ACPI: ibm-acpi: cleanup init and exit paths
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / futex.c
blob99dad33f1d69973133bbf6dd35b26e6e9959842f
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
20 * enough at me, Linus for the original (flawed) idea, Matthew
21 * Kirkwood for proof-of-concept implementation.
23 * "The futexes are also cursed."
24 * "But they come in a choice of three flavours!"
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
40 #include <linux/slab.h>
41 #include <linux/poll.h>
42 #include <linux/fs.h>
43 #include <linux/file.h>
44 #include <linux/jhash.h>
45 #include <linux/init.h>
46 #include <linux/futex.h>
47 #include <linux/mount.h>
48 #include <linux/pagemap.h>
49 #include <linux/syscalls.h>
50 #include <linux/signal.h>
51 #include <asm/futex.h>
53 #include "rtmutex_common.h"
55 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
58 * Futexes are matched on equal values of this key.
59 * The key type depends on whether it's a shared or private mapping.
60 * Don't rearrange members without looking at hash_futex().
62 * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
63 * We set bit 0 to indicate if it's an inode-based key.
65 union futex_key {
66 struct {
67 unsigned long pgoff;
68 struct inode *inode;
69 int offset;
70 } shared;
71 struct {
72 unsigned long address;
73 struct mm_struct *mm;
74 int offset;
75 } private;
76 struct {
77 unsigned long word;
78 void *ptr;
79 int offset;
80 } both;
84 * Priority Inheritance state:
86 struct futex_pi_state {
88 * list of 'owned' pi_state instances - these have to be
89 * cleaned up in do_exit() if the task exits prematurely:
91 struct list_head list;
94 * The PI object:
96 struct rt_mutex pi_mutex;
98 struct task_struct *owner;
99 atomic_t refcount;
101 union futex_key key;
105 * We use this hashed waitqueue instead of a normal wait_queue_t, so
106 * we can wake only the relevant ones (hashed queues may be shared).
108 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
109 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
110 * The order of wakup is always to make the first condition true, then
111 * wake up q->waiters, then make the second condition true.
113 struct futex_q {
114 struct list_head list;
115 wait_queue_head_t waiters;
117 /* Which hash list lock to use: */
118 spinlock_t *lock_ptr;
120 /* Key which the futex is hashed on: */
121 union futex_key key;
123 /* For fd, sigio sent using these: */
124 int fd;
125 struct file *filp;
127 /* Optional priority inheritance state: */
128 struct futex_pi_state *pi_state;
129 struct task_struct *task;
133 * Split the global futex_lock into every hash list lock.
135 struct futex_hash_bucket {
136 spinlock_t lock;
137 struct list_head chain;
140 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
142 /* Futex-fs vfsmount entry: */
143 static struct vfsmount *futex_mnt;
146 * We hash on the keys returned from get_futex_key (see below).
148 static struct futex_hash_bucket *hash_futex(union futex_key *key)
150 u32 hash = jhash2((u32*)&key->both.word,
151 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
152 key->both.offset);
153 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
157 * Return 1 if two futex_keys are equal, 0 otherwise.
159 static inline int match_futex(union futex_key *key1, union futex_key *key2)
161 return (key1->both.word == key2->both.word
162 && key1->both.ptr == key2->both.ptr
163 && key1->both.offset == key2->both.offset);
167 * Get parameters which are the keys for a futex.
169 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
170 * offset_within_page). For private mappings, it's (uaddr, current->mm).
171 * We can usually work out the index without swapping in the page.
173 * Returns: 0, or negative error code.
174 * The key words are stored in *key on success.
176 * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
178 static int get_futex_key(u32 __user *uaddr, union futex_key *key)
180 unsigned long address = (unsigned long)uaddr;
181 struct mm_struct *mm = current->mm;
182 struct vm_area_struct *vma;
183 struct page *page;
184 int err;
187 * The futex address must be "naturally" aligned.
189 key->both.offset = address % PAGE_SIZE;
190 if (unlikely((key->both.offset % sizeof(u32)) != 0))
191 return -EINVAL;
192 address -= key->both.offset;
195 * The futex is hashed differently depending on whether
196 * it's in a shared or private mapping. So check vma first.
198 vma = find_extend_vma(mm, address);
199 if (unlikely(!vma))
200 return -EFAULT;
203 * Permissions.
205 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
206 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
209 * Private mappings are handled in a simple way.
211 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
212 * it's a read-only handle, it's expected that futexes attach to
213 * the object not the particular process. Therefore we use
214 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
215 * mappings of _writable_ handles.
217 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
218 key->private.mm = mm;
219 key->private.address = address;
220 return 0;
224 * Linear file mappings are also simple.
226 key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
227 key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
228 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
229 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
230 + vma->vm_pgoff);
231 return 0;
235 * We could walk the page table to read the non-linear
236 * pte, and get the page index without fetching the page
237 * from swap. But that's a lot of code to duplicate here
238 * for a rare case, so we simply fetch the page.
240 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
241 if (err >= 0) {
242 key->shared.pgoff =
243 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
244 put_page(page);
245 return 0;
247 return err;
251 * Take a reference to the resource addressed by a key.
252 * Can be called while holding spinlocks.
254 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
255 * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
257 static inline void get_key_refs(union futex_key *key)
259 if (key->both.ptr != 0) {
260 if (key->both.offset & 1)
261 atomic_inc(&key->shared.inode->i_count);
262 else
263 atomic_inc(&key->private.mm->mm_count);
268 * Drop a reference to the resource addressed by a key.
269 * The hash bucket spinlock must not be held.
271 static void drop_key_refs(union futex_key *key)
273 if (key->both.ptr != 0) {
274 if (key->both.offset & 1)
275 iput(key->shared.inode);
276 else
277 mmdrop(key->private.mm);
281 static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
283 int ret;
285 pagefault_disable();
286 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
287 pagefault_enable();
289 return ret ? -EFAULT : 0;
293 * Fault handling. Called with current->mm->mmap_sem held.
295 static int futex_handle_fault(unsigned long address, int attempt)
297 struct vm_area_struct * vma;
298 struct mm_struct *mm = current->mm;
300 if (attempt > 2 || !(vma = find_vma(mm, address)) ||
301 vma->vm_start > address || !(vma->vm_flags & VM_WRITE))
302 return -EFAULT;
304 switch (handle_mm_fault(mm, vma, address, 1)) {
305 case VM_FAULT_MINOR:
306 current->min_flt++;
307 break;
308 case VM_FAULT_MAJOR:
309 current->maj_flt++;
310 break;
311 default:
312 return -EFAULT;
314 return 0;
318 * PI code:
320 static int refill_pi_state_cache(void)
322 struct futex_pi_state *pi_state;
324 if (likely(current->pi_state_cache))
325 return 0;
327 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
329 if (!pi_state)
330 return -ENOMEM;
332 INIT_LIST_HEAD(&pi_state->list);
333 /* pi_mutex gets initialized later */
334 pi_state->owner = NULL;
335 atomic_set(&pi_state->refcount, 1);
337 current->pi_state_cache = pi_state;
339 return 0;
342 static struct futex_pi_state * alloc_pi_state(void)
344 struct futex_pi_state *pi_state = current->pi_state_cache;
346 WARN_ON(!pi_state);
347 current->pi_state_cache = NULL;
349 return pi_state;
352 static void free_pi_state(struct futex_pi_state *pi_state)
354 if (!atomic_dec_and_test(&pi_state->refcount))
355 return;
358 * If pi_state->owner is NULL, the owner is most probably dying
359 * and has cleaned up the pi_state already
361 if (pi_state->owner) {
362 spin_lock_irq(&pi_state->owner->pi_lock);
363 list_del_init(&pi_state->list);
364 spin_unlock_irq(&pi_state->owner->pi_lock);
366 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
369 if (current->pi_state_cache)
370 kfree(pi_state);
371 else {
373 * pi_state->list is already empty.
374 * clear pi_state->owner.
375 * refcount is at 0 - put it back to 1.
377 pi_state->owner = NULL;
378 atomic_set(&pi_state->refcount, 1);
379 current->pi_state_cache = pi_state;
384 * Look up the task based on what TID userspace gave us.
385 * We dont trust it.
387 static struct task_struct * futex_find_get_task(pid_t pid)
389 struct task_struct *p;
391 rcu_read_lock();
392 p = find_task_by_pid(pid);
394 if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
395 p = ERR_PTR(-ESRCH);
396 else
397 get_task_struct(p);
399 rcu_read_unlock();
401 return p;
405 * This task is holding PI mutexes at exit time => bad.
406 * Kernel cleans up PI-state, but userspace is likely hosed.
407 * (Robust-futex cleanup is separate and might save the day for userspace.)
409 void exit_pi_state_list(struct task_struct *curr)
411 struct list_head *next, *head = &curr->pi_state_list;
412 struct futex_pi_state *pi_state;
413 struct futex_hash_bucket *hb;
414 union futex_key key;
417 * We are a ZOMBIE and nobody can enqueue itself on
418 * pi_state_list anymore, but we have to be careful
419 * versus waiters unqueueing themselves:
421 spin_lock_irq(&curr->pi_lock);
422 while (!list_empty(head)) {
424 next = head->next;
425 pi_state = list_entry(next, struct futex_pi_state, list);
426 key = pi_state->key;
427 hb = hash_futex(&key);
428 spin_unlock_irq(&curr->pi_lock);
430 spin_lock(&hb->lock);
432 spin_lock_irq(&curr->pi_lock);
434 * We dropped the pi-lock, so re-check whether this
435 * task still owns the PI-state:
437 if (head->next != next) {
438 spin_unlock(&hb->lock);
439 continue;
442 WARN_ON(pi_state->owner != curr);
443 WARN_ON(list_empty(&pi_state->list));
444 list_del_init(&pi_state->list);
445 pi_state->owner = NULL;
446 spin_unlock_irq(&curr->pi_lock);
448 rt_mutex_unlock(&pi_state->pi_mutex);
450 spin_unlock(&hb->lock);
452 spin_lock_irq(&curr->pi_lock);
454 spin_unlock_irq(&curr->pi_lock);
457 static int
458 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
460 struct futex_pi_state *pi_state = NULL;
461 struct futex_q *this, *next;
462 struct list_head *head;
463 struct task_struct *p;
464 pid_t pid = uval & FUTEX_TID_MASK;
466 head = &hb->chain;
468 list_for_each_entry_safe(this, next, head, list) {
469 if (match_futex(&this->key, &me->key)) {
471 * Another waiter already exists - bump up
472 * the refcount and return its pi_state:
474 pi_state = this->pi_state;
476 * Userspace might have messed up non PI and PI futexes
478 if (unlikely(!pi_state))
479 return -EINVAL;
481 WARN_ON(!atomic_read(&pi_state->refcount));
482 WARN_ON(pid && pi_state->owner &&
483 pi_state->owner->pid != pid);
485 atomic_inc(&pi_state->refcount);
486 me->pi_state = pi_state;
488 return 0;
493 * We are the first waiter - try to look up the real owner and attach
494 * the new pi_state to it, but bail out when TID = 0
496 if (!pid)
497 return -ESRCH;
498 p = futex_find_get_task(pid);
499 if (IS_ERR(p))
500 return PTR_ERR(p);
503 * We need to look at the task state flags to figure out,
504 * whether the task is exiting. To protect against the do_exit
505 * change of the task flags, we do this protected by
506 * p->pi_lock:
508 spin_lock_irq(&p->pi_lock);
509 if (unlikely(p->flags & PF_EXITING)) {
511 * The task is on the way out. When PF_EXITPIDONE is
512 * set, we know that the task has finished the
513 * cleanup:
515 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
517 spin_unlock_irq(&p->pi_lock);
518 put_task_struct(p);
519 return ret;
522 pi_state = alloc_pi_state();
525 * Initialize the pi_mutex in locked state and make 'p'
526 * the owner of it:
528 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
530 /* Store the key for possible exit cleanups: */
531 pi_state->key = me->key;
533 WARN_ON(!list_empty(&pi_state->list));
534 list_add(&pi_state->list, &p->pi_state_list);
535 pi_state->owner = p;
536 spin_unlock_irq(&p->pi_lock);
538 put_task_struct(p);
540 me->pi_state = pi_state;
542 return 0;
546 * The hash bucket lock must be held when this is called.
547 * Afterwards, the futex_q must not be accessed.
549 static void wake_futex(struct futex_q *q)
551 list_del_init(&q->list);
552 if (q->filp)
553 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
555 * The lock in wake_up_all() is a crucial memory barrier after the
556 * list_del_init() and also before assigning to q->lock_ptr.
558 wake_up_all(&q->waiters);
560 * The waiting task can free the futex_q as soon as this is written,
561 * without taking any locks. This must come last.
563 * A memory barrier is required here to prevent the following store
564 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
565 * at the end of wake_up_all() does not prevent this store from
566 * moving.
568 smp_wmb();
569 q->lock_ptr = NULL;
572 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
574 struct task_struct *new_owner;
575 struct futex_pi_state *pi_state = this->pi_state;
576 u32 curval, newval;
578 if (!pi_state)
579 return -EINVAL;
581 spin_lock(&pi_state->pi_mutex.wait_lock);
582 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
585 * This happens when we have stolen the lock and the original
586 * pending owner did not enqueue itself back on the rt_mutex.
587 * Thats not a tragedy. We know that way, that a lock waiter
588 * is on the fly. We make the futex_q waiter the pending owner.
590 if (!new_owner)
591 new_owner = this->task;
594 * We pass it to the next owner. (The WAITERS bit is always
595 * kept enabled while there is PI state around. We must also
596 * preserve the owner died bit.)
598 if (!(uval & FUTEX_OWNER_DIED)) {
599 int ret = 0;
601 newval = FUTEX_WAITERS | new_owner->pid;
603 pagefault_disable();
604 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
605 pagefault_enable();
607 if (curval == -EFAULT)
608 ret = -EFAULT;
609 if (curval != uval)
610 ret = -EINVAL;
611 if (ret) {
612 spin_unlock(&pi_state->pi_mutex.wait_lock);
613 return ret;
617 spin_lock_irq(&pi_state->owner->pi_lock);
618 WARN_ON(list_empty(&pi_state->list));
619 list_del_init(&pi_state->list);
620 spin_unlock_irq(&pi_state->owner->pi_lock);
622 spin_lock_irq(&new_owner->pi_lock);
623 WARN_ON(!list_empty(&pi_state->list));
624 list_add(&pi_state->list, &new_owner->pi_state_list);
625 pi_state->owner = new_owner;
626 spin_unlock_irq(&new_owner->pi_lock);
628 spin_unlock(&pi_state->pi_mutex.wait_lock);
629 rt_mutex_unlock(&pi_state->pi_mutex);
631 return 0;
634 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
636 u32 oldval;
639 * There is no waiter, so we unlock the futex. The owner died
640 * bit has not to be preserved here. We are the owner:
642 pagefault_disable();
643 oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0);
644 pagefault_enable();
646 if (oldval == -EFAULT)
647 return oldval;
648 if (oldval != uval)
649 return -EAGAIN;
651 return 0;
655 * Express the locking dependencies for lockdep:
657 static inline void
658 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
660 if (hb1 <= hb2) {
661 spin_lock(&hb1->lock);
662 if (hb1 < hb2)
663 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
664 } else { /* hb1 > hb2 */
665 spin_lock(&hb2->lock);
666 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
671 * Wake up all waiters hashed on the physical page that is mapped
672 * to this virtual address:
674 static int futex_wake(u32 __user *uaddr, int nr_wake)
676 struct futex_hash_bucket *hb;
677 struct futex_q *this, *next;
678 struct list_head *head;
679 union futex_key key;
680 int ret;
682 down_read(&current->mm->mmap_sem);
684 ret = get_futex_key(uaddr, &key);
685 if (unlikely(ret != 0))
686 goto out;
688 hb = hash_futex(&key);
689 spin_lock(&hb->lock);
690 head = &hb->chain;
692 list_for_each_entry_safe(this, next, head, list) {
693 if (match_futex (&this->key, &key)) {
694 if (this->pi_state) {
695 ret = -EINVAL;
696 break;
698 wake_futex(this);
699 if (++ret >= nr_wake)
700 break;
704 spin_unlock(&hb->lock);
705 out:
706 up_read(&current->mm->mmap_sem);
707 return ret;
711 * Wake up all waiters hashed on the physical page that is mapped
712 * to this virtual address:
714 static int
715 futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2,
716 int nr_wake, int nr_wake2, int op)
718 union futex_key key1, key2;
719 struct futex_hash_bucket *hb1, *hb2;
720 struct list_head *head;
721 struct futex_q *this, *next;
722 int ret, op_ret, attempt = 0;
724 retryfull:
725 down_read(&current->mm->mmap_sem);
727 ret = get_futex_key(uaddr1, &key1);
728 if (unlikely(ret != 0))
729 goto out;
730 ret = get_futex_key(uaddr2, &key2);
731 if (unlikely(ret != 0))
732 goto out;
734 hb1 = hash_futex(&key1);
735 hb2 = hash_futex(&key2);
737 retry:
738 double_lock_hb(hb1, hb2);
740 op_ret = futex_atomic_op_inuser(op, uaddr2);
741 if (unlikely(op_ret < 0)) {
742 u32 dummy;
744 spin_unlock(&hb1->lock);
745 if (hb1 != hb2)
746 spin_unlock(&hb2->lock);
748 #ifndef CONFIG_MMU
750 * we don't get EFAULT from MMU faults if we don't have an MMU,
751 * but we might get them from range checking
753 ret = op_ret;
754 goto out;
755 #endif
757 if (unlikely(op_ret != -EFAULT)) {
758 ret = op_ret;
759 goto out;
763 * futex_atomic_op_inuser needs to both read and write
764 * *(int __user *)uaddr2, but we can't modify it
765 * non-atomically. Therefore, if get_user below is not
766 * enough, we need to handle the fault ourselves, while
767 * still holding the mmap_sem.
769 if (attempt++) {
770 if (futex_handle_fault((unsigned long)uaddr2,
771 attempt)) {
772 ret = -EFAULT;
773 goto out;
775 goto retry;
779 * If we would have faulted, release mmap_sem,
780 * fault it in and start all over again.
782 up_read(&current->mm->mmap_sem);
784 ret = get_user(dummy, uaddr2);
785 if (ret)
786 return ret;
788 goto retryfull;
791 head = &hb1->chain;
793 list_for_each_entry_safe(this, next, head, list) {
794 if (match_futex (&this->key, &key1)) {
795 wake_futex(this);
796 if (++ret >= nr_wake)
797 break;
801 if (op_ret > 0) {
802 head = &hb2->chain;
804 op_ret = 0;
805 list_for_each_entry_safe(this, next, head, list) {
806 if (match_futex (&this->key, &key2)) {
807 wake_futex(this);
808 if (++op_ret >= nr_wake2)
809 break;
812 ret += op_ret;
815 spin_unlock(&hb1->lock);
816 if (hb1 != hb2)
817 spin_unlock(&hb2->lock);
818 out:
819 up_read(&current->mm->mmap_sem);
820 return ret;
824 * Requeue all waiters hashed on one physical page to another
825 * physical page.
827 static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2,
828 int nr_wake, int nr_requeue, u32 *cmpval)
830 union futex_key key1, key2;
831 struct futex_hash_bucket *hb1, *hb2;
832 struct list_head *head1;
833 struct futex_q *this, *next;
834 int ret, drop_count = 0;
836 retry:
837 down_read(&current->mm->mmap_sem);
839 ret = get_futex_key(uaddr1, &key1);
840 if (unlikely(ret != 0))
841 goto out;
842 ret = get_futex_key(uaddr2, &key2);
843 if (unlikely(ret != 0))
844 goto out;
846 hb1 = hash_futex(&key1);
847 hb2 = hash_futex(&key2);
849 double_lock_hb(hb1, hb2);
851 if (likely(cmpval != NULL)) {
852 u32 curval;
854 ret = get_futex_value_locked(&curval, uaddr1);
856 if (unlikely(ret)) {
857 spin_unlock(&hb1->lock);
858 if (hb1 != hb2)
859 spin_unlock(&hb2->lock);
862 * If we would have faulted, release mmap_sem, fault
863 * it in and start all over again.
865 up_read(&current->mm->mmap_sem);
867 ret = get_user(curval, uaddr1);
869 if (!ret)
870 goto retry;
872 return ret;
874 if (curval != *cmpval) {
875 ret = -EAGAIN;
876 goto out_unlock;
880 head1 = &hb1->chain;
881 list_for_each_entry_safe(this, next, head1, list) {
882 if (!match_futex (&this->key, &key1))
883 continue;
884 if (++ret <= nr_wake) {
885 wake_futex(this);
886 } else {
888 * If key1 and key2 hash to the same bucket, no need to
889 * requeue.
891 if (likely(head1 != &hb2->chain)) {
892 list_move_tail(&this->list, &hb2->chain);
893 this->lock_ptr = &hb2->lock;
895 this->key = key2;
896 get_key_refs(&key2);
897 drop_count++;
899 if (ret - nr_wake >= nr_requeue)
900 break;
904 out_unlock:
905 spin_unlock(&hb1->lock);
906 if (hb1 != hb2)
907 spin_unlock(&hb2->lock);
909 /* drop_key_refs() must be called outside the spinlocks. */
910 while (--drop_count >= 0)
911 drop_key_refs(&key1);
913 out:
914 up_read(&current->mm->mmap_sem);
915 return ret;
918 /* The key must be already stored in q->key. */
919 static inline struct futex_hash_bucket *
920 queue_lock(struct futex_q *q, int fd, struct file *filp)
922 struct futex_hash_bucket *hb;
924 q->fd = fd;
925 q->filp = filp;
927 init_waitqueue_head(&q->waiters);
929 get_key_refs(&q->key);
930 hb = hash_futex(&q->key);
931 q->lock_ptr = &hb->lock;
933 spin_lock(&hb->lock);
934 return hb;
937 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
939 list_add_tail(&q->list, &hb->chain);
940 q->task = current;
941 spin_unlock(&hb->lock);
944 static inline void
945 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
947 spin_unlock(&hb->lock);
948 drop_key_refs(&q->key);
952 * queue_me and unqueue_me must be called as a pair, each
953 * exactly once. They are called with the hashed spinlock held.
956 /* The key must be already stored in q->key. */
957 static void queue_me(struct futex_q *q, int fd, struct file *filp)
959 struct futex_hash_bucket *hb;
961 hb = queue_lock(q, fd, filp);
962 __queue_me(q, hb);
965 /* Return 1 if we were still queued (ie. 0 means we were woken) */
966 static int unqueue_me(struct futex_q *q)
968 spinlock_t *lock_ptr;
969 int ret = 0;
971 /* In the common case we don't take the spinlock, which is nice. */
972 retry:
973 lock_ptr = q->lock_ptr;
974 barrier();
975 if (lock_ptr != 0) {
976 spin_lock(lock_ptr);
978 * q->lock_ptr can change between reading it and
979 * spin_lock(), causing us to take the wrong lock. This
980 * corrects the race condition.
982 * Reasoning goes like this: if we have the wrong lock,
983 * q->lock_ptr must have changed (maybe several times)
984 * between reading it and the spin_lock(). It can
985 * change again after the spin_lock() but only if it was
986 * already changed before the spin_lock(). It cannot,
987 * however, change back to the original value. Therefore
988 * we can detect whether we acquired the correct lock.
990 if (unlikely(lock_ptr != q->lock_ptr)) {
991 spin_unlock(lock_ptr);
992 goto retry;
994 WARN_ON(list_empty(&q->list));
995 list_del(&q->list);
997 BUG_ON(q->pi_state);
999 spin_unlock(lock_ptr);
1000 ret = 1;
1003 drop_key_refs(&q->key);
1004 return ret;
1008 * PI futexes can not be requeued and must remove themself from the
1009 * hash bucket. The hash bucket lock is held on entry and dropped here.
1011 static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb)
1013 WARN_ON(list_empty(&q->list));
1014 list_del(&q->list);
1016 BUG_ON(!q->pi_state);
1017 free_pi_state(q->pi_state);
1018 q->pi_state = NULL;
1020 spin_unlock(&hb->lock);
1022 drop_key_refs(&q->key);
1025 static int futex_wait(u32 __user *uaddr, u32 val, unsigned long time)
1027 struct task_struct *curr = current;
1028 DECLARE_WAITQUEUE(wait, curr);
1029 struct futex_hash_bucket *hb;
1030 struct futex_q q;
1031 u32 uval;
1032 int ret;
1034 q.pi_state = NULL;
1035 retry:
1036 down_read(&curr->mm->mmap_sem);
1038 ret = get_futex_key(uaddr, &q.key);
1039 if (unlikely(ret != 0))
1040 goto out_release_sem;
1042 hb = queue_lock(&q, -1, NULL);
1045 * Access the page AFTER the futex is queued.
1046 * Order is important:
1048 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1049 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1051 * The basic logical guarantee of a futex is that it blocks ONLY
1052 * if cond(var) is known to be true at the time of blocking, for
1053 * any cond. If we queued after testing *uaddr, that would open
1054 * a race condition where we could block indefinitely with
1055 * cond(var) false, which would violate the guarantee.
1057 * A consequence is that futex_wait() can return zero and absorb
1058 * a wakeup when *uaddr != val on entry to the syscall. This is
1059 * rare, but normal.
1061 * We hold the mmap semaphore, so the mapping cannot have changed
1062 * since we looked it up in get_futex_key.
1064 ret = get_futex_value_locked(&uval, uaddr);
1066 if (unlikely(ret)) {
1067 queue_unlock(&q, hb);
1070 * If we would have faulted, release mmap_sem, fault it in and
1071 * start all over again.
1073 up_read(&curr->mm->mmap_sem);
1075 ret = get_user(uval, uaddr);
1077 if (!ret)
1078 goto retry;
1079 return ret;
1081 ret = -EWOULDBLOCK;
1082 if (uval != val)
1083 goto out_unlock_release_sem;
1085 /* Only actually queue if *uaddr contained val. */
1086 __queue_me(&q, hb);
1089 * Now the futex is queued and we have checked the data, we
1090 * don't want to hold mmap_sem while we sleep.
1092 up_read(&curr->mm->mmap_sem);
1095 * There might have been scheduling since the queue_me(), as we
1096 * cannot hold a spinlock across the get_user() in case it
1097 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1098 * queueing ourselves into the futex hash. This code thus has to
1099 * rely on the futex_wake() code removing us from hash when it
1100 * wakes us up.
1103 /* add_wait_queue is the barrier after __set_current_state. */
1104 __set_current_state(TASK_INTERRUPTIBLE);
1105 add_wait_queue(&q.waiters, &wait);
1107 * !list_empty() is safe here without any lock.
1108 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1110 if (likely(!list_empty(&q.list)))
1111 time = schedule_timeout(time);
1112 __set_current_state(TASK_RUNNING);
1115 * NOTE: we don't remove ourselves from the waitqueue because
1116 * we are the only user of it.
1119 /* If we were woken (and unqueued), we succeeded, whatever. */
1120 if (!unqueue_me(&q))
1121 return 0;
1122 if (time == 0)
1123 return -ETIMEDOUT;
1125 * We expect signal_pending(current), but another thread may
1126 * have handled it for us already.
1128 return -EINTR;
1130 out_unlock_release_sem:
1131 queue_unlock(&q, hb);
1133 out_release_sem:
1134 up_read(&curr->mm->mmap_sem);
1135 return ret;
1139 * Userspace tried a 0 -> TID atomic transition of the futex value
1140 * and failed. The kernel side here does the whole locking operation:
1141 * if there are waiters then it will block, it does PI, etc. (Due to
1142 * races the kernel might see a 0 value of the futex too.)
1144 static int futex_lock_pi(u32 __user *uaddr, int detect, unsigned long sec,
1145 long nsec, int trylock)
1147 struct hrtimer_sleeper timeout, *to = NULL;
1148 struct task_struct *curr = current;
1149 struct futex_hash_bucket *hb;
1150 u32 uval, newval, curval;
1151 struct futex_q q;
1152 int ret, attempt = 0;
1154 if (refill_pi_state_cache())
1155 return -ENOMEM;
1157 if (sec != MAX_SCHEDULE_TIMEOUT) {
1158 to = &timeout;
1159 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
1160 hrtimer_init_sleeper(to, current);
1161 to->timer.expires = ktime_set(sec, nsec);
1164 q.pi_state = NULL;
1165 retry:
1166 down_read(&curr->mm->mmap_sem);
1168 ret = get_futex_key(uaddr, &q.key);
1169 if (unlikely(ret != 0))
1170 goto out_release_sem;
1172 retry_unlocked:
1173 hb = queue_lock(&q, -1, NULL);
1175 retry_locked:
1177 * To avoid races, we attempt to take the lock here again
1178 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1179 * the locks. It will most likely not succeed.
1181 newval = current->pid;
1183 pagefault_disable();
1184 curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval);
1185 pagefault_enable();
1187 if (unlikely(curval == -EFAULT))
1188 goto uaddr_faulted;
1190 /* We own the lock already */
1191 if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
1192 if (!detect && 0)
1193 force_sig(SIGKILL, current);
1194 ret = -EDEADLK;
1195 goto out_unlock_release_sem;
1199 * Surprise - we got the lock. Just return
1200 * to userspace:
1202 if (unlikely(!curval))
1203 goto out_unlock_release_sem;
1205 uval = curval;
1206 newval = uval | FUTEX_WAITERS;
1208 pagefault_disable();
1209 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
1210 pagefault_enable();
1212 if (unlikely(curval == -EFAULT))
1213 goto uaddr_faulted;
1214 if (unlikely(curval != uval))
1215 goto retry_locked;
1218 * We dont have the lock. Look up the PI state (or create it if
1219 * we are the first waiter):
1221 ret = lookup_pi_state(uval, hb, &q);
1223 if (unlikely(ret)) {
1224 switch (ret) {
1226 case -EAGAIN:
1228 * Task is exiting and we just wait for the
1229 * exit to complete.
1231 queue_unlock(&q, hb);
1232 up_read(&curr->mm->mmap_sem);
1233 cond_resched();
1234 goto retry;
1236 case -ESRCH:
1238 * No owner found for this futex. Check if the
1239 * OWNER_DIED bit is set to figure out whether
1240 * this is a robust futex or not.
1242 if (get_futex_value_locked(&curval, uaddr))
1243 goto uaddr_faulted;
1246 * There were no waiters and the owner task lookup
1247 * failed. When the OWNER_DIED bit is set, then we
1248 * know that this is a robust futex and we actually
1249 * take the lock. This is safe as we are protected by
1250 * the hash bucket lock. We also set the waiters bit
1251 * unconditionally here, to simplify glibc handling of
1252 * multiple tasks racing to acquire the lock and
1253 * cleanup the problems which were left by the dead
1254 * owner.
1256 if (curval & FUTEX_OWNER_DIED) {
1257 uval = newval;
1258 newval = current->pid |
1259 FUTEX_OWNER_DIED | FUTEX_WAITERS;
1261 pagefault_disable();
1262 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1263 uval,
1264 newval);
1265 pagefault_enable();
1267 if (unlikely(curval == -EFAULT))
1268 goto uaddr_faulted;
1269 if (unlikely(curval != uval))
1270 goto retry_locked;
1271 ret = 0;
1273 default:
1274 goto out_unlock_release_sem;
1279 * Only actually queue now that the atomic ops are done:
1281 __queue_me(&q, hb);
1284 * Now the futex is queued and we have checked the data, we
1285 * don't want to hold mmap_sem while we sleep.
1287 up_read(&curr->mm->mmap_sem);
1289 WARN_ON(!q.pi_state);
1291 * Block on the PI mutex:
1293 if (!trylock)
1294 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1295 else {
1296 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1297 /* Fixup the trylock return value: */
1298 ret = ret ? 0 : -EWOULDBLOCK;
1301 down_read(&curr->mm->mmap_sem);
1302 spin_lock(q.lock_ptr);
1305 * Got the lock. We might not be the anticipated owner if we
1306 * did a lock-steal - fix up the PI-state in that case.
1308 if (!ret && q.pi_state->owner != curr) {
1309 u32 newtid = current->pid | FUTEX_WAITERS;
1311 /* Owner died? */
1312 if (q.pi_state->owner != NULL) {
1313 spin_lock_irq(&q.pi_state->owner->pi_lock);
1314 WARN_ON(list_empty(&q.pi_state->list));
1315 list_del_init(&q.pi_state->list);
1316 spin_unlock_irq(&q.pi_state->owner->pi_lock);
1317 } else
1318 newtid |= FUTEX_OWNER_DIED;
1320 q.pi_state->owner = current;
1322 spin_lock_irq(&current->pi_lock);
1323 WARN_ON(!list_empty(&q.pi_state->list));
1324 list_add(&q.pi_state->list, &current->pi_state_list);
1325 spin_unlock_irq(&current->pi_lock);
1328 * We own it, so we have to replace the pending owner
1329 * TID. This must be atomic as we have to preserve the
1330 * owner died bit here.
1332 ret = get_futex_value_locked(&uval, uaddr);
1333 while (!ret) {
1334 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1336 pagefault_disable();
1337 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1338 uval, newval);
1339 pagefault_enable();
1341 if (curval == -EFAULT)
1342 ret = -EFAULT;
1343 if (curval == uval)
1344 break;
1345 uval = curval;
1347 } else if (ret) {
1349 * Catch the rare case, where the lock was released
1350 * when we were on the way back before we locked
1351 * the hash bucket.
1353 if (q.pi_state->owner == curr &&
1354 rt_mutex_trylock(&q.pi_state->pi_mutex)) {
1355 ret = 0;
1356 } else {
1358 * Paranoia check. If we did not take the lock
1359 * in the trylock above, then we should not be
1360 * the owner of the rtmutex, neither the real
1361 * nor the pending one:
1363 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1364 printk(KERN_ERR "futex_lock_pi: ret = %d "
1365 "pi-mutex: %p pi-state %p\n", ret,
1366 q.pi_state->pi_mutex.owner,
1367 q.pi_state->owner);
1370 /* Unqueue and drop the lock */
1371 unqueue_me_pi(&q, hb);
1372 up_read(&curr->mm->mmap_sem);
1374 if (!detect && ret == -EDEADLK && 0)
1375 force_sig(SIGKILL, current);
1377 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1379 out_unlock_release_sem:
1380 queue_unlock(&q, hb);
1382 out_release_sem:
1383 up_read(&curr->mm->mmap_sem);
1384 return ret;
1386 uaddr_faulted:
1388 * We have to r/w *(int __user *)uaddr, but we can't modify it
1389 * non-atomically. Therefore, if get_user below is not
1390 * enough, we need to handle the fault ourselves, while
1391 * still holding the mmap_sem.
1393 * ... and hb->lock. :-) --ANK
1395 queue_unlock(&q, hb);
1397 if (attempt++) {
1398 ret = futex_handle_fault((unsigned long)uaddr, attempt);
1399 if (ret)
1400 goto out_release_sem;
1401 goto retry_unlocked;
1404 up_read(&curr->mm->mmap_sem);
1406 ret = get_user(uval, uaddr);
1407 if (!ret && (uval != -EFAULT))
1408 goto retry;
1410 return ret;
1414 * Userspace attempted a TID -> 0 atomic transition, and failed.
1415 * This is the in-kernel slowpath: we look up the PI state (if any),
1416 * and do the rt-mutex unlock.
1418 static int futex_unlock_pi(u32 __user *uaddr)
1420 struct futex_hash_bucket *hb;
1421 struct futex_q *this, *next;
1422 u32 uval;
1423 struct list_head *head;
1424 union futex_key key;
1425 int ret, attempt = 0;
1427 retry:
1428 if (get_user(uval, uaddr))
1429 return -EFAULT;
1431 * We release only a lock we actually own:
1433 if ((uval & FUTEX_TID_MASK) != current->pid)
1434 return -EPERM;
1436 * First take all the futex related locks:
1438 down_read(&current->mm->mmap_sem);
1440 ret = get_futex_key(uaddr, &key);
1441 if (unlikely(ret != 0))
1442 goto out;
1444 hb = hash_futex(&key);
1445 retry_unlocked:
1446 spin_lock(&hb->lock);
1449 * To avoid races, try to do the TID -> 0 atomic transition
1450 * again. If it succeeds then we can return without waking
1451 * anyone else up:
1453 if (!(uval & FUTEX_OWNER_DIED)) {
1454 pagefault_disable();
1455 uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0);
1456 pagefault_enable();
1459 if (unlikely(uval == -EFAULT))
1460 goto pi_faulted;
1462 * Rare case: we managed to release the lock atomically,
1463 * no need to wake anyone else up:
1465 if (unlikely(uval == current->pid))
1466 goto out_unlock;
1469 * Ok, other tasks may need to be woken up - check waiters
1470 * and do the wakeup if necessary:
1472 head = &hb->chain;
1474 list_for_each_entry_safe(this, next, head, list) {
1475 if (!match_futex (&this->key, &key))
1476 continue;
1477 ret = wake_futex_pi(uaddr, uval, this);
1479 * The atomic access to the futex value
1480 * generated a pagefault, so retry the
1481 * user-access and the wakeup:
1483 if (ret == -EFAULT)
1484 goto pi_faulted;
1485 goto out_unlock;
1488 * No waiters - kernel unlocks the futex:
1490 if (!(uval & FUTEX_OWNER_DIED)) {
1491 ret = unlock_futex_pi(uaddr, uval);
1492 if (ret == -EFAULT)
1493 goto pi_faulted;
1496 out_unlock:
1497 spin_unlock(&hb->lock);
1498 out:
1499 up_read(&current->mm->mmap_sem);
1501 return ret;
1503 pi_faulted:
1505 * We have to r/w *(int __user *)uaddr, but we can't modify it
1506 * non-atomically. Therefore, if get_user below is not
1507 * enough, we need to handle the fault ourselves, while
1508 * still holding the mmap_sem.
1510 * ... and hb->lock. :-) --ANK
1512 spin_unlock(&hb->lock);
1514 if (attempt++) {
1515 ret = futex_handle_fault((unsigned long)uaddr, attempt);
1516 if (ret)
1517 goto out;
1518 goto retry_unlocked;
1520 up_read(&current->mm->mmap_sem);
1522 ret = get_user(uval, uaddr);
1523 if (!ret && (uval != -EFAULT))
1524 goto retry;
1526 return ret;
1529 static int futex_close(struct inode *inode, struct file *filp)
1531 struct futex_q *q = filp->private_data;
1533 unqueue_me(q);
1534 kfree(q);
1536 return 0;
1539 /* This is one-shot: once it's gone off you need a new fd */
1540 static unsigned int futex_poll(struct file *filp,
1541 struct poll_table_struct *wait)
1543 struct futex_q *q = filp->private_data;
1544 int ret = 0;
1546 poll_wait(filp, &q->waiters, wait);
1549 * list_empty() is safe here without any lock.
1550 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1552 if (list_empty(&q->list))
1553 ret = POLLIN | POLLRDNORM;
1555 return ret;
1558 static const struct file_operations futex_fops = {
1559 .release = futex_close,
1560 .poll = futex_poll,
1564 * Signal allows caller to avoid the race which would occur if they
1565 * set the sigio stuff up afterwards.
1567 static int futex_fd(u32 __user *uaddr, int signal)
1569 struct futex_q *q;
1570 struct file *filp;
1571 int ret, err;
1572 static unsigned long printk_interval;
1574 if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
1575 printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
1576 "will be removed from the kernel in June 2007\n",
1577 current->comm);
1580 ret = -EINVAL;
1581 if (!valid_signal(signal))
1582 goto out;
1584 ret = get_unused_fd();
1585 if (ret < 0)
1586 goto out;
1587 filp = get_empty_filp();
1588 if (!filp) {
1589 put_unused_fd(ret);
1590 ret = -ENFILE;
1591 goto out;
1593 filp->f_op = &futex_fops;
1594 filp->f_path.mnt = mntget(futex_mnt);
1595 filp->f_path.dentry = dget(futex_mnt->mnt_root);
1596 filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
1598 if (signal) {
1599 err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
1600 if (err < 0) {
1601 goto error;
1603 filp->f_owner.signum = signal;
1606 q = kmalloc(sizeof(*q), GFP_KERNEL);
1607 if (!q) {
1608 err = -ENOMEM;
1609 goto error;
1611 q->pi_state = NULL;
1613 down_read(&current->mm->mmap_sem);
1614 err = get_futex_key(uaddr, &q->key);
1616 if (unlikely(err != 0)) {
1617 up_read(&current->mm->mmap_sem);
1618 kfree(q);
1619 goto error;
1623 * queue_me() must be called before releasing mmap_sem, because
1624 * key->shared.inode needs to be referenced while holding it.
1626 filp->private_data = q;
1628 queue_me(q, ret, filp);
1629 up_read(&current->mm->mmap_sem);
1631 /* Now we map fd to filp, so userspace can access it */
1632 fd_install(ret, filp);
1633 out:
1634 return ret;
1635 error:
1636 put_unused_fd(ret);
1637 put_filp(filp);
1638 ret = err;
1639 goto out;
1643 * Support for robust futexes: the kernel cleans up held futexes at
1644 * thread exit time.
1646 * Implementation: user-space maintains a per-thread list of locks it
1647 * is holding. Upon do_exit(), the kernel carefully walks this list,
1648 * and marks all locks that are owned by this thread with the
1649 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1650 * always manipulated with the lock held, so the list is private and
1651 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1652 * field, to allow the kernel to clean up if the thread dies after
1653 * acquiring the lock, but just before it could have added itself to
1654 * the list. There can only be one such pending lock.
1658 * sys_set_robust_list - set the robust-futex list head of a task
1659 * @head: pointer to the list-head
1660 * @len: length of the list-head, as userspace expects
1662 asmlinkage long
1663 sys_set_robust_list(struct robust_list_head __user *head,
1664 size_t len)
1667 * The kernel knows only one size for now:
1669 if (unlikely(len != sizeof(*head)))
1670 return -EINVAL;
1672 current->robust_list = head;
1674 return 0;
1678 * sys_get_robust_list - get the robust-futex list head of a task
1679 * @pid: pid of the process [zero for current task]
1680 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1681 * @len_ptr: pointer to a length field, the kernel fills in the header size
1683 asmlinkage long
1684 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1685 size_t __user *len_ptr)
1687 struct robust_list_head __user *head;
1688 unsigned long ret;
1690 if (!pid)
1691 head = current->robust_list;
1692 else {
1693 struct task_struct *p;
1695 ret = -ESRCH;
1696 rcu_read_lock();
1697 p = find_task_by_pid(pid);
1698 if (!p)
1699 goto err_unlock;
1700 ret = -EPERM;
1701 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1702 !capable(CAP_SYS_PTRACE))
1703 goto err_unlock;
1704 head = p->robust_list;
1705 rcu_read_unlock();
1708 if (put_user(sizeof(*head), len_ptr))
1709 return -EFAULT;
1710 return put_user(head, head_ptr);
1712 err_unlock:
1713 rcu_read_unlock();
1715 return ret;
1719 * Process a futex-list entry, check whether it's owned by the
1720 * dying task, and do notification if so:
1722 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1724 u32 uval, nval, mval;
1726 retry:
1727 if (get_user(uval, uaddr))
1728 return -1;
1730 if ((uval & FUTEX_TID_MASK) == curr->pid) {
1732 * Ok, this dying thread is truly holding a futex
1733 * of interest. Set the OWNER_DIED bit atomically
1734 * via cmpxchg, and if the value had FUTEX_WAITERS
1735 * set, wake up a waiter (if any). (We have to do a
1736 * futex_wake() even if OWNER_DIED is already set -
1737 * to handle the rare but possible case of recursive
1738 * thread-death.) The rest of the cleanup is done in
1739 * userspace.
1741 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1742 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1744 if (nval == -EFAULT)
1745 return -1;
1747 if (nval != uval)
1748 goto retry;
1751 * Wake robust non-PI futexes here. The wakeup of
1752 * PI futexes happens in exit_pi_state():
1754 if (!pi) {
1755 if (uval & FUTEX_WAITERS)
1756 futex_wake(uaddr, 1);
1759 return 0;
1763 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1765 static inline int fetch_robust_entry(struct robust_list __user **entry,
1766 struct robust_list __user * __user *head,
1767 int *pi)
1769 unsigned long uentry;
1771 if (get_user(uentry, (unsigned long __user *)head))
1772 return -EFAULT;
1774 *entry = (void __user *)(uentry & ~1UL);
1775 *pi = uentry & 1;
1777 return 0;
1781 * Walk curr->robust_list (very carefully, it's a userspace list!)
1782 * and mark any locks found there dead, and notify any waiters.
1784 * We silently return on any sign of list-walking problem.
1786 void exit_robust_list(struct task_struct *curr)
1788 struct robust_list_head __user *head = curr->robust_list;
1789 struct robust_list __user *entry, *pending;
1790 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
1791 unsigned long futex_offset;
1794 * Fetch the list head (which was registered earlier, via
1795 * sys_set_robust_list()):
1797 if (fetch_robust_entry(&entry, &head->list.next, &pi))
1798 return;
1800 * Fetch the relative futex offset:
1802 if (get_user(futex_offset, &head->futex_offset))
1803 return;
1805 * Fetch any possibly pending lock-add first, and handle it
1806 * if it exists:
1808 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1809 return;
1811 if (pending)
1812 handle_futex_death((void __user *)pending + futex_offset, curr, pip);
1814 while (entry != &head->list) {
1816 * A pending lock might already be on the list, so
1817 * don't process it twice:
1819 if (entry != pending)
1820 if (handle_futex_death((void __user *)entry + futex_offset,
1821 curr, pi))
1822 return;
1824 * Fetch the next entry in the list:
1826 if (fetch_robust_entry(&entry, &entry->next, &pi))
1827 return;
1829 * Avoid excessively long or circular lists:
1831 if (!--limit)
1832 break;
1834 cond_resched();
1838 long do_futex(u32 __user *uaddr, int op, u32 val, unsigned long timeout,
1839 u32 __user *uaddr2, u32 val2, u32 val3)
1841 int ret;
1843 switch (op) {
1844 case FUTEX_WAIT:
1845 ret = futex_wait(uaddr, val, timeout);
1846 break;
1847 case FUTEX_WAKE:
1848 ret = futex_wake(uaddr, val);
1849 break;
1850 case FUTEX_FD:
1851 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
1852 ret = futex_fd(uaddr, val);
1853 break;
1854 case FUTEX_REQUEUE:
1855 ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
1856 break;
1857 case FUTEX_CMP_REQUEUE:
1858 ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
1859 break;
1860 case FUTEX_WAKE_OP:
1861 ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
1862 break;
1863 case FUTEX_LOCK_PI:
1864 ret = futex_lock_pi(uaddr, val, timeout, val2, 0);
1865 break;
1866 case FUTEX_UNLOCK_PI:
1867 ret = futex_unlock_pi(uaddr);
1868 break;
1869 case FUTEX_TRYLOCK_PI:
1870 ret = futex_lock_pi(uaddr, 0, timeout, val2, 1);
1871 break;
1872 default:
1873 ret = -ENOSYS;
1875 return ret;
1879 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1880 struct timespec __user *utime, u32 __user *uaddr2,
1881 u32 val3)
1883 struct timespec t;
1884 unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
1885 u32 val2 = 0;
1887 if (utime && (op == FUTEX_WAIT || op == FUTEX_LOCK_PI)) {
1888 if (copy_from_user(&t, utime, sizeof(t)) != 0)
1889 return -EFAULT;
1890 if (!timespec_valid(&t))
1891 return -EINVAL;
1892 if (op == FUTEX_WAIT)
1893 timeout = timespec_to_jiffies(&t) + 1;
1894 else {
1895 timeout = t.tv_sec;
1896 val2 = t.tv_nsec;
1900 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
1902 if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE)
1903 val2 = (u32) (unsigned long) utime;
1905 return do_futex(uaddr, op, val, timeout, uaddr2, val2, val3);
1908 static int futexfs_get_sb(struct file_system_type *fs_type,
1909 int flags, const char *dev_name, void *data,
1910 struct vfsmount *mnt)
1912 return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
1915 static struct file_system_type futex_fs_type = {
1916 .name = "futexfs",
1917 .get_sb = futexfs_get_sb,
1918 .kill_sb = kill_anon_super,
1921 static int __init init(void)
1923 int i = register_filesystem(&futex_fs_type);
1925 if (i)
1926 return i;
1928 futex_mnt = kern_mount(&futex_fs_type);
1929 if (IS_ERR(futex_mnt)) {
1930 unregister_filesystem(&futex_fs_type);
1931 return PTR_ERR(futex_mnt);
1934 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
1935 INIT_LIST_HEAD(&futex_queues[i].chain);
1936 spin_lock_init(&futex_queues[i].lock);
1938 return 0;
1940 __initcall(init);