Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ubifs / orphan.c
blob82009c74b6a32e7faad97dba0d0e67b98e5bdc5d
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Author: Adrian Hunter
22 #include "ubifs.h"
25 * An orphan is an inode number whose inode node has been committed to the index
26 * with a link count of zero. That happens when an open file is deleted
27 * (unlinked) and then a commit is run. In the normal course of events the inode
28 * would be deleted when the file is closed. However in the case of an unclean
29 * unmount, orphans need to be accounted for. After an unclean unmount, the
30 * orphans' inodes must be deleted which means either scanning the entire index
31 * looking for them, or keeping a list on flash somewhere. This unit implements
32 * the latter approach.
34 * The orphan area is a fixed number of LEBs situated between the LPT area and
35 * the main area. The number of orphan area LEBs is specified when the file
36 * system is created. The minimum number is 1. The size of the orphan area
37 * should be so that it can hold the maximum number of orphans that are expected
38 * to ever exist at one time.
40 * The number of orphans that can fit in a LEB is:
42 * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
44 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
46 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
47 * zero, the inode number is added to the rb-tree. It is removed from the tree
48 * when the inode is deleted. Any new orphans that are in the orphan tree when
49 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
50 * If the orphan area is full, it is consolidated to make space. There is
51 * always enough space because validation prevents the user from creating more
52 * than the maximum number of orphans allowed.
55 #ifdef CONFIG_UBIFS_FS_DEBUG
56 static int dbg_check_orphans(struct ubifs_info *c);
57 #else
58 #define dbg_check_orphans(c) 0
59 #endif
61 /**
62 * ubifs_add_orphan - add an orphan.
63 * @c: UBIFS file-system description object
64 * @inum: orphan inode number
66 * Add an orphan. This function is called when an inodes link count drops to
67 * zero.
69 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
71 struct ubifs_orphan *orphan, *o;
72 struct rb_node **p, *parent = NULL;
74 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
75 if (!orphan)
76 return -ENOMEM;
77 orphan->inum = inum;
78 orphan->new = 1;
80 spin_lock(&c->orphan_lock);
81 if (c->tot_orphans >= c->max_orphans) {
82 spin_unlock(&c->orphan_lock);
83 kfree(orphan);
84 return -ENFILE;
86 p = &c->orph_tree.rb_node;
87 while (*p) {
88 parent = *p;
89 o = rb_entry(parent, struct ubifs_orphan, rb);
90 if (inum < o->inum)
91 p = &(*p)->rb_left;
92 else if (inum > o->inum)
93 p = &(*p)->rb_right;
94 else {
95 dbg_err("orphaned twice");
96 spin_unlock(&c->orphan_lock);
97 kfree(orphan);
98 return 0;
101 c->tot_orphans += 1;
102 c->new_orphans += 1;
103 rb_link_node(&orphan->rb, parent, p);
104 rb_insert_color(&orphan->rb, &c->orph_tree);
105 list_add_tail(&orphan->list, &c->orph_list);
106 list_add_tail(&orphan->new_list, &c->orph_new);
107 spin_unlock(&c->orphan_lock);
108 dbg_gen("ino %lu", (unsigned long)inum);
109 return 0;
113 * ubifs_delete_orphan - delete an orphan.
114 * @c: UBIFS file-system description object
115 * @inum: orphan inode number
117 * Delete an orphan. This function is called when an inode is deleted.
119 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
121 struct ubifs_orphan *o;
122 struct rb_node *p;
124 spin_lock(&c->orphan_lock);
125 p = c->orph_tree.rb_node;
126 while (p) {
127 o = rb_entry(p, struct ubifs_orphan, rb);
128 if (inum < o->inum)
129 p = p->rb_left;
130 else if (inum > o->inum)
131 p = p->rb_right;
132 else {
133 if (o->dnext) {
134 spin_unlock(&c->orphan_lock);
135 dbg_gen("deleted twice ino %lu",
136 (unsigned long)inum);
137 return;
139 if (o->cnext) {
140 o->dnext = c->orph_dnext;
141 c->orph_dnext = o;
142 spin_unlock(&c->orphan_lock);
143 dbg_gen("delete later ino %lu",
144 (unsigned long)inum);
145 return;
147 rb_erase(p, &c->orph_tree);
148 list_del(&o->list);
149 c->tot_orphans -= 1;
150 if (o->new) {
151 list_del(&o->new_list);
152 c->new_orphans -= 1;
154 spin_unlock(&c->orphan_lock);
155 kfree(o);
156 dbg_gen("inum %lu", (unsigned long)inum);
157 return;
160 spin_unlock(&c->orphan_lock);
161 dbg_err("missing orphan ino %lu", (unsigned long)inum);
162 dbg_dump_stack();
166 * ubifs_orphan_start_commit - start commit of orphans.
167 * @c: UBIFS file-system description object
169 * Start commit of orphans.
171 int ubifs_orphan_start_commit(struct ubifs_info *c)
173 struct ubifs_orphan *orphan, **last;
175 spin_lock(&c->orphan_lock);
176 last = &c->orph_cnext;
177 list_for_each_entry(orphan, &c->orph_new, new_list) {
178 ubifs_assert(orphan->new);
179 orphan->new = 0;
180 *last = orphan;
181 last = &orphan->cnext;
183 *last = orphan->cnext;
184 c->cmt_orphans = c->new_orphans;
185 c->new_orphans = 0;
186 dbg_cmt("%d orphans to commit", c->cmt_orphans);
187 INIT_LIST_HEAD(&c->orph_new);
188 if (c->tot_orphans == 0)
189 c->no_orphs = 1;
190 else
191 c->no_orphs = 0;
192 spin_unlock(&c->orphan_lock);
193 return 0;
197 * avail_orphs - calculate available space.
198 * @c: UBIFS file-system description object
200 * This function returns the number of orphans that can be written in the
201 * available space.
203 static int avail_orphs(struct ubifs_info *c)
205 int avail_lebs, avail, gap;
207 avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
208 avail = avail_lebs *
209 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
210 gap = c->leb_size - c->ohead_offs;
211 if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
212 avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
213 return avail;
217 * tot_avail_orphs - calculate total space.
218 * @c: UBIFS file-system description object
220 * This function returns the number of orphans that can be written in half
221 * the total space. That leaves half the space for adding new orphans.
223 static int tot_avail_orphs(struct ubifs_info *c)
225 int avail_lebs, avail;
227 avail_lebs = c->orph_lebs;
228 avail = avail_lebs *
229 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
230 return avail / 2;
234 * do_write_orph_node - write a node to the orphan head.
235 * @c: UBIFS file-system description object
236 * @len: length of node
237 * @atomic: write atomically
239 * This function writes a node to the orphan head from the orphan buffer. If
240 * %atomic is not zero, then the write is done atomically. On success, %0 is
241 * returned, otherwise a negative error code is returned.
243 static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
245 int err = 0;
247 if (atomic) {
248 ubifs_assert(c->ohead_offs == 0);
249 ubifs_prepare_node(c, c->orph_buf, len, 1);
250 len = ALIGN(len, c->min_io_size);
251 err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len,
252 UBI_SHORTTERM);
253 } else {
254 if (c->ohead_offs == 0) {
255 /* Ensure LEB has been unmapped */
256 err = ubifs_leb_unmap(c, c->ohead_lnum);
257 if (err)
258 return err;
260 err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
261 c->ohead_offs, UBI_SHORTTERM);
263 return err;
267 * write_orph_node - write an orphan node.
268 * @c: UBIFS file-system description object
269 * @atomic: write atomically
271 * This function builds an orphan node from the cnext list and writes it to the
272 * orphan head. On success, %0 is returned, otherwise a negative error code
273 * is returned.
275 static int write_orph_node(struct ubifs_info *c, int atomic)
277 struct ubifs_orphan *orphan, *cnext;
278 struct ubifs_orph_node *orph;
279 int gap, err, len, cnt, i;
281 ubifs_assert(c->cmt_orphans > 0);
282 gap = c->leb_size - c->ohead_offs;
283 if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
284 c->ohead_lnum += 1;
285 c->ohead_offs = 0;
286 gap = c->leb_size;
287 if (c->ohead_lnum > c->orph_last) {
289 * We limit the number of orphans so that this should
290 * never happen.
292 ubifs_err("out of space in orphan area");
293 return -EINVAL;
296 cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
297 if (cnt > c->cmt_orphans)
298 cnt = c->cmt_orphans;
299 len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
300 ubifs_assert(c->orph_buf);
301 orph = c->orph_buf;
302 orph->ch.node_type = UBIFS_ORPH_NODE;
303 spin_lock(&c->orphan_lock);
304 cnext = c->orph_cnext;
305 for (i = 0; i < cnt; i++) {
306 orphan = cnext;
307 orph->inos[i] = cpu_to_le64(orphan->inum);
308 cnext = orphan->cnext;
309 orphan->cnext = NULL;
311 c->orph_cnext = cnext;
312 c->cmt_orphans -= cnt;
313 spin_unlock(&c->orphan_lock);
314 if (c->cmt_orphans)
315 orph->cmt_no = cpu_to_le64(c->cmt_no);
316 else
317 /* Mark the last node of the commit */
318 orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
319 ubifs_assert(c->ohead_offs + len <= c->leb_size);
320 ubifs_assert(c->ohead_lnum >= c->orph_first);
321 ubifs_assert(c->ohead_lnum <= c->orph_last);
322 err = do_write_orph_node(c, len, atomic);
323 c->ohead_offs += ALIGN(len, c->min_io_size);
324 c->ohead_offs = ALIGN(c->ohead_offs, 8);
325 return err;
329 * write_orph_nodes - write orphan nodes until there are no more to commit.
330 * @c: UBIFS file-system description object
331 * @atomic: write atomically
333 * This function writes orphan nodes for all the orphans to commit. On success,
334 * %0 is returned, otherwise a negative error code is returned.
336 static int write_orph_nodes(struct ubifs_info *c, int atomic)
338 int err;
340 while (c->cmt_orphans > 0) {
341 err = write_orph_node(c, atomic);
342 if (err)
343 return err;
345 if (atomic) {
346 int lnum;
348 /* Unmap any unused LEBs after consolidation */
349 lnum = c->ohead_lnum + 1;
350 for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
351 err = ubifs_leb_unmap(c, lnum);
352 if (err)
353 return err;
356 return 0;
360 * consolidate - consolidate the orphan area.
361 * @c: UBIFS file-system description object
363 * This function enables consolidation by putting all the orphans into the list
364 * to commit. The list is in the order that the orphans were added, and the
365 * LEBs are written atomically in order, so at no time can orphans be lost by
366 * an unclean unmount.
368 * This function returns %0 on success and a negative error code on failure.
370 static int consolidate(struct ubifs_info *c)
372 int tot_avail = tot_avail_orphs(c), err = 0;
374 spin_lock(&c->orphan_lock);
375 dbg_cmt("there is space for %d orphans and there are %d",
376 tot_avail, c->tot_orphans);
377 if (c->tot_orphans - c->new_orphans <= tot_avail) {
378 struct ubifs_orphan *orphan, **last;
379 int cnt = 0;
381 /* Change the cnext list to include all non-new orphans */
382 last = &c->orph_cnext;
383 list_for_each_entry(orphan, &c->orph_list, list) {
384 if (orphan->new)
385 continue;
386 *last = orphan;
387 last = &orphan->cnext;
388 cnt += 1;
390 *last = orphan->cnext;
391 ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
392 c->cmt_orphans = cnt;
393 c->ohead_lnum = c->orph_first;
394 c->ohead_offs = 0;
395 } else {
397 * We limit the number of orphans so that this should
398 * never happen.
400 ubifs_err("out of space in orphan area");
401 err = -EINVAL;
403 spin_unlock(&c->orphan_lock);
404 return err;
408 * commit_orphans - commit orphans.
409 * @c: UBIFS file-system description object
411 * This function commits orphans to flash. On success, %0 is returned,
412 * otherwise a negative error code is returned.
414 static int commit_orphans(struct ubifs_info *c)
416 int avail, atomic = 0, err;
418 ubifs_assert(c->cmt_orphans > 0);
419 avail = avail_orphs(c);
420 if (avail < c->cmt_orphans) {
421 /* Not enough space to write new orphans, so consolidate */
422 err = consolidate(c);
423 if (err)
424 return err;
425 atomic = 1;
427 err = write_orph_nodes(c, atomic);
428 return err;
432 * erase_deleted - erase the orphans marked for deletion.
433 * @c: UBIFS file-system description object
435 * During commit, the orphans being committed cannot be deleted, so they are
436 * marked for deletion and deleted by this function. Also, the recovery
437 * adds killed orphans to the deletion list, and therefore they are deleted
438 * here too.
440 static void erase_deleted(struct ubifs_info *c)
442 struct ubifs_orphan *orphan, *dnext;
444 spin_lock(&c->orphan_lock);
445 dnext = c->orph_dnext;
446 while (dnext) {
447 orphan = dnext;
448 dnext = orphan->dnext;
449 ubifs_assert(!orphan->new);
450 rb_erase(&orphan->rb, &c->orph_tree);
451 list_del(&orphan->list);
452 c->tot_orphans -= 1;
453 dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
454 kfree(orphan);
456 c->orph_dnext = NULL;
457 spin_unlock(&c->orphan_lock);
461 * ubifs_orphan_end_commit - end commit of orphans.
462 * @c: UBIFS file-system description object
464 * End commit of orphans.
466 int ubifs_orphan_end_commit(struct ubifs_info *c)
468 int err;
470 if (c->cmt_orphans != 0) {
471 err = commit_orphans(c);
472 if (err)
473 return err;
475 erase_deleted(c);
476 err = dbg_check_orphans(c);
477 return err;
481 * ubifs_clear_orphans - erase all LEBs used for orphans.
482 * @c: UBIFS file-system description object
484 * If recovery is not required, then the orphans from the previous session
485 * are not needed. This function locates the LEBs used to record
486 * orphans, and un-maps them.
488 int ubifs_clear_orphans(struct ubifs_info *c)
490 int lnum, err;
492 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
493 err = ubifs_leb_unmap(c, lnum);
494 if (err)
495 return err;
497 c->ohead_lnum = c->orph_first;
498 c->ohead_offs = 0;
499 return 0;
503 * insert_dead_orphan - insert an orphan.
504 * @c: UBIFS file-system description object
505 * @inum: orphan inode number
507 * This function is a helper to the 'do_kill_orphans()' function. The orphan
508 * must be kept until the next commit, so it is added to the rb-tree and the
509 * deletion list.
511 static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
513 struct ubifs_orphan *orphan, *o;
514 struct rb_node **p, *parent = NULL;
516 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
517 if (!orphan)
518 return -ENOMEM;
519 orphan->inum = inum;
521 p = &c->orph_tree.rb_node;
522 while (*p) {
523 parent = *p;
524 o = rb_entry(parent, struct ubifs_orphan, rb);
525 if (inum < o->inum)
526 p = &(*p)->rb_left;
527 else if (inum > o->inum)
528 p = &(*p)->rb_right;
529 else {
530 /* Already added - no problem */
531 kfree(orphan);
532 return 0;
535 c->tot_orphans += 1;
536 rb_link_node(&orphan->rb, parent, p);
537 rb_insert_color(&orphan->rb, &c->orph_tree);
538 list_add_tail(&orphan->list, &c->orph_list);
539 orphan->dnext = c->orph_dnext;
540 c->orph_dnext = orphan;
541 dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
542 c->new_orphans, c->tot_orphans);
543 return 0;
547 * do_kill_orphans - remove orphan inodes from the index.
548 * @c: UBIFS file-system description object
549 * @sleb: scanned LEB
550 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
551 * @outofdate: whether the LEB is out of date is returned here
552 * @last_flagged: whether the end orphan node is encountered
554 * This function is a helper to the 'kill_orphans()' function. It goes through
555 * every orphan node in a LEB and for every inode number recorded, removes
556 * all keys for that inode from the TNC.
558 static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
559 unsigned long long *last_cmt_no, int *outofdate,
560 int *last_flagged)
562 struct ubifs_scan_node *snod;
563 struct ubifs_orph_node *orph;
564 unsigned long long cmt_no;
565 ino_t inum;
566 int i, n, err, first = 1;
568 list_for_each_entry(snod, &sleb->nodes, list) {
569 if (snod->type != UBIFS_ORPH_NODE) {
570 ubifs_err("invalid node type %d in orphan area at "
571 "%d:%d", snod->type, sleb->lnum, snod->offs);
572 dbg_dump_node(c, snod->node);
573 return -EINVAL;
576 orph = snod->node;
578 /* Check commit number */
579 cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
581 * The commit number on the master node may be less, because
582 * of a failed commit. If there are several failed commits in a
583 * row, the commit number written on orphan nodes will continue
584 * to increase (because the commit number is adjusted here) even
585 * though the commit number on the master node stays the same
586 * because the master node has not been re-written.
588 if (cmt_no > c->cmt_no)
589 c->cmt_no = cmt_no;
590 if (cmt_no < *last_cmt_no && *last_flagged) {
592 * The last orphan node had a higher commit number and
593 * was flagged as the last written for that commit
594 * number. That makes this orphan node, out of date.
596 if (!first) {
597 ubifs_err("out of order commit number %llu in "
598 "orphan node at %d:%d",
599 cmt_no, sleb->lnum, snod->offs);
600 dbg_dump_node(c, snod->node);
601 return -EINVAL;
603 dbg_rcvry("out of date LEB %d", sleb->lnum);
604 *outofdate = 1;
605 return 0;
608 if (first)
609 first = 0;
611 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
612 for (i = 0; i < n; i++) {
613 inum = le64_to_cpu(orph->inos[i]);
614 dbg_rcvry("deleting orphaned inode %lu",
615 (unsigned long)inum);
616 err = ubifs_tnc_remove_ino(c, inum);
617 if (err)
618 return err;
619 err = insert_dead_orphan(c, inum);
620 if (err)
621 return err;
624 *last_cmt_no = cmt_no;
625 if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
626 dbg_rcvry("last orph node for commit %llu at %d:%d",
627 cmt_no, sleb->lnum, snod->offs);
628 *last_flagged = 1;
629 } else
630 *last_flagged = 0;
633 return 0;
637 * kill_orphans - remove all orphan inodes from the index.
638 * @c: UBIFS file-system description object
640 * If recovery is required, then orphan inodes recorded during the previous
641 * session (which ended with an unclean unmount) must be deleted from the index.
642 * This is done by updating the TNC, but since the index is not updated until
643 * the next commit, the LEBs where the orphan information is recorded are not
644 * erased until the next commit.
646 static int kill_orphans(struct ubifs_info *c)
648 unsigned long long last_cmt_no = 0;
649 int lnum, err = 0, outofdate = 0, last_flagged = 0;
651 c->ohead_lnum = c->orph_first;
652 c->ohead_offs = 0;
653 /* Check no-orphans flag and skip this if no orphans */
654 if (c->no_orphs) {
655 dbg_rcvry("no orphans");
656 return 0;
659 * Orph nodes always start at c->orph_first and are written to each
660 * successive LEB in turn. Generally unused LEBs will have been unmapped
661 * but may contain out of date orphan nodes if the unmap didn't go
662 * through. In addition, the last orphan node written for each commit is
663 * marked (top bit of orph->cmt_no is set to 1). It is possible that
664 * there are orphan nodes from the next commit (i.e. the commit did not
665 * complete successfully). In that case, no orphans will have been lost
666 * due to the way that orphans are written, and any orphans added will
667 * be valid orphans anyway and so can be deleted.
669 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
670 struct ubifs_scan_leb *sleb;
672 dbg_rcvry("LEB %d", lnum);
673 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
674 if (IS_ERR(sleb)) {
675 if (PTR_ERR(sleb) == -EUCLEAN)
676 sleb = ubifs_recover_leb(c, lnum, 0, c->sbuf, 0);
677 if (IS_ERR(sleb)) {
678 err = PTR_ERR(sleb);
679 break;
682 err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
683 &last_flagged);
684 if (err || outofdate) {
685 ubifs_scan_destroy(sleb);
686 break;
688 if (sleb->endpt) {
689 c->ohead_lnum = lnum;
690 c->ohead_offs = sleb->endpt;
692 ubifs_scan_destroy(sleb);
694 return err;
698 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
699 * @c: UBIFS file-system description object
700 * @unclean: indicates recovery from unclean unmount
701 * @read_only: indicates read only mount
703 * This function is called when mounting to erase orphans from the previous
704 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
705 * orphans are deleted.
707 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
709 int err = 0;
711 c->max_orphans = tot_avail_orphs(c);
713 if (!read_only) {
714 c->orph_buf = vmalloc(c->leb_size);
715 if (!c->orph_buf)
716 return -ENOMEM;
719 if (unclean)
720 err = kill_orphans(c);
721 else if (!read_only)
722 err = ubifs_clear_orphans(c);
724 return err;
727 #ifdef CONFIG_UBIFS_FS_DEBUG
729 struct check_orphan {
730 struct rb_node rb;
731 ino_t inum;
734 struct check_info {
735 unsigned long last_ino;
736 unsigned long tot_inos;
737 unsigned long missing;
738 unsigned long long leaf_cnt;
739 struct ubifs_ino_node *node;
740 struct rb_root root;
743 static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
745 struct ubifs_orphan *o;
746 struct rb_node *p;
748 spin_lock(&c->orphan_lock);
749 p = c->orph_tree.rb_node;
750 while (p) {
751 o = rb_entry(p, struct ubifs_orphan, rb);
752 if (inum < o->inum)
753 p = p->rb_left;
754 else if (inum > o->inum)
755 p = p->rb_right;
756 else {
757 spin_unlock(&c->orphan_lock);
758 return 1;
761 spin_unlock(&c->orphan_lock);
762 return 0;
765 static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
767 struct check_orphan *orphan, *o;
768 struct rb_node **p, *parent = NULL;
770 orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
771 if (!orphan)
772 return -ENOMEM;
773 orphan->inum = inum;
775 p = &root->rb_node;
776 while (*p) {
777 parent = *p;
778 o = rb_entry(parent, struct check_orphan, rb);
779 if (inum < o->inum)
780 p = &(*p)->rb_left;
781 else if (inum > o->inum)
782 p = &(*p)->rb_right;
783 else {
784 kfree(orphan);
785 return 0;
788 rb_link_node(&orphan->rb, parent, p);
789 rb_insert_color(&orphan->rb, root);
790 return 0;
793 static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
795 struct check_orphan *o;
796 struct rb_node *p;
798 p = root->rb_node;
799 while (p) {
800 o = rb_entry(p, struct check_orphan, rb);
801 if (inum < o->inum)
802 p = p->rb_left;
803 else if (inum > o->inum)
804 p = p->rb_right;
805 else
806 return 1;
808 return 0;
811 static void dbg_free_check_tree(struct rb_root *root)
813 struct rb_node *this = root->rb_node;
814 struct check_orphan *o;
816 while (this) {
817 if (this->rb_left) {
818 this = this->rb_left;
819 continue;
820 } else if (this->rb_right) {
821 this = this->rb_right;
822 continue;
824 o = rb_entry(this, struct check_orphan, rb);
825 this = rb_parent(this);
826 if (this) {
827 if (this->rb_left == &o->rb)
828 this->rb_left = NULL;
829 else
830 this->rb_right = NULL;
832 kfree(o);
836 static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
837 void *priv)
839 struct check_info *ci = priv;
840 ino_t inum;
841 int err;
843 inum = key_inum(c, &zbr->key);
844 if (inum != ci->last_ino) {
845 /* Lowest node type is the inode node, so it comes first */
846 if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
847 ubifs_err("found orphan node ino %lu, type %d",
848 (unsigned long)inum, key_type(c, &zbr->key));
849 ci->last_ino = inum;
850 ci->tot_inos += 1;
851 err = ubifs_tnc_read_node(c, zbr, ci->node);
852 if (err) {
853 ubifs_err("node read failed, error %d", err);
854 return err;
856 if (ci->node->nlink == 0)
857 /* Must be recorded as an orphan */
858 if (!dbg_find_check_orphan(&ci->root, inum) &&
859 !dbg_find_orphan(c, inum)) {
860 ubifs_err("missing orphan, ino %lu",
861 (unsigned long)inum);
862 ci->missing += 1;
865 ci->leaf_cnt += 1;
866 return 0;
869 static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
871 struct ubifs_scan_node *snod;
872 struct ubifs_orph_node *orph;
873 ino_t inum;
874 int i, n, err;
876 list_for_each_entry(snod, &sleb->nodes, list) {
877 cond_resched();
878 if (snod->type != UBIFS_ORPH_NODE)
879 continue;
880 orph = snod->node;
881 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
882 for (i = 0; i < n; i++) {
883 inum = le64_to_cpu(orph->inos[i]);
884 err = dbg_ins_check_orphan(&ci->root, inum);
885 if (err)
886 return err;
889 return 0;
892 static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
894 int lnum, err = 0;
896 /* Check no-orphans flag and skip this if no orphans */
897 if (c->no_orphs)
898 return 0;
900 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
901 struct ubifs_scan_leb *sleb;
903 sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
904 if (IS_ERR(sleb)) {
905 err = PTR_ERR(sleb);
906 break;
909 err = dbg_read_orphans(ci, sleb);
910 ubifs_scan_destroy(sleb);
911 if (err)
912 break;
915 return err;
918 static int dbg_check_orphans(struct ubifs_info *c)
920 struct check_info ci;
921 int err;
923 if (!(ubifs_chk_flags & UBIFS_CHK_ORPH))
924 return 0;
926 ci.last_ino = 0;
927 ci.tot_inos = 0;
928 ci.missing = 0;
929 ci.leaf_cnt = 0;
930 ci.root = RB_ROOT;
931 ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
932 if (!ci.node) {
933 ubifs_err("out of memory");
934 return -ENOMEM;
937 err = dbg_scan_orphans(c, &ci);
938 if (err)
939 goto out;
941 err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
942 if (err) {
943 ubifs_err("cannot scan TNC, error %d", err);
944 goto out;
947 if (ci.missing) {
948 ubifs_err("%lu missing orphan(s)", ci.missing);
949 err = -EINVAL;
950 goto out;
953 dbg_cmt("last inode number is %lu", ci.last_ino);
954 dbg_cmt("total number of inodes is %lu", ci.tot_inos);
955 dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
957 out:
958 dbg_free_check_tree(&ci.root);
959 kfree(ci.node);
960 return err;
963 #endif /* CONFIG_UBIFS_FS_DEBUG */