2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
35 #include <asm/irq_regs.h>
37 atomic_t perf_task_events __read_mostly
;
38 static atomic_t nr_mmap_events __read_mostly
;
39 static atomic_t nr_comm_events __read_mostly
;
40 static atomic_t nr_task_events __read_mostly
;
42 static LIST_HEAD(pmus
);
43 static DEFINE_MUTEX(pmus_lock
);
44 static struct srcu_struct pmus_srcu
;
47 * perf event paranoia level:
48 * -1 - not paranoid at all
49 * 0 - disallow raw tracepoint access for unpriv
50 * 1 - disallow cpu events for unpriv
51 * 2 - disallow kernel profiling for unpriv
53 int sysctl_perf_event_paranoid __read_mostly
= 1;
55 int sysctl_perf_event_mlock __read_mostly
= 512; /* 'free' kb per user */
58 * max perf event sample rate
60 int sysctl_perf_event_sample_rate __read_mostly
= 100000;
62 static atomic64_t perf_event_id
;
64 void __weak
perf_event_print_debug(void) { }
66 extern __weak
const char *perf_pmu_name(void)
71 void perf_pmu_disable(struct pmu
*pmu
)
73 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
75 pmu
->pmu_disable(pmu
);
78 void perf_pmu_enable(struct pmu
*pmu
)
80 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
85 static DEFINE_PER_CPU(struct list_head
, rotation_list
);
88 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
89 * because they're strictly cpu affine and rotate_start is called with IRQs
90 * disabled, while rotate_context is called from IRQ context.
92 static void perf_pmu_rotate_start(struct pmu
*pmu
)
94 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
95 struct list_head
*head
= &__get_cpu_var(rotation_list
);
97 WARN_ON(!irqs_disabled());
99 if (list_empty(&cpuctx
->rotation_list
))
100 list_add(&cpuctx
->rotation_list
, head
);
103 static void get_ctx(struct perf_event_context
*ctx
)
105 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
108 static void free_ctx(struct rcu_head
*head
)
110 struct perf_event_context
*ctx
;
112 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
116 static void put_ctx(struct perf_event_context
*ctx
)
118 if (atomic_dec_and_test(&ctx
->refcount
)) {
120 put_ctx(ctx
->parent_ctx
);
122 put_task_struct(ctx
->task
);
123 call_rcu(&ctx
->rcu_head
, free_ctx
);
127 static void unclone_ctx(struct perf_event_context
*ctx
)
129 if (ctx
->parent_ctx
) {
130 put_ctx(ctx
->parent_ctx
);
131 ctx
->parent_ctx
= NULL
;
136 * If we inherit events we want to return the parent event id
139 static u64
primary_event_id(struct perf_event
*event
)
144 id
= event
->parent
->id
;
150 * Get the perf_event_context for a task and lock it.
151 * This has to cope with with the fact that until it is locked,
152 * the context could get moved to another task.
154 static struct perf_event_context
*
155 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
157 struct perf_event_context
*ctx
;
161 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
164 * If this context is a clone of another, it might
165 * get swapped for another underneath us by
166 * perf_event_task_sched_out, though the
167 * rcu_read_lock() protects us from any context
168 * getting freed. Lock the context and check if it
169 * got swapped before we could get the lock, and retry
170 * if so. If we locked the right context, then it
171 * can't get swapped on us any more.
173 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
174 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
175 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
179 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
180 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
189 * Get the context for a task and increment its pin_count so it
190 * can't get swapped to another task. This also increments its
191 * reference count so that the context can't get freed.
193 static struct perf_event_context
*
194 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
196 struct perf_event_context
*ctx
;
199 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
202 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
207 static void perf_unpin_context(struct perf_event_context
*ctx
)
211 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
213 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
217 static inline u64
perf_clock(void)
219 return local_clock();
223 * Update the record of the current time in a context.
225 static void update_context_time(struct perf_event_context
*ctx
)
227 u64 now
= perf_clock();
229 ctx
->time
+= now
- ctx
->timestamp
;
230 ctx
->timestamp
= now
;
234 * Update the total_time_enabled and total_time_running fields for a event.
236 static void update_event_times(struct perf_event
*event
)
238 struct perf_event_context
*ctx
= event
->ctx
;
241 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
242 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
248 run_end
= event
->tstamp_stopped
;
250 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
252 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
253 run_end
= event
->tstamp_stopped
;
257 event
->total_time_running
= run_end
- event
->tstamp_running
;
261 * Update total_time_enabled and total_time_running for all events in a group.
263 static void update_group_times(struct perf_event
*leader
)
265 struct perf_event
*event
;
267 update_event_times(leader
);
268 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
269 update_event_times(event
);
272 static struct list_head
*
273 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
275 if (event
->attr
.pinned
)
276 return &ctx
->pinned_groups
;
278 return &ctx
->flexible_groups
;
282 * Add a event from the lists for its context.
283 * Must be called with ctx->mutex and ctx->lock held.
286 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
288 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
289 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
292 * If we're a stand alone event or group leader, we go to the context
293 * list, group events are kept attached to the group so that
294 * perf_group_detach can, at all times, locate all siblings.
296 if (event
->group_leader
== event
) {
297 struct list_head
*list
;
299 if (is_software_event(event
))
300 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
302 list
= ctx_group_list(event
, ctx
);
303 list_add_tail(&event
->group_entry
, list
);
306 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
308 perf_pmu_rotate_start(ctx
->pmu
);
310 if (event
->attr
.inherit_stat
)
314 static void perf_group_attach(struct perf_event
*event
)
316 struct perf_event
*group_leader
= event
->group_leader
;
319 * We can have double attach due to group movement in perf_event_open.
321 if (event
->attach_state
& PERF_ATTACH_GROUP
)
324 event
->attach_state
|= PERF_ATTACH_GROUP
;
326 if (group_leader
== event
)
329 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
330 !is_software_event(event
))
331 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
333 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
334 group_leader
->nr_siblings
++;
338 * Remove a event from the lists for its context.
339 * Must be called with ctx->mutex and ctx->lock held.
342 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
345 * We can have double detach due to exit/hot-unplug + close.
347 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
350 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
353 if (event
->attr
.inherit_stat
)
356 list_del_rcu(&event
->event_entry
);
358 if (event
->group_leader
== event
)
359 list_del_init(&event
->group_entry
);
361 update_group_times(event
);
364 * If event was in error state, then keep it
365 * that way, otherwise bogus counts will be
366 * returned on read(). The only way to get out
367 * of error state is by explicit re-enabling
370 if (event
->state
> PERF_EVENT_STATE_OFF
)
371 event
->state
= PERF_EVENT_STATE_OFF
;
374 static void perf_group_detach(struct perf_event
*event
)
376 struct perf_event
*sibling
, *tmp
;
377 struct list_head
*list
= NULL
;
380 * We can have double detach due to exit/hot-unplug + close.
382 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
385 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
388 * If this is a sibling, remove it from its group.
390 if (event
->group_leader
!= event
) {
391 list_del_init(&event
->group_entry
);
392 event
->group_leader
->nr_siblings
--;
396 if (!list_empty(&event
->group_entry
))
397 list
= &event
->group_entry
;
400 * If this was a group event with sibling events then
401 * upgrade the siblings to singleton events by adding them
402 * to whatever list we are on.
404 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
406 list_move_tail(&sibling
->group_entry
, list
);
407 sibling
->group_leader
= sibling
;
409 /* Inherit group flags from the previous leader */
410 sibling
->group_flags
= event
->group_flags
;
415 event_filter_match(struct perf_event
*event
)
417 return event
->cpu
== -1 || event
->cpu
== smp_processor_id();
421 event_sched_out(struct perf_event
*event
,
422 struct perf_cpu_context
*cpuctx
,
423 struct perf_event_context
*ctx
)
427 * An event which could not be activated because of
428 * filter mismatch still needs to have its timings
429 * maintained, otherwise bogus information is return
430 * via read() for time_enabled, time_running:
432 if (event
->state
== PERF_EVENT_STATE_INACTIVE
433 && !event_filter_match(event
)) {
434 delta
= ctx
->time
- event
->tstamp_stopped
;
435 event
->tstamp_running
+= delta
;
436 event
->tstamp_stopped
= ctx
->time
;
439 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
442 event
->state
= PERF_EVENT_STATE_INACTIVE
;
443 if (event
->pending_disable
) {
444 event
->pending_disable
= 0;
445 event
->state
= PERF_EVENT_STATE_OFF
;
447 event
->tstamp_stopped
= ctx
->time
;
448 event
->pmu
->del(event
, 0);
451 if (!is_software_event(event
))
452 cpuctx
->active_oncpu
--;
454 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
455 cpuctx
->exclusive
= 0;
459 group_sched_out(struct perf_event
*group_event
,
460 struct perf_cpu_context
*cpuctx
,
461 struct perf_event_context
*ctx
)
463 struct perf_event
*event
;
464 int state
= group_event
->state
;
466 event_sched_out(group_event
, cpuctx
, ctx
);
469 * Schedule out siblings (if any):
471 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
472 event_sched_out(event
, cpuctx
, ctx
);
474 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
475 cpuctx
->exclusive
= 0;
478 static inline struct perf_cpu_context
*
479 __get_cpu_context(struct perf_event_context
*ctx
)
481 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
485 * Cross CPU call to remove a performance event
487 * We disable the event on the hardware level first. After that we
488 * remove it from the context list.
490 static void __perf_event_remove_from_context(void *info
)
492 struct perf_event
*event
= info
;
493 struct perf_event_context
*ctx
= event
->ctx
;
494 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
497 * If this is a task context, we need to check whether it is
498 * the current task context of this cpu. If not it has been
499 * scheduled out before the smp call arrived.
501 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
504 raw_spin_lock(&ctx
->lock
);
506 event_sched_out(event
, cpuctx
, ctx
);
508 list_del_event(event
, ctx
);
510 raw_spin_unlock(&ctx
->lock
);
515 * Remove the event from a task's (or a CPU's) list of events.
517 * Must be called with ctx->mutex held.
519 * CPU events are removed with a smp call. For task events we only
520 * call when the task is on a CPU.
522 * If event->ctx is a cloned context, callers must make sure that
523 * every task struct that event->ctx->task could possibly point to
524 * remains valid. This is OK when called from perf_release since
525 * that only calls us on the top-level context, which can't be a clone.
526 * When called from perf_event_exit_task, it's OK because the
527 * context has been detached from its task.
529 static void perf_event_remove_from_context(struct perf_event
*event
)
531 struct perf_event_context
*ctx
= event
->ctx
;
532 struct task_struct
*task
= ctx
->task
;
536 * Per cpu events are removed via an smp call and
537 * the removal is always successful.
539 smp_call_function_single(event
->cpu
,
540 __perf_event_remove_from_context
,
546 task_oncpu_function_call(task
, __perf_event_remove_from_context
,
549 raw_spin_lock_irq(&ctx
->lock
);
551 * If the context is active we need to retry the smp call.
553 if (ctx
->nr_active
&& !list_empty(&event
->group_entry
)) {
554 raw_spin_unlock_irq(&ctx
->lock
);
559 * The lock prevents that this context is scheduled in so we
560 * can remove the event safely, if the call above did not
563 if (!list_empty(&event
->group_entry
))
564 list_del_event(event
, ctx
);
565 raw_spin_unlock_irq(&ctx
->lock
);
569 * Cross CPU call to disable a performance event
571 static void __perf_event_disable(void *info
)
573 struct perf_event
*event
= info
;
574 struct perf_event_context
*ctx
= event
->ctx
;
575 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
578 * If this is a per-task event, need to check whether this
579 * event's task is the current task on this cpu.
581 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
584 raw_spin_lock(&ctx
->lock
);
587 * If the event is on, turn it off.
588 * If it is in error state, leave it in error state.
590 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
591 update_context_time(ctx
);
592 update_group_times(event
);
593 if (event
== event
->group_leader
)
594 group_sched_out(event
, cpuctx
, ctx
);
596 event_sched_out(event
, cpuctx
, ctx
);
597 event
->state
= PERF_EVENT_STATE_OFF
;
600 raw_spin_unlock(&ctx
->lock
);
606 * If event->ctx is a cloned context, callers must make sure that
607 * every task struct that event->ctx->task could possibly point to
608 * remains valid. This condition is satisifed when called through
609 * perf_event_for_each_child or perf_event_for_each because they
610 * hold the top-level event's child_mutex, so any descendant that
611 * goes to exit will block in sync_child_event.
612 * When called from perf_pending_event it's OK because event->ctx
613 * is the current context on this CPU and preemption is disabled,
614 * hence we can't get into perf_event_task_sched_out for this context.
616 void perf_event_disable(struct perf_event
*event
)
618 struct perf_event_context
*ctx
= event
->ctx
;
619 struct task_struct
*task
= ctx
->task
;
623 * Disable the event on the cpu that it's on
625 smp_call_function_single(event
->cpu
, __perf_event_disable
,
631 task_oncpu_function_call(task
, __perf_event_disable
, event
);
633 raw_spin_lock_irq(&ctx
->lock
);
635 * If the event is still active, we need to retry the cross-call.
637 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
638 raw_spin_unlock_irq(&ctx
->lock
);
643 * Since we have the lock this context can't be scheduled
644 * in, so we can change the state safely.
646 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
647 update_group_times(event
);
648 event
->state
= PERF_EVENT_STATE_OFF
;
651 raw_spin_unlock_irq(&ctx
->lock
);
655 event_sched_in(struct perf_event
*event
,
656 struct perf_cpu_context
*cpuctx
,
657 struct perf_event_context
*ctx
)
659 if (event
->state
<= PERF_EVENT_STATE_OFF
)
662 event
->state
= PERF_EVENT_STATE_ACTIVE
;
663 event
->oncpu
= smp_processor_id();
665 * The new state must be visible before we turn it on in the hardware:
669 if (event
->pmu
->add(event
, PERF_EF_START
)) {
670 event
->state
= PERF_EVENT_STATE_INACTIVE
;
675 event
->tstamp_running
+= ctx
->time
- event
->tstamp_stopped
;
677 if (!is_software_event(event
))
678 cpuctx
->active_oncpu
++;
681 if (event
->attr
.exclusive
)
682 cpuctx
->exclusive
= 1;
688 group_sched_in(struct perf_event
*group_event
,
689 struct perf_cpu_context
*cpuctx
,
690 struct perf_event_context
*ctx
)
692 struct perf_event
*event
, *partial_group
= NULL
;
693 struct pmu
*pmu
= group_event
->pmu
;
695 bool simulate
= false;
697 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
702 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
703 pmu
->cancel_txn(pmu
);
708 * Schedule in siblings as one group (if any):
710 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
711 if (event_sched_in(event
, cpuctx
, ctx
)) {
712 partial_group
= event
;
717 if (!pmu
->commit_txn(pmu
))
722 * Groups can be scheduled in as one unit only, so undo any
723 * partial group before returning:
724 * The events up to the failed event are scheduled out normally,
725 * tstamp_stopped will be updated.
727 * The failed events and the remaining siblings need to have
728 * their timings updated as if they had gone thru event_sched_in()
729 * and event_sched_out(). This is required to get consistent timings
730 * across the group. This also takes care of the case where the group
731 * could never be scheduled by ensuring tstamp_stopped is set to mark
732 * the time the event was actually stopped, such that time delta
733 * calculation in update_event_times() is correct.
735 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
736 if (event
== partial_group
)
740 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
741 event
->tstamp_stopped
= now
;
743 event_sched_out(event
, cpuctx
, ctx
);
746 event_sched_out(group_event
, cpuctx
, ctx
);
748 pmu
->cancel_txn(pmu
);
754 * Work out whether we can put this event group on the CPU now.
756 static int group_can_go_on(struct perf_event
*event
,
757 struct perf_cpu_context
*cpuctx
,
761 * Groups consisting entirely of software events can always go on.
763 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
766 * If an exclusive group is already on, no other hardware
769 if (cpuctx
->exclusive
)
772 * If this group is exclusive and there are already
773 * events on the CPU, it can't go on.
775 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
778 * Otherwise, try to add it if all previous groups were able
784 static void add_event_to_ctx(struct perf_event
*event
,
785 struct perf_event_context
*ctx
)
787 list_add_event(event
, ctx
);
788 perf_group_attach(event
);
789 event
->tstamp_enabled
= ctx
->time
;
790 event
->tstamp_running
= ctx
->time
;
791 event
->tstamp_stopped
= ctx
->time
;
795 * Cross CPU call to install and enable a performance event
797 * Must be called with ctx->mutex held
799 static void __perf_install_in_context(void *info
)
801 struct perf_event
*event
= info
;
802 struct perf_event_context
*ctx
= event
->ctx
;
803 struct perf_event
*leader
= event
->group_leader
;
804 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
808 * If this is a task context, we need to check whether it is
809 * the current task context of this cpu. If not it has been
810 * scheduled out before the smp call arrived.
811 * Or possibly this is the right context but it isn't
812 * on this cpu because it had no events.
814 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
815 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
817 cpuctx
->task_ctx
= ctx
;
820 raw_spin_lock(&ctx
->lock
);
822 update_context_time(ctx
);
824 add_event_to_ctx(event
, ctx
);
826 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
830 * Don't put the event on if it is disabled or if
831 * it is in a group and the group isn't on.
833 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
||
834 (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
))
838 * An exclusive event can't go on if there are already active
839 * hardware events, and no hardware event can go on if there
840 * is already an exclusive event on.
842 if (!group_can_go_on(event
, cpuctx
, 1))
845 err
= event_sched_in(event
, cpuctx
, ctx
);
849 * This event couldn't go on. If it is in a group
850 * then we have to pull the whole group off.
851 * If the event group is pinned then put it in error state.
854 group_sched_out(leader
, cpuctx
, ctx
);
855 if (leader
->attr
.pinned
) {
856 update_group_times(leader
);
857 leader
->state
= PERF_EVENT_STATE_ERROR
;
862 raw_spin_unlock(&ctx
->lock
);
866 * Attach a performance event to a context
868 * First we add the event to the list with the hardware enable bit
869 * in event->hw_config cleared.
871 * If the event is attached to a task which is on a CPU we use a smp
872 * call to enable it in the task context. The task might have been
873 * scheduled away, but we check this in the smp call again.
875 * Must be called with ctx->mutex held.
878 perf_install_in_context(struct perf_event_context
*ctx
,
879 struct perf_event
*event
,
882 struct task_struct
*task
= ctx
->task
;
888 * Per cpu events are installed via an smp call and
889 * the install is always successful.
891 smp_call_function_single(cpu
, __perf_install_in_context
,
897 task_oncpu_function_call(task
, __perf_install_in_context
,
900 raw_spin_lock_irq(&ctx
->lock
);
902 * we need to retry the smp call.
904 if (ctx
->is_active
&& list_empty(&event
->group_entry
)) {
905 raw_spin_unlock_irq(&ctx
->lock
);
910 * The lock prevents that this context is scheduled in so we
911 * can add the event safely, if it the call above did not
914 if (list_empty(&event
->group_entry
))
915 add_event_to_ctx(event
, ctx
);
916 raw_spin_unlock_irq(&ctx
->lock
);
920 * Put a event into inactive state and update time fields.
921 * Enabling the leader of a group effectively enables all
922 * the group members that aren't explicitly disabled, so we
923 * have to update their ->tstamp_enabled also.
924 * Note: this works for group members as well as group leaders
925 * since the non-leader members' sibling_lists will be empty.
927 static void __perf_event_mark_enabled(struct perf_event
*event
,
928 struct perf_event_context
*ctx
)
930 struct perf_event
*sub
;
932 event
->state
= PERF_EVENT_STATE_INACTIVE
;
933 event
->tstamp_enabled
= ctx
->time
- event
->total_time_enabled
;
934 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
935 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
936 sub
->tstamp_enabled
=
937 ctx
->time
- sub
->total_time_enabled
;
943 * Cross CPU call to enable a performance event
945 static void __perf_event_enable(void *info
)
947 struct perf_event
*event
= info
;
948 struct perf_event_context
*ctx
= event
->ctx
;
949 struct perf_event
*leader
= event
->group_leader
;
950 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
954 * If this is a per-task event, need to check whether this
955 * event's task is the current task on this cpu.
957 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
958 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
960 cpuctx
->task_ctx
= ctx
;
963 raw_spin_lock(&ctx
->lock
);
965 update_context_time(ctx
);
967 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
969 __perf_event_mark_enabled(event
, ctx
);
971 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
975 * If the event is in a group and isn't the group leader,
976 * then don't put it on unless the group is on.
978 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
981 if (!group_can_go_on(event
, cpuctx
, 1)) {
985 err
= group_sched_in(event
, cpuctx
, ctx
);
987 err
= event_sched_in(event
, cpuctx
, ctx
);
992 * If this event can't go on and it's part of a
993 * group, then the whole group has to come off.
996 group_sched_out(leader
, cpuctx
, ctx
);
997 if (leader
->attr
.pinned
) {
998 update_group_times(leader
);
999 leader
->state
= PERF_EVENT_STATE_ERROR
;
1004 raw_spin_unlock(&ctx
->lock
);
1010 * If event->ctx is a cloned context, callers must make sure that
1011 * every task struct that event->ctx->task could possibly point to
1012 * remains valid. This condition is satisfied when called through
1013 * perf_event_for_each_child or perf_event_for_each as described
1014 * for perf_event_disable.
1016 void perf_event_enable(struct perf_event
*event
)
1018 struct perf_event_context
*ctx
= event
->ctx
;
1019 struct task_struct
*task
= ctx
->task
;
1023 * Enable the event on the cpu that it's on
1025 smp_call_function_single(event
->cpu
, __perf_event_enable
,
1030 raw_spin_lock_irq(&ctx
->lock
);
1031 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1035 * If the event is in error state, clear that first.
1036 * That way, if we see the event in error state below, we
1037 * know that it has gone back into error state, as distinct
1038 * from the task having been scheduled away before the
1039 * cross-call arrived.
1041 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1042 event
->state
= PERF_EVENT_STATE_OFF
;
1045 raw_spin_unlock_irq(&ctx
->lock
);
1046 task_oncpu_function_call(task
, __perf_event_enable
, event
);
1048 raw_spin_lock_irq(&ctx
->lock
);
1051 * If the context is active and the event is still off,
1052 * we need to retry the cross-call.
1054 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
)
1058 * Since we have the lock this context can't be scheduled
1059 * in, so we can change the state safely.
1061 if (event
->state
== PERF_EVENT_STATE_OFF
)
1062 __perf_event_mark_enabled(event
, ctx
);
1065 raw_spin_unlock_irq(&ctx
->lock
);
1068 static int perf_event_refresh(struct perf_event
*event
, int refresh
)
1071 * not supported on inherited events
1073 if (event
->attr
.inherit
)
1076 atomic_add(refresh
, &event
->event_limit
);
1077 perf_event_enable(event
);
1083 EVENT_FLEXIBLE
= 0x1,
1085 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
1088 static void ctx_sched_out(struct perf_event_context
*ctx
,
1089 struct perf_cpu_context
*cpuctx
,
1090 enum event_type_t event_type
)
1092 struct perf_event
*event
;
1094 raw_spin_lock(&ctx
->lock
);
1095 perf_pmu_disable(ctx
->pmu
);
1097 if (likely(!ctx
->nr_events
))
1099 update_context_time(ctx
);
1101 if (!ctx
->nr_active
)
1104 if (event_type
& EVENT_PINNED
) {
1105 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
1106 group_sched_out(event
, cpuctx
, ctx
);
1109 if (event_type
& EVENT_FLEXIBLE
) {
1110 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
1111 group_sched_out(event
, cpuctx
, ctx
);
1114 perf_pmu_enable(ctx
->pmu
);
1115 raw_spin_unlock(&ctx
->lock
);
1119 * Test whether two contexts are equivalent, i.e. whether they
1120 * have both been cloned from the same version of the same context
1121 * and they both have the same number of enabled events.
1122 * If the number of enabled events is the same, then the set
1123 * of enabled events should be the same, because these are both
1124 * inherited contexts, therefore we can't access individual events
1125 * in them directly with an fd; we can only enable/disable all
1126 * events via prctl, or enable/disable all events in a family
1127 * via ioctl, which will have the same effect on both contexts.
1129 static int context_equiv(struct perf_event_context
*ctx1
,
1130 struct perf_event_context
*ctx2
)
1132 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1133 && ctx1
->parent_gen
== ctx2
->parent_gen
1134 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1137 static void __perf_event_sync_stat(struct perf_event
*event
,
1138 struct perf_event
*next_event
)
1142 if (!event
->attr
.inherit_stat
)
1146 * Update the event value, we cannot use perf_event_read()
1147 * because we're in the middle of a context switch and have IRQs
1148 * disabled, which upsets smp_call_function_single(), however
1149 * we know the event must be on the current CPU, therefore we
1150 * don't need to use it.
1152 switch (event
->state
) {
1153 case PERF_EVENT_STATE_ACTIVE
:
1154 event
->pmu
->read(event
);
1157 case PERF_EVENT_STATE_INACTIVE
:
1158 update_event_times(event
);
1166 * In order to keep per-task stats reliable we need to flip the event
1167 * values when we flip the contexts.
1169 value
= local64_read(&next_event
->count
);
1170 value
= local64_xchg(&event
->count
, value
);
1171 local64_set(&next_event
->count
, value
);
1173 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1174 swap(event
->total_time_running
, next_event
->total_time_running
);
1177 * Since we swizzled the values, update the user visible data too.
1179 perf_event_update_userpage(event
);
1180 perf_event_update_userpage(next_event
);
1183 #define list_next_entry(pos, member) \
1184 list_entry(pos->member.next, typeof(*pos), member)
1186 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1187 struct perf_event_context
*next_ctx
)
1189 struct perf_event
*event
, *next_event
;
1194 update_context_time(ctx
);
1196 event
= list_first_entry(&ctx
->event_list
,
1197 struct perf_event
, event_entry
);
1199 next_event
= list_first_entry(&next_ctx
->event_list
,
1200 struct perf_event
, event_entry
);
1202 while (&event
->event_entry
!= &ctx
->event_list
&&
1203 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1205 __perf_event_sync_stat(event
, next_event
);
1207 event
= list_next_entry(event
, event_entry
);
1208 next_event
= list_next_entry(next_event
, event_entry
);
1212 void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
1213 struct task_struct
*next
)
1215 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
1216 struct perf_event_context
*next_ctx
;
1217 struct perf_event_context
*parent
;
1218 struct perf_cpu_context
*cpuctx
;
1224 cpuctx
= __get_cpu_context(ctx
);
1225 if (!cpuctx
->task_ctx
)
1229 parent
= rcu_dereference(ctx
->parent_ctx
);
1230 next_ctx
= next
->perf_event_ctxp
[ctxn
];
1231 if (parent
&& next_ctx
&&
1232 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1234 * Looks like the two contexts are clones, so we might be
1235 * able to optimize the context switch. We lock both
1236 * contexts and check that they are clones under the
1237 * lock (including re-checking that neither has been
1238 * uncloned in the meantime). It doesn't matter which
1239 * order we take the locks because no other cpu could
1240 * be trying to lock both of these tasks.
1242 raw_spin_lock(&ctx
->lock
);
1243 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1244 if (context_equiv(ctx
, next_ctx
)) {
1246 * XXX do we need a memory barrier of sorts
1247 * wrt to rcu_dereference() of perf_event_ctxp
1249 task
->perf_event_ctxp
[ctxn
] = next_ctx
;
1250 next
->perf_event_ctxp
[ctxn
] = ctx
;
1252 next_ctx
->task
= task
;
1255 perf_event_sync_stat(ctx
, next_ctx
);
1257 raw_spin_unlock(&next_ctx
->lock
);
1258 raw_spin_unlock(&ctx
->lock
);
1263 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
1264 cpuctx
->task_ctx
= NULL
;
1268 #define for_each_task_context_nr(ctxn) \
1269 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1272 * Called from scheduler to remove the events of the current task,
1273 * with interrupts disabled.
1275 * We stop each event and update the event value in event->count.
1277 * This does not protect us against NMI, but disable()
1278 * sets the disabled bit in the control field of event _before_
1279 * accessing the event control register. If a NMI hits, then it will
1280 * not restart the event.
1282 void __perf_event_task_sched_out(struct task_struct
*task
,
1283 struct task_struct
*next
)
1287 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES
, 1, 1, NULL
, 0);
1289 for_each_task_context_nr(ctxn
)
1290 perf_event_context_sched_out(task
, ctxn
, next
);
1293 static void task_ctx_sched_out(struct perf_event_context
*ctx
,
1294 enum event_type_t event_type
)
1296 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1298 if (!cpuctx
->task_ctx
)
1301 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1304 ctx_sched_out(ctx
, cpuctx
, event_type
);
1305 cpuctx
->task_ctx
= NULL
;
1309 * Called with IRQs disabled
1311 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
1312 enum event_type_t event_type
)
1314 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
1318 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
1319 struct perf_cpu_context
*cpuctx
)
1321 struct perf_event
*event
;
1323 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
1324 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1326 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1329 if (group_can_go_on(event
, cpuctx
, 1))
1330 group_sched_in(event
, cpuctx
, ctx
);
1333 * If this pinned group hasn't been scheduled,
1334 * put it in error state.
1336 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1337 update_group_times(event
);
1338 event
->state
= PERF_EVENT_STATE_ERROR
;
1344 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
1345 struct perf_cpu_context
*cpuctx
)
1347 struct perf_event
*event
;
1350 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
1351 /* Ignore events in OFF or ERROR state */
1352 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1355 * Listen to the 'cpu' scheduling filter constraint
1358 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1361 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
1362 if (group_sched_in(event
, cpuctx
, ctx
))
1369 ctx_sched_in(struct perf_event_context
*ctx
,
1370 struct perf_cpu_context
*cpuctx
,
1371 enum event_type_t event_type
)
1373 raw_spin_lock(&ctx
->lock
);
1375 if (likely(!ctx
->nr_events
))
1378 ctx
->timestamp
= perf_clock();
1381 * First go through the list and put on any pinned groups
1382 * in order to give them the best chance of going on.
1384 if (event_type
& EVENT_PINNED
)
1385 ctx_pinned_sched_in(ctx
, cpuctx
);
1387 /* Then walk through the lower prio flexible groups */
1388 if (event_type
& EVENT_FLEXIBLE
)
1389 ctx_flexible_sched_in(ctx
, cpuctx
);
1392 raw_spin_unlock(&ctx
->lock
);
1395 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
1396 enum event_type_t event_type
)
1398 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
1400 ctx_sched_in(ctx
, cpuctx
, event_type
);
1403 static void task_ctx_sched_in(struct perf_event_context
*ctx
,
1404 enum event_type_t event_type
)
1406 struct perf_cpu_context
*cpuctx
;
1408 cpuctx
= __get_cpu_context(ctx
);
1409 if (cpuctx
->task_ctx
== ctx
)
1412 ctx_sched_in(ctx
, cpuctx
, event_type
);
1413 cpuctx
->task_ctx
= ctx
;
1416 void perf_event_context_sched_in(struct perf_event_context
*ctx
)
1418 struct perf_cpu_context
*cpuctx
;
1420 cpuctx
= __get_cpu_context(ctx
);
1421 if (cpuctx
->task_ctx
== ctx
)
1424 perf_pmu_disable(ctx
->pmu
);
1426 * We want to keep the following priority order:
1427 * cpu pinned (that don't need to move), task pinned,
1428 * cpu flexible, task flexible.
1430 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
1432 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
);
1433 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
);
1434 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
);
1436 cpuctx
->task_ctx
= ctx
;
1439 * Since these rotations are per-cpu, we need to ensure the
1440 * cpu-context we got scheduled on is actually rotating.
1442 perf_pmu_rotate_start(ctx
->pmu
);
1443 perf_pmu_enable(ctx
->pmu
);
1447 * Called from scheduler to add the events of the current task
1448 * with interrupts disabled.
1450 * We restore the event value and then enable it.
1452 * This does not protect us against NMI, but enable()
1453 * sets the enabled bit in the control field of event _before_
1454 * accessing the event control register. If a NMI hits, then it will
1455 * keep the event running.
1457 void __perf_event_task_sched_in(struct task_struct
*task
)
1459 struct perf_event_context
*ctx
;
1462 for_each_task_context_nr(ctxn
) {
1463 ctx
= task
->perf_event_ctxp
[ctxn
];
1467 perf_event_context_sched_in(ctx
);
1471 #define MAX_INTERRUPTS (~0ULL)
1473 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1475 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
1477 u64 frequency
= event
->attr
.sample_freq
;
1478 u64 sec
= NSEC_PER_SEC
;
1479 u64 divisor
, dividend
;
1481 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
1483 count_fls
= fls64(count
);
1484 nsec_fls
= fls64(nsec
);
1485 frequency_fls
= fls64(frequency
);
1489 * We got @count in @nsec, with a target of sample_freq HZ
1490 * the target period becomes:
1493 * period = -------------------
1494 * @nsec * sample_freq
1499 * Reduce accuracy by one bit such that @a and @b converge
1500 * to a similar magnitude.
1502 #define REDUCE_FLS(a, b) \
1504 if (a##_fls > b##_fls) { \
1514 * Reduce accuracy until either term fits in a u64, then proceed with
1515 * the other, so that finally we can do a u64/u64 division.
1517 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
1518 REDUCE_FLS(nsec
, frequency
);
1519 REDUCE_FLS(sec
, count
);
1522 if (count_fls
+ sec_fls
> 64) {
1523 divisor
= nsec
* frequency
;
1525 while (count_fls
+ sec_fls
> 64) {
1526 REDUCE_FLS(count
, sec
);
1530 dividend
= count
* sec
;
1532 dividend
= count
* sec
;
1534 while (nsec_fls
+ frequency_fls
> 64) {
1535 REDUCE_FLS(nsec
, frequency
);
1539 divisor
= nsec
* frequency
;
1545 return div64_u64(dividend
, divisor
);
1548 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
)
1550 struct hw_perf_event
*hwc
= &event
->hw
;
1551 s64 period
, sample_period
;
1554 period
= perf_calculate_period(event
, nsec
, count
);
1556 delta
= (s64
)(period
- hwc
->sample_period
);
1557 delta
= (delta
+ 7) / 8; /* low pass filter */
1559 sample_period
= hwc
->sample_period
+ delta
;
1564 hwc
->sample_period
= sample_period
;
1566 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
1567 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
1568 local64_set(&hwc
->period_left
, 0);
1569 event
->pmu
->start(event
, PERF_EF_RELOAD
);
1573 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
, u64 period
)
1575 struct perf_event
*event
;
1576 struct hw_perf_event
*hwc
;
1577 u64 interrupts
, now
;
1580 raw_spin_lock(&ctx
->lock
);
1581 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
1582 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1585 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1590 interrupts
= hwc
->interrupts
;
1591 hwc
->interrupts
= 0;
1594 * unthrottle events on the tick
1596 if (interrupts
== MAX_INTERRUPTS
) {
1597 perf_log_throttle(event
, 1);
1598 event
->pmu
->start(event
, 0);
1601 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
1604 event
->pmu
->read(event
);
1605 now
= local64_read(&event
->count
);
1606 delta
= now
- hwc
->freq_count_stamp
;
1607 hwc
->freq_count_stamp
= now
;
1610 perf_adjust_period(event
, period
, delta
);
1612 raw_spin_unlock(&ctx
->lock
);
1616 * Round-robin a context's events:
1618 static void rotate_ctx(struct perf_event_context
*ctx
)
1620 raw_spin_lock(&ctx
->lock
);
1622 /* Rotate the first entry last of non-pinned groups */
1623 list_rotate_left(&ctx
->flexible_groups
);
1625 raw_spin_unlock(&ctx
->lock
);
1629 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1630 * because they're strictly cpu affine and rotate_start is called with IRQs
1631 * disabled, while rotate_context is called from IRQ context.
1633 static void perf_rotate_context(struct perf_cpu_context
*cpuctx
)
1635 u64 interval
= (u64
)cpuctx
->jiffies_interval
* TICK_NSEC
;
1636 struct perf_event_context
*ctx
= NULL
;
1637 int rotate
= 0, remove
= 1;
1639 if (cpuctx
->ctx
.nr_events
) {
1641 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
1645 ctx
= cpuctx
->task_ctx
;
1646 if (ctx
&& ctx
->nr_events
) {
1648 if (ctx
->nr_events
!= ctx
->nr_active
)
1652 perf_pmu_disable(cpuctx
->ctx
.pmu
);
1653 perf_ctx_adjust_freq(&cpuctx
->ctx
, interval
);
1655 perf_ctx_adjust_freq(ctx
, interval
);
1660 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
1662 task_ctx_sched_out(ctx
, EVENT_FLEXIBLE
);
1664 rotate_ctx(&cpuctx
->ctx
);
1668 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
);
1670 task_ctx_sched_in(ctx
, EVENT_FLEXIBLE
);
1674 list_del_init(&cpuctx
->rotation_list
);
1676 perf_pmu_enable(cpuctx
->ctx
.pmu
);
1679 void perf_event_task_tick(void)
1681 struct list_head
*head
= &__get_cpu_var(rotation_list
);
1682 struct perf_cpu_context
*cpuctx
, *tmp
;
1684 WARN_ON(!irqs_disabled());
1686 list_for_each_entry_safe(cpuctx
, tmp
, head
, rotation_list
) {
1687 if (cpuctx
->jiffies_interval
== 1 ||
1688 !(jiffies
% cpuctx
->jiffies_interval
))
1689 perf_rotate_context(cpuctx
);
1693 static int event_enable_on_exec(struct perf_event
*event
,
1694 struct perf_event_context
*ctx
)
1696 if (!event
->attr
.enable_on_exec
)
1699 event
->attr
.enable_on_exec
= 0;
1700 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1703 __perf_event_mark_enabled(event
, ctx
);
1709 * Enable all of a task's events that have been marked enable-on-exec.
1710 * This expects task == current.
1712 static void perf_event_enable_on_exec(struct perf_event_context
*ctx
)
1714 struct perf_event
*event
;
1715 unsigned long flags
;
1719 local_irq_save(flags
);
1720 if (!ctx
|| !ctx
->nr_events
)
1723 task_ctx_sched_out(ctx
, EVENT_ALL
);
1725 raw_spin_lock(&ctx
->lock
);
1727 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
1728 ret
= event_enable_on_exec(event
, ctx
);
1733 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
1734 ret
= event_enable_on_exec(event
, ctx
);
1740 * Unclone this context if we enabled any event.
1745 raw_spin_unlock(&ctx
->lock
);
1747 perf_event_context_sched_in(ctx
);
1749 local_irq_restore(flags
);
1753 * Cross CPU call to read the hardware event
1755 static void __perf_event_read(void *info
)
1757 struct perf_event
*event
= info
;
1758 struct perf_event_context
*ctx
= event
->ctx
;
1759 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1762 * If this is a task context, we need to check whether it is
1763 * the current task context of this cpu. If not it has been
1764 * scheduled out before the smp call arrived. In that case
1765 * event->count would have been updated to a recent sample
1766 * when the event was scheduled out.
1768 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1771 raw_spin_lock(&ctx
->lock
);
1772 update_context_time(ctx
);
1773 update_event_times(event
);
1774 raw_spin_unlock(&ctx
->lock
);
1776 event
->pmu
->read(event
);
1779 static inline u64
perf_event_count(struct perf_event
*event
)
1781 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
1784 static u64
perf_event_read(struct perf_event
*event
)
1787 * If event is enabled and currently active on a CPU, update the
1788 * value in the event structure:
1790 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1791 smp_call_function_single(event
->oncpu
,
1792 __perf_event_read
, event
, 1);
1793 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1794 struct perf_event_context
*ctx
= event
->ctx
;
1795 unsigned long flags
;
1797 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1799 * may read while context is not active
1800 * (e.g., thread is blocked), in that case
1801 * we cannot update context time
1804 update_context_time(ctx
);
1805 update_event_times(event
);
1806 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1809 return perf_event_count(event
);
1816 struct callchain_cpus_entries
{
1817 struct rcu_head rcu_head
;
1818 struct perf_callchain_entry
*cpu_entries
[0];
1821 static DEFINE_PER_CPU(int, callchain_recursion
[PERF_NR_CONTEXTS
]);
1822 static atomic_t nr_callchain_events
;
1823 static DEFINE_MUTEX(callchain_mutex
);
1824 struct callchain_cpus_entries
*callchain_cpus_entries
;
1827 __weak
void perf_callchain_kernel(struct perf_callchain_entry
*entry
,
1828 struct pt_regs
*regs
)
1832 __weak
void perf_callchain_user(struct perf_callchain_entry
*entry
,
1833 struct pt_regs
*regs
)
1837 static void release_callchain_buffers_rcu(struct rcu_head
*head
)
1839 struct callchain_cpus_entries
*entries
;
1842 entries
= container_of(head
, struct callchain_cpus_entries
, rcu_head
);
1844 for_each_possible_cpu(cpu
)
1845 kfree(entries
->cpu_entries
[cpu
]);
1850 static void release_callchain_buffers(void)
1852 struct callchain_cpus_entries
*entries
;
1854 entries
= callchain_cpus_entries
;
1855 rcu_assign_pointer(callchain_cpus_entries
, NULL
);
1856 call_rcu(&entries
->rcu_head
, release_callchain_buffers_rcu
);
1859 static int alloc_callchain_buffers(void)
1863 struct callchain_cpus_entries
*entries
;
1866 * We can't use the percpu allocation API for data that can be
1867 * accessed from NMI. Use a temporary manual per cpu allocation
1868 * until that gets sorted out.
1870 size
= sizeof(*entries
) + sizeof(struct perf_callchain_entry
*) *
1871 num_possible_cpus();
1873 entries
= kzalloc(size
, GFP_KERNEL
);
1877 size
= sizeof(struct perf_callchain_entry
) * PERF_NR_CONTEXTS
;
1879 for_each_possible_cpu(cpu
) {
1880 entries
->cpu_entries
[cpu
] = kmalloc_node(size
, GFP_KERNEL
,
1882 if (!entries
->cpu_entries
[cpu
])
1886 rcu_assign_pointer(callchain_cpus_entries
, entries
);
1891 for_each_possible_cpu(cpu
)
1892 kfree(entries
->cpu_entries
[cpu
]);
1898 static int get_callchain_buffers(void)
1903 mutex_lock(&callchain_mutex
);
1905 count
= atomic_inc_return(&nr_callchain_events
);
1906 if (WARN_ON_ONCE(count
< 1)) {
1912 /* If the allocation failed, give up */
1913 if (!callchain_cpus_entries
)
1918 err
= alloc_callchain_buffers();
1920 release_callchain_buffers();
1922 mutex_unlock(&callchain_mutex
);
1927 static void put_callchain_buffers(void)
1929 if (atomic_dec_and_mutex_lock(&nr_callchain_events
, &callchain_mutex
)) {
1930 release_callchain_buffers();
1931 mutex_unlock(&callchain_mutex
);
1935 static int get_recursion_context(int *recursion
)
1943 else if (in_softirq())
1948 if (recursion
[rctx
])
1957 static inline void put_recursion_context(int *recursion
, int rctx
)
1963 static struct perf_callchain_entry
*get_callchain_entry(int *rctx
)
1966 struct callchain_cpus_entries
*entries
;
1968 *rctx
= get_recursion_context(__get_cpu_var(callchain_recursion
));
1972 entries
= rcu_dereference(callchain_cpus_entries
);
1976 cpu
= smp_processor_id();
1978 return &entries
->cpu_entries
[cpu
][*rctx
];
1982 put_callchain_entry(int rctx
)
1984 put_recursion_context(__get_cpu_var(callchain_recursion
), rctx
);
1987 static struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
1990 struct perf_callchain_entry
*entry
;
1993 entry
= get_callchain_entry(&rctx
);
2002 if (!user_mode(regs
)) {
2003 perf_callchain_store(entry
, PERF_CONTEXT_KERNEL
);
2004 perf_callchain_kernel(entry
, regs
);
2006 regs
= task_pt_regs(current
);
2012 perf_callchain_store(entry
, PERF_CONTEXT_USER
);
2013 perf_callchain_user(entry
, regs
);
2017 put_callchain_entry(rctx
);
2023 * Initialize the perf_event context in a task_struct:
2025 static void __perf_event_init_context(struct perf_event_context
*ctx
)
2027 raw_spin_lock_init(&ctx
->lock
);
2028 mutex_init(&ctx
->mutex
);
2029 INIT_LIST_HEAD(&ctx
->pinned_groups
);
2030 INIT_LIST_HEAD(&ctx
->flexible_groups
);
2031 INIT_LIST_HEAD(&ctx
->event_list
);
2032 atomic_set(&ctx
->refcount
, 1);
2035 static struct perf_event_context
*
2036 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
2038 struct perf_event_context
*ctx
;
2040 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
2044 __perf_event_init_context(ctx
);
2047 get_task_struct(task
);
2054 static struct task_struct
*
2055 find_lively_task_by_vpid(pid_t vpid
)
2057 struct task_struct
*task
;
2064 task
= find_task_by_vpid(vpid
);
2066 get_task_struct(task
);
2070 return ERR_PTR(-ESRCH
);
2073 * Can't attach events to a dying task.
2076 if (task
->flags
& PF_EXITING
)
2079 /* Reuse ptrace permission checks for now. */
2081 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
2086 put_task_struct(task
);
2087 return ERR_PTR(err
);
2091 static struct perf_event_context
*
2092 find_get_context(struct pmu
*pmu
, struct task_struct
*task
, int cpu
)
2094 struct perf_event_context
*ctx
;
2095 struct perf_cpu_context
*cpuctx
;
2096 unsigned long flags
;
2099 if (!task
&& cpu
!= -1) {
2100 /* Must be root to operate on a CPU event: */
2101 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
2102 return ERR_PTR(-EACCES
);
2104 if (cpu
< 0 || cpu
>= nr_cpumask_bits
)
2105 return ERR_PTR(-EINVAL
);
2108 * We could be clever and allow to attach a event to an
2109 * offline CPU and activate it when the CPU comes up, but
2112 if (!cpu_online(cpu
))
2113 return ERR_PTR(-ENODEV
);
2115 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
2123 ctxn
= pmu
->task_ctx_nr
;
2128 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
2131 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
2135 ctx
= alloc_perf_context(pmu
, task
);
2142 if (cmpxchg(&task
->perf_event_ctxp
[ctxn
], NULL
, ctx
)) {
2144 * We raced with some other task; use
2145 * the context they set.
2147 put_task_struct(task
);
2156 return ERR_PTR(err
);
2159 static void perf_event_free_filter(struct perf_event
*event
);
2161 static void free_event_rcu(struct rcu_head
*head
)
2163 struct perf_event
*event
;
2165 event
= container_of(head
, struct perf_event
, rcu_head
);
2167 put_pid_ns(event
->ns
);
2168 perf_event_free_filter(event
);
2172 static void perf_buffer_put(struct perf_buffer
*buffer
);
2174 static void free_event(struct perf_event
*event
)
2176 irq_work_sync(&event
->pending
);
2178 if (!event
->parent
) {
2179 if (event
->attach_state
& PERF_ATTACH_TASK
)
2180 jump_label_dec(&perf_task_events
);
2181 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
2182 atomic_dec(&nr_mmap_events
);
2183 if (event
->attr
.comm
)
2184 atomic_dec(&nr_comm_events
);
2185 if (event
->attr
.task
)
2186 atomic_dec(&nr_task_events
);
2187 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
2188 put_callchain_buffers();
2191 if (event
->buffer
) {
2192 perf_buffer_put(event
->buffer
);
2193 event
->buffer
= NULL
;
2197 event
->destroy(event
);
2200 put_ctx(event
->ctx
);
2202 call_rcu(&event
->rcu_head
, free_event_rcu
);
2205 int perf_event_release_kernel(struct perf_event
*event
)
2207 struct perf_event_context
*ctx
= event
->ctx
;
2210 * Remove from the PMU, can't get re-enabled since we got
2211 * here because the last ref went.
2213 perf_event_disable(event
);
2215 WARN_ON_ONCE(ctx
->parent_ctx
);
2217 * There are two ways this annotation is useful:
2219 * 1) there is a lock recursion from perf_event_exit_task
2220 * see the comment there.
2222 * 2) there is a lock-inversion with mmap_sem through
2223 * perf_event_read_group(), which takes faults while
2224 * holding ctx->mutex, however this is called after
2225 * the last filedesc died, so there is no possibility
2226 * to trigger the AB-BA case.
2228 mutex_lock_nested(&ctx
->mutex
, SINGLE_DEPTH_NESTING
);
2229 raw_spin_lock_irq(&ctx
->lock
);
2230 perf_group_detach(event
);
2231 list_del_event(event
, ctx
);
2232 raw_spin_unlock_irq(&ctx
->lock
);
2233 mutex_unlock(&ctx
->mutex
);
2235 mutex_lock(&event
->owner
->perf_event_mutex
);
2236 list_del_init(&event
->owner_entry
);
2237 mutex_unlock(&event
->owner
->perf_event_mutex
);
2238 put_task_struct(event
->owner
);
2244 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
2247 * Called when the last reference to the file is gone.
2249 static int perf_release(struct inode
*inode
, struct file
*file
)
2251 struct perf_event
*event
= file
->private_data
;
2253 file
->private_data
= NULL
;
2255 return perf_event_release_kernel(event
);
2258 static int perf_event_read_size(struct perf_event
*event
)
2260 int entry
= sizeof(u64
); /* value */
2264 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2265 size
+= sizeof(u64
);
2267 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2268 size
+= sizeof(u64
);
2270 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
2271 entry
+= sizeof(u64
);
2273 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
2274 nr
+= event
->group_leader
->nr_siblings
;
2275 size
+= sizeof(u64
);
2283 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
2285 struct perf_event
*child
;
2291 mutex_lock(&event
->child_mutex
);
2292 total
+= perf_event_read(event
);
2293 *enabled
+= event
->total_time_enabled
+
2294 atomic64_read(&event
->child_total_time_enabled
);
2295 *running
+= event
->total_time_running
+
2296 atomic64_read(&event
->child_total_time_running
);
2298 list_for_each_entry(child
, &event
->child_list
, child_list
) {
2299 total
+= perf_event_read(child
);
2300 *enabled
+= child
->total_time_enabled
;
2301 *running
+= child
->total_time_running
;
2303 mutex_unlock(&event
->child_mutex
);
2307 EXPORT_SYMBOL_GPL(perf_event_read_value
);
2309 static int perf_event_read_group(struct perf_event
*event
,
2310 u64 read_format
, char __user
*buf
)
2312 struct perf_event
*leader
= event
->group_leader
, *sub
;
2313 int n
= 0, size
= 0, ret
= -EFAULT
;
2314 struct perf_event_context
*ctx
= leader
->ctx
;
2316 u64 count
, enabled
, running
;
2318 mutex_lock(&ctx
->mutex
);
2319 count
= perf_event_read_value(leader
, &enabled
, &running
);
2321 values
[n
++] = 1 + leader
->nr_siblings
;
2322 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2323 values
[n
++] = enabled
;
2324 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2325 values
[n
++] = running
;
2326 values
[n
++] = count
;
2327 if (read_format
& PERF_FORMAT_ID
)
2328 values
[n
++] = primary_event_id(leader
);
2330 size
= n
* sizeof(u64
);
2332 if (copy_to_user(buf
, values
, size
))
2337 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
2340 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
2341 if (read_format
& PERF_FORMAT_ID
)
2342 values
[n
++] = primary_event_id(sub
);
2344 size
= n
* sizeof(u64
);
2346 if (copy_to_user(buf
+ ret
, values
, size
)) {
2354 mutex_unlock(&ctx
->mutex
);
2359 static int perf_event_read_one(struct perf_event
*event
,
2360 u64 read_format
, char __user
*buf
)
2362 u64 enabled
, running
;
2366 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
2367 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2368 values
[n
++] = enabled
;
2369 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2370 values
[n
++] = running
;
2371 if (read_format
& PERF_FORMAT_ID
)
2372 values
[n
++] = primary_event_id(event
);
2374 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
2377 return n
* sizeof(u64
);
2381 * Read the performance event - simple non blocking version for now
2384 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
2386 u64 read_format
= event
->attr
.read_format
;
2390 * Return end-of-file for a read on a event that is in
2391 * error state (i.e. because it was pinned but it couldn't be
2392 * scheduled on to the CPU at some point).
2394 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2397 if (count
< perf_event_read_size(event
))
2400 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2401 if (read_format
& PERF_FORMAT_GROUP
)
2402 ret
= perf_event_read_group(event
, read_format
, buf
);
2404 ret
= perf_event_read_one(event
, read_format
, buf
);
2410 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
2412 struct perf_event
*event
= file
->private_data
;
2414 return perf_read_hw(event
, buf
, count
);
2417 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
2419 struct perf_event
*event
= file
->private_data
;
2420 struct perf_buffer
*buffer
;
2421 unsigned int events
= POLL_HUP
;
2424 buffer
= rcu_dereference(event
->buffer
);
2426 events
= atomic_xchg(&buffer
->poll
, 0);
2429 poll_wait(file
, &event
->waitq
, wait
);
2434 static void perf_event_reset(struct perf_event
*event
)
2436 (void)perf_event_read(event
);
2437 local64_set(&event
->count
, 0);
2438 perf_event_update_userpage(event
);
2442 * Holding the top-level event's child_mutex means that any
2443 * descendant process that has inherited this event will block
2444 * in sync_child_event if it goes to exit, thus satisfying the
2445 * task existence requirements of perf_event_enable/disable.
2447 static void perf_event_for_each_child(struct perf_event
*event
,
2448 void (*func
)(struct perf_event
*))
2450 struct perf_event
*child
;
2452 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2453 mutex_lock(&event
->child_mutex
);
2455 list_for_each_entry(child
, &event
->child_list
, child_list
)
2457 mutex_unlock(&event
->child_mutex
);
2460 static void perf_event_for_each(struct perf_event
*event
,
2461 void (*func
)(struct perf_event
*))
2463 struct perf_event_context
*ctx
= event
->ctx
;
2464 struct perf_event
*sibling
;
2466 WARN_ON_ONCE(ctx
->parent_ctx
);
2467 mutex_lock(&ctx
->mutex
);
2468 event
= event
->group_leader
;
2470 perf_event_for_each_child(event
, func
);
2472 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
2473 perf_event_for_each_child(event
, func
);
2474 mutex_unlock(&ctx
->mutex
);
2477 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
2479 struct perf_event_context
*ctx
= event
->ctx
;
2483 if (!event
->attr
.sample_period
)
2486 if (copy_from_user(&value
, arg
, sizeof(value
)))
2492 raw_spin_lock_irq(&ctx
->lock
);
2493 if (event
->attr
.freq
) {
2494 if (value
> sysctl_perf_event_sample_rate
) {
2499 event
->attr
.sample_freq
= value
;
2501 event
->attr
.sample_period
= value
;
2502 event
->hw
.sample_period
= value
;
2505 raw_spin_unlock_irq(&ctx
->lock
);
2510 static const struct file_operations perf_fops
;
2512 static struct perf_event
*perf_fget_light(int fd
, int *fput_needed
)
2516 file
= fget_light(fd
, fput_needed
);
2518 return ERR_PTR(-EBADF
);
2520 if (file
->f_op
!= &perf_fops
) {
2521 fput_light(file
, *fput_needed
);
2523 return ERR_PTR(-EBADF
);
2526 return file
->private_data
;
2529 static int perf_event_set_output(struct perf_event
*event
,
2530 struct perf_event
*output_event
);
2531 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
2533 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2535 struct perf_event
*event
= file
->private_data
;
2536 void (*func
)(struct perf_event
*);
2540 case PERF_EVENT_IOC_ENABLE
:
2541 func
= perf_event_enable
;
2543 case PERF_EVENT_IOC_DISABLE
:
2544 func
= perf_event_disable
;
2546 case PERF_EVENT_IOC_RESET
:
2547 func
= perf_event_reset
;
2550 case PERF_EVENT_IOC_REFRESH
:
2551 return perf_event_refresh(event
, arg
);
2553 case PERF_EVENT_IOC_PERIOD
:
2554 return perf_event_period(event
, (u64 __user
*)arg
);
2556 case PERF_EVENT_IOC_SET_OUTPUT
:
2558 struct perf_event
*output_event
= NULL
;
2559 int fput_needed
= 0;
2563 output_event
= perf_fget_light(arg
, &fput_needed
);
2564 if (IS_ERR(output_event
))
2565 return PTR_ERR(output_event
);
2568 ret
= perf_event_set_output(event
, output_event
);
2570 fput_light(output_event
->filp
, fput_needed
);
2575 case PERF_EVENT_IOC_SET_FILTER
:
2576 return perf_event_set_filter(event
, (void __user
*)arg
);
2582 if (flags
& PERF_IOC_FLAG_GROUP
)
2583 perf_event_for_each(event
, func
);
2585 perf_event_for_each_child(event
, func
);
2590 int perf_event_task_enable(void)
2592 struct perf_event
*event
;
2594 mutex_lock(¤t
->perf_event_mutex
);
2595 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2596 perf_event_for_each_child(event
, perf_event_enable
);
2597 mutex_unlock(¤t
->perf_event_mutex
);
2602 int perf_event_task_disable(void)
2604 struct perf_event
*event
;
2606 mutex_lock(¤t
->perf_event_mutex
);
2607 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2608 perf_event_for_each_child(event
, perf_event_disable
);
2609 mutex_unlock(¤t
->perf_event_mutex
);
2614 #ifndef PERF_EVENT_INDEX_OFFSET
2615 # define PERF_EVENT_INDEX_OFFSET 0
2618 static int perf_event_index(struct perf_event
*event
)
2620 if (event
->hw
.state
& PERF_HES_STOPPED
)
2623 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2626 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
2630 * Callers need to ensure there can be no nesting of this function, otherwise
2631 * the seqlock logic goes bad. We can not serialize this because the arch
2632 * code calls this from NMI context.
2634 void perf_event_update_userpage(struct perf_event
*event
)
2636 struct perf_event_mmap_page
*userpg
;
2637 struct perf_buffer
*buffer
;
2640 buffer
= rcu_dereference(event
->buffer
);
2644 userpg
= buffer
->user_page
;
2647 * Disable preemption so as to not let the corresponding user-space
2648 * spin too long if we get preempted.
2653 userpg
->index
= perf_event_index(event
);
2654 userpg
->offset
= perf_event_count(event
);
2655 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2656 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
2658 userpg
->time_enabled
= event
->total_time_enabled
+
2659 atomic64_read(&event
->child_total_time_enabled
);
2661 userpg
->time_running
= event
->total_time_running
+
2662 atomic64_read(&event
->child_total_time_running
);
2671 static unsigned long perf_data_size(struct perf_buffer
*buffer
);
2674 perf_buffer_init(struct perf_buffer
*buffer
, long watermark
, int flags
)
2676 long max_size
= perf_data_size(buffer
);
2679 buffer
->watermark
= min(max_size
, watermark
);
2681 if (!buffer
->watermark
)
2682 buffer
->watermark
= max_size
/ 2;
2684 if (flags
& PERF_BUFFER_WRITABLE
)
2685 buffer
->writable
= 1;
2687 atomic_set(&buffer
->refcount
, 1);
2690 #ifndef CONFIG_PERF_USE_VMALLOC
2693 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2696 static struct page
*
2697 perf_mmap_to_page(struct perf_buffer
*buffer
, unsigned long pgoff
)
2699 if (pgoff
> buffer
->nr_pages
)
2703 return virt_to_page(buffer
->user_page
);
2705 return virt_to_page(buffer
->data_pages
[pgoff
- 1]);
2708 static void *perf_mmap_alloc_page(int cpu
)
2713 node
= (cpu
== -1) ? cpu
: cpu_to_node(cpu
);
2714 page
= alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
2718 return page_address(page
);
2721 static struct perf_buffer
*
2722 perf_buffer_alloc(int nr_pages
, long watermark
, int cpu
, int flags
)
2724 struct perf_buffer
*buffer
;
2728 size
= sizeof(struct perf_buffer
);
2729 size
+= nr_pages
* sizeof(void *);
2731 buffer
= kzalloc(size
, GFP_KERNEL
);
2735 buffer
->user_page
= perf_mmap_alloc_page(cpu
);
2736 if (!buffer
->user_page
)
2737 goto fail_user_page
;
2739 for (i
= 0; i
< nr_pages
; i
++) {
2740 buffer
->data_pages
[i
] = perf_mmap_alloc_page(cpu
);
2741 if (!buffer
->data_pages
[i
])
2742 goto fail_data_pages
;
2745 buffer
->nr_pages
= nr_pages
;
2747 perf_buffer_init(buffer
, watermark
, flags
);
2752 for (i
--; i
>= 0; i
--)
2753 free_page((unsigned long)buffer
->data_pages
[i
]);
2755 free_page((unsigned long)buffer
->user_page
);
2764 static void perf_mmap_free_page(unsigned long addr
)
2766 struct page
*page
= virt_to_page((void *)addr
);
2768 page
->mapping
= NULL
;
2772 static void perf_buffer_free(struct perf_buffer
*buffer
)
2776 perf_mmap_free_page((unsigned long)buffer
->user_page
);
2777 for (i
= 0; i
< buffer
->nr_pages
; i
++)
2778 perf_mmap_free_page((unsigned long)buffer
->data_pages
[i
]);
2782 static inline int page_order(struct perf_buffer
*buffer
)
2790 * Back perf_mmap() with vmalloc memory.
2792 * Required for architectures that have d-cache aliasing issues.
2795 static inline int page_order(struct perf_buffer
*buffer
)
2797 return buffer
->page_order
;
2800 static struct page
*
2801 perf_mmap_to_page(struct perf_buffer
*buffer
, unsigned long pgoff
)
2803 if (pgoff
> (1UL << page_order(buffer
)))
2806 return vmalloc_to_page((void *)buffer
->user_page
+ pgoff
* PAGE_SIZE
);
2809 static void perf_mmap_unmark_page(void *addr
)
2811 struct page
*page
= vmalloc_to_page(addr
);
2813 page
->mapping
= NULL
;
2816 static void perf_buffer_free_work(struct work_struct
*work
)
2818 struct perf_buffer
*buffer
;
2822 buffer
= container_of(work
, struct perf_buffer
, work
);
2823 nr
= 1 << page_order(buffer
);
2825 base
= buffer
->user_page
;
2826 for (i
= 0; i
< nr
+ 1; i
++)
2827 perf_mmap_unmark_page(base
+ (i
* PAGE_SIZE
));
2833 static void perf_buffer_free(struct perf_buffer
*buffer
)
2835 schedule_work(&buffer
->work
);
2838 static struct perf_buffer
*
2839 perf_buffer_alloc(int nr_pages
, long watermark
, int cpu
, int flags
)
2841 struct perf_buffer
*buffer
;
2845 size
= sizeof(struct perf_buffer
);
2846 size
+= sizeof(void *);
2848 buffer
= kzalloc(size
, GFP_KERNEL
);
2852 INIT_WORK(&buffer
->work
, perf_buffer_free_work
);
2854 all_buf
= vmalloc_user((nr_pages
+ 1) * PAGE_SIZE
);
2858 buffer
->user_page
= all_buf
;
2859 buffer
->data_pages
[0] = all_buf
+ PAGE_SIZE
;
2860 buffer
->page_order
= ilog2(nr_pages
);
2861 buffer
->nr_pages
= 1;
2863 perf_buffer_init(buffer
, watermark
, flags
);
2876 static unsigned long perf_data_size(struct perf_buffer
*buffer
)
2878 return buffer
->nr_pages
<< (PAGE_SHIFT
+ page_order(buffer
));
2881 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2883 struct perf_event
*event
= vma
->vm_file
->private_data
;
2884 struct perf_buffer
*buffer
;
2885 int ret
= VM_FAULT_SIGBUS
;
2887 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
2888 if (vmf
->pgoff
== 0)
2894 buffer
= rcu_dereference(event
->buffer
);
2898 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
2901 vmf
->page
= perf_mmap_to_page(buffer
, vmf
->pgoff
);
2905 get_page(vmf
->page
);
2906 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
2907 vmf
->page
->index
= vmf
->pgoff
;
2916 static void perf_buffer_free_rcu(struct rcu_head
*rcu_head
)
2918 struct perf_buffer
*buffer
;
2920 buffer
= container_of(rcu_head
, struct perf_buffer
, rcu_head
);
2921 perf_buffer_free(buffer
);
2924 static struct perf_buffer
*perf_buffer_get(struct perf_event
*event
)
2926 struct perf_buffer
*buffer
;
2929 buffer
= rcu_dereference(event
->buffer
);
2931 if (!atomic_inc_not_zero(&buffer
->refcount
))
2939 static void perf_buffer_put(struct perf_buffer
*buffer
)
2941 if (!atomic_dec_and_test(&buffer
->refcount
))
2944 call_rcu(&buffer
->rcu_head
, perf_buffer_free_rcu
);
2947 static void perf_mmap_open(struct vm_area_struct
*vma
)
2949 struct perf_event
*event
= vma
->vm_file
->private_data
;
2951 atomic_inc(&event
->mmap_count
);
2954 static void perf_mmap_close(struct vm_area_struct
*vma
)
2956 struct perf_event
*event
= vma
->vm_file
->private_data
;
2958 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
2959 unsigned long size
= perf_data_size(event
->buffer
);
2960 struct user_struct
*user
= event
->mmap_user
;
2961 struct perf_buffer
*buffer
= event
->buffer
;
2963 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
2964 vma
->vm_mm
->locked_vm
-= event
->mmap_locked
;
2965 rcu_assign_pointer(event
->buffer
, NULL
);
2966 mutex_unlock(&event
->mmap_mutex
);
2968 perf_buffer_put(buffer
);
2973 static const struct vm_operations_struct perf_mmap_vmops
= {
2974 .open
= perf_mmap_open
,
2975 .close
= perf_mmap_close
,
2976 .fault
= perf_mmap_fault
,
2977 .page_mkwrite
= perf_mmap_fault
,
2980 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2982 struct perf_event
*event
= file
->private_data
;
2983 unsigned long user_locked
, user_lock_limit
;
2984 struct user_struct
*user
= current_user();
2985 unsigned long locked
, lock_limit
;
2986 struct perf_buffer
*buffer
;
2987 unsigned long vma_size
;
2988 unsigned long nr_pages
;
2989 long user_extra
, extra
;
2990 int ret
= 0, flags
= 0;
2993 * Don't allow mmap() of inherited per-task counters. This would
2994 * create a performance issue due to all children writing to the
2997 if (event
->cpu
== -1 && event
->attr
.inherit
)
3000 if (!(vma
->vm_flags
& VM_SHARED
))
3003 vma_size
= vma
->vm_end
- vma
->vm_start
;
3004 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
3007 * If we have buffer pages ensure they're a power-of-two number, so we
3008 * can do bitmasks instead of modulo.
3010 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
3013 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
3016 if (vma
->vm_pgoff
!= 0)
3019 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3020 mutex_lock(&event
->mmap_mutex
);
3021 if (event
->buffer
) {
3022 if (event
->buffer
->nr_pages
== nr_pages
)
3023 atomic_inc(&event
->buffer
->refcount
);
3029 user_extra
= nr_pages
+ 1;
3030 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
3033 * Increase the limit linearly with more CPUs:
3035 user_lock_limit
*= num_online_cpus();
3037 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
3040 if (user_locked
> user_lock_limit
)
3041 extra
= user_locked
- user_lock_limit
;
3043 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
3044 lock_limit
>>= PAGE_SHIFT
;
3045 locked
= vma
->vm_mm
->locked_vm
+ extra
;
3047 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
3048 !capable(CAP_IPC_LOCK
)) {
3053 WARN_ON(event
->buffer
);
3055 if (vma
->vm_flags
& VM_WRITE
)
3056 flags
|= PERF_BUFFER_WRITABLE
;
3058 buffer
= perf_buffer_alloc(nr_pages
, event
->attr
.wakeup_watermark
,
3064 rcu_assign_pointer(event
->buffer
, buffer
);
3066 atomic_long_add(user_extra
, &user
->locked_vm
);
3067 event
->mmap_locked
= extra
;
3068 event
->mmap_user
= get_current_user();
3069 vma
->vm_mm
->locked_vm
+= event
->mmap_locked
;
3073 atomic_inc(&event
->mmap_count
);
3074 mutex_unlock(&event
->mmap_mutex
);
3076 vma
->vm_flags
|= VM_RESERVED
;
3077 vma
->vm_ops
= &perf_mmap_vmops
;
3082 static int perf_fasync(int fd
, struct file
*filp
, int on
)
3084 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
3085 struct perf_event
*event
= filp
->private_data
;
3088 mutex_lock(&inode
->i_mutex
);
3089 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
3090 mutex_unlock(&inode
->i_mutex
);
3098 static const struct file_operations perf_fops
= {
3099 .llseek
= no_llseek
,
3100 .release
= perf_release
,
3103 .unlocked_ioctl
= perf_ioctl
,
3104 .compat_ioctl
= perf_ioctl
,
3106 .fasync
= perf_fasync
,
3112 * If there's data, ensure we set the poll() state and publish everything
3113 * to user-space before waking everybody up.
3116 void perf_event_wakeup(struct perf_event
*event
)
3118 wake_up_all(&event
->waitq
);
3120 if (event
->pending_kill
) {
3121 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
3122 event
->pending_kill
= 0;
3126 static void perf_pending_event(struct irq_work
*entry
)
3128 struct perf_event
*event
= container_of(entry
,
3129 struct perf_event
, pending
);
3131 if (event
->pending_disable
) {
3132 event
->pending_disable
= 0;
3133 __perf_event_disable(event
);
3136 if (event
->pending_wakeup
) {
3137 event
->pending_wakeup
= 0;
3138 perf_event_wakeup(event
);
3143 * We assume there is only KVM supporting the callbacks.
3144 * Later on, we might change it to a list if there is
3145 * another virtualization implementation supporting the callbacks.
3147 struct perf_guest_info_callbacks
*perf_guest_cbs
;
3149 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3151 perf_guest_cbs
= cbs
;
3154 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
3156 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3158 perf_guest_cbs
= NULL
;
3161 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
3166 static bool perf_output_space(struct perf_buffer
*buffer
, unsigned long tail
,
3167 unsigned long offset
, unsigned long head
)
3171 if (!buffer
->writable
)
3174 mask
= perf_data_size(buffer
) - 1;
3176 offset
= (offset
- tail
) & mask
;
3177 head
= (head
- tail
) & mask
;
3179 if ((int)(head
- offset
) < 0)
3185 static void perf_output_wakeup(struct perf_output_handle
*handle
)
3187 atomic_set(&handle
->buffer
->poll
, POLL_IN
);
3190 handle
->event
->pending_wakeup
= 1;
3191 irq_work_queue(&handle
->event
->pending
);
3193 perf_event_wakeup(handle
->event
);
3197 * We need to ensure a later event_id doesn't publish a head when a former
3198 * event isn't done writing. However since we need to deal with NMIs we
3199 * cannot fully serialize things.
3201 * We only publish the head (and generate a wakeup) when the outer-most
3204 static void perf_output_get_handle(struct perf_output_handle
*handle
)
3206 struct perf_buffer
*buffer
= handle
->buffer
;
3209 local_inc(&buffer
->nest
);
3210 handle
->wakeup
= local_read(&buffer
->wakeup
);
3213 static void perf_output_put_handle(struct perf_output_handle
*handle
)
3215 struct perf_buffer
*buffer
= handle
->buffer
;
3219 head
= local_read(&buffer
->head
);
3222 * IRQ/NMI can happen here, which means we can miss a head update.
3225 if (!local_dec_and_test(&buffer
->nest
))
3229 * Publish the known good head. Rely on the full barrier implied
3230 * by atomic_dec_and_test() order the buffer->head read and this
3233 buffer
->user_page
->data_head
= head
;
3236 * Now check if we missed an update, rely on the (compiler)
3237 * barrier in atomic_dec_and_test() to re-read buffer->head.
3239 if (unlikely(head
!= local_read(&buffer
->head
))) {
3240 local_inc(&buffer
->nest
);
3244 if (handle
->wakeup
!= local_read(&buffer
->wakeup
))
3245 perf_output_wakeup(handle
);
3251 __always_inline
void perf_output_copy(struct perf_output_handle
*handle
,
3252 const void *buf
, unsigned int len
)
3255 unsigned long size
= min_t(unsigned long, handle
->size
, len
);
3257 memcpy(handle
->addr
, buf
, size
);
3260 handle
->addr
+= size
;
3262 handle
->size
-= size
;
3263 if (!handle
->size
) {
3264 struct perf_buffer
*buffer
= handle
->buffer
;
3267 handle
->page
&= buffer
->nr_pages
- 1;
3268 handle
->addr
= buffer
->data_pages
[handle
->page
];
3269 handle
->size
= PAGE_SIZE
<< page_order(buffer
);
3274 int perf_output_begin(struct perf_output_handle
*handle
,
3275 struct perf_event
*event
, unsigned int size
,
3276 int nmi
, int sample
)
3278 struct perf_buffer
*buffer
;
3279 unsigned long tail
, offset
, head
;
3282 struct perf_event_header header
;
3289 * For inherited events we send all the output towards the parent.
3292 event
= event
->parent
;
3294 buffer
= rcu_dereference(event
->buffer
);
3298 handle
->buffer
= buffer
;
3299 handle
->event
= event
;
3301 handle
->sample
= sample
;
3303 if (!buffer
->nr_pages
)
3306 have_lost
= local_read(&buffer
->lost
);
3308 size
+= sizeof(lost_event
);
3310 perf_output_get_handle(handle
);
3314 * Userspace could choose to issue a mb() before updating the
3315 * tail pointer. So that all reads will be completed before the
3318 tail
= ACCESS_ONCE(buffer
->user_page
->data_tail
);
3320 offset
= head
= local_read(&buffer
->head
);
3322 if (unlikely(!perf_output_space(buffer
, tail
, offset
, head
)))
3324 } while (local_cmpxchg(&buffer
->head
, offset
, head
) != offset
);
3326 if (head
- local_read(&buffer
->wakeup
) > buffer
->watermark
)
3327 local_add(buffer
->watermark
, &buffer
->wakeup
);
3329 handle
->page
= offset
>> (PAGE_SHIFT
+ page_order(buffer
));
3330 handle
->page
&= buffer
->nr_pages
- 1;
3331 handle
->size
= offset
& ((PAGE_SIZE
<< page_order(buffer
)) - 1);
3332 handle
->addr
= buffer
->data_pages
[handle
->page
];
3333 handle
->addr
+= handle
->size
;
3334 handle
->size
= (PAGE_SIZE
<< page_order(buffer
)) - handle
->size
;
3337 lost_event
.header
.type
= PERF_RECORD_LOST
;
3338 lost_event
.header
.misc
= 0;
3339 lost_event
.header
.size
= sizeof(lost_event
);
3340 lost_event
.id
= event
->id
;
3341 lost_event
.lost
= local_xchg(&buffer
->lost
, 0);
3343 perf_output_put(handle
, lost_event
);
3349 local_inc(&buffer
->lost
);
3350 perf_output_put_handle(handle
);
3357 void perf_output_end(struct perf_output_handle
*handle
)
3359 struct perf_event
*event
= handle
->event
;
3360 struct perf_buffer
*buffer
= handle
->buffer
;
3362 int wakeup_events
= event
->attr
.wakeup_events
;
3364 if (handle
->sample
&& wakeup_events
) {
3365 int events
= local_inc_return(&buffer
->events
);
3366 if (events
>= wakeup_events
) {
3367 local_sub(wakeup_events
, &buffer
->events
);
3368 local_inc(&buffer
->wakeup
);
3372 perf_output_put_handle(handle
);
3376 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
3379 * only top level events have the pid namespace they were created in
3382 event
= event
->parent
;
3384 return task_tgid_nr_ns(p
, event
->ns
);
3387 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
3390 * only top level events have the pid namespace they were created in
3393 event
= event
->parent
;
3395 return task_pid_nr_ns(p
, event
->ns
);
3398 static void perf_output_read_one(struct perf_output_handle
*handle
,
3399 struct perf_event
*event
)
3401 u64 read_format
= event
->attr
.read_format
;
3405 values
[n
++] = perf_event_count(event
);
3406 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
3407 values
[n
++] = event
->total_time_enabled
+
3408 atomic64_read(&event
->child_total_time_enabled
);
3410 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
3411 values
[n
++] = event
->total_time_running
+
3412 atomic64_read(&event
->child_total_time_running
);
3414 if (read_format
& PERF_FORMAT_ID
)
3415 values
[n
++] = primary_event_id(event
);
3417 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3421 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3423 static void perf_output_read_group(struct perf_output_handle
*handle
,
3424 struct perf_event
*event
)
3426 struct perf_event
*leader
= event
->group_leader
, *sub
;
3427 u64 read_format
= event
->attr
.read_format
;
3431 values
[n
++] = 1 + leader
->nr_siblings
;
3433 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3434 values
[n
++] = leader
->total_time_enabled
;
3436 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3437 values
[n
++] = leader
->total_time_running
;
3439 if (leader
!= event
)
3440 leader
->pmu
->read(leader
);
3442 values
[n
++] = perf_event_count(leader
);
3443 if (read_format
& PERF_FORMAT_ID
)
3444 values
[n
++] = primary_event_id(leader
);
3446 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3448 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3452 sub
->pmu
->read(sub
);
3454 values
[n
++] = perf_event_count(sub
);
3455 if (read_format
& PERF_FORMAT_ID
)
3456 values
[n
++] = primary_event_id(sub
);
3458 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3462 static void perf_output_read(struct perf_output_handle
*handle
,
3463 struct perf_event
*event
)
3465 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
3466 perf_output_read_group(handle
, event
);
3468 perf_output_read_one(handle
, event
);
3471 void perf_output_sample(struct perf_output_handle
*handle
,
3472 struct perf_event_header
*header
,
3473 struct perf_sample_data
*data
,
3474 struct perf_event
*event
)
3476 u64 sample_type
= data
->type
;
3478 perf_output_put(handle
, *header
);
3480 if (sample_type
& PERF_SAMPLE_IP
)
3481 perf_output_put(handle
, data
->ip
);
3483 if (sample_type
& PERF_SAMPLE_TID
)
3484 perf_output_put(handle
, data
->tid_entry
);
3486 if (sample_type
& PERF_SAMPLE_TIME
)
3487 perf_output_put(handle
, data
->time
);
3489 if (sample_type
& PERF_SAMPLE_ADDR
)
3490 perf_output_put(handle
, data
->addr
);
3492 if (sample_type
& PERF_SAMPLE_ID
)
3493 perf_output_put(handle
, data
->id
);
3495 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3496 perf_output_put(handle
, data
->stream_id
);
3498 if (sample_type
& PERF_SAMPLE_CPU
)
3499 perf_output_put(handle
, data
->cpu_entry
);
3501 if (sample_type
& PERF_SAMPLE_PERIOD
)
3502 perf_output_put(handle
, data
->period
);
3504 if (sample_type
& PERF_SAMPLE_READ
)
3505 perf_output_read(handle
, event
);
3507 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3508 if (data
->callchain
) {
3511 if (data
->callchain
)
3512 size
+= data
->callchain
->nr
;
3514 size
*= sizeof(u64
);
3516 perf_output_copy(handle
, data
->callchain
, size
);
3519 perf_output_put(handle
, nr
);
3523 if (sample_type
& PERF_SAMPLE_RAW
) {
3525 perf_output_put(handle
, data
->raw
->size
);
3526 perf_output_copy(handle
, data
->raw
->data
,
3533 .size
= sizeof(u32
),
3536 perf_output_put(handle
, raw
);
3541 void perf_prepare_sample(struct perf_event_header
*header
,
3542 struct perf_sample_data
*data
,
3543 struct perf_event
*event
,
3544 struct pt_regs
*regs
)
3546 u64 sample_type
= event
->attr
.sample_type
;
3548 data
->type
= sample_type
;
3550 header
->type
= PERF_RECORD_SAMPLE
;
3551 header
->size
= sizeof(*header
);
3554 header
->misc
|= perf_misc_flags(regs
);
3556 if (sample_type
& PERF_SAMPLE_IP
) {
3557 data
->ip
= perf_instruction_pointer(regs
);
3559 header
->size
+= sizeof(data
->ip
);
3562 if (sample_type
& PERF_SAMPLE_TID
) {
3563 /* namespace issues */
3564 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
3565 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
3567 header
->size
+= sizeof(data
->tid_entry
);
3570 if (sample_type
& PERF_SAMPLE_TIME
) {
3571 data
->time
= perf_clock();
3573 header
->size
+= sizeof(data
->time
);
3576 if (sample_type
& PERF_SAMPLE_ADDR
)
3577 header
->size
+= sizeof(data
->addr
);
3579 if (sample_type
& PERF_SAMPLE_ID
) {
3580 data
->id
= primary_event_id(event
);
3582 header
->size
+= sizeof(data
->id
);
3585 if (sample_type
& PERF_SAMPLE_STREAM_ID
) {
3586 data
->stream_id
= event
->id
;
3588 header
->size
+= sizeof(data
->stream_id
);
3591 if (sample_type
& PERF_SAMPLE_CPU
) {
3592 data
->cpu_entry
.cpu
= raw_smp_processor_id();
3593 data
->cpu_entry
.reserved
= 0;
3595 header
->size
+= sizeof(data
->cpu_entry
);
3598 if (sample_type
& PERF_SAMPLE_PERIOD
)
3599 header
->size
+= sizeof(data
->period
);
3601 if (sample_type
& PERF_SAMPLE_READ
)
3602 header
->size
+= perf_event_read_size(event
);
3604 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3607 data
->callchain
= perf_callchain(regs
);
3609 if (data
->callchain
)
3610 size
+= data
->callchain
->nr
;
3612 header
->size
+= size
* sizeof(u64
);
3615 if (sample_type
& PERF_SAMPLE_RAW
) {
3616 int size
= sizeof(u32
);
3619 size
+= data
->raw
->size
;
3621 size
+= sizeof(u32
);
3623 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
3624 header
->size
+= size
;
3628 static void perf_event_output(struct perf_event
*event
, int nmi
,
3629 struct perf_sample_data
*data
,
3630 struct pt_regs
*regs
)
3632 struct perf_output_handle handle
;
3633 struct perf_event_header header
;
3635 /* protect the callchain buffers */
3638 perf_prepare_sample(&header
, data
, event
, regs
);
3640 if (perf_output_begin(&handle
, event
, header
.size
, nmi
, 1))
3643 perf_output_sample(&handle
, &header
, data
, event
);
3645 perf_output_end(&handle
);
3655 struct perf_read_event
{
3656 struct perf_event_header header
;
3663 perf_event_read_event(struct perf_event
*event
,
3664 struct task_struct
*task
)
3666 struct perf_output_handle handle
;
3667 struct perf_read_event read_event
= {
3669 .type
= PERF_RECORD_READ
,
3671 .size
= sizeof(read_event
) + perf_event_read_size(event
),
3673 .pid
= perf_event_pid(event
, task
),
3674 .tid
= perf_event_tid(event
, task
),
3678 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
, 0, 0);
3682 perf_output_put(&handle
, read_event
);
3683 perf_output_read(&handle
, event
);
3685 perf_output_end(&handle
);
3689 * task tracking -- fork/exit
3691 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3694 struct perf_task_event
{
3695 struct task_struct
*task
;
3696 struct perf_event_context
*task_ctx
;
3699 struct perf_event_header header
;
3709 static void perf_event_task_output(struct perf_event
*event
,
3710 struct perf_task_event
*task_event
)
3712 struct perf_output_handle handle
;
3713 struct task_struct
*task
= task_event
->task
;
3716 size
= task_event
->event_id
.header
.size
;
3717 ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3722 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
3723 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
3725 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
3726 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
3728 perf_output_put(&handle
, task_event
->event_id
);
3730 perf_output_end(&handle
);
3733 static int perf_event_task_match(struct perf_event
*event
)
3735 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
3738 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3741 if (event
->attr
.comm
|| event
->attr
.mmap
||
3742 event
->attr
.mmap_data
|| event
->attr
.task
)
3748 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
3749 struct perf_task_event
*task_event
)
3751 struct perf_event
*event
;
3753 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3754 if (perf_event_task_match(event
))
3755 perf_event_task_output(event
, task_event
);
3759 static void perf_event_task_event(struct perf_task_event
*task_event
)
3761 struct perf_cpu_context
*cpuctx
;
3762 struct perf_event_context
*ctx
;
3767 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
3768 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
3769 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
3771 ctx
= task_event
->task_ctx
;
3773 ctxn
= pmu
->task_ctx_nr
;
3776 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
3779 perf_event_task_ctx(ctx
, task_event
);
3781 put_cpu_ptr(pmu
->pmu_cpu_context
);
3786 static void perf_event_task(struct task_struct
*task
,
3787 struct perf_event_context
*task_ctx
,
3790 struct perf_task_event task_event
;
3792 if (!atomic_read(&nr_comm_events
) &&
3793 !atomic_read(&nr_mmap_events
) &&
3794 !atomic_read(&nr_task_events
))
3797 task_event
= (struct perf_task_event
){
3799 .task_ctx
= task_ctx
,
3802 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
3804 .size
= sizeof(task_event
.event_id
),
3810 .time
= perf_clock(),
3814 perf_event_task_event(&task_event
);
3817 void perf_event_fork(struct task_struct
*task
)
3819 perf_event_task(task
, NULL
, 1);
3826 struct perf_comm_event
{
3827 struct task_struct
*task
;
3832 struct perf_event_header header
;
3839 static void perf_event_comm_output(struct perf_event
*event
,
3840 struct perf_comm_event
*comm_event
)
3842 struct perf_output_handle handle
;
3843 int size
= comm_event
->event_id
.header
.size
;
3844 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3849 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
3850 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
3852 perf_output_put(&handle
, comm_event
->event_id
);
3853 perf_output_copy(&handle
, comm_event
->comm
,
3854 comm_event
->comm_size
);
3855 perf_output_end(&handle
);
3858 static int perf_event_comm_match(struct perf_event
*event
)
3860 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
3863 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3866 if (event
->attr
.comm
)
3872 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
3873 struct perf_comm_event
*comm_event
)
3875 struct perf_event
*event
;
3877 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3878 if (perf_event_comm_match(event
))
3879 perf_event_comm_output(event
, comm_event
);
3883 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
3885 struct perf_cpu_context
*cpuctx
;
3886 struct perf_event_context
*ctx
;
3887 char comm
[TASK_COMM_LEN
];
3892 memset(comm
, 0, sizeof(comm
));
3893 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
3894 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
3896 comm_event
->comm
= comm
;
3897 comm_event
->comm_size
= size
;
3899 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
3902 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
3903 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
3904 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
3906 ctxn
= pmu
->task_ctx_nr
;
3910 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
3912 perf_event_comm_ctx(ctx
, comm_event
);
3914 put_cpu_ptr(pmu
->pmu_cpu_context
);
3919 void perf_event_comm(struct task_struct
*task
)
3921 struct perf_comm_event comm_event
;
3922 struct perf_event_context
*ctx
;
3925 for_each_task_context_nr(ctxn
) {
3926 ctx
= task
->perf_event_ctxp
[ctxn
];
3930 perf_event_enable_on_exec(ctx
);
3933 if (!atomic_read(&nr_comm_events
))
3936 comm_event
= (struct perf_comm_event
){
3942 .type
= PERF_RECORD_COMM
,
3951 perf_event_comm_event(&comm_event
);
3958 struct perf_mmap_event
{
3959 struct vm_area_struct
*vma
;
3961 const char *file_name
;
3965 struct perf_event_header header
;
3975 static void perf_event_mmap_output(struct perf_event
*event
,
3976 struct perf_mmap_event
*mmap_event
)
3978 struct perf_output_handle handle
;
3979 int size
= mmap_event
->event_id
.header
.size
;
3980 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3985 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
3986 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
3988 perf_output_put(&handle
, mmap_event
->event_id
);
3989 perf_output_copy(&handle
, mmap_event
->file_name
,
3990 mmap_event
->file_size
);
3991 perf_output_end(&handle
);
3994 static int perf_event_mmap_match(struct perf_event
*event
,
3995 struct perf_mmap_event
*mmap_event
,
3998 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4001 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
4004 if ((!executable
&& event
->attr
.mmap_data
) ||
4005 (executable
&& event
->attr
.mmap
))
4011 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
4012 struct perf_mmap_event
*mmap_event
,
4015 struct perf_event
*event
;
4017 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4018 if (perf_event_mmap_match(event
, mmap_event
, executable
))
4019 perf_event_mmap_output(event
, mmap_event
);
4023 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
4025 struct perf_cpu_context
*cpuctx
;
4026 struct perf_event_context
*ctx
;
4027 struct vm_area_struct
*vma
= mmap_event
->vma
;
4028 struct file
*file
= vma
->vm_file
;
4036 memset(tmp
, 0, sizeof(tmp
));
4040 * d_path works from the end of the buffer backwards, so we
4041 * need to add enough zero bytes after the string to handle
4042 * the 64bit alignment we do later.
4044 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
4046 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
4049 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
4051 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
4055 if (arch_vma_name(mmap_event
->vma
)) {
4056 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
4062 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
4064 } else if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
4065 vma
->vm_end
>= vma
->vm_mm
->brk
) {
4066 name
= strncpy(tmp
, "[heap]", sizeof(tmp
));
4068 } else if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
4069 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
4070 name
= strncpy(tmp
, "[stack]", sizeof(tmp
));
4074 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
4079 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
4081 mmap_event
->file_name
= name
;
4082 mmap_event
->file_size
= size
;
4084 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
4087 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4088 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4089 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
,
4090 vma
->vm_flags
& VM_EXEC
);
4092 ctxn
= pmu
->task_ctx_nr
;
4096 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4098 perf_event_mmap_ctx(ctx
, mmap_event
,
4099 vma
->vm_flags
& VM_EXEC
);
4102 put_cpu_ptr(pmu
->pmu_cpu_context
);
4109 void perf_event_mmap(struct vm_area_struct
*vma
)
4111 struct perf_mmap_event mmap_event
;
4113 if (!atomic_read(&nr_mmap_events
))
4116 mmap_event
= (struct perf_mmap_event
){
4122 .type
= PERF_RECORD_MMAP
,
4123 .misc
= PERF_RECORD_MISC_USER
,
4128 .start
= vma
->vm_start
,
4129 .len
= vma
->vm_end
- vma
->vm_start
,
4130 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
4134 perf_event_mmap_event(&mmap_event
);
4138 * IRQ throttle logging
4141 static void perf_log_throttle(struct perf_event
*event
, int enable
)
4143 struct perf_output_handle handle
;
4147 struct perf_event_header header
;
4151 } throttle_event
= {
4153 .type
= PERF_RECORD_THROTTLE
,
4155 .size
= sizeof(throttle_event
),
4157 .time
= perf_clock(),
4158 .id
= primary_event_id(event
),
4159 .stream_id
= event
->id
,
4163 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
4165 ret
= perf_output_begin(&handle
, event
, sizeof(throttle_event
), 1, 0);
4169 perf_output_put(&handle
, throttle_event
);
4170 perf_output_end(&handle
);
4174 * Generic event overflow handling, sampling.
4177 static int __perf_event_overflow(struct perf_event
*event
, int nmi
,
4178 int throttle
, struct perf_sample_data
*data
,
4179 struct pt_regs
*regs
)
4181 int events
= atomic_read(&event
->event_limit
);
4182 struct hw_perf_event
*hwc
= &event
->hw
;
4188 if (hwc
->interrupts
!= MAX_INTERRUPTS
) {
4190 if (HZ
* hwc
->interrupts
>
4191 (u64
)sysctl_perf_event_sample_rate
) {
4192 hwc
->interrupts
= MAX_INTERRUPTS
;
4193 perf_log_throttle(event
, 0);
4198 * Keep re-disabling events even though on the previous
4199 * pass we disabled it - just in case we raced with a
4200 * sched-in and the event got enabled again:
4206 if (event
->attr
.freq
) {
4207 u64 now
= perf_clock();
4208 s64 delta
= now
- hwc
->freq_time_stamp
;
4210 hwc
->freq_time_stamp
= now
;
4212 if (delta
> 0 && delta
< 2*TICK_NSEC
)
4213 perf_adjust_period(event
, delta
, hwc
->last_period
);
4217 * XXX event_limit might not quite work as expected on inherited
4221 event
->pending_kill
= POLL_IN
;
4222 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
4224 event
->pending_kill
= POLL_HUP
;
4226 event
->pending_disable
= 1;
4227 irq_work_queue(&event
->pending
);
4229 perf_event_disable(event
);
4232 if (event
->overflow_handler
)
4233 event
->overflow_handler(event
, nmi
, data
, regs
);
4235 perf_event_output(event
, nmi
, data
, regs
);
4240 int perf_event_overflow(struct perf_event
*event
, int nmi
,
4241 struct perf_sample_data
*data
,
4242 struct pt_regs
*regs
)
4244 return __perf_event_overflow(event
, nmi
, 1, data
, regs
);
4248 * Generic software event infrastructure
4251 struct swevent_htable
{
4252 struct swevent_hlist
*swevent_hlist
;
4253 struct mutex hlist_mutex
;
4256 /* Recursion avoidance in each contexts */
4257 int recursion
[PERF_NR_CONTEXTS
];
4260 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
4263 * We directly increment event->count and keep a second value in
4264 * event->hw.period_left to count intervals. This period event
4265 * is kept in the range [-sample_period, 0] so that we can use the
4269 static u64
perf_swevent_set_period(struct perf_event
*event
)
4271 struct hw_perf_event
*hwc
= &event
->hw
;
4272 u64 period
= hwc
->last_period
;
4276 hwc
->last_period
= hwc
->sample_period
;
4279 old
= val
= local64_read(&hwc
->period_left
);
4283 nr
= div64_u64(period
+ val
, period
);
4284 offset
= nr
* period
;
4286 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
4292 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
4293 int nmi
, struct perf_sample_data
*data
,
4294 struct pt_regs
*regs
)
4296 struct hw_perf_event
*hwc
= &event
->hw
;
4299 data
->period
= event
->hw
.last_period
;
4301 overflow
= perf_swevent_set_period(event
);
4303 if (hwc
->interrupts
== MAX_INTERRUPTS
)
4306 for (; overflow
; overflow
--) {
4307 if (__perf_event_overflow(event
, nmi
, throttle
,
4310 * We inhibit the overflow from happening when
4311 * hwc->interrupts == MAX_INTERRUPTS.
4319 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
4320 int nmi
, struct perf_sample_data
*data
,
4321 struct pt_regs
*regs
)
4323 struct hw_perf_event
*hwc
= &event
->hw
;
4325 local64_add(nr
, &event
->count
);
4330 if (!hwc
->sample_period
)
4333 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
4334 return perf_swevent_overflow(event
, 1, nmi
, data
, regs
);
4336 if (local64_add_negative(nr
, &hwc
->period_left
))
4339 perf_swevent_overflow(event
, 0, nmi
, data
, regs
);
4342 static int perf_exclude_event(struct perf_event
*event
,
4343 struct pt_regs
*regs
)
4345 if (event
->hw
.state
& PERF_HES_STOPPED
)
4349 if (event
->attr
.exclude_user
&& user_mode(regs
))
4352 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
4359 static int perf_swevent_match(struct perf_event
*event
,
4360 enum perf_type_id type
,
4362 struct perf_sample_data
*data
,
4363 struct pt_regs
*regs
)
4365 if (event
->attr
.type
!= type
)
4368 if (event
->attr
.config
!= event_id
)
4371 if (perf_exclude_event(event
, regs
))
4377 static inline u64
swevent_hash(u64 type
, u32 event_id
)
4379 u64 val
= event_id
| (type
<< 32);
4381 return hash_64(val
, SWEVENT_HLIST_BITS
);
4384 static inline struct hlist_head
*
4385 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
4387 u64 hash
= swevent_hash(type
, event_id
);
4389 return &hlist
->heads
[hash
];
4392 /* For the read side: events when they trigger */
4393 static inline struct hlist_head
*
4394 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
4396 struct swevent_hlist
*hlist
;
4398 hlist
= rcu_dereference(swhash
->swevent_hlist
);
4402 return __find_swevent_head(hlist
, type
, event_id
);
4405 /* For the event head insertion and removal in the hlist */
4406 static inline struct hlist_head
*
4407 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
4409 struct swevent_hlist
*hlist
;
4410 u32 event_id
= event
->attr
.config
;
4411 u64 type
= event
->attr
.type
;
4414 * Event scheduling is always serialized against hlist allocation
4415 * and release. Which makes the protected version suitable here.
4416 * The context lock guarantees that.
4418 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
4419 lockdep_is_held(&event
->ctx
->lock
));
4423 return __find_swevent_head(hlist
, type
, event_id
);
4426 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
4428 struct perf_sample_data
*data
,
4429 struct pt_regs
*regs
)
4431 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4432 struct perf_event
*event
;
4433 struct hlist_node
*node
;
4434 struct hlist_head
*head
;
4437 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
4441 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
4442 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
4443 perf_swevent_event(event
, nr
, nmi
, data
, regs
);
4449 int perf_swevent_get_recursion_context(void)
4451 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4453 return get_recursion_context(swhash
->recursion
);
4455 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
4457 void inline perf_swevent_put_recursion_context(int rctx
)
4459 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4461 put_recursion_context(swhash
->recursion
, rctx
);
4464 void __perf_sw_event(u32 event_id
, u64 nr
, int nmi
,
4465 struct pt_regs
*regs
, u64 addr
)
4467 struct perf_sample_data data
;
4470 preempt_disable_notrace();
4471 rctx
= perf_swevent_get_recursion_context();
4475 perf_sample_data_init(&data
, addr
);
4477 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, nmi
, &data
, regs
);
4479 perf_swevent_put_recursion_context(rctx
);
4480 preempt_enable_notrace();
4483 static void perf_swevent_read(struct perf_event
*event
)
4487 static int perf_swevent_add(struct perf_event
*event
, int flags
)
4489 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4490 struct hw_perf_event
*hwc
= &event
->hw
;
4491 struct hlist_head
*head
;
4493 if (hwc
->sample_period
) {
4494 hwc
->last_period
= hwc
->sample_period
;
4495 perf_swevent_set_period(event
);
4498 hwc
->state
= !(flags
& PERF_EF_START
);
4500 head
= find_swevent_head(swhash
, event
);
4501 if (WARN_ON_ONCE(!head
))
4504 hlist_add_head_rcu(&event
->hlist_entry
, head
);
4509 static void perf_swevent_del(struct perf_event
*event
, int flags
)
4511 hlist_del_rcu(&event
->hlist_entry
);
4514 static void perf_swevent_start(struct perf_event
*event
, int flags
)
4516 event
->hw
.state
= 0;
4519 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
4521 event
->hw
.state
= PERF_HES_STOPPED
;
4524 /* Deref the hlist from the update side */
4525 static inline struct swevent_hlist
*
4526 swevent_hlist_deref(struct swevent_htable
*swhash
)
4528 return rcu_dereference_protected(swhash
->swevent_hlist
,
4529 lockdep_is_held(&swhash
->hlist_mutex
));
4532 static void swevent_hlist_release_rcu(struct rcu_head
*rcu_head
)
4534 struct swevent_hlist
*hlist
;
4536 hlist
= container_of(rcu_head
, struct swevent_hlist
, rcu_head
);
4540 static void swevent_hlist_release(struct swevent_htable
*swhash
)
4542 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
4547 rcu_assign_pointer(swhash
->swevent_hlist
, NULL
);
4548 call_rcu(&hlist
->rcu_head
, swevent_hlist_release_rcu
);
4551 static void swevent_hlist_put_cpu(struct perf_event
*event
, int cpu
)
4553 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
4555 mutex_lock(&swhash
->hlist_mutex
);
4557 if (!--swhash
->hlist_refcount
)
4558 swevent_hlist_release(swhash
);
4560 mutex_unlock(&swhash
->hlist_mutex
);
4563 static void swevent_hlist_put(struct perf_event
*event
)
4567 if (event
->cpu
!= -1) {
4568 swevent_hlist_put_cpu(event
, event
->cpu
);
4572 for_each_possible_cpu(cpu
)
4573 swevent_hlist_put_cpu(event
, cpu
);
4576 static int swevent_hlist_get_cpu(struct perf_event
*event
, int cpu
)
4578 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
4581 mutex_lock(&swhash
->hlist_mutex
);
4583 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
4584 struct swevent_hlist
*hlist
;
4586 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
4591 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
4593 swhash
->hlist_refcount
++;
4595 mutex_unlock(&swhash
->hlist_mutex
);
4600 static int swevent_hlist_get(struct perf_event
*event
)
4603 int cpu
, failed_cpu
;
4605 if (event
->cpu
!= -1)
4606 return swevent_hlist_get_cpu(event
, event
->cpu
);
4609 for_each_possible_cpu(cpu
) {
4610 err
= swevent_hlist_get_cpu(event
, cpu
);
4620 for_each_possible_cpu(cpu
) {
4621 if (cpu
== failed_cpu
)
4623 swevent_hlist_put_cpu(event
, cpu
);
4630 atomic_t perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
4632 static void sw_perf_event_destroy(struct perf_event
*event
)
4634 u64 event_id
= event
->attr
.config
;
4636 WARN_ON(event
->parent
);
4638 jump_label_dec(&perf_swevent_enabled
[event_id
]);
4639 swevent_hlist_put(event
);
4642 static int perf_swevent_init(struct perf_event
*event
)
4644 int event_id
= event
->attr
.config
;
4646 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
4650 case PERF_COUNT_SW_CPU_CLOCK
:
4651 case PERF_COUNT_SW_TASK_CLOCK
:
4658 if (event_id
> PERF_COUNT_SW_MAX
)
4661 if (!event
->parent
) {
4664 err
= swevent_hlist_get(event
);
4668 jump_label_inc(&perf_swevent_enabled
[event_id
]);
4669 event
->destroy
= sw_perf_event_destroy
;
4675 static struct pmu perf_swevent
= {
4676 .task_ctx_nr
= perf_sw_context
,
4678 .event_init
= perf_swevent_init
,
4679 .add
= perf_swevent_add
,
4680 .del
= perf_swevent_del
,
4681 .start
= perf_swevent_start
,
4682 .stop
= perf_swevent_stop
,
4683 .read
= perf_swevent_read
,
4686 #ifdef CONFIG_EVENT_TRACING
4688 static int perf_tp_filter_match(struct perf_event
*event
,
4689 struct perf_sample_data
*data
)
4691 void *record
= data
->raw
->data
;
4693 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
4698 static int perf_tp_event_match(struct perf_event
*event
,
4699 struct perf_sample_data
*data
,
4700 struct pt_regs
*regs
)
4703 * All tracepoints are from kernel-space.
4705 if (event
->attr
.exclude_kernel
)
4708 if (!perf_tp_filter_match(event
, data
))
4714 void perf_tp_event(u64 addr
, u64 count
, void *record
, int entry_size
,
4715 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
)
4717 struct perf_sample_data data
;
4718 struct perf_event
*event
;
4719 struct hlist_node
*node
;
4721 struct perf_raw_record raw
= {
4726 perf_sample_data_init(&data
, addr
);
4729 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
4730 if (perf_tp_event_match(event
, &data
, regs
))
4731 perf_swevent_event(event
, count
, 1, &data
, regs
);
4734 perf_swevent_put_recursion_context(rctx
);
4736 EXPORT_SYMBOL_GPL(perf_tp_event
);
4738 static void tp_perf_event_destroy(struct perf_event
*event
)
4740 perf_trace_destroy(event
);
4743 static int perf_tp_event_init(struct perf_event
*event
)
4747 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
4751 * Raw tracepoint data is a severe data leak, only allow root to
4754 if ((event
->attr
.sample_type
& PERF_SAMPLE_RAW
) &&
4755 perf_paranoid_tracepoint_raw() &&
4756 !capable(CAP_SYS_ADMIN
))
4759 err
= perf_trace_init(event
);
4763 event
->destroy
= tp_perf_event_destroy
;
4768 static struct pmu perf_tracepoint
= {
4769 .task_ctx_nr
= perf_sw_context
,
4771 .event_init
= perf_tp_event_init
,
4772 .add
= perf_trace_add
,
4773 .del
= perf_trace_del
,
4774 .start
= perf_swevent_start
,
4775 .stop
= perf_swevent_stop
,
4776 .read
= perf_swevent_read
,
4779 static inline void perf_tp_register(void)
4781 perf_pmu_register(&perf_tracepoint
);
4784 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4789 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
4792 filter_str
= strndup_user(arg
, PAGE_SIZE
);
4793 if (IS_ERR(filter_str
))
4794 return PTR_ERR(filter_str
);
4796 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
4802 static void perf_event_free_filter(struct perf_event
*event
)
4804 ftrace_profile_free_filter(event
);
4809 static inline void perf_tp_register(void)
4813 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4818 static void perf_event_free_filter(struct perf_event
*event
)
4822 #endif /* CONFIG_EVENT_TRACING */
4824 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4825 void perf_bp_event(struct perf_event
*bp
, void *data
)
4827 struct perf_sample_data sample
;
4828 struct pt_regs
*regs
= data
;
4830 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
);
4832 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
4833 perf_swevent_event(bp
, 1, 1, &sample
, regs
);
4838 * hrtimer based swevent callback
4841 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
4843 enum hrtimer_restart ret
= HRTIMER_RESTART
;
4844 struct perf_sample_data data
;
4845 struct pt_regs
*regs
;
4846 struct perf_event
*event
;
4849 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
4850 event
->pmu
->read(event
);
4852 perf_sample_data_init(&data
, 0);
4853 data
.period
= event
->hw
.last_period
;
4854 regs
= get_irq_regs();
4856 if (regs
&& !perf_exclude_event(event
, regs
)) {
4857 if (!(event
->attr
.exclude_idle
&& current
->pid
== 0))
4858 if (perf_event_overflow(event
, 0, &data
, regs
))
4859 ret
= HRTIMER_NORESTART
;
4862 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
4863 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
4868 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
4870 struct hw_perf_event
*hwc
= &event
->hw
;
4872 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
4873 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
4874 if (hwc
->sample_period
) {
4875 s64 period
= local64_read(&hwc
->period_left
);
4881 local64_set(&hwc
->period_left
, 0);
4883 period
= max_t(u64
, 10000, hwc
->sample_period
);
4885 __hrtimer_start_range_ns(&hwc
->hrtimer
,
4886 ns_to_ktime(period
), 0,
4887 HRTIMER_MODE_REL_PINNED
, 0);
4891 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
4893 struct hw_perf_event
*hwc
= &event
->hw
;
4895 if (hwc
->sample_period
) {
4896 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
4897 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
4899 hrtimer_cancel(&hwc
->hrtimer
);
4904 * Software event: cpu wall time clock
4907 static void cpu_clock_event_update(struct perf_event
*event
)
4912 now
= local_clock();
4913 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
4914 local64_add(now
- prev
, &event
->count
);
4917 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
4919 local64_set(&event
->hw
.prev_count
, local_clock());
4920 perf_swevent_start_hrtimer(event
);
4923 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
4925 perf_swevent_cancel_hrtimer(event
);
4926 cpu_clock_event_update(event
);
4929 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
4931 if (flags
& PERF_EF_START
)
4932 cpu_clock_event_start(event
, flags
);
4937 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
4939 cpu_clock_event_stop(event
, flags
);
4942 static void cpu_clock_event_read(struct perf_event
*event
)
4944 cpu_clock_event_update(event
);
4947 static int cpu_clock_event_init(struct perf_event
*event
)
4949 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
4952 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
4958 static struct pmu perf_cpu_clock
= {
4959 .task_ctx_nr
= perf_sw_context
,
4961 .event_init
= cpu_clock_event_init
,
4962 .add
= cpu_clock_event_add
,
4963 .del
= cpu_clock_event_del
,
4964 .start
= cpu_clock_event_start
,
4965 .stop
= cpu_clock_event_stop
,
4966 .read
= cpu_clock_event_read
,
4970 * Software event: task time clock
4973 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
4978 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
4980 local64_add(delta
, &event
->count
);
4983 static void task_clock_event_start(struct perf_event
*event
, int flags
)
4985 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
4986 perf_swevent_start_hrtimer(event
);
4989 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
4991 perf_swevent_cancel_hrtimer(event
);
4992 task_clock_event_update(event
, event
->ctx
->time
);
4995 static int task_clock_event_add(struct perf_event
*event
, int flags
)
4997 if (flags
& PERF_EF_START
)
4998 task_clock_event_start(event
, flags
);
5003 static void task_clock_event_del(struct perf_event
*event
, int flags
)
5005 task_clock_event_stop(event
, PERF_EF_UPDATE
);
5008 static void task_clock_event_read(struct perf_event
*event
)
5013 update_context_time(event
->ctx
);
5014 time
= event
->ctx
->time
;
5016 u64 now
= perf_clock();
5017 u64 delta
= now
- event
->ctx
->timestamp
;
5018 time
= event
->ctx
->time
+ delta
;
5021 task_clock_event_update(event
, time
);
5024 static int task_clock_event_init(struct perf_event
*event
)
5026 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5029 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
5035 static struct pmu perf_task_clock
= {
5036 .task_ctx_nr
= perf_sw_context
,
5038 .event_init
= task_clock_event_init
,
5039 .add
= task_clock_event_add
,
5040 .del
= task_clock_event_del
,
5041 .start
= task_clock_event_start
,
5042 .stop
= task_clock_event_stop
,
5043 .read
= task_clock_event_read
,
5046 static void perf_pmu_nop_void(struct pmu
*pmu
)
5050 static int perf_pmu_nop_int(struct pmu
*pmu
)
5055 static void perf_pmu_start_txn(struct pmu
*pmu
)
5057 perf_pmu_disable(pmu
);
5060 static int perf_pmu_commit_txn(struct pmu
*pmu
)
5062 perf_pmu_enable(pmu
);
5066 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
5068 perf_pmu_enable(pmu
);
5072 * Ensures all contexts with the same task_ctx_nr have the same
5073 * pmu_cpu_context too.
5075 static void *find_pmu_context(int ctxn
)
5082 list_for_each_entry(pmu
, &pmus
, entry
) {
5083 if (pmu
->task_ctx_nr
== ctxn
)
5084 return pmu
->pmu_cpu_context
;
5090 static void free_pmu_context(void * __percpu cpu_context
)
5094 mutex_lock(&pmus_lock
);
5096 * Like a real lame refcount.
5098 list_for_each_entry(pmu
, &pmus
, entry
) {
5099 if (pmu
->pmu_cpu_context
== cpu_context
)
5103 free_percpu(cpu_context
);
5105 mutex_unlock(&pmus_lock
);
5108 int perf_pmu_register(struct pmu
*pmu
)
5112 mutex_lock(&pmus_lock
);
5114 pmu
->pmu_disable_count
= alloc_percpu(int);
5115 if (!pmu
->pmu_disable_count
)
5118 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
5119 if (pmu
->pmu_cpu_context
)
5120 goto got_cpu_context
;
5122 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
5123 if (!pmu
->pmu_cpu_context
)
5126 for_each_possible_cpu(cpu
) {
5127 struct perf_cpu_context
*cpuctx
;
5129 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
5130 __perf_event_init_context(&cpuctx
->ctx
);
5131 cpuctx
->ctx
.type
= cpu_context
;
5132 cpuctx
->ctx
.pmu
= pmu
;
5133 cpuctx
->jiffies_interval
= 1;
5134 INIT_LIST_HEAD(&cpuctx
->rotation_list
);
5138 if (!pmu
->start_txn
) {
5139 if (pmu
->pmu_enable
) {
5141 * If we have pmu_enable/pmu_disable calls, install
5142 * transaction stubs that use that to try and batch
5143 * hardware accesses.
5145 pmu
->start_txn
= perf_pmu_start_txn
;
5146 pmu
->commit_txn
= perf_pmu_commit_txn
;
5147 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
5149 pmu
->start_txn
= perf_pmu_nop_void
;
5150 pmu
->commit_txn
= perf_pmu_nop_int
;
5151 pmu
->cancel_txn
= perf_pmu_nop_void
;
5155 if (!pmu
->pmu_enable
) {
5156 pmu
->pmu_enable
= perf_pmu_nop_void
;
5157 pmu
->pmu_disable
= perf_pmu_nop_void
;
5160 list_add_rcu(&pmu
->entry
, &pmus
);
5163 mutex_unlock(&pmus_lock
);
5168 free_percpu(pmu
->pmu_disable_count
);
5172 void perf_pmu_unregister(struct pmu
*pmu
)
5174 mutex_lock(&pmus_lock
);
5175 list_del_rcu(&pmu
->entry
);
5176 mutex_unlock(&pmus_lock
);
5179 * We dereference the pmu list under both SRCU and regular RCU, so
5180 * synchronize against both of those.
5182 synchronize_srcu(&pmus_srcu
);
5185 free_percpu(pmu
->pmu_disable_count
);
5186 free_pmu_context(pmu
->pmu_cpu_context
);
5189 struct pmu
*perf_init_event(struct perf_event
*event
)
5191 struct pmu
*pmu
= NULL
;
5194 idx
= srcu_read_lock(&pmus_srcu
);
5195 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
5196 int ret
= pmu
->event_init(event
);
5200 if (ret
!= -ENOENT
) {
5205 pmu
= ERR_PTR(-ENOENT
);
5207 srcu_read_unlock(&pmus_srcu
, idx
);
5213 * Allocate and initialize a event structure
5215 static struct perf_event
*
5216 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
5217 struct task_struct
*task
,
5218 struct perf_event
*group_leader
,
5219 struct perf_event
*parent_event
,
5220 perf_overflow_handler_t overflow_handler
)
5223 struct perf_event
*event
;
5224 struct hw_perf_event
*hwc
;
5227 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
5229 return ERR_PTR(-ENOMEM
);
5232 * Single events are their own group leaders, with an
5233 * empty sibling list:
5236 group_leader
= event
;
5238 mutex_init(&event
->child_mutex
);
5239 INIT_LIST_HEAD(&event
->child_list
);
5241 INIT_LIST_HEAD(&event
->group_entry
);
5242 INIT_LIST_HEAD(&event
->event_entry
);
5243 INIT_LIST_HEAD(&event
->sibling_list
);
5244 init_waitqueue_head(&event
->waitq
);
5245 init_irq_work(&event
->pending
, perf_pending_event
);
5247 mutex_init(&event
->mmap_mutex
);
5250 event
->attr
= *attr
;
5251 event
->group_leader
= group_leader
;
5255 event
->parent
= parent_event
;
5257 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
5258 event
->id
= atomic64_inc_return(&perf_event_id
);
5260 event
->state
= PERF_EVENT_STATE_INACTIVE
;
5263 event
->attach_state
= PERF_ATTACH_TASK
;
5264 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5266 * hw_breakpoint is a bit difficult here..
5268 if (attr
->type
== PERF_TYPE_BREAKPOINT
)
5269 event
->hw
.bp_target
= task
;
5273 if (!overflow_handler
&& parent_event
)
5274 overflow_handler
= parent_event
->overflow_handler
;
5276 event
->overflow_handler
= overflow_handler
;
5279 event
->state
= PERF_EVENT_STATE_OFF
;
5284 hwc
->sample_period
= attr
->sample_period
;
5285 if (attr
->freq
&& attr
->sample_freq
)
5286 hwc
->sample_period
= 1;
5287 hwc
->last_period
= hwc
->sample_period
;
5289 local64_set(&hwc
->period_left
, hwc
->sample_period
);
5292 * we currently do not support PERF_FORMAT_GROUP on inherited events
5294 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
5297 pmu
= perf_init_event(event
);
5303 else if (IS_ERR(pmu
))
5308 put_pid_ns(event
->ns
);
5310 return ERR_PTR(err
);
5315 if (!event
->parent
) {
5316 if (event
->attach_state
& PERF_ATTACH_TASK
)
5317 jump_label_inc(&perf_task_events
);
5318 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
5319 atomic_inc(&nr_mmap_events
);
5320 if (event
->attr
.comm
)
5321 atomic_inc(&nr_comm_events
);
5322 if (event
->attr
.task
)
5323 atomic_inc(&nr_task_events
);
5324 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5325 err
= get_callchain_buffers();
5328 return ERR_PTR(err
);
5336 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
5337 struct perf_event_attr
*attr
)
5342 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
5346 * zero the full structure, so that a short copy will be nice.
5348 memset(attr
, 0, sizeof(*attr
));
5350 ret
= get_user(size
, &uattr
->size
);
5354 if (size
> PAGE_SIZE
) /* silly large */
5357 if (!size
) /* abi compat */
5358 size
= PERF_ATTR_SIZE_VER0
;
5360 if (size
< PERF_ATTR_SIZE_VER0
)
5364 * If we're handed a bigger struct than we know of,
5365 * ensure all the unknown bits are 0 - i.e. new
5366 * user-space does not rely on any kernel feature
5367 * extensions we dont know about yet.
5369 if (size
> sizeof(*attr
)) {
5370 unsigned char __user
*addr
;
5371 unsigned char __user
*end
;
5374 addr
= (void __user
*)uattr
+ sizeof(*attr
);
5375 end
= (void __user
*)uattr
+ size
;
5377 for (; addr
< end
; addr
++) {
5378 ret
= get_user(val
, addr
);
5384 size
= sizeof(*attr
);
5387 ret
= copy_from_user(attr
, uattr
, size
);
5392 * If the type exists, the corresponding creation will verify
5395 if (attr
->type
>= PERF_TYPE_MAX
)
5398 if (attr
->__reserved_1
)
5401 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
5404 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
5411 put_user(sizeof(*attr
), &uattr
->size
);
5417 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
5419 struct perf_buffer
*buffer
= NULL
, *old_buffer
= NULL
;
5425 /* don't allow circular references */
5426 if (event
== output_event
)
5430 * Don't allow cross-cpu buffers
5432 if (output_event
->cpu
!= event
->cpu
)
5436 * If its not a per-cpu buffer, it must be the same task.
5438 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
5442 mutex_lock(&event
->mmap_mutex
);
5443 /* Can't redirect output if we've got an active mmap() */
5444 if (atomic_read(&event
->mmap_count
))
5448 /* get the buffer we want to redirect to */
5449 buffer
= perf_buffer_get(output_event
);
5454 old_buffer
= event
->buffer
;
5455 rcu_assign_pointer(event
->buffer
, buffer
);
5458 mutex_unlock(&event
->mmap_mutex
);
5461 perf_buffer_put(old_buffer
);
5467 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5469 * @attr_uptr: event_id type attributes for monitoring/sampling
5472 * @group_fd: group leader event fd
5474 SYSCALL_DEFINE5(perf_event_open
,
5475 struct perf_event_attr __user
*, attr_uptr
,
5476 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
5478 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
5479 struct perf_event
*event
, *sibling
;
5480 struct perf_event_attr attr
;
5481 struct perf_event_context
*ctx
;
5482 struct file
*event_file
= NULL
;
5483 struct file
*group_file
= NULL
;
5484 struct task_struct
*task
= NULL
;
5488 int fput_needed
= 0;
5491 /* for future expandability... */
5492 if (flags
& ~(PERF_FLAG_FD_NO_GROUP
| PERF_FLAG_FD_OUTPUT
))
5495 err
= perf_copy_attr(attr_uptr
, &attr
);
5499 if (!attr
.exclude_kernel
) {
5500 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
5505 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
5509 event_fd
= get_unused_fd_flags(O_RDWR
);
5513 if (group_fd
!= -1) {
5514 group_leader
= perf_fget_light(group_fd
, &fput_needed
);
5515 if (IS_ERR(group_leader
)) {
5516 err
= PTR_ERR(group_leader
);
5519 group_file
= group_leader
->filp
;
5520 if (flags
& PERF_FLAG_FD_OUTPUT
)
5521 output_event
= group_leader
;
5522 if (flags
& PERF_FLAG_FD_NO_GROUP
)
5523 group_leader
= NULL
;
5527 task
= find_lively_task_by_vpid(pid
);
5529 err
= PTR_ERR(task
);
5534 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
, NULL
);
5535 if (IS_ERR(event
)) {
5536 err
= PTR_ERR(event
);
5541 * Special case software events and allow them to be part of
5542 * any hardware group.
5547 (is_software_event(event
) != is_software_event(group_leader
))) {
5548 if (is_software_event(event
)) {
5550 * If event and group_leader are not both a software
5551 * event, and event is, then group leader is not.
5553 * Allow the addition of software events to !software
5554 * groups, this is safe because software events never
5557 pmu
= group_leader
->pmu
;
5558 } else if (is_software_event(group_leader
) &&
5559 (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
)) {
5561 * In case the group is a pure software group, and we
5562 * try to add a hardware event, move the whole group to
5563 * the hardware context.
5570 * Get the target context (task or percpu):
5572 ctx
= find_get_context(pmu
, task
, cpu
);
5579 * Look up the group leader (we will attach this event to it):
5585 * Do not allow a recursive hierarchy (this new sibling
5586 * becoming part of another group-sibling):
5588 if (group_leader
->group_leader
!= group_leader
)
5591 * Do not allow to attach to a group in a different
5592 * task or CPU context:
5595 if (group_leader
->ctx
->type
!= ctx
->type
)
5598 if (group_leader
->ctx
!= ctx
)
5603 * Only a group leader can be exclusive or pinned
5605 if (attr
.exclusive
|| attr
.pinned
)
5610 err
= perf_event_set_output(event
, output_event
);
5615 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
, O_RDWR
);
5616 if (IS_ERR(event_file
)) {
5617 err
= PTR_ERR(event_file
);
5622 struct perf_event_context
*gctx
= group_leader
->ctx
;
5624 mutex_lock(&gctx
->mutex
);
5625 perf_event_remove_from_context(group_leader
);
5626 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
5628 perf_event_remove_from_context(sibling
);
5631 mutex_unlock(&gctx
->mutex
);
5635 event
->filp
= event_file
;
5636 WARN_ON_ONCE(ctx
->parent_ctx
);
5637 mutex_lock(&ctx
->mutex
);
5640 perf_install_in_context(ctx
, group_leader
, cpu
);
5642 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
5644 perf_install_in_context(ctx
, sibling
, cpu
);
5649 perf_install_in_context(ctx
, event
, cpu
);
5651 mutex_unlock(&ctx
->mutex
);
5653 event
->owner
= current
;
5654 get_task_struct(current
);
5655 mutex_lock(¤t
->perf_event_mutex
);
5656 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
5657 mutex_unlock(¤t
->perf_event_mutex
);
5660 * Drop the reference on the group_event after placing the
5661 * new event on the sibling_list. This ensures destruction
5662 * of the group leader will find the pointer to itself in
5663 * perf_group_detach().
5665 fput_light(group_file
, fput_needed
);
5666 fd_install(event_fd
, event_file
);
5675 put_task_struct(task
);
5677 fput_light(group_file
, fput_needed
);
5679 put_unused_fd(event_fd
);
5684 * perf_event_create_kernel_counter
5686 * @attr: attributes of the counter to create
5687 * @cpu: cpu in which the counter is bound
5688 * @task: task to profile (NULL for percpu)
5691 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
5692 struct task_struct
*task
,
5693 perf_overflow_handler_t overflow_handler
)
5695 struct perf_event_context
*ctx
;
5696 struct perf_event
*event
;
5700 * Get the target context (task or percpu):
5703 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
, overflow_handler
);
5704 if (IS_ERR(event
)) {
5705 err
= PTR_ERR(event
);
5709 ctx
= find_get_context(event
->pmu
, task
, cpu
);
5716 WARN_ON_ONCE(ctx
->parent_ctx
);
5717 mutex_lock(&ctx
->mutex
);
5718 perf_install_in_context(ctx
, event
, cpu
);
5720 mutex_unlock(&ctx
->mutex
);
5722 event
->owner
= current
;
5723 get_task_struct(current
);
5724 mutex_lock(¤t
->perf_event_mutex
);
5725 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
5726 mutex_unlock(¤t
->perf_event_mutex
);
5733 return ERR_PTR(err
);
5735 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
5737 static void sync_child_event(struct perf_event
*child_event
,
5738 struct task_struct
*child
)
5740 struct perf_event
*parent_event
= child_event
->parent
;
5743 if (child_event
->attr
.inherit_stat
)
5744 perf_event_read_event(child_event
, child
);
5746 child_val
= perf_event_count(child_event
);
5749 * Add back the child's count to the parent's count:
5751 atomic64_add(child_val
, &parent_event
->child_count
);
5752 atomic64_add(child_event
->total_time_enabled
,
5753 &parent_event
->child_total_time_enabled
);
5754 atomic64_add(child_event
->total_time_running
,
5755 &parent_event
->child_total_time_running
);
5758 * Remove this event from the parent's list
5760 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
5761 mutex_lock(&parent_event
->child_mutex
);
5762 list_del_init(&child_event
->child_list
);
5763 mutex_unlock(&parent_event
->child_mutex
);
5766 * Release the parent event, if this was the last
5769 fput(parent_event
->filp
);
5773 __perf_event_exit_task(struct perf_event
*child_event
,
5774 struct perf_event_context
*child_ctx
,
5775 struct task_struct
*child
)
5777 struct perf_event
*parent_event
;
5779 perf_event_remove_from_context(child_event
);
5781 parent_event
= child_event
->parent
;
5783 * It can happen that parent exits first, and has events
5784 * that are still around due to the child reference. These
5785 * events need to be zapped - but otherwise linger.
5788 sync_child_event(child_event
, child
);
5789 free_event(child_event
);
5793 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
5795 struct perf_event
*child_event
, *tmp
;
5796 struct perf_event_context
*child_ctx
;
5797 unsigned long flags
;
5799 if (likely(!child
->perf_event_ctxp
[ctxn
])) {
5800 perf_event_task(child
, NULL
, 0);
5804 local_irq_save(flags
);
5806 * We can't reschedule here because interrupts are disabled,
5807 * and either child is current or it is a task that can't be
5808 * scheduled, so we are now safe from rescheduling changing
5811 child_ctx
= child
->perf_event_ctxp
[ctxn
];
5812 task_ctx_sched_out(child_ctx
, EVENT_ALL
);
5815 * Take the context lock here so that if find_get_context is
5816 * reading child->perf_event_ctxp, we wait until it has
5817 * incremented the context's refcount before we do put_ctx below.
5819 raw_spin_lock(&child_ctx
->lock
);
5820 child
->perf_event_ctxp
[ctxn
] = NULL
;
5822 * If this context is a clone; unclone it so it can't get
5823 * swapped to another process while we're removing all
5824 * the events from it.
5826 unclone_ctx(child_ctx
);
5827 update_context_time(child_ctx
);
5828 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
5831 * Report the task dead after unscheduling the events so that we
5832 * won't get any samples after PERF_RECORD_EXIT. We can however still
5833 * get a few PERF_RECORD_READ events.
5835 perf_event_task(child
, child_ctx
, 0);
5838 * We can recurse on the same lock type through:
5840 * __perf_event_exit_task()
5841 * sync_child_event()
5842 * fput(parent_event->filp)
5844 * mutex_lock(&ctx->mutex)
5846 * But since its the parent context it won't be the same instance.
5848 mutex_lock(&child_ctx
->mutex
);
5851 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->pinned_groups
,
5853 __perf_event_exit_task(child_event
, child_ctx
, child
);
5855 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->flexible_groups
,
5857 __perf_event_exit_task(child_event
, child_ctx
, child
);
5860 * If the last event was a group event, it will have appended all
5861 * its siblings to the list, but we obtained 'tmp' before that which
5862 * will still point to the list head terminating the iteration.
5864 if (!list_empty(&child_ctx
->pinned_groups
) ||
5865 !list_empty(&child_ctx
->flexible_groups
))
5868 mutex_unlock(&child_ctx
->mutex
);
5874 * When a child task exits, feed back event values to parent events.
5876 void perf_event_exit_task(struct task_struct
*child
)
5880 for_each_task_context_nr(ctxn
)
5881 perf_event_exit_task_context(child
, ctxn
);
5884 static void perf_free_event(struct perf_event
*event
,
5885 struct perf_event_context
*ctx
)
5887 struct perf_event
*parent
= event
->parent
;
5889 if (WARN_ON_ONCE(!parent
))
5892 mutex_lock(&parent
->child_mutex
);
5893 list_del_init(&event
->child_list
);
5894 mutex_unlock(&parent
->child_mutex
);
5898 perf_group_detach(event
);
5899 list_del_event(event
, ctx
);
5904 * free an unexposed, unused context as created by inheritance by
5905 * perf_event_init_task below, used by fork() in case of fail.
5907 void perf_event_free_task(struct task_struct
*task
)
5909 struct perf_event_context
*ctx
;
5910 struct perf_event
*event
, *tmp
;
5913 for_each_task_context_nr(ctxn
) {
5914 ctx
= task
->perf_event_ctxp
[ctxn
];
5918 mutex_lock(&ctx
->mutex
);
5920 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
5922 perf_free_event(event
, ctx
);
5924 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
5926 perf_free_event(event
, ctx
);
5928 if (!list_empty(&ctx
->pinned_groups
) ||
5929 !list_empty(&ctx
->flexible_groups
))
5932 mutex_unlock(&ctx
->mutex
);
5938 void perf_event_delayed_put(struct task_struct
*task
)
5942 for_each_task_context_nr(ctxn
)
5943 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
5947 * inherit a event from parent task to child task:
5949 static struct perf_event
*
5950 inherit_event(struct perf_event
*parent_event
,
5951 struct task_struct
*parent
,
5952 struct perf_event_context
*parent_ctx
,
5953 struct task_struct
*child
,
5954 struct perf_event
*group_leader
,
5955 struct perf_event_context
*child_ctx
)
5957 struct perf_event
*child_event
;
5958 unsigned long flags
;
5961 * Instead of creating recursive hierarchies of events,
5962 * we link inherited events back to the original parent,
5963 * which has a filp for sure, which we use as the reference
5966 if (parent_event
->parent
)
5967 parent_event
= parent_event
->parent
;
5969 child_event
= perf_event_alloc(&parent_event
->attr
,
5972 group_leader
, parent_event
,
5974 if (IS_ERR(child_event
))
5979 * Make the child state follow the state of the parent event,
5980 * not its attr.disabled bit. We hold the parent's mutex,
5981 * so we won't race with perf_event_{en, dis}able_family.
5983 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
5984 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
5986 child_event
->state
= PERF_EVENT_STATE_OFF
;
5988 if (parent_event
->attr
.freq
) {
5989 u64 sample_period
= parent_event
->hw
.sample_period
;
5990 struct hw_perf_event
*hwc
= &child_event
->hw
;
5992 hwc
->sample_period
= sample_period
;
5993 hwc
->last_period
= sample_period
;
5995 local64_set(&hwc
->period_left
, sample_period
);
5998 child_event
->ctx
= child_ctx
;
5999 child_event
->overflow_handler
= parent_event
->overflow_handler
;
6002 * Link it up in the child's context:
6004 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
6005 add_event_to_ctx(child_event
, child_ctx
);
6006 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
6009 * Get a reference to the parent filp - we will fput it
6010 * when the child event exits. This is safe to do because
6011 * we are in the parent and we know that the filp still
6012 * exists and has a nonzero count:
6014 atomic_long_inc(&parent_event
->filp
->f_count
);
6017 * Link this into the parent event's child list
6019 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
6020 mutex_lock(&parent_event
->child_mutex
);
6021 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
6022 mutex_unlock(&parent_event
->child_mutex
);
6027 static int inherit_group(struct perf_event
*parent_event
,
6028 struct task_struct
*parent
,
6029 struct perf_event_context
*parent_ctx
,
6030 struct task_struct
*child
,
6031 struct perf_event_context
*child_ctx
)
6033 struct perf_event
*leader
;
6034 struct perf_event
*sub
;
6035 struct perf_event
*child_ctr
;
6037 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
6038 child
, NULL
, child_ctx
);
6040 return PTR_ERR(leader
);
6041 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
6042 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
6043 child
, leader
, child_ctx
);
6044 if (IS_ERR(child_ctr
))
6045 return PTR_ERR(child_ctr
);
6051 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
6052 struct perf_event_context
*parent_ctx
,
6053 struct task_struct
*child
, int ctxn
,
6057 struct perf_event_context
*child_ctx
;
6059 if (!event
->attr
.inherit
) {
6064 child_ctx
= child
->perf_event_ctxp
[ctxn
];
6067 * This is executed from the parent task context, so
6068 * inherit events that have been marked for cloning.
6069 * First allocate and initialize a context for the
6073 child_ctx
= alloc_perf_context(event
->pmu
, child
);
6077 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
6080 ret
= inherit_group(event
, parent
, parent_ctx
,
6090 * Initialize the perf_event context in task_struct
6092 int perf_event_init_context(struct task_struct
*child
, int ctxn
)
6094 struct perf_event_context
*child_ctx
, *parent_ctx
;
6095 struct perf_event_context
*cloned_ctx
;
6096 struct perf_event
*event
;
6097 struct task_struct
*parent
= current
;
6098 int inherited_all
= 1;
6101 child
->perf_event_ctxp
[ctxn
] = NULL
;
6103 mutex_init(&child
->perf_event_mutex
);
6104 INIT_LIST_HEAD(&child
->perf_event_list
);
6106 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
6110 * If the parent's context is a clone, pin it so it won't get
6113 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
6116 * No need to check if parent_ctx != NULL here; since we saw
6117 * it non-NULL earlier, the only reason for it to become NULL
6118 * is if we exit, and since we're currently in the middle of
6119 * a fork we can't be exiting at the same time.
6123 * Lock the parent list. No need to lock the child - not PID
6124 * hashed yet and not running, so nobody can access it.
6126 mutex_lock(&parent_ctx
->mutex
);
6129 * We dont have to disable NMIs - we are only looking at
6130 * the list, not manipulating it:
6132 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
6133 ret
= inherit_task_group(event
, parent
, parent_ctx
,
6134 child
, ctxn
, &inherited_all
);
6139 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
6140 ret
= inherit_task_group(event
, parent
, parent_ctx
,
6141 child
, ctxn
, &inherited_all
);
6146 child_ctx
= child
->perf_event_ctxp
[ctxn
];
6148 if (child_ctx
&& inherited_all
) {
6150 * Mark the child context as a clone of the parent
6151 * context, or of whatever the parent is a clone of.
6152 * Note that if the parent is a clone, it could get
6153 * uncloned at any point, but that doesn't matter
6154 * because the list of events and the generation
6155 * count can't have changed since we took the mutex.
6157 cloned_ctx
= rcu_dereference(parent_ctx
->parent_ctx
);
6159 child_ctx
->parent_ctx
= cloned_ctx
;
6160 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
6162 child_ctx
->parent_ctx
= parent_ctx
;
6163 child_ctx
->parent_gen
= parent_ctx
->generation
;
6165 get_ctx(child_ctx
->parent_ctx
);
6168 mutex_unlock(&parent_ctx
->mutex
);
6170 perf_unpin_context(parent_ctx
);
6176 * Initialize the perf_event context in task_struct
6178 int perf_event_init_task(struct task_struct
*child
)
6182 for_each_task_context_nr(ctxn
) {
6183 ret
= perf_event_init_context(child
, ctxn
);
6191 static void __init
perf_event_init_all_cpus(void)
6193 struct swevent_htable
*swhash
;
6196 for_each_possible_cpu(cpu
) {
6197 swhash
= &per_cpu(swevent_htable
, cpu
);
6198 mutex_init(&swhash
->hlist_mutex
);
6199 INIT_LIST_HEAD(&per_cpu(rotation_list
, cpu
));
6203 static void __cpuinit
perf_event_init_cpu(int cpu
)
6205 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6207 mutex_lock(&swhash
->hlist_mutex
);
6208 if (swhash
->hlist_refcount
> 0) {
6209 struct swevent_hlist
*hlist
;
6211 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
6213 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
6215 mutex_unlock(&swhash
->hlist_mutex
);
6218 #ifdef CONFIG_HOTPLUG_CPU
6219 static void perf_pmu_rotate_stop(struct pmu
*pmu
)
6221 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
6223 WARN_ON(!irqs_disabled());
6225 list_del_init(&cpuctx
->rotation_list
);
6228 static void __perf_event_exit_context(void *__info
)
6230 struct perf_event_context
*ctx
= __info
;
6231 struct perf_event
*event
, *tmp
;
6233 perf_pmu_rotate_stop(ctx
->pmu
);
6235 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
, group_entry
)
6236 __perf_event_remove_from_context(event
);
6237 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
, group_entry
)
6238 __perf_event_remove_from_context(event
);
6241 static void perf_event_exit_cpu_context(int cpu
)
6243 struct perf_event_context
*ctx
;
6247 idx
= srcu_read_lock(&pmus_srcu
);
6248 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
6249 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
6251 mutex_lock(&ctx
->mutex
);
6252 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
6253 mutex_unlock(&ctx
->mutex
);
6255 srcu_read_unlock(&pmus_srcu
, idx
);
6258 static void perf_event_exit_cpu(int cpu
)
6260 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6262 mutex_lock(&swhash
->hlist_mutex
);
6263 swevent_hlist_release(swhash
);
6264 mutex_unlock(&swhash
->hlist_mutex
);
6266 perf_event_exit_cpu_context(cpu
);
6269 static inline void perf_event_exit_cpu(int cpu
) { }
6272 static int __cpuinit
6273 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
6275 unsigned int cpu
= (long)hcpu
;
6277 switch (action
& ~CPU_TASKS_FROZEN
) {
6279 case CPU_UP_PREPARE
:
6280 case CPU_DOWN_FAILED
:
6281 perf_event_init_cpu(cpu
);
6284 case CPU_UP_CANCELED
:
6285 case CPU_DOWN_PREPARE
:
6286 perf_event_exit_cpu(cpu
);
6296 void __init
perf_event_init(void)
6298 perf_event_init_all_cpus();
6299 init_srcu_struct(&pmus_srcu
);
6300 perf_pmu_register(&perf_swevent
);
6301 perf_pmu_register(&perf_cpu_clock
);
6302 perf_pmu_register(&perf_task_clock
);
6304 perf_cpu_notifier(perf_cpu_notify
);