeout
= 0;
738 * free_wbufs - free write-buffers.
739 * @c: UBIFS file-system description object
741 static void free_wbufs(struct ubifs_info
*c
)
746 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
747 kfree(c
->jheads
[i
].wbuf
.buf
);
748 kfree(c
->jheads
[i
].wbuf
.inodes
);
756 * free_orphans - free orphans.
757 * @c: UBIFS file-system description object
759 static void free_orphans(struct ubifs_info
*c
)
761 struct ubifs_orphan
*orph
;
763 while (c
->orph_dnext
) {
764 orph
= c
->orph_dnext
;
765 c
->orph_dnext
= orph
->dnext
;
766 list_del(&orph
->list
);
770 while (!list_empty(&c
->orph_list
)) {
771 orph
= list_entry(c
->orph_list
.next
, struct ubifs_orphan
, list
);
772 list_del(&orph
->list
);
774 dbg_err("orphan list not empty at unmount");
782 * free_buds - free per-bud objects.
783 * @c: UBIFS file-system description object
785 static void free_buds(struct ubifs_info
*c
)
787 struct rb_node
*this = c
->buds
.rb_node
;
788 struct ubifs_bud
*bud
;
792 this = this->rb_left
;
793 else if (this->rb_right
)
794 this = this->rb_right
;
796 bud
= rb_entry(this, struct ubifs_bud
, rb
);
797 this = rb_parent(this);
799 if (this->rb_left
== &bud
->rb
)
800 this->rb_left
= NULL
;
802 this->rb_right
= NULL
;
810 * check_volume_empty - check if the UBI volume is empty.
811 * @c: UBIFS file-system description object
813 * This function checks if the UBIFS volume is empty by looking if its LEBs are
814 * mapped or not. The result of checking is stored in the @c->empty variable.
815 * Returns zero in case of success and a negative error code in case of
818 static int check_volume_empty(struct ubifs_info
*c
)
823 for (lnum
= 0; lnum
< c
->leb_cnt
; lnum
++) {
824 err
= ubi_is_mapped(c
->ubi
, lnum
);
825 if (unlikely(err
< 0))
839 * UBIFS mount options.
841 * Opt_fast_unmount: do not run a journal commit before un-mounting
842 * Opt_norm_unmount: run a journal commit before un-mounting
843 * Opt_err: just end of array marker
851 static match_table_t tokens
= {
852 {Opt_fast_unmount
, "fast_unmount"},
853 {Opt_norm_unmount
, "norm_unmount"},
858 * ubifs_parse_options - parse mount parameters.
859 * @c: UBIFS file-system description object
860 * @options: parameters to parse
861 * @is_remount: non-zero if this is FS re-mount
863 * This function parses UBIFS mount options and returns zero in case success
864 * and a negative error code in case of failure.
866 static int ubifs_parse_options(struct ubifs_info
*c
, char *options
,
870 substring_t args
[MAX_OPT_ARGS
];
875 while ((p
= strsep(&options
, ","))) {
881 token
= match_token(p
, tokens
, args
);
883 case Opt_fast_unmount
:
884 c
->mount_opts
.unmount_mode
= 2;
887 case Opt_norm_unmount
:
888 c
->mount_opts
.unmount_mode
= 1;
892 ubifs_err("unrecognized mount option \"%s\" "
893 "or missing value", p
);
902 * destroy_journal - destroy journal data structures.
903 * @c: UBIFS file-system description object
905 * This function destroys journal data structures including those that may have
906 * been created by recovery functions.
908 static void destroy_journal(struct ubifs_info
*c
)
910 while (!list_empty(&c
->unclean_leb_list
)) {
911 struct ubifs_unclean_leb
*ucleb
;
913 ucleb
= list_entry(c
->unclean_leb_list
.next
,
914 struct ubifs_unclean_leb
, list
);
915 list_del(&ucleb
->list
);
918 while (!list_empty(&c
->old_buds
)) {
919 struct ubifs_bud
*bud
;
921 bud
= list_entry(c
->old_buds
.next
, struct ubifs_bud
, list
);
922 list_del(&bud
->list
);
925 ubifs_destroy_idx_gc(c
);
926 ubifs_destroy_size_tree(c
);
932 * mount_ubifs - mount UBIFS file-system.
933 * @c: UBIFS file-system description object
935 * This function mounts UBIFS file system. Returns zero in case of success and
936 * a negative error code in case of failure.
938 * Note, the function does not de-allocate resources it it fails half way
939 * through, and the caller has to do this instead.
941 static int mount_ubifs(struct ubifs_info
*c
)
943 struct super_block
*sb
= c
->vfs_sb
;
944 int err
, mounted_read_only
= (sb
->s_flags
& MS_RDONLY
);
948 err
= init_constants_early(c
);
952 #ifdef CONFIG_UBIFS_FS_DEBUG
953 c
->dbg_buf
= vmalloc(c
->leb_size
);
958 err
= check_volume_empty(c
);
962 if (c
->empty
&& (mounted_read_only
|| c
->ro_media
)) {
964 * This UBI volume is empty, and read-only, or the file system
965 * is mounted read-only - we cannot format it.
967 ubifs_err("can't format empty UBI volume: read-only %s",
968 c
->ro_media
? "UBI volume" : "mount");
973 if (c
->ro_media
&& !mounted_read_only
) {
974 ubifs_err("cannot mount read-write - read-only media");
980 * The requirement for the buffer is that it should fit indexing B-tree
981 * height amount of integers. We assume the height if the TNC tree will
985 c
->bottom_up_buf
= kmalloc(BOTTOM_UP_HEIGHT
* sizeof(int), GFP_KERNEL
);
986 if (!c
->bottom_up_buf
)
989 c
->sbuf
= vmalloc(c
->leb_size
);
993 if (!mounted_read_only
) {
994 c
->ileb_buf
= vmalloc(c
->leb_size
);
999 err
= ubifs_read_superblock(c
);
1004 * Make sure the compressor which is set as the default on in the
1005 * superblock was actually compiled in.
1007 if (!ubifs_compr_present(c
->default_compr
)) {
1008 ubifs_warn("'%s' compressor is set by superblock, but not "
1009 "compiled in", ubifs_compr_name(c
->default_compr
));
1010 c
->default_compr
= UBIFS_COMPR_NONE
;
1013 dbg_failure_mode_registration(c
);
1015 err
= init_constants_late(c
);
1019 sz
= ALIGN(c
->max_idx_node_sz
, c
->min_io_size
);
1020 sz
= ALIGN(sz
+ c
->max_idx_node_sz
, c
->min_io_size
);
1021 c
->cbuf
= kmalloc(sz
, GFP_NOFS
);
1027 sprintf(c
->bgt_name
, BGT_NAME_PATTERN
, c
->vi
.ubi_num
, c
->vi
.vol_id
);
1028 if (!mounted_read_only
) {
1029 err
= alloc_wbufs(c
);
1033 /* Create background thread */
1034 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, c
->bgt_name
);
1036 c
->bgt
= ERR_PTR(-EINVAL
);
1037 if (IS_ERR(c
->bgt
)) {
1038 err
= PTR_ERR(c
->bgt
);
1040 ubifs_err("cannot spawn \"%s\", error %d",
1044 wake_up_process(c
->bgt
);
1047 err
= ubifs_read_master(c
);
1051 if ((c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
)) != 0) {
1052 ubifs_msg("recovery needed");
1053 c
->need_recovery
= 1;
1054 if (!mounted_read_only
) {
1055 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1059 } else if (!mounted_read_only
) {
1061 * Set the "dirty" flag so that if we reboot uncleanly we
1062 * will notice this immediately on the next mount.
1064 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1065 err
= ubifs_write_master(c
);
1070 err
= ubifs_lpt_init(c
, 1, !mounted_read_only
);
1074 err
= dbg_check_idx_size(c
, c
->old_idx_sz
);
1078 err
= ubifs_replay_journal(c
);
1082 err
= ubifs_mount_orphans(c
, c
->need_recovery
, mounted_read_only
);
1086 if (!mounted_read_only
) {
1089 /* Check for enough free space */
1090 if (ubifs_calc_available(c
, c
->min_idx_lebs
) <= 0) {
1091 ubifs_err("insufficient available space");
1096 /* Check for enough log space */
1097 lnum
= c
->lhead_lnum
+ 1;
1098 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1099 lnum
= UBIFS_LOG_LNUM
;
1100 if (lnum
== c
->ltail_lnum
) {
1101 err
= ubifs_consolidate_log(c
);
1106 if (c
->need_recovery
) {
1107 err
= ubifs_recover_size(c
);
1110 err
= ubifs_rcvry_gc_commit(c
);
1112 err
= take_gc_lnum(c
);
1116 err
= dbg_check_lprops(c
);
1119 } else if (c
->need_recovery
) {
1120 err
= ubifs_recover_size(c
);
1125 spin_lock(&ubifs_infos_lock
);
1126 list_add_tail(&c
->infos_list
, &ubifs_infos
);
1127 spin_unlock(&ubifs_infos_lock
);
1129 if (c
->need_recovery
) {
1130 if (mounted_read_only
)
1131 ubifs_msg("recovery deferred");
1133 c
->need_recovery
= 0;
1134 ubifs_msg("recovery completed");
1138 err
= dbg_check_filesystem(c
);
1142 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1143 c
->vi
.ubi_num
, c
->vi
.vol_id
, c
->vi
.name
);
1144 if (mounted_read_only
)
1145 ubifs_msg("mounted read-only");
1146 x
= (long long)c
->main_lebs
* c
->leb_size
;
1147 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)",
1148 x
, x
>> 10, x
>> 20, c
->main_lebs
);
1149 x
= (long long)c
->log_lebs
* c
->leb_size
+ c
->max_bud_bytes
;
1150 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d LEBs)",
1151 x
, x
>> 10, x
>> 20, c
->log_lebs
+ c
->max_bud_cnt
);
1152 ubifs_msg("default compressor: %s", ubifs_compr_name(c
->default_compr
));
1153 ubifs_msg("media format %d, latest format %d",
1154 c
->fmt_version
, UBIFS_FORMAT_VERSION
);
1156 dbg_msg("compiled on: " __DATE__
" at " __TIME__
);
1157 dbg_msg("min. I/O unit size: %d bytes", c
->min_io_size
);
1158 dbg_msg("LEB size: %d bytes (%d KiB)",
1159 c
->leb_size
, c
->leb_size
/ 1024);
1160 dbg_msg("data journal heads: %d",
1161 c
->jhead_cnt
- NONDATA_JHEADS_CNT
);
1162 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1163 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1164 c
->uuid
[0], c
->uuid
[1], c
->uuid
[2], c
->uuid
[3],
1165 c
->uuid
[4], c
->uuid
[5], c
->uuid
[6], c
->uuid
[7],
1166 c
->uuid
[8], c
->uuid
[9], c
->uuid
[10], c
->uuid
[11],
1167 c
->uuid
[12], c
->uuid
[13], c
->uuid
[14], c
->uuid
[15]);
1168 dbg_msg("fast unmount: %d", c
->fast_unmount
);
1169 dbg_msg("big_lpt %d", c
->big_lpt
);
1170 dbg_msg("log LEBs: %d (%d - %d)",
1171 c
->log_lebs
, UBIFS_LOG_LNUM
, c
->log_last
);
1172 dbg_msg("LPT area LEBs: %d (%d - %d)",
1173 c
->lpt_lebs
, c
->lpt_first
, c
->lpt_last
);
1174 dbg_msg("orphan area LEBs: %d (%d - %d)",
1175 c
->orph_lebs
, c
->orph_first
, c
->orph_last
);
1176 dbg_msg("main area LEBs: %d (%d - %d)",
1177 c
->main_lebs
, c
->main_first
, c
->leb_cnt
- 1);
1178 dbg_msg("index LEBs: %d", c
->lst
.idx_lebs
);
1179 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1180 c
->old_idx_sz
, c
->old_idx_sz
>> 10, c
->old_idx_sz
>> 20);
1181 dbg_msg("key hash type: %d", c
->key_hash_type
);
1182 dbg_msg("tree fanout: %d", c
->fanout
);
1183 dbg_msg("reserved GC LEB: %d", c
->gc_lnum
);
1184 dbg_msg("first main LEB: %d", c
->main_first
);
1185 dbg_msg("dead watermark: %d", c
->dead_wm
);
1186 dbg_msg("dark watermark: %d", c
->dark_wm
);
1187 x
= (long long)c
->main_lebs
* c
->dark_wm
;
1188 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1189 x
, x
>> 10, x
>> 20);
1190 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1191 c
->max_bud_bytes
, c
->max_bud_bytes
>> 10,
1192 c
->max_bud_bytes
>> 20);
1193 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1194 c
->bg_bud_bytes
, c
->bg_bud_bytes
>> 10,
1195 c
->bg_bud_bytes
>> 20);
1196 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1197 c
->bud_bytes
, c
->bud_bytes
>> 10, c
->bud_bytes
>> 20);
1198 dbg_msg("max. seq. number: %llu", c
->max_sqnum
);
1199 dbg_msg("commit number: %llu", c
->cmt_no
);
1204 spin_lock(&ubifs_infos_lock
);
1205 list_del(&c
->infos_list
);
1206 spin_unlock(&ubifs_infos_lock
);
1212 ubifs_lpt_free(c
, 0);
1215 kfree(c
->rcvrd_mst_node
);
1217 kthread_stop(c
->bgt
);
1223 dbg_failure_mode_deregistration(c
);
1227 kfree(c
->bottom_up_buf
);
1228 UBIFS_DBG(vfree(c
->dbg_buf
));
1233 * ubifs_umount - un-mount UBIFS file-system.
1234 * @c: UBIFS file-system description object
1236 * Note, this function is called to free allocated resourced when un-mounting,
1237 * as well as free resources when an error occurred while we were half way
1238 * through mounting (error path cleanup function). So it has to make sure the
1239 * resource was actually allocated before freeing it.
1241 static void ubifs_umount(struct ubifs_info
*c
)
1243 dbg_gen("un-mounting UBI device %d, volume %d", c
->vi
.ubi_num
,
1246 spin_lock(&ubifs_infos_lock
);
1247 list_del(&c
->infos_list
);
1248 spin_unlock(&ubifs_infos_lock
);
1251 kthread_stop(c
->bgt
);
1256 ubifs_lpt_free(c
, 0);
1259 kfree(c
->rcvrd_mst_node
);
1262 kfree(c
->bottom_up_buf
);
1263 UBIFS_DBG(vfree(c
->dbg_buf
));
1265 dbg_failure_mode_deregistration(c
);
1269 * ubifs_remount_rw - re-mount in read-write mode.
1270 * @c: UBIFS file-system description object
1272 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1273 * mode. This function allocates the needed resources and re-mounts UBIFS in
1276 static int ubifs_remount_rw(struct ubifs_info
*c
)
1283 mutex_lock(&c
->umount_mutex
);
1284 c
->remounting_rw
= 1;
1286 /* Check for enough free space */
1287 if (ubifs_calc_available(c
, c
->min_idx_lebs
) <= 0) {
1288 ubifs_err("insufficient available space");
1293 if (c
->old_leb_cnt
!= c
->leb_cnt
) {
1294 struct ubifs_sb_node
*sup
;
1296 sup
= ubifs_read_sb_node(c
);
1301 sup
->leb_cnt
= cpu_to_le32(c
->leb_cnt
);
1302 err
= ubifs_write_sb_node(c
, sup
);
1307 if (c
->need_recovery
) {
1308 ubifs_msg("completing deferred recovery");
1309 err
= ubifs_write_rcvrd_mst_node(c
);
1312 err
= ubifs_recover_size(c
);
1315 err
= ubifs_clean_lebs(c
, c
->sbuf
);
1318 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1323 if (!(c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
))) {
1324 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1325 err
= ubifs_write_master(c
);
1330 c
->ileb_buf
= vmalloc(c
->leb_size
);
1336 err
= ubifs_lpt_init(c
, 0, 1);
1340 err
= alloc_wbufs(c
);
1344 ubifs_create_buds_lists(c
);
1346 /* Create background thread */
1347 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, c
->bgt_name
);
1349 c
->bgt
= ERR_PTR(-EINVAL
);
1350 if (IS_ERR(c
->bgt
)) {
1351 err
= PTR_ERR(c
->bgt
);
1353 ubifs_err("cannot spawn \"%s\", error %d",
1357 wake_up_process(c
->bgt
);
1359 c
->orph_buf
= vmalloc(c
->leb_size
);
1363 /* Check for enough log space */
1364 lnum
= c
->lhead_lnum
+ 1;
1365 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1366 lnum
= UBIFS_LOG_LNUM
;
1367 if (lnum
== c
->ltail_lnum
) {
1368 err
= ubifs_consolidate_log(c
);
1373 if (c
->need_recovery
)
1374 err
= ubifs_rcvry_gc_commit(c
);
1376 err
= take_gc_lnum(c
);
1380 if (c
->need_recovery
) {
1381 c
->need_recovery
= 0;
1382 ubifs_msg("deferred recovery completed");
1385 dbg_gen("re-mounted read-write");
1386 c
->vfs_sb
->s_flags
&= ~MS_RDONLY
;
1387 c
->remounting_rw
= 0;
1388 mutex_unlock(&c
->umount_mutex
);
1395 kthread_stop(c
->bgt
);
1401 ubifs_lpt_free(c
, 1);
1402 c
->remounting_rw
= 0;
1403 mutex_unlock(&c
->umount_mutex
);
1408 * commit_on_unmount - commit the journal when un-mounting.
1409 * @c: UBIFS file-system description object
1411 * This function is called during un-mounting and it commits the journal unless
1412 * the "fast unmount" mode is enabled. It also avoids committing the journal if
1413 * it contains too few data.
1415 * Sometimes recovery requires the journal to be committed at least once, and
1416 * this function takes care about this.
1418 static void commit_on_unmount(struct ubifs_info
*c
)
1420 if (!c
->fast_unmount
) {
1421 long long bud_bytes
;
1423 spin_lock(&c
->buds_lock
);
1424 bud_bytes
= c
->bud_bytes
;
1425 spin_unlock(&c
->buds_lock
);
1426 if (bud_bytes
> c
->leb_size
)
1427 ubifs_run_commit(c
);
1432 * ubifs_remount_ro - re-mount in read-only mode.
1433 * @c: UBIFS file-system description object
1435 * We rely on VFS to have stopped writing. Possibly the background thread could
1436 * be running a commit, however kthread_stop will wait in that case.
1438 static void ubifs_remount_ro(struct ubifs_info
*c
)
1442 ubifs_assert(!c
->need_recovery
);
1443 commit_on_unmount(c
);
1445 mutex_lock(&c
->umount_mutex
);
1447 kthread_stop(c
->bgt
);
1451 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1452 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1453 del_timer_sync(&c
->jheads
[i
].wbuf
.timer
);
1457 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1458 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1459 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1460 err
= ubifs_write_master(c
);
1462 ubifs_ro_mode(c
, err
);
1465 ubifs_destroy_idx_gc(c
);
1471 ubifs_lpt_free(c
, 1);
1472 mutex_unlock(&c
->umount_mutex
);
1475 static void ubifs_put_super(struct super_block
*sb
)
1478 struct ubifs_info
*c
= sb
->s_fs_info
;
1480 ubifs_msg("un-mount UBI device %d, volume %d", c
->vi
.ubi_num
,
1483 * The following asserts are only valid if there has not been a failure
1484 * of the media. For example, there will be dirty inodes if we failed
1485 * to write them back because of I/O errors.
1487 ubifs_assert(atomic_long_read(&c
->dirty_pg_cnt
) == 0);
1488 ubifs_assert(c
->budg_idx_growth
== 0);
1489 ubifs_assert(c
->budg_dd_growth
== 0);
1490 ubifs_assert(c
->budg_data_growth
== 0);
1493 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1494 * and file system un-mount. Namely, it prevents the shrinker from
1495 * picking this superblock for shrinking - it will be just skipped if
1496 * the mutex is locked.
1498 mutex_lock(&c
->umount_mutex
);
1499 if (!(c
->vfs_sb
->s_flags
& MS_RDONLY
)) {
1501 * First of all kill the background thread to make sure it does
1502 * not interfere with un-mounting and freeing resources.
1505 kthread_stop(c
->bgt
);
1509 /* Synchronize write-buffers */
1511 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1512 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1513 del_timer_sync(&c
->jheads
[i
].wbuf
.timer
);
1517 * On fatal errors c->ro_media is set to 1, in which case we do
1518 * not write the master node.
1522 * We are being cleanly unmounted which means the
1523 * orphans were killed - indicate this in the master
1524 * node. Also save the reserved GC LEB number.
1528 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1529 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1530 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1531 err
= ubifs_write_master(c
);
1534 * Recovery will attempt to fix the master area
1535 * next mount, so we just print a message and
1536 * continue to unmount normally.
1538 ubifs_err("failed to write master node, "
1544 bdi_destroy(&c
->bdi
);
1545 ubi_close_volume(c
->ubi
);
1546 mutex_unlock(&c
->umount_mutex
);
1550 static int ubifs_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
1553 struct ubifs_info
*c
= sb
->s_fs_info
;
1555 dbg_gen("old flags %#lx, new flags %#x", sb
->s_flags
, *flags
);
1557 err
= ubifs_parse_options(c
, data
, 1);
1559 ubifs_err("invalid or unknown remount parameter");
1562 if ((sb
->s_flags
& MS_RDONLY
) && !(*flags
& MS_RDONLY
)) {
1563 err
= ubifs_remount_rw(c
);
1566 } else if (!(sb
->s_flags
& MS_RDONLY
) && (*flags
& MS_RDONLY
))
1567 ubifs_remount_ro(c
);
1572 struct super_operations ubifs_super_operations
= {
1573 .alloc_inode
= ubifs_alloc_inode
,
1574 .destroy_inode
= ubifs_destroy_inode
,
1575 .put_super
= ubifs_put_super
,
1576 .write_inode
= ubifs_write_inode
,
1577 .delete_inode
= ubifs_delete_inode
,
1578 .statfs
= ubifs_statfs
,
1579 .dirty_inode
= ubifs_dirty_inode
,
1580 .remount_fs
= ubifs_remount_fs
,
1581 .show_options
= ubifs_show_options
,
1582 .sync_fs
= ubifs_sync_fs
,
1586 * open_ubi - parse UBI device name string and open the UBI device.
1587 * @name: UBI volume name
1588 * @mode: UBI volume open mode
1590 * There are several ways to specify UBI volumes when mounting UBIFS:
1591 * o ubiX_Y - UBI device number X, volume Y;
1592 * o ubiY - UBI device number 0, volume Y;
1593 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1594 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1596 * Alternative '!' separator may be used instead of ':' (because some shells
1597 * like busybox may interpret ':' as an NFS host name separator). This function
1598 * returns ubi volume object in case of success and a negative error code in
1601 static struct ubi_volume_desc
*open_ubi(const char *name
, int mode
)
1606 if (name
[0] != 'u' || name
[1] != 'b' || name
[2] != 'i')
1607 return ERR_PTR(-EINVAL
);
1609 /* ubi:NAME method */
1610 if ((name
[3] == ':' || name
[3] == '!') && name
[4] != '\0')
1611 return ubi_open_volume_nm(0, name
+ 4, mode
);
1613 if (!isdigit(name
[3]))
1614 return ERR_PTR(-EINVAL
);
1616 dev
= simple_strtoul(name
+ 3, &endptr
, 0);
1619 if (*endptr
== '\0')
1620 return ubi_open_volume(0, dev
, mode
);
1623 if (*endptr
== '_' && isdigit(endptr
[1])) {
1624 vol
= simple_strtoul(endptr
+ 1, &endptr
, 0);
1625 if (*endptr
!= '\0')
1626 return ERR_PTR(-EINVAL
);
1627 return ubi_open_volume(dev
, vol
, mode
);
1630 /* ubiX:NAME method */
1631 if ((*endptr
== ':' || *endptr
== '!') && endptr
[1] != '\0')
1632 return ubi_open_volume_nm(dev
, ++endptr
, mode
);
1634 return ERR_PTR(-EINVAL
);
1637 static int ubifs_fill_super(struct super_block
*sb
, void *data
, int silent
)
1639 struct ubi_volume_desc
*ubi
= sb
->s_fs_info
;
1640 struct ubifs_info
*c
;
1644 c
= kzalloc(sizeof(struct ubifs_info
), GFP_KERNEL
);
1648 spin_lock_init(&c
->cnt_lock
);
1649 spin_lock_init(&c
->cs_lock
);
1650 spin_lock_init(&c
->buds_lock
);
1651 spin_lock_init(&c
->space_lock
);
1652 spin_lock_init(&c
->orphan_lock
);
1653 init_rwsem(&c
->commit_sem
);
1654 mutex_init(&c
->lp_mutex
);
1655 mutex_init(&c
->tnc_mutex
);
1656 mutex_init(&c
->log_mutex
);
1657 mutex_init(&c
->mst_mutex
);
1658 mutex_init(&c
->umount_mutex
);
1659 init_waitqueue_head(&c
->cmt_wq
);
1661 c
->old_idx
= RB_ROOT
;
1662 c
->size_tree
= RB_ROOT
;
1663 c
->orph_tree
= RB_ROOT
;
1664 INIT_LIST_HEAD(&c
->infos_list
);
1665 INIT_LIST_HEAD(&c
->idx_gc
);
1666 INIT_LIST_HEAD(&c
->replay_list
);
1667 INIT_LIST_HEAD(&c
->replay_buds
);
1668 INIT_LIST_HEAD(&c
->uncat_list
);
1669 INIT_LIST_HEAD(&c
->empty_list
);
1670 INIT_LIST_HEAD(&c
->freeable_list
);
1671 INIT_LIST_HEAD(&c
->frdi_idx_list
);
1672 INIT_LIST_HEAD(&c
->unclean_leb_list
);
1673 INIT_LIST_HEAD(&c
->old_buds
);
1674 INIT_LIST_HEAD(&c
->orph_list
);
1675 INIT_LIST_HEAD(&c
->orph_new
);
1677 c
->highest_inum
= UBIFS_FIRST_INO
;
1678 c
->lhead_lnum
= c
->ltail_lnum
= UBIFS_LOG_LNUM
;
1680 ubi_get_volume_info(ubi
, &c
->vi
);
1681 ubi_get_device_info(c
->vi
.ubi_num
, &c
->di
);
1683 /* Re-open the UBI device in read-write mode */
1684 c
->ubi
= ubi_open_volume(c
->vi
.ubi_num
, c
->vi
.vol_id
, UBI_READWRITE
);
1685 if (IS_ERR(c
->ubi
)) {
1686 err
= PTR_ERR(c
->ubi
);
1691 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1692 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1693 * which means the user would have to wait not just for their own I/O
1694 * but the read-ahead I/O as well i.e. completely pointless.
1696 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1698 c
->bdi
.capabilities
= BDI_CAP_MAP_COPY
;
1699 c
->bdi
.unplug_io_fn
= default_unplug_io_fn
;
1700 err
= bdi_init(&c
->bdi
);
1704 err
= ubifs_parse_options(c
, data
, 0);
1711 sb
->s_magic
= UBIFS_SUPER_MAGIC
;
1712 sb
->s_blocksize
= UBIFS_BLOCK_SIZE
;
1713 sb
->s_blocksize_bits
= UBIFS_BLOCK_SHIFT
;
1714 sb
->s_dev
= c
->vi
.cdev
;
1715 sb
->s_maxbytes
= c
->max_inode_sz
= key_max_inode_size(c
);
1716 if (c
->max_inode_sz
> MAX_LFS_FILESIZE
)
1717 sb
->s_maxbytes
= c
->max_inode_sz
= MAX_LFS_FILESIZE
;
1718 sb
->s_op
= &ubifs_super_operations
;
1720 mutex_lock(&c
->umount_mutex
);
1721 err
= mount_ubifs(c
);
1723 ubifs_assert(err
< 0);
1727 /* Read the root inode */
1728 root
= ubifs_iget(sb
, UBIFS_ROOT_INO
);
1730 err
= PTR_ERR(root
);
1734 sb
->s_root
= d_alloc_root(root
);
1738 mutex_unlock(&c
->umount_mutex
);
1747 mutex_unlock(&c
->umount_mutex
);
1749 bdi_destroy(&c
->bdi
);
1751 ubi_close_volume(c
->ubi
);
1757 static int sb_test(struct super_block
*sb
, void *data
)
1761 return sb
->s_dev
== *dev
;
1764 static int sb_set(struct super_block
*sb
, void *data
)
1772 static int ubifs_get_sb(struct file_system_type
*fs_type
, int flags
,
1773 const char *name
, void *data
, struct vfsmount
*mnt
)
1775 struct ubi_volume_desc
*ubi
;
1776 struct ubi_volume_info vi
;
1777 struct super_block
*sb
;
1780 dbg_gen("name %s, flags %#x", name
, flags
);
1783 * Get UBI device number and volume ID. Mount it read-only so far
1784 * because this might be a new mount point, and UBI allows only one
1785 * read-write user at a time.
1787 ubi
= open_ubi(name
, UBI_READONLY
);
1789 ubifs_err("cannot open \"%s\", error %d",
1790 name
, (int)PTR_ERR(ubi
));
1791 return PTR_ERR(ubi
);
1793 ubi_get_volume_info(ubi
, &vi
);
1795 dbg_gen("opened ubi%d_%d", vi
.ubi_num
, vi
.vol_id
);
1797 sb
= sget(fs_type
, &sb_test
, &sb_set
, &vi
.cdev
);
1804 /* A new mount point for already mounted UBIFS */
1805 dbg_gen("this ubi volume is already mounted");
1806 if ((flags
^ sb
->s_flags
) & MS_RDONLY
) {
1811 sb
->s_flags
= flags
;
1813 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
1816 sb
->s_fs_info
= ubi
;
1817 err
= ubifs_fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
1820 /* We do not support atime */
1821 sb
->s_flags
|= MS_ACTIVE
| MS_NOATIME
;
1824 /* 'fill_super()' opens ubi again so we must close it here */
1825 ubi_close_volume(ubi
);
1827 return simple_set_mnt(mnt
, sb
);
1830 up_write(&sb
->s_umount
);
1831 deactivate_super(sb
);
1833 ubi_close_volume(ubi
);
1837 static void ubifs_kill_sb(struct super_block
*sb
)
1839 struct ubifs_info
*c
= sb
->s_fs_info
;
1842 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
1843 * in order to be outside BKL.
1845 if (sb
->s_root
&& !(sb
->s_flags
& MS_RDONLY
))
1846 commit_on_unmount(c
);
1847 /* The un-mount routine is actually done in put_super() */
1848 generic_shutdown_super(sb
);
1851 static struct file_system_type ubifs_fs_type
= {
1853 .owner
= THIS_MODULE
,
1854 .get_sb
= ubifs_get_sb
,
1855 .kill_sb
= ubifs_kill_sb
1859 * Inode slab cache constructor.
1861 static void inode_slab_ctor(void *obj
)
1863 struct ubifs_inode
*ui
= obj
;
1864 inode_init_once(&ui
->vfs_inode
);
1867 static int __init
ubifs_init(void)
1871 BUILD_BUG_ON(sizeof(struct ubifs_ch
) != 24);
1873 /* Make sure node sizes are 8-byte aligned */
1874 BUILD_BUG_ON(UBIFS_CH_SZ
& 7);
1875 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
& 7);
1876 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
& 7);
1877 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
& 7);
1878 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ
& 7);
1879 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
& 7);
1880 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
& 7);
1881 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
& 7);
1882 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
& 7);
1883 BUILD_BUG_ON(UBIFS_CS_NODE_SZ
& 7);
1884 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ
& 7);
1886 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
& 7);
1887 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
& 7);
1888 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
& 7);
1889 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
& 7);
1890 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ
& 7);
1891 BUILD_BUG_ON(MIN_WRITE_SZ
& 7);
1893 /* Check min. node size */
1894 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
< MIN_WRITE_SZ
);
1895 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
< MIN_WRITE_SZ
);
1896 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
< MIN_WRITE_SZ
);
1897 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
< MIN_WRITE_SZ
);
1899 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
1900 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
1901 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
1902 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
1904 /* Defined node sizes */
1905 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
!= 4096);
1906 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
!= 512);
1907 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
!= 160);
1908 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
!= 64);
1911 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
1912 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
1914 if (PAGE_CACHE_SIZE
< UBIFS_BLOCK_SIZE
) {
1915 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
1916 " at least 4096 bytes",
1917 (unsigned int)PAGE_CACHE_SIZE
);
1921 err
= register_filesystem(&ubifs_fs_type
);
1923 ubifs_err("cannot register file system, error %d", err
);
1928 ubifs_inode_slab
= kmem_cache_create("ubifs_inode_slab",
1929 sizeof(struct ubifs_inode
), 0,
1930 SLAB_MEM_SPREAD
| SLAB_RECLAIM_ACCOUNT
,
1932 if (!ubifs_inode_slab
)
1935 register_shrinker(&ubifs_shrinker_info
);
1937 err
= ubifs_compressors_init();
1944 unregister_shrinker(&ubifs_shrinker_info
);
1945 kmem_cache_destroy(ubifs_inode_slab
);
1947 unregister_filesystem(&ubifs_fs_type
);
1950 /* late_initcall to let compressors initialize first */
1951 late_initcall(ubifs_init
);
1953 static void __exit
ubifs_exit(void)
1955 ubifs_assert(list_empty(&ubifs_infos
));
1956 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt
) == 0);
1958 ubifs_compressors_exit();
1959 unregister_shrinker(&ubifs_shrinker_info
);
1960 kmem_cache_destroy(ubifs_inode_slab
);
1961 unregister_filesystem(&ubifs_fs_type
);
1963 module_exit(ubifs_exit
);
1965 MODULE_LICENSE("GPL");
1966 MODULE_VERSION(__stringify(UBIFS_VERSION
));
1967 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
1968 MODULE_DESCRIPTION("UBIFS - UBI File System");