[PATCH] wrong error path in dup_fd() leading to oopses in RCU
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / ioc3-eth.c
blobae71ed57c12db04f624f01d4c7c9324576376f06
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
8 * Copyright (C) 1999, 2000, 2001, 2003 Ralf Baechle
9 * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
11 * References:
12 * o IOC3 ASIC specification 4.51, 1996-04-18
13 * o IEEE 802.3 specification, 2000 edition
14 * o DP38840A Specification, National Semiconductor, March 1997
16 * To do:
18 * o Handle allocation failures in ioc3_alloc_skb() more gracefully.
19 * o Handle allocation failures in ioc3_init_rings().
20 * o Use prefetching for large packets. What is a good lower limit for
21 * prefetching?
22 * o We're probably allocating a bit too much memory.
23 * o Use hardware checksums.
24 * o Convert to using a IOC3 meta driver.
25 * o Which PHYs might possibly be attached to the IOC3 in real live,
26 * which workarounds are required for them? Do we ever have Lucent's?
27 * o For the 2.5 branch kill the mii-tool ioctls.
30 #define IOC3_NAME "ioc3-eth"
31 #define IOC3_VERSION "2.6.3-3"
33 #include <linux/config.h>
34 #include <linux/init.h>
35 #include <linux/delay.h>
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/errno.h>
39 #include <linux/module.h>
40 #include <linux/pci.h>
41 #include <linux/crc32.h>
42 #include <linux/mii.h>
43 #include <linux/in.h>
44 #include <linux/ip.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/dma-mapping.h>
49 #ifdef CONFIG_SERIAL_8250
50 #include <linux/serial_core.h>
51 #include <linux/serial_8250.h>
52 #endif
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/ethtool.h>
57 #include <linux/skbuff.h>
58 #include <net/ip.h>
60 #include <asm/byteorder.h>
61 #include <asm/checksum.h>
62 #include <asm/io.h>
63 #include <asm/pgtable.h>
64 #include <asm/uaccess.h>
65 #include <asm/sn/types.h>
66 #include <asm/sn/sn0/addrs.h>
67 #include <asm/sn/sn0/hubni.h>
68 #include <asm/sn/sn0/hubio.h>
69 #include <asm/sn/klconfig.h>
70 #include <asm/sn/ioc3.h>
71 #include <asm/sn/sn0/ip27.h>
72 #include <asm/pci/bridge.h>
75 * 64 RX buffers. This is tunable in the range of 16 <= x < 512. The
76 * value must be a power of two.
78 #define RX_BUFFS 64
80 #define ETCSR_FD ((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21)
81 #define ETCSR_HD ((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21)
83 /* Private per NIC data of the driver. */
84 struct ioc3_private {
85 struct ioc3 *regs;
86 unsigned long *rxr; /* pointer to receiver ring */
87 struct ioc3_etxd *txr;
88 struct sk_buff *rx_skbs[512];
89 struct sk_buff *tx_skbs[128];
90 struct net_device_stats stats;
91 int rx_ci; /* RX consumer index */
92 int rx_pi; /* RX producer index */
93 int tx_ci; /* TX consumer index */
94 int tx_pi; /* TX producer index */
95 int txqlen;
96 u32 emcr, ehar_h, ehar_l;
97 spinlock_t ioc3_lock;
98 struct mii_if_info mii;
99 struct pci_dev *pdev;
101 /* Members used by autonegotiation */
102 struct timer_list ioc3_timer;
105 static inline struct net_device *priv_netdev(struct ioc3_private *dev)
107 return (void *)dev - ((sizeof(struct net_device) + 31) & ~31);
110 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
111 static void ioc3_set_multicast_list(struct net_device *dev);
112 static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
113 static void ioc3_timeout(struct net_device *dev);
114 static inline unsigned int ioc3_hash(const unsigned char *addr);
115 static inline void ioc3_stop(struct ioc3_private *ip);
116 static void ioc3_init(struct net_device *dev);
118 static const char ioc3_str[] = "IOC3 Ethernet";
119 static struct ethtool_ops ioc3_ethtool_ops;
121 /* We use this to acquire receive skb's that we can DMA directly into. */
123 #define IOC3_CACHELINE 128UL
125 static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
127 return (~addr + 1) & (IOC3_CACHELINE - 1UL);
130 static inline struct sk_buff * ioc3_alloc_skb(unsigned long length,
131 unsigned int gfp_mask)
133 struct sk_buff *skb;
135 skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
136 if (likely(skb)) {
137 int offset = aligned_rx_skb_addr((unsigned long) skb->data);
138 if (offset)
139 skb_reserve(skb, offset);
142 return skb;
145 static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
147 #ifdef CONFIG_SGI_IP27
148 vdev <<= 58; /* Shift to PCI64_ATTR_VIRTUAL */
150 return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
151 ((unsigned long)ptr & TO_PHYS_MASK);
152 #else
153 return virt_to_bus(ptr);
154 #endif
157 /* BEWARE: The IOC3 documentation documents the size of rx buffers as
158 1644 while it's actually 1664. This one was nasty to track down ... */
159 #define RX_OFFSET 10
160 #define RX_BUF_ALLOC_SIZE (1664 + RX_OFFSET + IOC3_CACHELINE)
162 /* DMA barrier to separate cached and uncached accesses. */
163 #define BARRIER() \
164 __asm__("sync" ::: "memory")
167 #define IOC3_SIZE 0x100000
170 * IOC3 is a big endian device
172 * Unorthodox but makes the users of these macros more readable - the pointer
173 * to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3
174 * in the environment.
176 #define ioc3_r_mcr() be32_to_cpu(ioc3->mcr)
177 #define ioc3_w_mcr(v) do { ioc3->mcr = cpu_to_be32(v); } while (0)
178 #define ioc3_w_gpcr_s(v) do { ioc3->gpcr_s = cpu_to_be32(v); } while (0)
179 #define ioc3_r_emcr() be32_to_cpu(ioc3->emcr)
180 #define ioc3_w_emcr(v) do { ioc3->emcr = cpu_to_be32(v); } while (0)
181 #define ioc3_r_eisr() be32_to_cpu(ioc3->eisr)
182 #define ioc3_w_eisr(v) do { ioc3->eisr = cpu_to_be32(v); } while (0)
183 #define ioc3_r_eier() be32_to_cpu(ioc3->eier)
184 #define ioc3_w_eier(v) do { ioc3->eier = cpu_to_be32(v); } while (0)
185 #define ioc3_r_ercsr() be32_to_cpu(ioc3->ercsr)
186 #define ioc3_w_ercsr(v) do { ioc3->ercsr = cpu_to_be32(v); } while (0)
187 #define ioc3_r_erbr_h() be32_to_cpu(ioc3->erbr_h)
188 #define ioc3_w_erbr_h(v) do { ioc3->erbr_h = cpu_to_be32(v); } while (0)
189 #define ioc3_r_erbr_l() be32_to_cpu(ioc3->erbr_l)
190 #define ioc3_w_erbr_l(v) do { ioc3->erbr_l = cpu_to_be32(v); } while (0)
191 #define ioc3_r_erbar() be32_to_cpu(ioc3->erbar)
192 #define ioc3_w_erbar(v) do { ioc3->erbar = cpu_to_be32(v); } while (0)
193 #define ioc3_r_ercir() be32_to_cpu(ioc3->ercir)
194 #define ioc3_w_ercir(v) do { ioc3->ercir = cpu_to_be32(v); } while (0)
195 #define ioc3_r_erpir() be32_to_cpu(ioc3->erpir)
196 #define ioc3_w_erpir(v) do { ioc3->erpir = cpu_to_be32(v); } while (0)
197 #define ioc3_r_ertr() be32_to_cpu(ioc3->ertr)
198 #define ioc3_w_ertr(v) do { ioc3->ertr = cpu_to_be32(v); } while (0)
199 #define ioc3_r_etcsr() be32_to_cpu(ioc3->etcsr)
200 #define ioc3_w_etcsr(v) do { ioc3->etcsr = cpu_to_be32(v); } while (0)
201 #define ioc3_r_ersr() be32_to_cpu(ioc3->ersr)
202 #define ioc3_w_ersr(v) do { ioc3->ersr = cpu_to_be32(v); } while (0)
203 #define ioc3_r_etcdc() be32_to_cpu(ioc3->etcdc)
204 #define ioc3_w_etcdc(v) do { ioc3->etcdc = cpu_to_be32(v); } while (0)
205 #define ioc3_r_ebir() be32_to_cpu(ioc3->ebir)
206 #define ioc3_w_ebir(v) do { ioc3->ebir = cpu_to_be32(v); } while (0)
207 #define ioc3_r_etbr_h() be32_to_cpu(ioc3->etbr_h)
208 #define ioc3_w_etbr_h(v) do { ioc3->etbr_h = cpu_to_be32(v); } while (0)
209 #define ioc3_r_etbr_l() be32_to_cpu(ioc3->etbr_l)
210 #define ioc3_w_etbr_l(v) do { ioc3->etbr_l = cpu_to_be32(v); } while (0)
211 #define ioc3_r_etcir() be32_to_cpu(ioc3->etcir)
212 #define ioc3_w_etcir(v) do { ioc3->etcir = cpu_to_be32(v); } while (0)
213 #define ioc3_r_etpir() be32_to_cpu(ioc3->etpir)
214 #define ioc3_w_etpir(v) do { ioc3->etpir = cpu_to_be32(v); } while (0)
215 #define ioc3_r_emar_h() be32_to_cpu(ioc3->emar_h)
216 #define ioc3_w_emar_h(v) do { ioc3->emar_h = cpu_to_be32(v); } while (0)
217 #define ioc3_r_emar_l() be32_to_cpu(ioc3->emar_l)
218 #define ioc3_w_emar_l(v) do { ioc3->emar_l = cpu_to_be32(v); } while (0)
219 #define ioc3_r_ehar_h() be32_to_cpu(ioc3->ehar_h)
220 #define ioc3_w_ehar_h(v) do { ioc3->ehar_h = cpu_to_be32(v); } while (0)
221 #define ioc3_r_ehar_l() be32_to_cpu(ioc3->ehar_l)
222 #define ioc3_w_ehar_l(v) do { ioc3->ehar_l = cpu_to_be32(v); } while (0)
223 #define ioc3_r_micr() be32_to_cpu(ioc3->micr)
224 #define ioc3_w_micr(v) do { ioc3->micr = cpu_to_be32(v); } while (0)
225 #define ioc3_r_midr_r() be32_to_cpu(ioc3->midr_r)
226 #define ioc3_w_midr_r(v) do { ioc3->midr_r = cpu_to_be32(v); } while (0)
227 #define ioc3_r_midr_w() be32_to_cpu(ioc3->midr_w)
228 #define ioc3_w_midr_w(v) do { ioc3->midr_w = cpu_to_be32(v); } while (0)
230 static inline u32 mcr_pack(u32 pulse, u32 sample)
232 return (pulse << 10) | (sample << 2);
235 static int nic_wait(struct ioc3 *ioc3)
237 u32 mcr;
239 do {
240 mcr = ioc3_r_mcr();
241 } while (!(mcr & 2));
243 return mcr & 1;
246 static int nic_reset(struct ioc3 *ioc3)
248 int presence;
250 ioc3_w_mcr(mcr_pack(500, 65));
251 presence = nic_wait(ioc3);
253 ioc3_w_mcr(mcr_pack(0, 500));
254 nic_wait(ioc3);
256 return presence;
259 static inline int nic_read_bit(struct ioc3 *ioc3)
261 int result;
263 ioc3_w_mcr(mcr_pack(6, 13));
264 result = nic_wait(ioc3);
265 ioc3_w_mcr(mcr_pack(0, 100));
266 nic_wait(ioc3);
268 return result;
271 static inline void nic_write_bit(struct ioc3 *ioc3, int bit)
273 if (bit)
274 ioc3_w_mcr(mcr_pack(6, 110));
275 else
276 ioc3_w_mcr(mcr_pack(80, 30));
278 nic_wait(ioc3);
282 * Read a byte from an iButton device
284 static u32 nic_read_byte(struct ioc3 *ioc3)
286 u32 result = 0;
287 int i;
289 for (i = 0; i < 8; i++)
290 result = (result >> 1) | (nic_read_bit(ioc3) << 7);
292 return result;
296 * Write a byte to an iButton device
298 static void nic_write_byte(struct ioc3 *ioc3, int byte)
300 int i, bit;
302 for (i = 8; i; i--) {
303 bit = byte & 1;
304 byte >>= 1;
306 nic_write_bit(ioc3, bit);
310 static u64 nic_find(struct ioc3 *ioc3, int *last)
312 int a, b, index, disc;
313 u64 address = 0;
315 nic_reset(ioc3);
316 /* Search ROM. */
317 nic_write_byte(ioc3, 0xf0);
319 /* Algorithm from ``Book of iButton Standards''. */
320 for (index = 0, disc = 0; index < 64; index++) {
321 a = nic_read_bit(ioc3);
322 b = nic_read_bit(ioc3);
324 if (a && b) {
325 printk("NIC search failed (not fatal).\n");
326 *last = 0;
327 return 0;
330 if (!a && !b) {
331 if (index == *last) {
332 address |= 1UL << index;
333 } else if (index > *last) {
334 address &= ~(1UL << index);
335 disc = index;
336 } else if ((address & (1UL << index)) == 0)
337 disc = index;
338 nic_write_bit(ioc3, address & (1UL << index));
339 continue;
340 } else {
341 if (a)
342 address |= 1UL << index;
343 else
344 address &= ~(1UL << index);
345 nic_write_bit(ioc3, a);
346 continue;
350 *last = disc;
352 return address;
355 static int nic_init(struct ioc3 *ioc3)
357 const char *type;
358 u8 crc;
359 u8 serial[6];
360 int save = 0, i;
362 type = "unknown";
364 while (1) {
365 u64 reg;
366 reg = nic_find(ioc3, &save);
368 switch (reg & 0xff) {
369 case 0x91:
370 type = "DS1981U";
371 break;
372 default:
373 if (save == 0) {
374 /* Let the caller try again. */
375 return -1;
377 continue;
380 nic_reset(ioc3);
382 /* Match ROM. */
383 nic_write_byte(ioc3, 0x55);
384 for (i = 0; i < 8; i++)
385 nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff);
387 reg >>= 8; /* Shift out type. */
388 for (i = 0; i < 6; i++) {
389 serial[i] = reg & 0xff;
390 reg >>= 8;
392 crc = reg & 0xff;
393 break;
396 printk("Found %s NIC", type);
397 if (type != "unknown") {
398 printk (" registration number %02x:%02x:%02x:%02x:%02x:%02x,"
399 " CRC %02x", serial[0], serial[1], serial[2],
400 serial[3], serial[4], serial[5], crc);
402 printk(".\n");
404 return 0;
408 * Read the NIC (Number-In-a-Can) device used to store the MAC address on
409 * SN0 / SN00 nodeboards and PCI cards.
411 static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
413 struct ioc3 *ioc3 = ip->regs;
414 u8 nic[14];
415 int tries = 2; /* There may be some problem with the battery? */
416 int i;
418 ioc3_w_gpcr_s(1 << 21);
420 while (tries--) {
421 if (!nic_init(ioc3))
422 break;
423 udelay(500);
426 if (tries < 0) {
427 printk("Failed to read MAC address\n");
428 return;
431 /* Read Memory. */
432 nic_write_byte(ioc3, 0xf0);
433 nic_write_byte(ioc3, 0x00);
434 nic_write_byte(ioc3, 0x00);
436 for (i = 13; i >= 0; i--)
437 nic[i] = nic_read_byte(ioc3);
439 for (i = 2; i < 8; i++)
440 priv_netdev(ip)->dev_addr[i - 2] = nic[i];
444 * Ok, this is hosed by design. It's necessary to know what machine the
445 * NIC is in in order to know how to read the NIC address. We also have
446 * to know if it's a PCI card or a NIC in on the node board ...
448 static void ioc3_get_eaddr(struct ioc3_private *ip)
450 int i;
453 ioc3_get_eaddr_nic(ip);
455 printk("Ethernet address is ");
456 for (i = 0; i < 6; i++) {
457 printk("%02x", priv_netdev(ip)->dev_addr[i]);
458 if (i < 5)
459 printk(":");
461 printk(".\n");
464 static void __ioc3_set_mac_address(struct net_device *dev)
466 struct ioc3_private *ip = netdev_priv(dev);
467 struct ioc3 *ioc3 = ip->regs;
469 ioc3_w_emar_h((dev->dev_addr[5] << 8) | dev->dev_addr[4]);
470 ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
471 (dev->dev_addr[1] << 8) | dev->dev_addr[0]);
474 static int ioc3_set_mac_address(struct net_device *dev, void *addr)
476 struct ioc3_private *ip = netdev_priv(dev);
477 struct sockaddr *sa = addr;
479 memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
481 spin_lock_irq(&ip->ioc3_lock);
482 __ioc3_set_mac_address(dev);
483 spin_unlock_irq(&ip->ioc3_lock);
485 return 0;
489 * Caller must hold the ioc3_lock ever for MII readers. This is also
490 * used to protect the transmitter side but it's low contention.
492 static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
494 struct ioc3_private *ip = netdev_priv(dev);
495 struct ioc3 *ioc3 = ip->regs;
497 while (ioc3_r_micr() & MICR_BUSY);
498 ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG);
499 while (ioc3_r_micr() & MICR_BUSY);
501 return ioc3_r_midr_r() & MIDR_DATA_MASK;
504 static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
506 struct ioc3_private *ip = netdev_priv(dev);
507 struct ioc3 *ioc3 = ip->regs;
509 while (ioc3_r_micr() & MICR_BUSY);
510 ioc3_w_midr_w(data);
511 ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg);
512 while (ioc3_r_micr() & MICR_BUSY);
515 static int ioc3_mii_init(struct ioc3_private *ip);
517 static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
519 struct ioc3_private *ip = netdev_priv(dev);
520 struct ioc3 *ioc3 = ip->regs;
522 ip->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK);
523 return &ip->stats;
526 #ifdef CONFIG_SGI_IOC3_ETH_HW_RX_CSUM
528 static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len)
530 struct ethhdr *eh = eth_hdr(skb);
531 uint32_t csum, ehsum;
532 unsigned int proto;
533 struct iphdr *ih;
534 uint16_t *ew;
535 unsigned char *cp;
538 * Did hardware handle the checksum at all? The cases we can handle
539 * are:
541 * - TCP and UDP checksums of IPv4 only.
542 * - IPv6 would be doable but we keep that for later ...
543 * - Only unfragmented packets. Did somebody already tell you
544 * fragmentation is evil?
545 * - don't care about packet size. Worst case when processing a
546 * malformed packet we'll try to access the packet at ip header +
547 * 64 bytes which is still inside the skb. Even in the unlikely
548 * case where the checksum is right the higher layers will still
549 * drop the packet as appropriate.
551 if (eh->h_proto != ntohs(ETH_P_IP))
552 return;
554 ih = (struct iphdr *) ((char *)eh + ETH_HLEN);
555 if (ih->frag_off & htons(IP_MF | IP_OFFSET))
556 return;
558 proto = ih->protocol;
559 if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
560 return;
562 /* Same as tx - compute csum of pseudo header */
563 csum = hwsum +
564 (ih->tot_len - (ih->ihl << 2)) +
565 htons((uint16_t)ih->protocol) +
566 (ih->saddr >> 16) + (ih->saddr & 0xffff) +
567 (ih->daddr >> 16) + (ih->daddr & 0xffff);
569 /* Sum up ethernet dest addr, src addr and protocol */
570 ew = (uint16_t *) eh;
571 ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
573 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
574 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
576 csum += 0xffff ^ ehsum;
578 /* In the next step we also subtract the 1's complement
579 checksum of the trailing ethernet CRC. */
580 cp = (char *)eh + len; /* points at trailing CRC */
581 if (len & 1) {
582 csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]);
583 csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]);
584 } else {
585 csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]);
586 csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]);
589 csum = (csum & 0xffff) + (csum >> 16);
590 csum = (csum & 0xffff) + (csum >> 16);
592 if (csum == 0xffff)
593 skb->ip_summed = CHECKSUM_UNNECESSARY;
595 #endif /* CONFIG_SGI_IOC3_ETH_HW_RX_CSUM */
597 static inline void ioc3_rx(struct ioc3_private *ip)
599 struct sk_buff *skb, *new_skb;
600 struct ioc3 *ioc3 = ip->regs;
601 int rx_entry, n_entry, len;
602 struct ioc3_erxbuf *rxb;
603 unsigned long *rxr;
604 u32 w0, err;
606 rxr = (unsigned long *) ip->rxr; /* Ring base */
607 rx_entry = ip->rx_ci; /* RX consume index */
608 n_entry = ip->rx_pi;
610 skb = ip->rx_skbs[rx_entry];
611 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
612 w0 = be32_to_cpu(rxb->w0);
614 while (w0 & ERXBUF_V) {
615 err = be32_to_cpu(rxb->err); /* It's valid ... */
616 if (err & ERXBUF_GOODPKT) {
617 len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
618 skb_trim(skb, len);
619 skb->protocol = eth_type_trans(skb, priv_netdev(ip));
621 new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
622 if (!new_skb) {
623 /* Ouch, drop packet and just recycle packet
624 to keep the ring filled. */
625 ip->stats.rx_dropped++;
626 new_skb = skb;
627 goto next;
630 #ifdef CONFIG_SGI_IOC3_ETH_HW_RX_CSUM
631 ioc3_tcpudp_checksum(skb, w0 & ERXBUF_IPCKSUM_MASK,len);
632 #endif
634 netif_rx(skb);
636 ip->rx_skbs[rx_entry] = NULL; /* Poison */
638 new_skb->dev = priv_netdev(ip);
640 /* Because we reserve afterwards. */
641 skb_put(new_skb, (1664 + RX_OFFSET));
642 rxb = (struct ioc3_erxbuf *) new_skb->data;
643 skb_reserve(new_skb, RX_OFFSET);
645 priv_netdev(ip)->last_rx = jiffies;
646 ip->stats.rx_packets++; /* Statistics */
647 ip->stats.rx_bytes += len;
648 } else {
649 /* The frame is invalid and the skb never
650 reached the network layer so we can just
651 recycle it. */
652 new_skb = skb;
653 ip->stats.rx_errors++;
655 if (err & ERXBUF_CRCERR) /* Statistics */
656 ip->stats.rx_crc_errors++;
657 if (err & ERXBUF_FRAMERR)
658 ip->stats.rx_frame_errors++;
659 next:
660 ip->rx_skbs[n_entry] = new_skb;
661 rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
662 rxb->w0 = 0; /* Clear valid flag */
663 n_entry = (n_entry + 1) & 511; /* Update erpir */
665 /* Now go on to the next ring entry. */
666 rx_entry = (rx_entry + 1) & 511;
667 skb = ip->rx_skbs[rx_entry];
668 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
669 w0 = be32_to_cpu(rxb->w0);
671 ioc3_w_erpir((n_entry << 3) | ERPIR_ARM);
672 ip->rx_pi = n_entry;
673 ip->rx_ci = rx_entry;
676 static inline void ioc3_tx(struct ioc3_private *ip)
678 unsigned long packets, bytes;
679 struct ioc3 *ioc3 = ip->regs;
680 int tx_entry, o_entry;
681 struct sk_buff *skb;
682 u32 etcir;
684 spin_lock(&ip->ioc3_lock);
685 etcir = ioc3_r_etcir();
687 tx_entry = (etcir >> 7) & 127;
688 o_entry = ip->tx_ci;
689 packets = 0;
690 bytes = 0;
692 while (o_entry != tx_entry) {
693 packets++;
694 skb = ip->tx_skbs[o_entry];
695 bytes += skb->len;
696 dev_kfree_skb_irq(skb);
697 ip->tx_skbs[o_entry] = NULL;
699 o_entry = (o_entry + 1) & 127; /* Next */
701 etcir = ioc3_r_etcir(); /* More pkts sent? */
702 tx_entry = (etcir >> 7) & 127;
705 ip->stats.tx_packets += packets;
706 ip->stats.tx_bytes += bytes;
707 ip->txqlen -= packets;
709 if (ip->txqlen < 128)
710 netif_wake_queue(priv_netdev(ip));
712 ip->tx_ci = o_entry;
713 spin_unlock(&ip->ioc3_lock);
717 * Deal with fatal IOC3 errors. This condition might be caused by a hard or
718 * software problems, so we should try to recover
719 * more gracefully if this ever happens. In theory we might be flooded
720 * with such error interrupts if something really goes wrong, so we might
721 * also consider to take the interface down.
723 static void ioc3_error(struct ioc3_private *ip, u32 eisr)
725 struct net_device *dev = priv_netdev(ip);
726 unsigned char *iface = dev->name;
728 spin_lock(&ip->ioc3_lock);
730 if (eisr & EISR_RXOFLO)
731 printk(KERN_ERR "%s: RX overflow.\n", iface);
732 if (eisr & EISR_RXBUFOFLO)
733 printk(KERN_ERR "%s: RX buffer overflow.\n", iface);
734 if (eisr & EISR_RXMEMERR)
735 printk(KERN_ERR "%s: RX PCI error.\n", iface);
736 if (eisr & EISR_RXPARERR)
737 printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface);
738 if (eisr & EISR_TXBUFUFLO)
739 printk(KERN_ERR "%s: TX buffer underflow.\n", iface);
740 if (eisr & EISR_TXMEMERR)
741 printk(KERN_ERR "%s: TX PCI error.\n", iface);
743 ioc3_stop(ip);
744 ioc3_init(dev);
745 ioc3_mii_init(ip);
747 netif_wake_queue(dev);
749 spin_unlock(&ip->ioc3_lock);
752 /* The interrupt handler does all of the Rx thread work and cleans up
753 after the Tx thread. */
754 static irqreturn_t ioc3_interrupt(int irq, void *_dev, struct pt_regs *regs)
756 struct net_device *dev = (struct net_device *)_dev;
757 struct ioc3_private *ip = netdev_priv(dev);
758 struct ioc3 *ioc3 = ip->regs;
759 const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
760 EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
761 EISR_TXEXPLICIT | EISR_TXMEMERR;
762 u32 eisr;
764 eisr = ioc3_r_eisr() & enabled;
766 ioc3_w_eisr(eisr);
767 (void) ioc3_r_eisr(); /* Flush */
769 if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
770 EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
771 ioc3_error(ip, eisr);
772 if (eisr & EISR_RXTIMERINT)
773 ioc3_rx(ip);
774 if (eisr & EISR_TXEXPLICIT)
775 ioc3_tx(ip);
777 return IRQ_HANDLED;
780 static inline void ioc3_setup_duplex(struct ioc3_private *ip)
782 struct ioc3 *ioc3 = ip->regs;
784 if (ip->mii.full_duplex) {
785 ioc3_w_etcsr(ETCSR_FD);
786 ip->emcr |= EMCR_DUPLEX;
787 } else {
788 ioc3_w_etcsr(ETCSR_HD);
789 ip->emcr &= ~EMCR_DUPLEX;
791 ioc3_w_emcr(ip->emcr);
794 static void ioc3_timer(unsigned long data)
796 struct ioc3_private *ip = (struct ioc3_private *) data;
798 /* Print the link status if it has changed */
799 mii_check_media(&ip->mii, 1, 0);
800 ioc3_setup_duplex(ip);
802 ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */
803 add_timer(&ip->ioc3_timer);
807 * Try to find a PHY. There is no apparent relation between the MII addresses
808 * in the SGI documentation and what we find in reality, so we simply probe
809 * for the PHY. It seems IOC3 PHYs usually live on address 31. One of my
810 * onboard IOC3s has the special oddity that probing doesn't seem to find it
811 * yet the interface seems to work fine, so if probing fails we for now will
812 * simply default to PHY 31 instead of bailing out.
814 static int ioc3_mii_init(struct ioc3_private *ip)
816 struct net_device *dev = priv_netdev(ip);
817 int i, found = 0, res = 0;
818 int ioc3_phy_workaround = 1;
819 u16 word;
821 for (i = 0; i < 32; i++) {
822 word = ioc3_mdio_read(dev, i, MII_PHYSID1);
824 if (word != 0xffff && word != 0x0000) {
825 found = 1;
826 break; /* Found a PHY */
830 if (!found) {
831 if (ioc3_phy_workaround)
832 i = 31;
833 else {
834 ip->mii.phy_id = -1;
835 res = -ENODEV;
836 goto out;
840 ip->mii.phy_id = i;
841 ip->ioc3_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
842 ip->ioc3_timer.data = (unsigned long) ip;
843 ip->ioc3_timer.function = &ioc3_timer;
844 add_timer(&ip->ioc3_timer);
846 out:
847 return res;
850 static inline void ioc3_clean_rx_ring(struct ioc3_private *ip)
852 struct sk_buff *skb;
853 int i;
855 for (i = ip->rx_ci; i & 15; i++) {
856 ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci];
857 ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++];
859 ip->rx_pi &= 511;
860 ip->rx_ci &= 511;
862 for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) {
863 struct ioc3_erxbuf *rxb;
864 skb = ip->rx_skbs[i];
865 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
866 rxb->w0 = 0;
870 static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
872 struct sk_buff *skb;
873 int i;
875 for (i=0; i < 128; i++) {
876 skb = ip->tx_skbs[i];
877 if (skb) {
878 ip->tx_skbs[i] = NULL;
879 dev_kfree_skb_any(skb);
881 ip->txr[i].cmd = 0;
883 ip->tx_pi = 0;
884 ip->tx_ci = 0;
887 static void ioc3_free_rings(struct ioc3_private *ip)
889 struct sk_buff *skb;
890 int rx_entry, n_entry;
892 if (ip->txr) {
893 ioc3_clean_tx_ring(ip);
894 free_pages((unsigned long)ip->txr, 2);
895 ip->txr = NULL;
898 if (ip->rxr) {
899 n_entry = ip->rx_ci;
900 rx_entry = ip->rx_pi;
902 while (n_entry != rx_entry) {
903 skb = ip->rx_skbs[n_entry];
904 if (skb)
905 dev_kfree_skb_any(skb);
907 n_entry = (n_entry + 1) & 511;
909 free_page((unsigned long)ip->rxr);
910 ip->rxr = NULL;
914 static void ioc3_alloc_rings(struct net_device *dev)
916 struct ioc3_private *ip = netdev_priv(dev);
917 struct ioc3_erxbuf *rxb;
918 unsigned long *rxr;
919 int i;
921 if (ip->rxr == NULL) {
922 /* Allocate and initialize rx ring. 4kb = 512 entries */
923 ip->rxr = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
924 rxr = (unsigned long *) ip->rxr;
925 if (!rxr)
926 printk("ioc3_alloc_rings(): get_zeroed_page() failed!\n");
928 /* Now the rx buffers. The RX ring may be larger but
929 we only allocate 16 buffers for now. Need to tune
930 this for performance and memory later. */
931 for (i = 0; i < RX_BUFFS; i++) {
932 struct sk_buff *skb;
934 skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
935 if (!skb) {
936 show_free_areas();
937 continue;
940 ip->rx_skbs[i] = skb;
941 skb->dev = dev;
943 /* Because we reserve afterwards. */
944 skb_put(skb, (1664 + RX_OFFSET));
945 rxb = (struct ioc3_erxbuf *) skb->data;
946 rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
947 skb_reserve(skb, RX_OFFSET);
949 ip->rx_ci = 0;
950 ip->rx_pi = RX_BUFFS;
953 if (ip->txr == NULL) {
954 /* Allocate and initialize tx rings. 16kb = 128 bufs. */
955 ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2);
956 if (!ip->txr)
957 printk("ioc3_alloc_rings(): __get_free_pages() failed!\n");
958 ip->tx_pi = 0;
959 ip->tx_ci = 0;
963 static void ioc3_init_rings(struct net_device *dev)
965 struct ioc3_private *ip = netdev_priv(dev);
966 struct ioc3 *ioc3 = ip->regs;
967 unsigned long ring;
969 ioc3_free_rings(ip);
970 ioc3_alloc_rings(dev);
972 ioc3_clean_rx_ring(ip);
973 ioc3_clean_tx_ring(ip);
975 /* Now the rx ring base, consume & produce registers. */
976 ring = ioc3_map(ip->rxr, 0);
977 ioc3_w_erbr_h(ring >> 32);
978 ioc3_w_erbr_l(ring & 0xffffffff);
979 ioc3_w_ercir(ip->rx_ci << 3);
980 ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM);
982 ring = ioc3_map(ip->txr, 0);
984 ip->txqlen = 0; /* nothing queued */
986 /* Now the tx ring base, consume & produce registers. */
987 ioc3_w_etbr_h(ring >> 32);
988 ioc3_w_etbr_l(ring & 0xffffffff);
989 ioc3_w_etpir(ip->tx_pi << 7);
990 ioc3_w_etcir(ip->tx_ci << 7);
991 (void) ioc3_r_etcir(); /* Flush */
994 static inline void ioc3_ssram_disc(struct ioc3_private *ip)
996 struct ioc3 *ioc3 = ip->regs;
997 volatile u32 *ssram0 = &ioc3->ssram[0x0000];
998 volatile u32 *ssram1 = &ioc3->ssram[0x4000];
999 unsigned int pattern = 0x5555;
1001 /* Assume the larger size SSRAM and enable parity checking */
1002 ioc3_w_emcr(ioc3_r_emcr() | (EMCR_BUFSIZ | EMCR_RAMPAR));
1004 *ssram0 = pattern;
1005 *ssram1 = ~pattern & IOC3_SSRAM_DM;
1007 if ((*ssram0 & IOC3_SSRAM_DM) != pattern ||
1008 (*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
1009 /* set ssram size to 64 KB */
1010 ip->emcr = EMCR_RAMPAR;
1011 ioc3_w_emcr(ioc3_r_emcr() & ~EMCR_BUFSIZ);
1012 } else
1013 ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR;
1016 static void ioc3_init(struct net_device *dev)
1018 struct ioc3_private *ip = netdev_priv(dev);
1019 struct ioc3 *ioc3 = ip->regs;
1021 del_timer(&ip->ioc3_timer); /* Kill if running */
1023 ioc3_w_emcr(EMCR_RST); /* Reset */
1024 (void) ioc3_r_emcr(); /* Flush WB */
1025 udelay(4); /* Give it time ... */
1026 ioc3_w_emcr(0);
1027 (void) ioc3_r_emcr();
1029 /* Misc registers */
1030 #ifdef CONFIG_SGI_IP27
1031 ioc3_w_erbar(PCI64_ATTR_BAR >> 32); /* Barrier on last store */
1032 #else
1033 ioc3_w_erbar(0); /* Let PCI API get it right */
1034 #endif
1035 (void) ioc3_r_etcdc(); /* Clear on read */
1036 ioc3_w_ercsr(15); /* RX low watermark */
1037 ioc3_w_ertr(0); /* Interrupt immediately */
1038 __ioc3_set_mac_address(dev);
1039 ioc3_w_ehar_h(ip->ehar_h);
1040 ioc3_w_ehar_l(ip->ehar_l);
1041 ioc3_w_ersr(42); /* XXX should be random */
1043 ioc3_init_rings(dev);
1045 ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
1046 EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
1047 ioc3_w_emcr(ip->emcr);
1048 ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
1049 EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
1050 EISR_TXEXPLICIT | EISR_TXMEMERR);
1051 (void) ioc3_r_eier();
1054 static inline void ioc3_stop(struct ioc3_private *ip)
1056 struct ioc3 *ioc3 = ip->regs;
1058 ioc3_w_emcr(0); /* Shutup */
1059 ioc3_w_eier(0); /* Disable interrupts */
1060 (void) ioc3_r_eier(); /* Flush */
1063 static int ioc3_open(struct net_device *dev)
1065 struct ioc3_private *ip = netdev_priv(dev);
1067 if (request_irq(dev->irq, ioc3_interrupt, SA_SHIRQ, ioc3_str, dev)) {
1068 printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
1070 return -EAGAIN;
1073 ip->ehar_h = 0;
1074 ip->ehar_l = 0;
1075 ioc3_init(dev);
1077 netif_start_queue(dev);
1078 return 0;
1081 static int ioc3_close(struct net_device *dev)
1083 struct ioc3_private *ip = netdev_priv(dev);
1085 del_timer(&ip->ioc3_timer);
1087 netif_stop_queue(dev);
1089 ioc3_stop(ip);
1090 free_irq(dev->irq, dev);
1092 ioc3_free_rings(ip);
1093 return 0;
1097 * MENET cards have four IOC3 chips, which are attached to two sets of
1098 * PCI slot resources each: the primary connections are on slots
1099 * 0..3 and the secondaries are on 4..7
1101 * All four ethernets are brought out to connectors; six serial ports
1102 * (a pair from each of the first three IOC3s) are brought out to
1103 * MiniDINs; all other subdevices are left swinging in the wind, leave
1104 * them disabled.
1106 static inline int ioc3_is_menet(struct pci_dev *pdev)
1108 struct pci_dev *dev;
1110 return pdev->bus->parent == NULL
1111 && (dev = pci_find_slot(pdev->bus->number, PCI_DEVFN(0, 0)))
1112 && dev->vendor == PCI_VENDOR_ID_SGI
1113 && dev->device == PCI_DEVICE_ID_SGI_IOC3
1114 && (dev = pci_find_slot(pdev->bus->number, PCI_DEVFN(1, 0)))
1115 && dev->vendor == PCI_VENDOR_ID_SGI
1116 && dev->device == PCI_DEVICE_ID_SGI_IOC3
1117 && (dev = pci_find_slot(pdev->bus->number, PCI_DEVFN(2, 0)))
1118 && dev->vendor == PCI_VENDOR_ID_SGI
1119 && dev->device == PCI_DEVICE_ID_SGI_IOC3;
1122 #ifdef CONFIG_SERIAL_8250
1124 * Note about serial ports and consoles:
1125 * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1126 * connected to the master node (look in ip27_setup_console() and
1127 * ip27prom_console_write()).
1129 * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1130 * addresses on a partitioned machine. Since we currently use the ioc3
1131 * serial ports, we use dynamic serial port discovery that the serial.c
1132 * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1133 * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1134 * than UARTB's, although UARTA on o200s has traditionally been known as
1135 * port 0. So, we just use one serial port from each ioc3 (since the
1136 * serial driver adds addresses to get to higher ports).
1138 * The first one to do a register_console becomes the preferred console
1139 * (if there is no kernel command line console= directive). /dev/console
1140 * (ie 5, 1) is then "aliased" into the device number returned by the
1141 * "device" routine referred to in this console structure
1142 * (ip27prom_console_dev).
1144 * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1145 * around ioc3 oddities in this respect.
1147 * The IOC3 serials use a 22MHz clock rate with an additional divider by 3.
1150 static void __devinit ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1152 struct uart_port port;
1155 * We need to recognice and treat the fourth MENET serial as it
1156 * does not have an SuperIO chip attached to it, therefore attempting
1157 * to access it will result in bus errors. We call something an
1158 * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1159 * in it. This is paranoid but we want to avoid blowing up on a
1160 * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1161 * not paranoid enough ...
1163 if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1164 return;
1167 * Register to interrupt zero because we share the interrupt with
1168 * the serial driver which we don't properly support yet.
1170 * Can't use UPF_IOREMAP as the whole of IOC3 resources have already
1171 * been registered.
1173 memset(&port, 0, sizeof(port));
1174 port.irq = 0;
1175 port.flags = UPF_SKIP_TEST | UPF_BOOT_AUTOCONF;
1176 port.iotype = UPIO_MEM;
1177 port.regshift = 0;
1178 port.uartclk = 22000000 / 3;
1180 port.membase = (unsigned char *) &ioc3->sregs.uarta;
1181 serial8250_register_port(&port);
1183 port.membase = (unsigned char *) &ioc3->sregs.uartb;
1184 serial8250_register_port(&port);
1186 #endif
1188 static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1190 unsigned int sw_physid1, sw_physid2;
1191 struct net_device *dev = NULL;
1192 struct ioc3_private *ip;
1193 struct ioc3 *ioc3;
1194 unsigned long ioc3_base, ioc3_size;
1195 u32 vendor, model, rev;
1196 int err, pci_using_dac;
1198 /* Configure DMA attributes. */
1199 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1200 if (!err) {
1201 pci_using_dac = 1;
1202 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1203 if (err < 0) {
1204 printk(KERN_ERR "%s: Unable to obtain 64 bit DMA "
1205 "for consistent allocations\n", pci_name(pdev));
1206 goto out;
1208 } else {
1209 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1210 if (err) {
1211 printk(KERN_ERR "%s: No usable DMA configuration, "
1212 "aborting.\n", pci_name(pdev));
1213 goto out;
1215 pci_using_dac = 0;
1218 if (pci_enable_device(pdev))
1219 return -ENODEV;
1221 dev = alloc_etherdev(sizeof(struct ioc3_private));
1222 if (!dev) {
1223 err = -ENOMEM;
1224 goto out_disable;
1227 if (pci_using_dac)
1228 dev->features |= NETIF_F_HIGHDMA;
1230 err = pci_request_regions(pdev, "ioc3");
1231 if (err)
1232 goto out_free;
1234 SET_MODULE_OWNER(dev);
1235 SET_NETDEV_DEV(dev, &pdev->dev);
1237 ip = netdev_priv(dev);
1239 dev->irq = pdev->irq;
1241 ioc3_base = pci_resource_start(pdev, 0);
1242 ioc3_size = pci_resource_len(pdev, 0);
1243 ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size);
1244 if (!ioc3) {
1245 printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n",
1246 pci_name(pdev));
1247 err = -ENOMEM;
1248 goto out_res;
1250 ip->regs = ioc3;
1252 #ifdef CONFIG_SERIAL_8250
1253 ioc3_serial_probe(pdev, ioc3);
1254 #endif
1256 spin_lock_init(&ip->ioc3_lock);
1257 init_timer(&ip->ioc3_timer);
1259 ioc3_stop(ip);
1260 ioc3_init(dev);
1262 ip->pdev = pdev;
1264 ip->mii.phy_id_mask = 0x1f;
1265 ip->mii.reg_num_mask = 0x1f;
1266 ip->mii.dev = dev;
1267 ip->mii.mdio_read = ioc3_mdio_read;
1268 ip->mii.mdio_write = ioc3_mdio_write;
1270 ioc3_mii_init(ip);
1272 if (ip->mii.phy_id == -1) {
1273 printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1274 pci_name(pdev));
1275 err = -ENODEV;
1276 goto out_stop;
1279 ioc3_ssram_disc(ip);
1280 ioc3_get_eaddr(ip);
1282 /* The IOC3-specific entries in the device structure. */
1283 dev->open = ioc3_open;
1284 dev->hard_start_xmit = ioc3_start_xmit;
1285 dev->tx_timeout = ioc3_timeout;
1286 dev->watchdog_timeo = 5 * HZ;
1287 dev->stop = ioc3_close;
1288 dev->get_stats = ioc3_get_stats;
1289 dev->do_ioctl = ioc3_ioctl;
1290 dev->set_multicast_list = ioc3_set_multicast_list;
1291 dev->set_mac_address = ioc3_set_mac_address;
1292 dev->ethtool_ops = &ioc3_ethtool_ops;
1293 #ifdef CONFIG_SGI_IOC3_ETH_HW_TX_CSUM
1294 dev->features = NETIF_F_IP_CSUM;
1295 #endif
1297 sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1298 sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1300 err = register_netdev(dev);
1301 if (err)
1302 goto out_stop;
1304 mii_check_media(&ip->mii, 1, 1);
1305 ioc3_setup_duplex(ip);
1307 vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1308 model = (sw_physid2 >> 4) & 0x3f;
1309 rev = sw_physid2 & 0xf;
1310 printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, "
1311 "rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev);
1312 printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name,
1313 ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1315 return 0;
1317 out_stop:
1318 ioc3_stop(ip);
1319 ioc3_free_rings(ip);
1320 out_res:
1321 pci_release_regions(pdev);
1322 out_free:
1323 free_netdev(dev);
1324 out_disable:
1326 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1327 * such a weird device ...
1329 out:
1330 return err;
1333 static void __devexit ioc3_remove_one (struct pci_dev *pdev)
1335 struct net_device *dev = pci_get_drvdata(pdev);
1336 struct ioc3_private *ip = netdev_priv(dev);
1337 struct ioc3 *ioc3 = ip->regs;
1339 unregister_netdev(dev);
1340 iounmap(ioc3);
1341 pci_release_regions(pdev);
1342 free_netdev(dev);
1344 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1345 * such a weird device ...
1349 static struct pci_device_id ioc3_pci_tbl[] = {
1350 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1351 { 0 }
1353 MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1355 static struct pci_driver ioc3_driver = {
1356 .name = "ioc3-eth",
1357 .id_table = ioc3_pci_tbl,
1358 .probe = ioc3_probe,
1359 .remove = __devexit_p(ioc3_remove_one),
1362 static int __init ioc3_init_module(void)
1364 return pci_register_driver(&ioc3_driver);
1367 static void __exit ioc3_cleanup_module(void)
1369 pci_unregister_driver(&ioc3_driver);
1372 static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1374 unsigned long data;
1375 struct ioc3_private *ip = netdev_priv(dev);
1376 struct ioc3 *ioc3 = ip->regs;
1377 unsigned int len;
1378 struct ioc3_etxd *desc;
1379 uint32_t w0 = 0;
1380 int produce;
1382 #ifdef CONFIG_SGI_IOC3_ETH_HW_TX_CSUM
1384 * IOC3 has a fairly simple minded checksumming hardware which simply
1385 * adds up the 1's complement checksum for the entire packet and
1386 * inserts it at an offset which can be specified in the descriptor
1387 * into the transmit packet. This means we have to compensate for the
1388 * MAC header which should not be summed and the TCP/UDP pseudo headers
1389 * manually.
1391 if (skb->ip_summed == CHECKSUM_HW) {
1392 int proto = ntohs(skb->nh.iph->protocol);
1393 unsigned int csoff;
1394 struct iphdr *ih = skb->nh.iph;
1395 uint32_t csum, ehsum;
1396 uint16_t *eh;
1398 /* The MAC header. skb->mac seem the logic approach
1399 to find the MAC header - except it's a NULL pointer ... */
1400 eh = (uint16_t *) skb->data;
1402 /* Sum up dest addr, src addr and protocol */
1403 ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1405 /* Fold ehsum. can't use csum_fold which negates also ... */
1406 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1407 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1409 /* Skip IP header; it's sum is always zero and was
1410 already filled in by ip_output.c */
1411 csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1412 ih->tot_len - (ih->ihl << 2),
1413 proto, 0xffff ^ ehsum);
1415 csum = (csum & 0xffff) + (csum >> 16); /* Fold again */
1416 csum = (csum & 0xffff) + (csum >> 16);
1418 csoff = ETH_HLEN + (ih->ihl << 2);
1419 if (proto == IPPROTO_UDP) {
1420 csoff += offsetof(struct udphdr, check);
1421 skb->h.uh->check = csum;
1423 if (proto == IPPROTO_TCP) {
1424 csoff += offsetof(struct tcphdr, check);
1425 skb->h.th->check = csum;
1428 w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1430 #endif /* CONFIG_SGI_IOC3_ETH_HW_TX_CSUM */
1432 spin_lock_irq(&ip->ioc3_lock);
1434 data = (unsigned long) skb->data;
1435 len = skb->len;
1437 produce = ip->tx_pi;
1438 desc = &ip->txr[produce];
1440 if (len <= 104) {
1441 /* Short packet, let's copy it directly into the ring. */
1442 memcpy(desc->data, skb->data, skb->len);
1443 if (len < ETH_ZLEN) {
1444 /* Very short packet, pad with zeros at the end. */
1445 memset(desc->data + len, 0, ETH_ZLEN - len);
1446 len = ETH_ZLEN;
1448 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1449 desc->bufcnt = cpu_to_be32(len);
1450 } else if ((data ^ (data + len - 1)) & 0x4000) {
1451 unsigned long b2 = (data | 0x3fffUL) + 1UL;
1452 unsigned long s1 = b2 - data;
1453 unsigned long s2 = data + len - b2;
1455 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE |
1456 ETXD_B1V | ETXD_B2V | w0);
1457 desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1458 (s2 << ETXD_B2CNT_SHIFT));
1459 desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
1460 desc->p2 = cpu_to_be64(ioc3_map((void *) b2, 1));
1461 } else {
1462 /* Normal sized packet that doesn't cross a page boundary. */
1463 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1464 desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1465 desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
1468 BARRIER();
1470 dev->trans_start = jiffies;
1471 ip->tx_skbs[produce] = skb; /* Remember skb */
1472 produce = (produce + 1) & 127;
1473 ip->tx_pi = produce;
1474 ioc3_w_etpir(produce << 7); /* Fire ... */
1476 ip->txqlen++;
1478 if (ip->txqlen >= 127)
1479 netif_stop_queue(dev);
1481 spin_unlock_irq(&ip->ioc3_lock);
1483 return 0;
1486 static void ioc3_timeout(struct net_device *dev)
1488 struct ioc3_private *ip = netdev_priv(dev);
1490 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
1492 spin_lock_irq(&ip->ioc3_lock);
1494 ioc3_stop(ip);
1495 ioc3_init(dev);
1496 ioc3_mii_init(ip);
1498 spin_unlock_irq(&ip->ioc3_lock);
1500 netif_wake_queue(dev);
1504 * Given a multicast ethernet address, this routine calculates the
1505 * address's bit index in the logical address filter mask
1508 static inline unsigned int ioc3_hash(const unsigned char *addr)
1510 unsigned int temp = 0;
1511 u32 crc;
1512 int bits;
1514 crc = ether_crc_le(ETH_ALEN, addr);
1516 crc &= 0x3f; /* bit reverse lowest 6 bits for hash index */
1517 for (bits = 6; --bits >= 0; ) {
1518 temp <<= 1;
1519 temp |= (crc & 0x1);
1520 crc >>= 1;
1523 return temp;
1526 static void ioc3_get_drvinfo (struct net_device *dev,
1527 struct ethtool_drvinfo *info)
1529 struct ioc3_private *ip = netdev_priv(dev);
1531 strcpy (info->driver, IOC3_NAME);
1532 strcpy (info->version, IOC3_VERSION);
1533 strcpy (info->bus_info, pci_name(ip->pdev));
1536 static int ioc3_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1538 struct ioc3_private *ip = netdev_priv(dev);
1539 int rc;
1541 spin_lock_irq(&ip->ioc3_lock);
1542 rc = mii_ethtool_gset(&ip->mii, cmd);
1543 spin_unlock_irq(&ip->ioc3_lock);
1545 return rc;
1548 static int ioc3_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1550 struct ioc3_private *ip = netdev_priv(dev);
1551 int rc;
1553 spin_lock_irq(&ip->ioc3_lock);
1554 rc = mii_ethtool_sset(&ip->mii, cmd);
1555 spin_unlock_irq(&ip->ioc3_lock);
1557 return rc;
1560 static int ioc3_nway_reset(struct net_device *dev)
1562 struct ioc3_private *ip = netdev_priv(dev);
1563 int rc;
1565 spin_lock_irq(&ip->ioc3_lock);
1566 rc = mii_nway_restart(&ip->mii);
1567 spin_unlock_irq(&ip->ioc3_lock);
1569 return rc;
1572 static u32 ioc3_get_link(struct net_device *dev)
1574 struct ioc3_private *ip = netdev_priv(dev);
1575 int rc;
1577 spin_lock_irq(&ip->ioc3_lock);
1578 rc = mii_link_ok(&ip->mii);
1579 spin_unlock_irq(&ip->ioc3_lock);
1581 return rc;
1584 static struct ethtool_ops ioc3_ethtool_ops = {
1585 .get_drvinfo = ioc3_get_drvinfo,
1586 .get_settings = ioc3_get_settings,
1587 .set_settings = ioc3_set_settings,
1588 .nway_reset = ioc3_nway_reset,
1589 .get_link = ioc3_get_link,
1592 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1594 struct ioc3_private *ip = netdev_priv(dev);
1595 int rc;
1597 spin_lock_irq(&ip->ioc3_lock);
1598 rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1599 spin_unlock_irq(&ip->ioc3_lock);
1601 return rc;
1604 static void ioc3_set_multicast_list(struct net_device *dev)
1606 struct dev_mc_list *dmi = dev->mc_list;
1607 struct ioc3_private *ip = netdev_priv(dev);
1608 struct ioc3 *ioc3 = ip->regs;
1609 u64 ehar = 0;
1610 int i;
1612 netif_stop_queue(dev); /* Lock out others. */
1614 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1615 /* Unconditionally log net taps. */
1616 printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name);
1617 ip->emcr |= EMCR_PROMISC;
1618 ioc3_w_emcr(ip->emcr);
1619 (void) ioc3_r_emcr();
1620 } else {
1621 ip->emcr &= ~EMCR_PROMISC;
1622 ioc3_w_emcr(ip->emcr); /* Clear promiscuous. */
1623 (void) ioc3_r_emcr();
1625 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
1626 /* Too many for hashing to make sense or we want all
1627 multicast packets anyway, so skip computing all the
1628 hashes and just accept all packets. */
1629 ip->ehar_h = 0xffffffff;
1630 ip->ehar_l = 0xffffffff;
1631 } else {
1632 for (i = 0; i < dev->mc_count; i++) {
1633 char *addr = dmi->dmi_addr;
1634 dmi = dmi->next;
1636 if (!(*addr & 1))
1637 continue;
1639 ehar |= (1UL << ioc3_hash(addr));
1641 ip->ehar_h = ehar >> 32;
1642 ip->ehar_l = ehar & 0xffffffff;
1644 ioc3_w_ehar_h(ip->ehar_h);
1645 ioc3_w_ehar_l(ip->ehar_l);
1648 netif_wake_queue(dev); /* Let us get going again. */
1651 MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1652 MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1653 MODULE_LICENSE("GPL");
1655 module_init(ioc3_init_module);
1656 module_exit(ioc3_cleanup_module);