2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_log_priv.h"
42 #include "xfs_buf_item.h"
43 #include "xfs_log_recover.h"
44 #include "xfs_extfree_item.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_quota.h"
48 #include "xfs_utils.h"
50 STATIC
int xlog_find_zeroed(xlog_t
*, xfs_daddr_t
*);
51 STATIC
int xlog_clear_stale_blocks(xlog_t
*, xfs_lsn_t
);
52 STATIC
void xlog_recover_insert_item_backq(xlog_recover_item_t
**q
,
53 xlog_recover_item_t
*item
);
55 STATIC
void xlog_recover_check_summary(xlog_t
*);
57 #define xlog_recover_check_summary(log)
62 * Sector aligned buffer routines for buffer create/read/write/access
65 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
66 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
67 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
68 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
75 if (nbblks
<= 0 || nbblks
> log
->l_logBBsize
) {
76 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks
);
77 XFS_ERROR_REPORT("xlog_get_bp(1)",
78 XFS_ERRLEVEL_HIGH
, log
->l_mp
);
82 if (log
->l_sectbb_log
) {
84 nbblks
+= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, 1);
85 nbblks
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, nbblks
);
87 return xfs_buf_get_noaddr(BBTOB(nbblks
), log
->l_mp
->m_logdev_targp
);
99 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
110 if (nbblks
<= 0 || nbblks
> log
->l_logBBsize
) {
111 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks
);
112 XFS_ERROR_REPORT("xlog_bread(1)",
113 XFS_ERRLEVEL_HIGH
, log
->l_mp
);
117 if (log
->l_sectbb_log
) {
118 blk_no
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, blk_no
);
119 nbblks
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, nbblks
);
123 ASSERT(BBTOB(nbblks
) <= XFS_BUF_SIZE(bp
));
126 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
129 XFS_BUF_SET_COUNT(bp
, BBTOB(nbblks
));
130 XFS_BUF_SET_TARGET(bp
, log
->l_mp
->m_logdev_targp
);
132 xfsbdstrat(log
->l_mp
, bp
);
133 error
= xfs_iowait(bp
);
135 xfs_ioerror_alert("xlog_bread", log
->l_mp
,
136 bp
, XFS_BUF_ADDR(bp
));
141 * Write out the buffer at the given block for the given number of blocks.
142 * The buffer is kept locked across the write and is returned locked.
143 * This can only be used for synchronous log writes.
154 if (nbblks
<= 0 || nbblks
> log
->l_logBBsize
) {
155 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks
);
156 XFS_ERROR_REPORT("xlog_bwrite(1)",
157 XFS_ERRLEVEL_HIGH
, log
->l_mp
);
161 if (log
->l_sectbb_log
) {
162 blk_no
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, blk_no
);
163 nbblks
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, nbblks
);
167 ASSERT(BBTOB(nbblks
) <= XFS_BUF_SIZE(bp
));
169 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
170 XFS_BUF_ZEROFLAGS(bp
);
173 XFS_BUF_PSEMA(bp
, PRIBIO
);
174 XFS_BUF_SET_COUNT(bp
, BBTOB(nbblks
));
175 XFS_BUF_SET_TARGET(bp
, log
->l_mp
->m_logdev_targp
);
177 if ((error
= xfs_bwrite(log
->l_mp
, bp
)))
178 xfs_ioerror_alert("xlog_bwrite", log
->l_mp
,
179 bp
, XFS_BUF_ADDR(bp
));
192 if (!log
->l_sectbb_log
)
193 return XFS_BUF_PTR(bp
);
195 ptr
= XFS_BUF_PTR(bp
) + BBTOB((int)blk_no
& log
->l_sectbb_mask
);
196 ASSERT(XFS_BUF_SIZE(bp
) >=
197 BBTOB(nbblks
+ (blk_no
& log
->l_sectbb_mask
)));
203 * dump debug superblock and log record information
206 xlog_header_check_dump(
208 xlog_rec_header_t
*head
)
212 cmn_err(CE_DEBUG
, "%s: SB : uuid = ", __func__
);
213 for (b
= 0; b
< 16; b
++)
214 cmn_err(CE_DEBUG
, "%02x", ((uchar_t
*)&mp
->m_sb
.sb_uuid
)[b
]);
215 cmn_err(CE_DEBUG
, ", fmt = %d\n", XLOG_FMT
);
216 cmn_err(CE_DEBUG
, " log : uuid = ");
217 for (b
= 0; b
< 16; b
++)
218 cmn_err(CE_DEBUG
, "%02x",((uchar_t
*)&head
->h_fs_uuid
)[b
]);
219 cmn_err(CE_DEBUG
, ", fmt = %d\n", be32_to_cpu(head
->h_fmt
));
222 #define xlog_header_check_dump(mp, head)
226 * check log record header for recovery
229 xlog_header_check_recover(
231 xlog_rec_header_t
*head
)
233 ASSERT(be32_to_cpu(head
->h_magicno
) == XLOG_HEADER_MAGIC_NUM
);
236 * IRIX doesn't write the h_fmt field and leaves it zeroed
237 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
238 * a dirty log created in IRIX.
240 if (unlikely(be32_to_cpu(head
->h_fmt
) != XLOG_FMT
)) {
242 "XFS: dirty log written in incompatible format - can't recover");
243 xlog_header_check_dump(mp
, head
);
244 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
245 XFS_ERRLEVEL_HIGH
, mp
);
246 return XFS_ERROR(EFSCORRUPTED
);
247 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
249 "XFS: dirty log entry has mismatched uuid - can't recover");
250 xlog_header_check_dump(mp
, head
);
251 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
252 XFS_ERRLEVEL_HIGH
, mp
);
253 return XFS_ERROR(EFSCORRUPTED
);
259 * read the head block of the log and check the header
262 xlog_header_check_mount(
264 xlog_rec_header_t
*head
)
266 ASSERT(be32_to_cpu(head
->h_magicno
) == XLOG_HEADER_MAGIC_NUM
);
268 if (uuid_is_nil(&head
->h_fs_uuid
)) {
270 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
271 * h_fs_uuid is nil, we assume this log was last mounted
272 * by IRIX and continue.
274 xlog_warn("XFS: nil uuid in log - IRIX style log");
275 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
276 xlog_warn("XFS: log has mismatched uuid - can't recover");
277 xlog_header_check_dump(mp
, head
);
278 XFS_ERROR_REPORT("xlog_header_check_mount",
279 XFS_ERRLEVEL_HIGH
, mp
);
280 return XFS_ERROR(EFSCORRUPTED
);
289 if (XFS_BUF_GETERROR(bp
)) {
291 * We're not going to bother about retrying
292 * this during recovery. One strike!
294 xfs_ioerror_alert("xlog_recover_iodone",
295 bp
->b_mount
, bp
, XFS_BUF_ADDR(bp
));
296 xfs_force_shutdown(bp
->b_mount
, SHUTDOWN_META_IO_ERROR
);
299 XFS_BUF_CLR_IODONE_FUNC(bp
);
304 * This routine finds (to an approximation) the first block in the physical
305 * log which contains the given cycle. It uses a binary search algorithm.
306 * Note that the algorithm can not be perfect because the disk will not
307 * necessarily be perfect.
310 xlog_find_cycle_start(
313 xfs_daddr_t first_blk
,
314 xfs_daddr_t
*last_blk
,
322 mid_blk
= BLK_AVG(first_blk
, *last_blk
);
323 while (mid_blk
!= first_blk
&& mid_blk
!= *last_blk
) {
324 if ((error
= xlog_bread(log
, mid_blk
, 1, bp
)))
326 offset
= xlog_align(log
, mid_blk
, 1, bp
);
327 mid_cycle
= xlog_get_cycle(offset
);
328 if (mid_cycle
== cycle
) {
330 /* last_half_cycle == mid_cycle */
333 /* first_half_cycle == mid_cycle */
335 mid_blk
= BLK_AVG(first_blk
, *last_blk
);
337 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == *last_blk
) ||
338 (mid_blk
== *last_blk
&& mid_blk
-1 == first_blk
));
344 * Check that the range of blocks does not contain the cycle number
345 * given. The scan needs to occur from front to back and the ptr into the
346 * region must be updated since a later routine will need to perform another
347 * test. If the region is completely good, we end up returning the same
350 * Set blkno to -1 if we encounter no errors. This is an invalid block number
351 * since we don't ever expect logs to get this large.
354 xlog_find_verify_cycle(
356 xfs_daddr_t start_blk
,
358 uint stop_on_cycle_no
,
359 xfs_daddr_t
*new_blk
)
365 xfs_caddr_t buf
= NULL
;
368 bufblks
= 1 << ffs(nbblks
);
370 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
371 /* can't get enough memory to do everything in one big buffer */
373 if (bufblks
<= log
->l_sectbb_log
)
377 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
380 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
382 if ((error
= xlog_bread(log
, i
, bcount
, bp
)))
385 buf
= xlog_align(log
, i
, bcount
, bp
);
386 for (j
= 0; j
< bcount
; j
++) {
387 cycle
= xlog_get_cycle(buf
);
388 if (cycle
== stop_on_cycle_no
) {
405 * Potentially backup over partial log record write.
407 * In the typical case, last_blk is the number of the block directly after
408 * a good log record. Therefore, we subtract one to get the block number
409 * of the last block in the given buffer. extra_bblks contains the number
410 * of blocks we would have read on a previous read. This happens when the
411 * last log record is split over the end of the physical log.
413 * extra_bblks is the number of blocks potentially verified on a previous
414 * call to this routine.
417 xlog_find_verify_log_record(
419 xfs_daddr_t start_blk
,
420 xfs_daddr_t
*last_blk
,
425 xfs_caddr_t offset
= NULL
;
426 xlog_rec_header_t
*head
= NULL
;
429 int num_blks
= *last_blk
- start_blk
;
432 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
434 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
435 if (!(bp
= xlog_get_bp(log
, 1)))
439 if ((error
= xlog_bread(log
, start_blk
, num_blks
, bp
)))
441 offset
= xlog_align(log
, start_blk
, num_blks
, bp
);
442 offset
+= ((num_blks
- 1) << BBSHIFT
);
445 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
447 /* valid log record not found */
449 "XFS: Log inconsistent (didn't find previous header)");
451 error
= XFS_ERROR(EIO
);
456 if ((error
= xlog_bread(log
, i
, 1, bp
)))
458 offset
= xlog_align(log
, i
, 1, bp
);
461 head
= (xlog_rec_header_t
*)offset
;
463 if (XLOG_HEADER_MAGIC_NUM
== be32_to_cpu(head
->h_magicno
))
471 * We hit the beginning of the physical log & still no header. Return
472 * to caller. If caller can handle a return of -1, then this routine
473 * will be called again for the end of the physical log.
481 * We have the final block of the good log (the first block
482 * of the log record _before_ the head. So we check the uuid.
484 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
488 * We may have found a log record header before we expected one.
489 * last_blk will be the 1st block # with a given cycle #. We may end
490 * up reading an entire log record. In this case, we don't want to
491 * reset last_blk. Only when last_blk points in the middle of a log
492 * record do we update last_blk.
494 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
495 uint h_size
= be32_to_cpu(head
->h_size
);
497 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
498 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
504 if (*last_blk
- i
+ extra_bblks
!=
505 BTOBB(be32_to_cpu(head
->h_len
)) + xhdrs
)
514 * Head is defined to be the point of the log where the next log write
515 * write could go. This means that incomplete LR writes at the end are
516 * eliminated when calculating the head. We aren't guaranteed that previous
517 * LR have complete transactions. We only know that a cycle number of
518 * current cycle number -1 won't be present in the log if we start writing
519 * from our current block number.
521 * last_blk contains the block number of the first block with a given
524 * Return: zero if normal, non-zero if error.
529 xfs_daddr_t
*return_head_blk
)
533 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
535 uint first_half_cycle
, last_half_cycle
;
537 int error
, log_bbnum
= log
->l_logBBsize
;
539 /* Is the end of the log device zeroed? */
540 if ((error
= xlog_find_zeroed(log
, &first_blk
)) == -1) {
541 *return_head_blk
= first_blk
;
543 /* Is the whole lot zeroed? */
545 /* Linux XFS shouldn't generate totally zeroed logs -
546 * mkfs etc write a dummy unmount record to a fresh
547 * log so we can store the uuid in there
549 xlog_warn("XFS: totally zeroed log");
554 xlog_warn("XFS: empty log check failed");
558 first_blk
= 0; /* get cycle # of 1st block */
559 bp
= xlog_get_bp(log
, 1);
562 if ((error
= xlog_bread(log
, 0, 1, bp
)))
564 offset
= xlog_align(log
, 0, 1, bp
);
565 first_half_cycle
= xlog_get_cycle(offset
);
567 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
568 if ((error
= xlog_bread(log
, last_blk
, 1, bp
)))
570 offset
= xlog_align(log
, last_blk
, 1, bp
);
571 last_half_cycle
= xlog_get_cycle(offset
);
572 ASSERT(last_half_cycle
!= 0);
575 * If the 1st half cycle number is equal to the last half cycle number,
576 * then the entire log is stamped with the same cycle number. In this
577 * case, head_blk can't be set to zero (which makes sense). The below
578 * math doesn't work out properly with head_blk equal to zero. Instead,
579 * we set it to log_bbnum which is an invalid block number, but this
580 * value makes the math correct. If head_blk doesn't changed through
581 * all the tests below, *head_blk is set to zero at the very end rather
582 * than log_bbnum. In a sense, log_bbnum and zero are the same block
583 * in a circular file.
585 if (first_half_cycle
== last_half_cycle
) {
587 * In this case we believe that the entire log should have
588 * cycle number last_half_cycle. We need to scan backwards
589 * from the end verifying that there are no holes still
590 * containing last_half_cycle - 1. If we find such a hole,
591 * then the start of that hole will be the new head. The
592 * simple case looks like
593 * x | x ... | x - 1 | x
594 * Another case that fits this picture would be
595 * x | x + 1 | x ... | x
596 * In this case the head really is somewhere at the end of the
597 * log, as one of the latest writes at the beginning was
600 * x | x + 1 | x ... | x - 1 | x
601 * This is really the combination of the above two cases, and
602 * the head has to end up at the start of the x-1 hole at the
605 * In the 256k log case, we will read from the beginning to the
606 * end of the log and search for cycle numbers equal to x-1.
607 * We don't worry about the x+1 blocks that we encounter,
608 * because we know that they cannot be the head since the log
611 head_blk
= log_bbnum
;
612 stop_on_cycle
= last_half_cycle
- 1;
615 * In this case we want to find the first block with cycle
616 * number matching last_half_cycle. We expect the log to be
619 * The first block with cycle number x (last_half_cycle) will
620 * be where the new head belongs. First we do a binary search
621 * for the first occurrence of last_half_cycle. The binary
622 * search may not be totally accurate, so then we scan back
623 * from there looking for occurrences of last_half_cycle before
624 * us. If that backwards scan wraps around the beginning of
625 * the log, then we look for occurrences of last_half_cycle - 1
626 * at the end of the log. The cases we're looking for look
628 * x + 1 ... | x | x + 1 | x ...
629 * ^ binary search stopped here
631 * x + 1 ... | x ... | x - 1 | x
632 * <---------> less than scan distance
634 stop_on_cycle
= last_half_cycle
;
635 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
636 &head_blk
, last_half_cycle
)))
641 * Now validate the answer. Scan back some number of maximum possible
642 * blocks and make sure each one has the expected cycle number. The
643 * maximum is determined by the total possible amount of buffering
644 * in the in-core log. The following number can be made tighter if
645 * we actually look at the block size of the filesystem.
647 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
648 if (head_blk
>= num_scan_bblks
) {
650 * We are guaranteed that the entire check can be performed
653 start_blk
= head_blk
- num_scan_bblks
;
654 if ((error
= xlog_find_verify_cycle(log
,
655 start_blk
, num_scan_bblks
,
656 stop_on_cycle
, &new_blk
)))
660 } else { /* need to read 2 parts of log */
662 * We are going to scan backwards in the log in two parts.
663 * First we scan the physical end of the log. In this part
664 * of the log, we are looking for blocks with cycle number
665 * last_half_cycle - 1.
666 * If we find one, then we know that the log starts there, as
667 * we've found a hole that didn't get written in going around
668 * the end of the physical log. The simple case for this is
669 * x + 1 ... | x ... | x - 1 | x
670 * <---------> less than scan distance
671 * If all of the blocks at the end of the log have cycle number
672 * last_half_cycle, then we check the blocks at the start of
673 * the log looking for occurrences of last_half_cycle. If we
674 * find one, then our current estimate for the location of the
675 * first occurrence of last_half_cycle is wrong and we move
676 * back to the hole we've found. This case looks like
677 * x + 1 ... | x | x + 1 | x ...
678 * ^ binary search stopped here
679 * Another case we need to handle that only occurs in 256k
681 * x + 1 ... | x ... | x+1 | x ...
682 * ^ binary search stops here
683 * In a 256k log, the scan at the end of the log will see the
684 * x + 1 blocks. We need to skip past those since that is
685 * certainly not the head of the log. By searching for
686 * last_half_cycle-1 we accomplish that.
688 start_blk
= log_bbnum
- num_scan_bblks
+ head_blk
;
689 ASSERT(head_blk
<= INT_MAX
&&
690 (xfs_daddr_t
) num_scan_bblks
- head_blk
>= 0);
691 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
692 num_scan_bblks
- (int)head_blk
,
693 (stop_on_cycle
- 1), &new_blk
)))
701 * Scan beginning of log now. The last part of the physical
702 * log is good. This scan needs to verify that it doesn't find
703 * the last_half_cycle.
706 ASSERT(head_blk
<= INT_MAX
);
707 if ((error
= xlog_find_verify_cycle(log
,
708 start_blk
, (int)head_blk
,
709 stop_on_cycle
, &new_blk
)))
717 * Now we need to make sure head_blk is not pointing to a block in
718 * the middle of a log record.
720 num_scan_bblks
= XLOG_REC_SHIFT(log
);
721 if (head_blk
>= num_scan_bblks
) {
722 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
724 /* start ptr at last block ptr before head_blk */
725 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
726 &head_blk
, 0)) == -1) {
727 error
= XFS_ERROR(EIO
);
733 ASSERT(head_blk
<= INT_MAX
);
734 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
735 &head_blk
, 0)) == -1) {
736 /* We hit the beginning of the log during our search */
737 start_blk
= log_bbnum
- num_scan_bblks
+ head_blk
;
739 ASSERT(start_blk
<= INT_MAX
&&
740 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
741 ASSERT(head_blk
<= INT_MAX
);
742 if ((error
= xlog_find_verify_log_record(log
,
744 (int)head_blk
)) == -1) {
745 error
= XFS_ERROR(EIO
);
749 if (new_blk
!= log_bbnum
)
756 if (head_blk
== log_bbnum
)
757 *return_head_blk
= 0;
759 *return_head_blk
= head_blk
;
761 * When returning here, we have a good block number. Bad block
762 * means that during a previous crash, we didn't have a clean break
763 * from cycle number N to cycle number N-1. In this case, we need
764 * to find the first block with cycle number N-1.
772 xlog_warn("XFS: failed to find log head");
777 * Find the sync block number or the tail of the log.
779 * This will be the block number of the last record to have its
780 * associated buffers synced to disk. Every log record header has
781 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
782 * to get a sync block number. The only concern is to figure out which
783 * log record header to believe.
785 * The following algorithm uses the log record header with the largest
786 * lsn. The entire log record does not need to be valid. We only care
787 * that the header is valid.
789 * We could speed up search by using current head_blk buffer, but it is not
795 xfs_daddr_t
*head_blk
,
796 xfs_daddr_t
*tail_blk
)
798 xlog_rec_header_t
*rhead
;
799 xlog_op_header_t
*op_head
;
800 xfs_caddr_t offset
= NULL
;
803 xfs_daddr_t umount_data_blk
;
804 xfs_daddr_t after_umount_blk
;
811 * Find previous log record
813 if ((error
= xlog_find_head(log
, head_blk
)))
816 bp
= xlog_get_bp(log
, 1);
819 if (*head_blk
== 0) { /* special case */
820 if ((error
= xlog_bread(log
, 0, 1, bp
)))
822 offset
= xlog_align(log
, 0, 1, bp
);
823 if (xlog_get_cycle(offset
) == 0) {
825 /* leave all other log inited values alone */
831 * Search backwards looking for log record header block
833 ASSERT(*head_blk
< INT_MAX
);
834 for (i
= (int)(*head_blk
) - 1; i
>= 0; i
--) {
835 if ((error
= xlog_bread(log
, i
, 1, bp
)))
837 offset
= xlog_align(log
, i
, 1, bp
);
838 if (XLOG_HEADER_MAGIC_NUM
== be32_to_cpu(*(__be32
*)offset
)) {
844 * If we haven't found the log record header block, start looking
845 * again from the end of the physical log. XXXmiken: There should be
846 * a check here to make sure we didn't search more than N blocks in
850 for (i
= log
->l_logBBsize
- 1; i
>= (int)(*head_blk
); i
--) {
851 if ((error
= xlog_bread(log
, i
, 1, bp
)))
853 offset
= xlog_align(log
, i
, 1, bp
);
854 if (XLOG_HEADER_MAGIC_NUM
==
855 be32_to_cpu(*(__be32
*)offset
)) {
862 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
864 return XFS_ERROR(EIO
);
867 /* find blk_no of tail of log */
868 rhead
= (xlog_rec_header_t
*)offset
;
869 *tail_blk
= BLOCK_LSN(be64_to_cpu(rhead
->h_tail_lsn
));
872 * Reset log values according to the state of the log when we
873 * crashed. In the case where head_blk == 0, we bump curr_cycle
874 * one because the next write starts a new cycle rather than
875 * continuing the cycle of the last good log record. At this
876 * point we have guaranteed that all partial log records have been
877 * accounted for. Therefore, we know that the last good log record
878 * written was complete and ended exactly on the end boundary
879 * of the physical log.
881 log
->l_prev_block
= i
;
882 log
->l_curr_block
= (int)*head_blk
;
883 log
->l_curr_cycle
= be32_to_cpu(rhead
->h_cycle
);
886 log
->l_tail_lsn
= be64_to_cpu(rhead
->h_tail_lsn
);
887 log
->l_last_sync_lsn
= be64_to_cpu(rhead
->h_lsn
);
888 log
->l_grant_reserve_cycle
= log
->l_curr_cycle
;
889 log
->l_grant_reserve_bytes
= BBTOB(log
->l_curr_block
);
890 log
->l_grant_write_cycle
= log
->l_curr_cycle
;
891 log
->l_grant_write_bytes
= BBTOB(log
->l_curr_block
);
894 * Look for unmount record. If we find it, then we know there
895 * was a clean unmount. Since 'i' could be the last block in
896 * the physical log, we convert to a log block before comparing
899 * Save the current tail lsn to use to pass to
900 * xlog_clear_stale_blocks() below. We won't want to clear the
901 * unmount record if there is one, so we pass the lsn of the
902 * unmount record rather than the block after it.
904 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
905 int h_size
= be32_to_cpu(rhead
->h_size
);
906 int h_version
= be32_to_cpu(rhead
->h_version
);
908 if ((h_version
& XLOG_VERSION_2
) &&
909 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
910 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
911 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
919 after_umount_blk
= (i
+ hblks
+ (int)
920 BTOBB(be32_to_cpu(rhead
->h_len
))) % log
->l_logBBsize
;
921 tail_lsn
= log
->l_tail_lsn
;
922 if (*head_blk
== after_umount_blk
&&
923 be32_to_cpu(rhead
->h_num_logops
) == 1) {
924 umount_data_blk
= (i
+ hblks
) % log
->l_logBBsize
;
925 if ((error
= xlog_bread(log
, umount_data_blk
, 1, bp
))) {
928 offset
= xlog_align(log
, umount_data_blk
, 1, bp
);
929 op_head
= (xlog_op_header_t
*)offset
;
930 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
932 * Set tail and last sync so that newly written
933 * log records will point recovery to after the
934 * current unmount record.
937 xlog_assign_lsn(log
->l_curr_cycle
,
939 log
->l_last_sync_lsn
=
940 xlog_assign_lsn(log
->l_curr_cycle
,
942 *tail_blk
= after_umount_blk
;
945 * Note that the unmount was clean. If the unmount
946 * was not clean, we need to know this to rebuild the
947 * superblock counters from the perag headers if we
948 * have a filesystem using non-persistent counters.
950 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
955 * Make sure that there are no blocks in front of the head
956 * with the same cycle number as the head. This can happen
957 * because we allow multiple outstanding log writes concurrently,
958 * and the later writes might make it out before earlier ones.
960 * We use the lsn from before modifying it so that we'll never
961 * overwrite the unmount record after a clean unmount.
963 * Do this only if we are going to recover the filesystem
965 * NOTE: This used to say "if (!readonly)"
966 * However on Linux, we can & do recover a read-only filesystem.
967 * We only skip recovery if NORECOVERY is specified on mount,
968 * in which case we would not be here.
970 * But... if the -device- itself is readonly, just skip this.
971 * We can't recover this device anyway, so it won't matter.
973 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
)) {
974 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
982 xlog_warn("XFS: failed to locate log tail");
987 * Is the log zeroed at all?
989 * The last binary search should be changed to perform an X block read
990 * once X becomes small enough. You can then search linearly through
991 * the X blocks. This will cut down on the number of reads we need to do.
993 * If the log is partially zeroed, this routine will pass back the blkno
994 * of the first block with cycle number 0. It won't have a complete LR
998 * 0 => the log is completely written to
999 * -1 => use *blk_no as the first block of the log
1000 * >0 => error has occurred
1005 xfs_daddr_t
*blk_no
)
1009 uint first_cycle
, last_cycle
;
1010 xfs_daddr_t new_blk
, last_blk
, start_blk
;
1011 xfs_daddr_t num_scan_bblks
;
1012 int error
, log_bbnum
= log
->l_logBBsize
;
1016 /* check totally zeroed log */
1017 bp
= xlog_get_bp(log
, 1);
1020 if ((error
= xlog_bread(log
, 0, 1, bp
)))
1022 offset
= xlog_align(log
, 0, 1, bp
);
1023 first_cycle
= xlog_get_cycle(offset
);
1024 if (first_cycle
== 0) { /* completely zeroed log */
1030 /* check partially zeroed log */
1031 if ((error
= xlog_bread(log
, log_bbnum
-1, 1, bp
)))
1033 offset
= xlog_align(log
, log_bbnum
-1, 1, bp
);
1034 last_cycle
= xlog_get_cycle(offset
);
1035 if (last_cycle
!= 0) { /* log completely written to */
1038 } else if (first_cycle
!= 1) {
1040 * If the cycle of the last block is zero, the cycle of
1041 * the first block must be 1. If it's not, maybe we're
1042 * not looking at a log... Bail out.
1044 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1045 return XFS_ERROR(EINVAL
);
1048 /* we have a partially zeroed log */
1049 last_blk
= log_bbnum
-1;
1050 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1054 * Validate the answer. Because there is no way to guarantee that
1055 * the entire log is made up of log records which are the same size,
1056 * we scan over the defined maximum blocks. At this point, the maximum
1057 * is not chosen to mean anything special. XXXmiken
1059 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1060 ASSERT(num_scan_bblks
<= INT_MAX
);
1062 if (last_blk
< num_scan_bblks
)
1063 num_scan_bblks
= last_blk
;
1064 start_blk
= last_blk
- num_scan_bblks
;
1067 * We search for any instances of cycle number 0 that occur before
1068 * our current estimate of the head. What we're trying to detect is
1069 * 1 ... | 0 | 1 | 0...
1070 * ^ binary search ends here
1072 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1073 (int)num_scan_bblks
, 0, &new_blk
)))
1079 * Potentially backup over partial log record write. We don't need
1080 * to search the end of the log because we know it is zero.
1082 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
1083 &last_blk
, 0)) == -1) {
1084 error
= XFS_ERROR(EIO
);
1098 * These are simple subroutines used by xlog_clear_stale_blocks() below
1099 * to initialize a buffer full of empty log record headers and write
1100 * them into the log.
1111 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1113 memset(buf
, 0, BBSIZE
);
1114 recp
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1115 recp
->h_cycle
= cpu_to_be32(cycle
);
1116 recp
->h_version
= cpu_to_be32(
1117 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1118 recp
->h_lsn
= cpu_to_be64(xlog_assign_lsn(cycle
, block
));
1119 recp
->h_tail_lsn
= cpu_to_be64(xlog_assign_lsn(tail_cycle
, tail_block
));
1120 recp
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1121 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1125 xlog_write_log_records(
1136 int sectbb
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, 1);
1137 int end_block
= start_block
+ blocks
;
1142 bufblks
= 1 << ffs(blocks
);
1143 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1145 if (bufblks
<= log
->l_sectbb_log
)
1149 /* We may need to do a read at the start to fill in part of
1150 * the buffer in the starting sector not covered by the first
1153 balign
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, start_block
);
1154 if (balign
!= start_block
) {
1155 if ((error
= xlog_bread(log
, start_block
, 1, bp
))) {
1159 j
= start_block
- balign
;
1162 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1163 int bcount
, endcount
;
1165 bcount
= min(bufblks
, end_block
- start_block
);
1166 endcount
= bcount
- j
;
1168 /* We may need to do a read at the end to fill in part of
1169 * the buffer in the final sector not covered by the write.
1170 * If this is the same sector as the above read, skip it.
1172 ealign
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, end_block
);
1173 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1174 offset
= XFS_BUF_PTR(bp
);
1175 balign
= BBTOB(ealign
- start_block
);
1176 error
= XFS_BUF_SET_PTR(bp
, offset
+ balign
,
1179 error
= xlog_bread(log
, ealign
, sectbb
, bp
);
1181 error
= XFS_BUF_SET_PTR(bp
, offset
, bufblks
);
1186 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1187 for (; j
< endcount
; j
++) {
1188 xlog_add_record(log
, offset
, cycle
, i
+j
,
1189 tail_cycle
, tail_block
);
1192 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1195 start_block
+= endcount
;
1203 * This routine is called to blow away any incomplete log writes out
1204 * in front of the log head. We do this so that we won't become confused
1205 * if we come up, write only a little bit more, and then crash again.
1206 * If we leave the partial log records out there, this situation could
1207 * cause us to think those partial writes are valid blocks since they
1208 * have the current cycle number. We get rid of them by overwriting them
1209 * with empty log records with the old cycle number rather than the
1212 * The tail lsn is passed in rather than taken from
1213 * the log so that we will not write over the unmount record after a
1214 * clean unmount in a 512 block log. Doing so would leave the log without
1215 * any valid log records in it until a new one was written. If we crashed
1216 * during that time we would not be able to recover.
1219 xlog_clear_stale_blocks(
1223 int tail_cycle
, head_cycle
;
1224 int tail_block
, head_block
;
1225 int tail_distance
, max_distance
;
1229 tail_cycle
= CYCLE_LSN(tail_lsn
);
1230 tail_block
= BLOCK_LSN(tail_lsn
);
1231 head_cycle
= log
->l_curr_cycle
;
1232 head_block
= log
->l_curr_block
;
1235 * Figure out the distance between the new head of the log
1236 * and the tail. We want to write over any blocks beyond the
1237 * head that we may have written just before the crash, but
1238 * we don't want to overwrite the tail of the log.
1240 if (head_cycle
== tail_cycle
) {
1242 * The tail is behind the head in the physical log,
1243 * so the distance from the head to the tail is the
1244 * distance from the head to the end of the log plus
1245 * the distance from the beginning of the log to the
1248 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1249 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1250 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1251 return XFS_ERROR(EFSCORRUPTED
);
1253 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1256 * The head is behind the tail in the physical log,
1257 * so the distance from the head to the tail is just
1258 * the tail block minus the head block.
1260 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1261 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1262 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1263 return XFS_ERROR(EFSCORRUPTED
);
1265 tail_distance
= tail_block
- head_block
;
1269 * If the head is right up against the tail, we can't clear
1272 if (tail_distance
<= 0) {
1273 ASSERT(tail_distance
== 0);
1277 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1279 * Take the smaller of the maximum amount of outstanding I/O
1280 * we could have and the distance to the tail to clear out.
1281 * We take the smaller so that we don't overwrite the tail and
1282 * we don't waste all day writing from the head to the tail
1285 max_distance
= MIN(max_distance
, tail_distance
);
1287 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1289 * We can stomp all the blocks we need to without
1290 * wrapping around the end of the log. Just do it
1291 * in a single write. Use the cycle number of the
1292 * current cycle minus one so that the log will look like:
1295 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1296 head_block
, max_distance
, tail_cycle
,
1302 * We need to wrap around the end of the physical log in
1303 * order to clear all the blocks. Do it in two separate
1304 * I/Os. The first write should be from the head to the
1305 * end of the physical log, and it should use the current
1306 * cycle number minus one just like above.
1308 distance
= log
->l_logBBsize
- head_block
;
1309 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1310 head_block
, distance
, tail_cycle
,
1317 * Now write the blocks at the start of the physical log.
1318 * This writes the remainder of the blocks we want to clear.
1319 * It uses the current cycle number since we're now on the
1320 * same cycle as the head so that we get:
1321 * n ... n ... | n - 1 ...
1322 * ^^^^^ blocks we're writing
1324 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1325 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1326 tail_cycle
, tail_block
);
1334 /******************************************************************************
1336 * Log recover routines
1338 ******************************************************************************
1341 STATIC xlog_recover_t
*
1342 xlog_recover_find_tid(
1346 xlog_recover_t
*p
= q
;
1349 if (p
->r_log_tid
== tid
)
1357 xlog_recover_put_hashq(
1359 xlog_recover_t
*trans
)
1366 xlog_recover_add_item(
1367 xlog_recover_item_t
**itemq
)
1369 xlog_recover_item_t
*item
;
1371 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
1372 xlog_recover_insert_item_backq(itemq
, item
);
1376 xlog_recover_add_to_cont_trans(
1377 xlog_recover_t
*trans
,
1381 xlog_recover_item_t
*item
;
1382 xfs_caddr_t ptr
, old_ptr
;
1385 item
= trans
->r_itemq
;
1387 /* finish copying rest of trans header */
1388 xlog_recover_add_item(&trans
->r_itemq
);
1389 ptr
= (xfs_caddr_t
) &trans
->r_theader
+
1390 sizeof(xfs_trans_header_t
) - len
;
1391 memcpy(ptr
, dp
, len
); /* d, s, l */
1394 item
= item
->ri_prev
;
1396 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
1397 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
1399 ptr
= kmem_realloc(old_ptr
, len
+old_len
, old_len
, 0u);
1400 memcpy(&ptr
[old_len
], dp
, len
); /* d, s, l */
1401 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
1402 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
1407 * The next region to add is the start of a new region. It could be
1408 * a whole region or it could be the first part of a new region. Because
1409 * of this, the assumption here is that the type and size fields of all
1410 * format structures fit into the first 32 bits of the structure.
1412 * This works because all regions must be 32 bit aligned. Therefore, we
1413 * either have both fields or we have neither field. In the case we have
1414 * neither field, the data part of the region is zero length. We only have
1415 * a log_op_header and can throw away the header since a new one will appear
1416 * later. If we have at least 4 bytes, then we can determine how many regions
1417 * will appear in the current log item.
1420 xlog_recover_add_to_trans(
1421 xlog_recover_t
*trans
,
1425 xfs_inode_log_format_t
*in_f
; /* any will do */
1426 xlog_recover_item_t
*item
;
1431 item
= trans
->r_itemq
;
1433 /* we need to catch log corruptions here */
1434 if (*(uint
*)dp
!= XFS_TRANS_HEADER_MAGIC
) {
1435 xlog_warn("XFS: xlog_recover_add_to_trans: "
1436 "bad header magic number");
1438 return XFS_ERROR(EIO
);
1440 if (len
== sizeof(xfs_trans_header_t
))
1441 xlog_recover_add_item(&trans
->r_itemq
);
1442 memcpy(&trans
->r_theader
, dp
, len
); /* d, s, l */
1446 ptr
= kmem_alloc(len
, KM_SLEEP
);
1447 memcpy(ptr
, dp
, len
);
1448 in_f
= (xfs_inode_log_format_t
*)ptr
;
1450 if (item
->ri_prev
->ri_total
!= 0 &&
1451 item
->ri_prev
->ri_total
== item
->ri_prev
->ri_cnt
) {
1452 xlog_recover_add_item(&trans
->r_itemq
);
1454 item
= trans
->r_itemq
;
1455 item
= item
->ri_prev
;
1457 if (item
->ri_total
== 0) { /* first region to be added */
1458 if (in_f
->ilf_size
== 0 ||
1459 in_f
->ilf_size
> XLOG_MAX_REGIONS_IN_ITEM
) {
1461 "XFS: bad number of regions (%d) in inode log format",
1464 return XFS_ERROR(EIO
);
1467 item
->ri_total
= in_f
->ilf_size
;
1469 kmem_zalloc(item
->ri_total
* sizeof(xfs_log_iovec_t
),
1472 ASSERT(item
->ri_total
> item
->ri_cnt
);
1473 /* Description region is ri_buf[0] */
1474 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
1475 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
1481 xlog_recover_new_tid(
1486 xlog_recover_t
*trans
;
1488 trans
= kmem_zalloc(sizeof(xlog_recover_t
), KM_SLEEP
);
1489 trans
->r_log_tid
= tid
;
1491 xlog_recover_put_hashq(q
, trans
);
1495 xlog_recover_unlink_tid(
1497 xlog_recover_t
*trans
)
1502 ASSERT(trans
!= NULL
);
1508 if (tp
->r_next
== trans
) {
1516 "XFS: xlog_recover_unlink_tid: trans not found");
1518 return XFS_ERROR(EIO
);
1520 tp
->r_next
= tp
->r_next
->r_next
;
1526 xlog_recover_insert_item_backq(
1527 xlog_recover_item_t
**q
,
1528 xlog_recover_item_t
*item
)
1531 item
->ri_prev
= item
->ri_next
= item
;
1535 item
->ri_prev
= (*q
)->ri_prev
;
1536 (*q
)->ri_prev
= item
;
1537 item
->ri_prev
->ri_next
= item
;
1542 xlog_recover_insert_item_frontq(
1543 xlog_recover_item_t
**q
,
1544 xlog_recover_item_t
*item
)
1546 xlog_recover_insert_item_backq(q
, item
);
1551 xlog_recover_reorder_trans(
1552 xlog_recover_t
*trans
)
1554 xlog_recover_item_t
*first_item
, *itemq
, *itemq_next
;
1555 xfs_buf_log_format_t
*buf_f
;
1558 first_item
= itemq
= trans
->r_itemq
;
1559 trans
->r_itemq
= NULL
;
1561 itemq_next
= itemq
->ri_next
;
1562 buf_f
= (xfs_buf_log_format_t
*)itemq
->ri_buf
[0].i_addr
;
1564 switch (ITEM_TYPE(itemq
)) {
1566 flags
= buf_f
->blf_flags
;
1567 if (!(flags
& XFS_BLI_CANCEL
)) {
1568 xlog_recover_insert_item_frontq(&trans
->r_itemq
,
1574 case XFS_LI_QUOTAOFF
:
1577 xlog_recover_insert_item_backq(&trans
->r_itemq
, itemq
);
1581 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1583 return XFS_ERROR(EIO
);
1586 } while (first_item
!= itemq
);
1591 * Build up the table of buf cancel records so that we don't replay
1592 * cancelled data in the second pass. For buffer records that are
1593 * not cancel records, there is nothing to do here so we just return.
1595 * If we get a cancel record which is already in the table, this indicates
1596 * that the buffer was cancelled multiple times. In order to ensure
1597 * that during pass 2 we keep the record in the table until we reach its
1598 * last occurrence in the log, we keep a reference count in the cancel
1599 * record in the table to tell us how many times we expect to see this
1600 * record during the second pass.
1603 xlog_recover_do_buffer_pass1(
1605 xfs_buf_log_format_t
*buf_f
)
1607 xfs_buf_cancel_t
*bcp
;
1608 xfs_buf_cancel_t
*nextp
;
1609 xfs_buf_cancel_t
*prevp
;
1610 xfs_buf_cancel_t
**bucket
;
1611 xfs_daddr_t blkno
= 0;
1615 switch (buf_f
->blf_type
) {
1617 blkno
= buf_f
->blf_blkno
;
1618 len
= buf_f
->blf_len
;
1619 flags
= buf_f
->blf_flags
;
1624 * If this isn't a cancel buffer item, then just return.
1626 if (!(flags
& XFS_BLI_CANCEL
))
1630 * Insert an xfs_buf_cancel record into the hash table of
1631 * them. If there is already an identical record, bump
1632 * its reference count.
1634 bucket
= &log
->l_buf_cancel_table
[(__uint64_t
)blkno
%
1635 XLOG_BC_TABLE_SIZE
];
1637 * If the hash bucket is empty then just insert a new record into
1640 if (*bucket
== NULL
) {
1641 bcp
= (xfs_buf_cancel_t
*)kmem_alloc(sizeof(xfs_buf_cancel_t
),
1643 bcp
->bc_blkno
= blkno
;
1645 bcp
->bc_refcount
= 1;
1646 bcp
->bc_next
= NULL
;
1652 * The hash bucket is not empty, so search for duplicates of our
1653 * record. If we find one them just bump its refcount. If not
1654 * then add us at the end of the list.
1658 while (nextp
!= NULL
) {
1659 if (nextp
->bc_blkno
== blkno
&& nextp
->bc_len
== len
) {
1660 nextp
->bc_refcount
++;
1664 nextp
= nextp
->bc_next
;
1666 ASSERT(prevp
!= NULL
);
1667 bcp
= (xfs_buf_cancel_t
*)kmem_alloc(sizeof(xfs_buf_cancel_t
),
1669 bcp
->bc_blkno
= blkno
;
1671 bcp
->bc_refcount
= 1;
1672 bcp
->bc_next
= NULL
;
1673 prevp
->bc_next
= bcp
;
1677 * Check to see whether the buffer being recovered has a corresponding
1678 * entry in the buffer cancel record table. If it does then return 1
1679 * so that it will be cancelled, otherwise return 0. If the buffer is
1680 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1681 * the refcount on the entry in the table and remove it from the table
1682 * if this is the last reference.
1684 * We remove the cancel record from the table when we encounter its
1685 * last occurrence in the log so that if the same buffer is re-used
1686 * again after its last cancellation we actually replay the changes
1687 * made at that point.
1690 xlog_check_buffer_cancelled(
1696 xfs_buf_cancel_t
*bcp
;
1697 xfs_buf_cancel_t
*prevp
;
1698 xfs_buf_cancel_t
**bucket
;
1700 if (log
->l_buf_cancel_table
== NULL
) {
1702 * There is nothing in the table built in pass one,
1703 * so this buffer must not be cancelled.
1705 ASSERT(!(flags
& XFS_BLI_CANCEL
));
1709 bucket
= &log
->l_buf_cancel_table
[(__uint64_t
)blkno
%
1710 XLOG_BC_TABLE_SIZE
];
1714 * There is no corresponding entry in the table built
1715 * in pass one, so this buffer has not been cancelled.
1717 ASSERT(!(flags
& XFS_BLI_CANCEL
));
1722 * Search for an entry in the buffer cancel table that
1723 * matches our buffer.
1726 while (bcp
!= NULL
) {
1727 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
) {
1729 * We've go a match, so return 1 so that the
1730 * recovery of this buffer is cancelled.
1731 * If this buffer is actually a buffer cancel
1732 * log item, then decrement the refcount on the
1733 * one in the table and remove it if this is the
1736 if (flags
& XFS_BLI_CANCEL
) {
1738 if (bcp
->bc_refcount
== 0) {
1739 if (prevp
== NULL
) {
1740 *bucket
= bcp
->bc_next
;
1742 prevp
->bc_next
= bcp
->bc_next
;
1753 * We didn't find a corresponding entry in the table, so
1754 * return 0 so that the buffer is NOT cancelled.
1756 ASSERT(!(flags
& XFS_BLI_CANCEL
));
1761 xlog_recover_do_buffer_pass2(
1763 xfs_buf_log_format_t
*buf_f
)
1765 xfs_daddr_t blkno
= 0;
1769 switch (buf_f
->blf_type
) {
1771 blkno
= buf_f
->blf_blkno
;
1772 flags
= buf_f
->blf_flags
;
1773 len
= buf_f
->blf_len
;
1777 return xlog_check_buffer_cancelled(log
, blkno
, len
, flags
);
1781 * Perform recovery for a buffer full of inodes. In these buffers,
1782 * the only data which should be recovered is that which corresponds
1783 * to the di_next_unlinked pointers in the on disk inode structures.
1784 * The rest of the data for the inodes is always logged through the
1785 * inodes themselves rather than the inode buffer and is recovered
1786 * in xlog_recover_do_inode_trans().
1788 * The only time when buffers full of inodes are fully recovered is
1789 * when the buffer is full of newly allocated inodes. In this case
1790 * the buffer will not be marked as an inode buffer and so will be
1791 * sent to xlog_recover_do_reg_buffer() below during recovery.
1794 xlog_recover_do_inode_buffer(
1796 xlog_recover_item_t
*item
,
1798 xfs_buf_log_format_t
*buf_f
)
1806 int next_unlinked_offset
;
1808 xfs_agino_t
*logged_nextp
;
1809 xfs_agino_t
*buffer_nextp
;
1810 unsigned int *data_map
= NULL
;
1811 unsigned int map_size
= 0;
1813 switch (buf_f
->blf_type
) {
1815 data_map
= buf_f
->blf_data_map
;
1816 map_size
= buf_f
->blf_map_size
;
1820 * Set the variables corresponding to the current region to
1821 * 0 so that we'll initialize them on the first pass through
1829 inodes_per_buf
= XFS_BUF_COUNT(bp
) >> mp
->m_sb
.sb_inodelog
;
1830 for (i
= 0; i
< inodes_per_buf
; i
++) {
1831 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
1832 offsetof(xfs_dinode_t
, di_next_unlinked
);
1834 while (next_unlinked_offset
>=
1835 (reg_buf_offset
+ reg_buf_bytes
)) {
1837 * The next di_next_unlinked field is beyond
1838 * the current logged region. Find the next
1839 * logged region that contains or is beyond
1840 * the current di_next_unlinked field.
1843 bit
= xfs_next_bit(data_map
, map_size
, bit
);
1846 * If there are no more logged regions in the
1847 * buffer, then we're done.
1853 nbits
= xfs_contig_bits(data_map
, map_size
,
1856 reg_buf_offset
= bit
<< XFS_BLI_SHIFT
;
1857 reg_buf_bytes
= nbits
<< XFS_BLI_SHIFT
;
1862 * If the current logged region starts after the current
1863 * di_next_unlinked field, then move on to the next
1864 * di_next_unlinked field.
1866 if (next_unlinked_offset
< reg_buf_offset
) {
1870 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
1871 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLI_CHUNK
) == 0);
1872 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <= XFS_BUF_COUNT(bp
));
1875 * The current logged region contains a copy of the
1876 * current di_next_unlinked field. Extract its value
1877 * and copy it to the buffer copy.
1879 logged_nextp
= (xfs_agino_t
*)
1880 ((char *)(item
->ri_buf
[item_index
].i_addr
) +
1881 (next_unlinked_offset
- reg_buf_offset
));
1882 if (unlikely(*logged_nextp
== 0)) {
1883 xfs_fs_cmn_err(CE_ALERT
, mp
,
1884 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1886 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1887 XFS_ERRLEVEL_LOW
, mp
);
1888 return XFS_ERROR(EFSCORRUPTED
);
1891 buffer_nextp
= (xfs_agino_t
*)xfs_buf_offset(bp
,
1892 next_unlinked_offset
);
1893 *buffer_nextp
= *logged_nextp
;
1900 * Perform a 'normal' buffer recovery. Each logged region of the
1901 * buffer should be copied over the corresponding region in the
1902 * given buffer. The bitmap in the buf log format structure indicates
1903 * where to place the logged data.
1907 xlog_recover_do_reg_buffer(
1908 xlog_recover_item_t
*item
,
1910 xfs_buf_log_format_t
*buf_f
)
1915 unsigned int *data_map
= NULL
;
1916 unsigned int map_size
= 0;
1919 switch (buf_f
->blf_type
) {
1921 data_map
= buf_f
->blf_data_map
;
1922 map_size
= buf_f
->blf_map_size
;
1926 i
= 1; /* 0 is the buf format structure */
1928 bit
= xfs_next_bit(data_map
, map_size
, bit
);
1931 nbits
= xfs_contig_bits(data_map
, map_size
, bit
);
1933 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
1934 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLI_CHUNK
== 0);
1935 ASSERT(XFS_BUF_COUNT(bp
) >=
1936 ((uint
)bit
<< XFS_BLI_SHIFT
)+(nbits
<<XFS_BLI_SHIFT
));
1939 * Do a sanity check if this is a dquot buffer. Just checking
1940 * the first dquot in the buffer should do. XXXThis is
1941 * probably a good thing to do for other buf types also.
1944 if (buf_f
->blf_flags
&
1945 (XFS_BLI_UDQUOT_BUF
|XFS_BLI_PDQUOT_BUF
|XFS_BLI_GDQUOT_BUF
)) {
1946 error
= xfs_qm_dqcheck((xfs_disk_dquot_t
*)
1947 item
->ri_buf
[i
].i_addr
,
1948 -1, 0, XFS_QMOPT_DOWARN
,
1949 "dquot_buf_recover");
1952 memcpy(xfs_buf_offset(bp
,
1953 (uint
)bit
<< XFS_BLI_SHIFT
), /* dest */
1954 item
->ri_buf
[i
].i_addr
, /* source */
1955 nbits
<<XFS_BLI_SHIFT
); /* length */
1960 /* Shouldn't be any more regions */
1961 ASSERT(i
== item
->ri_total
);
1965 * Do some primitive error checking on ondisk dquot data structures.
1969 xfs_disk_dquot_t
*ddq
,
1971 uint type
, /* used only when IO_dorepair is true */
1975 xfs_dqblk_t
*d
= (xfs_dqblk_t
*)ddq
;
1979 * We can encounter an uninitialized dquot buffer for 2 reasons:
1980 * 1. If we crash while deleting the quotainode(s), and those blks got
1981 * used for user data. This is because we take the path of regular
1982 * file deletion; however, the size field of quotainodes is never
1983 * updated, so all the tricks that we play in itruncate_finish
1984 * don't quite matter.
1986 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1987 * But the allocation will be replayed so we'll end up with an
1988 * uninitialized quota block.
1990 * This is all fine; things are still consistent, and we haven't lost
1991 * any quota information. Just don't complain about bad dquot blks.
1993 if (be16_to_cpu(ddq
->d_magic
) != XFS_DQUOT_MAGIC
) {
1994 if (flags
& XFS_QMOPT_DOWARN
)
1996 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1997 str
, id
, be16_to_cpu(ddq
->d_magic
), XFS_DQUOT_MAGIC
);
2000 if (ddq
->d_version
!= XFS_DQUOT_VERSION
) {
2001 if (flags
& XFS_QMOPT_DOWARN
)
2003 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2004 str
, id
, ddq
->d_version
, XFS_DQUOT_VERSION
);
2008 if (ddq
->d_flags
!= XFS_DQ_USER
&&
2009 ddq
->d_flags
!= XFS_DQ_PROJ
&&
2010 ddq
->d_flags
!= XFS_DQ_GROUP
) {
2011 if (flags
& XFS_QMOPT_DOWARN
)
2013 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2014 str
, id
, ddq
->d_flags
);
2018 if (id
!= -1 && id
!= be32_to_cpu(ddq
->d_id
)) {
2019 if (flags
& XFS_QMOPT_DOWARN
)
2021 "%s : ondisk-dquot 0x%p, ID mismatch: "
2022 "0x%x expected, found id 0x%x",
2023 str
, ddq
, id
, be32_to_cpu(ddq
->d_id
));
2027 if (!errs
&& ddq
->d_id
) {
2028 if (ddq
->d_blk_softlimit
&&
2029 be64_to_cpu(ddq
->d_bcount
) >=
2030 be64_to_cpu(ddq
->d_blk_softlimit
)) {
2031 if (!ddq
->d_btimer
) {
2032 if (flags
& XFS_QMOPT_DOWARN
)
2034 "%s : Dquot ID 0x%x (0x%p) "
2035 "BLK TIMER NOT STARTED",
2036 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2040 if (ddq
->d_ino_softlimit
&&
2041 be64_to_cpu(ddq
->d_icount
) >=
2042 be64_to_cpu(ddq
->d_ino_softlimit
)) {
2043 if (!ddq
->d_itimer
) {
2044 if (flags
& XFS_QMOPT_DOWARN
)
2046 "%s : Dquot ID 0x%x (0x%p) "
2047 "INODE TIMER NOT STARTED",
2048 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2052 if (ddq
->d_rtb_softlimit
&&
2053 be64_to_cpu(ddq
->d_rtbcount
) >=
2054 be64_to_cpu(ddq
->d_rtb_softlimit
)) {
2055 if (!ddq
->d_rtbtimer
) {
2056 if (flags
& XFS_QMOPT_DOWARN
)
2058 "%s : Dquot ID 0x%x (0x%p) "
2059 "RTBLK TIMER NOT STARTED",
2060 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2066 if (!errs
|| !(flags
& XFS_QMOPT_DQREPAIR
))
2069 if (flags
& XFS_QMOPT_DOWARN
)
2070 cmn_err(CE_NOTE
, "Re-initializing dquot ID 0x%x", id
);
2073 * Typically, a repair is only requested by quotacheck.
2076 ASSERT(flags
& XFS_QMOPT_DQREPAIR
);
2077 memset(d
, 0, sizeof(xfs_dqblk_t
));
2079 d
->dd_diskdq
.d_magic
= cpu_to_be16(XFS_DQUOT_MAGIC
);
2080 d
->dd_diskdq
.d_version
= XFS_DQUOT_VERSION
;
2081 d
->dd_diskdq
.d_flags
= type
;
2082 d
->dd_diskdq
.d_id
= cpu_to_be32(id
);
2088 * Perform a dquot buffer recovery.
2089 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2090 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2091 * Else, treat it as a regular buffer and do recovery.
2094 xlog_recover_do_dquot_buffer(
2097 xlog_recover_item_t
*item
,
2099 xfs_buf_log_format_t
*buf_f
)
2104 * Filesystems are required to send in quota flags at mount time.
2106 if (mp
->m_qflags
== 0) {
2111 if (buf_f
->blf_flags
& XFS_BLI_UDQUOT_BUF
)
2112 type
|= XFS_DQ_USER
;
2113 if (buf_f
->blf_flags
& XFS_BLI_PDQUOT_BUF
)
2114 type
|= XFS_DQ_PROJ
;
2115 if (buf_f
->blf_flags
& XFS_BLI_GDQUOT_BUF
)
2116 type
|= XFS_DQ_GROUP
;
2118 * This type of quotas was turned off, so ignore this buffer
2120 if (log
->l_quotaoffs_flag
& type
)
2123 xlog_recover_do_reg_buffer(item
, bp
, buf_f
);
2127 * This routine replays a modification made to a buffer at runtime.
2128 * There are actually two types of buffer, regular and inode, which
2129 * are handled differently. Inode buffers are handled differently
2130 * in that we only recover a specific set of data from them, namely
2131 * the inode di_next_unlinked fields. This is because all other inode
2132 * data is actually logged via inode records and any data we replay
2133 * here which overlaps that may be stale.
2135 * When meta-data buffers are freed at run time we log a buffer item
2136 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2137 * of the buffer in the log should not be replayed at recovery time.
2138 * This is so that if the blocks covered by the buffer are reused for
2139 * file data before we crash we don't end up replaying old, freed
2140 * meta-data into a user's file.
2142 * To handle the cancellation of buffer log items, we make two passes
2143 * over the log during recovery. During the first we build a table of
2144 * those buffers which have been cancelled, and during the second we
2145 * only replay those buffers which do not have corresponding cancel
2146 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2147 * for more details on the implementation of the table of cancel records.
2150 xlog_recover_do_buffer_trans(
2152 xlog_recover_item_t
*item
,
2155 xfs_buf_log_format_t
*buf_f
;
2164 buf_f
= (xfs_buf_log_format_t
*)item
->ri_buf
[0].i_addr
;
2166 if (pass
== XLOG_RECOVER_PASS1
) {
2168 * In this pass we're only looking for buf items
2169 * with the XFS_BLI_CANCEL bit set.
2171 xlog_recover_do_buffer_pass1(log
, buf_f
);
2175 * In this pass we want to recover all the buffers
2176 * which have not been cancelled and are not
2177 * cancellation buffers themselves. The routine
2178 * we call here will tell us whether or not to
2179 * continue with the replay of this buffer.
2181 cancel
= xlog_recover_do_buffer_pass2(log
, buf_f
);
2186 switch (buf_f
->blf_type
) {
2188 blkno
= buf_f
->blf_blkno
;
2189 len
= buf_f
->blf_len
;
2190 flags
= buf_f
->blf_flags
;
2193 xfs_fs_cmn_err(CE_ALERT
, log
->l_mp
,
2194 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2195 buf_f
->blf_type
, log
->l_mp
->m_logname
?
2196 log
->l_mp
->m_logname
: "internal");
2197 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2198 XFS_ERRLEVEL_LOW
, log
->l_mp
);
2199 return XFS_ERROR(EFSCORRUPTED
);
2203 if (flags
& XFS_BLI_INODE_BUF
) {
2204 bp
= xfs_buf_read_flags(mp
->m_ddev_targp
, blkno
, len
,
2207 bp
= xfs_buf_read(mp
->m_ddev_targp
, blkno
, len
, 0);
2209 if (XFS_BUF_ISERROR(bp
)) {
2210 xfs_ioerror_alert("xlog_recover_do..(read#1)", log
->l_mp
,
2212 error
= XFS_BUF_GETERROR(bp
);
2218 if (flags
& XFS_BLI_INODE_BUF
) {
2219 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2221 (XFS_BLI_UDQUOT_BUF
|XFS_BLI_PDQUOT_BUF
|XFS_BLI_GDQUOT_BUF
)) {
2222 xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2224 xlog_recover_do_reg_buffer(item
, bp
, buf_f
);
2227 return XFS_ERROR(error
);
2230 * Perform delayed write on the buffer. Asynchronous writes will be
2231 * slower when taking into account all the buffers to be flushed.
2233 * Also make sure that only inode buffers with good sizes stay in
2234 * the buffer cache. The kernel moves inodes in buffers of 1 block
2235 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2236 * buffers in the log can be a different size if the log was generated
2237 * by an older kernel using unclustered inode buffers or a newer kernel
2238 * running with a different inode cluster size. Regardless, if the
2239 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2240 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2241 * the buffer out of the buffer cache so that the buffer won't
2242 * overlap with future reads of those inodes.
2244 if (XFS_DINODE_MAGIC
==
2245 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
2246 (XFS_BUF_COUNT(bp
) != MAX(log
->l_mp
->m_sb
.sb_blocksize
,
2247 (__uint32_t
)XFS_INODE_CLUSTER_SIZE(log
->l_mp
)))) {
2249 error
= xfs_bwrite(mp
, bp
);
2251 ASSERT(bp
->b_mount
== NULL
|| bp
->b_mount
== mp
);
2253 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2254 xfs_bdwrite(mp
, bp
);
2261 xlog_recover_do_inode_trans(
2263 xlog_recover_item_t
*item
,
2266 xfs_inode_log_format_t
*in_f
;
2277 xfs_icdinode_t
*dicp
;
2280 if (pass
== XLOG_RECOVER_PASS1
) {
2284 if (item
->ri_buf
[0].i_len
== sizeof(xfs_inode_log_format_t
)) {
2285 in_f
= (xfs_inode_log_format_t
*)item
->ri_buf
[0].i_addr
;
2287 in_f
= (xfs_inode_log_format_t
*)kmem_alloc(
2288 sizeof(xfs_inode_log_format_t
), KM_SLEEP
);
2290 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
2294 ino
= in_f
->ilf_ino
;
2298 * Inode buffers can be freed, look out for it,
2299 * and do not replay the inode.
2301 if (xlog_check_buffer_cancelled(log
, in_f
->ilf_blkno
,
2302 in_f
->ilf_len
, 0)) {
2307 bp
= xfs_buf_read_flags(mp
->m_ddev_targp
, in_f
->ilf_blkno
,
2308 in_f
->ilf_len
, XFS_BUF_LOCK
);
2309 if (XFS_BUF_ISERROR(bp
)) {
2310 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp
,
2311 bp
, in_f
->ilf_blkno
);
2312 error
= XFS_BUF_GETERROR(bp
);
2317 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
2318 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, in_f
->ilf_boffset
);
2321 * Make sure the place we're flushing out to really looks
2324 if (unlikely(be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
)) {
2326 xfs_fs_cmn_err(CE_ALERT
, mp
,
2327 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2329 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2330 XFS_ERRLEVEL_LOW
, mp
);
2331 error
= EFSCORRUPTED
;
2334 dicp
= (xfs_icdinode_t
*)(item
->ri_buf
[1].i_addr
);
2335 if (unlikely(dicp
->di_magic
!= XFS_DINODE_MAGIC
)) {
2337 xfs_fs_cmn_err(CE_ALERT
, mp
,
2338 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2340 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2341 XFS_ERRLEVEL_LOW
, mp
);
2342 error
= EFSCORRUPTED
;
2346 /* Skip replay when the on disk inode is newer than the log one */
2347 if (dicp
->di_flushiter
< be16_to_cpu(dip
->di_flushiter
)) {
2349 * Deal with the wrap case, DI_MAX_FLUSH is less
2350 * than smaller numbers
2352 if (be16_to_cpu(dip
->di_flushiter
) == DI_MAX_FLUSH
&&
2353 dicp
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
2361 /* Take the opportunity to reset the flush iteration count */
2362 dicp
->di_flushiter
= 0;
2364 if (unlikely((dicp
->di_mode
& S_IFMT
) == S_IFREG
)) {
2365 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2366 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
2367 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2368 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2370 xfs_fs_cmn_err(CE_ALERT
, mp
,
2371 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2372 item
, dip
, bp
, ino
);
2373 error
= EFSCORRUPTED
;
2376 } else if (unlikely((dicp
->di_mode
& S_IFMT
) == S_IFDIR
)) {
2377 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2378 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
2379 (dicp
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
2380 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2381 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2383 xfs_fs_cmn_err(CE_ALERT
, mp
,
2384 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2385 item
, dip
, bp
, ino
);
2386 error
= EFSCORRUPTED
;
2390 if (unlikely(dicp
->di_nextents
+ dicp
->di_anextents
> dicp
->di_nblocks
)){
2391 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2392 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2394 xfs_fs_cmn_err(CE_ALERT
, mp
,
2395 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2397 dicp
->di_nextents
+ dicp
->di_anextents
,
2399 error
= EFSCORRUPTED
;
2402 if (unlikely(dicp
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
2403 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2404 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2406 xfs_fs_cmn_err(CE_ALERT
, mp
,
2407 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2408 item
, dip
, bp
, ino
, dicp
->di_forkoff
);
2409 error
= EFSCORRUPTED
;
2412 if (unlikely(item
->ri_buf
[1].i_len
> sizeof(struct xfs_icdinode
))) {
2413 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2414 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2416 xfs_fs_cmn_err(CE_ALERT
, mp
,
2417 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2418 item
->ri_buf
[1].i_len
, item
);
2419 error
= EFSCORRUPTED
;
2423 /* The core is in in-core format */
2424 xfs_dinode_to_disk(dip
, (xfs_icdinode_t
*)item
->ri_buf
[1].i_addr
);
2426 /* the rest is in on-disk format */
2427 if (item
->ri_buf
[1].i_len
> sizeof(struct xfs_icdinode
)) {
2428 memcpy((xfs_caddr_t
) dip
+ sizeof(struct xfs_icdinode
),
2429 item
->ri_buf
[1].i_addr
+ sizeof(struct xfs_icdinode
),
2430 item
->ri_buf
[1].i_len
- sizeof(struct xfs_icdinode
));
2433 fields
= in_f
->ilf_fields
;
2434 switch (fields
& (XFS_ILOG_DEV
| XFS_ILOG_UUID
)) {
2436 xfs_dinode_put_rdev(dip
, in_f
->ilf_u
.ilfu_rdev
);
2439 memcpy(XFS_DFORK_DPTR(dip
),
2440 &in_f
->ilf_u
.ilfu_uuid
,
2445 if (in_f
->ilf_size
== 2)
2446 goto write_inode_buffer
;
2447 len
= item
->ri_buf
[2].i_len
;
2448 src
= item
->ri_buf
[2].i_addr
;
2449 ASSERT(in_f
->ilf_size
<= 4);
2450 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
2451 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
2452 (len
== in_f
->ilf_dsize
));
2454 switch (fields
& XFS_ILOG_DFORK
) {
2455 case XFS_ILOG_DDATA
:
2457 memcpy(XFS_DFORK_DPTR(dip
), src
, len
);
2460 case XFS_ILOG_DBROOT
:
2461 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
, len
,
2462 (xfs_bmdr_block_t
*)XFS_DFORK_DPTR(dip
),
2463 XFS_DFORK_DSIZE(dip
, mp
));
2468 * There are no data fork flags set.
2470 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
2475 * If we logged any attribute data, recover it. There may or
2476 * may not have been any other non-core data logged in this
2479 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2480 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
2485 len
= item
->ri_buf
[attr_index
].i_len
;
2486 src
= item
->ri_buf
[attr_index
].i_addr
;
2487 ASSERT(len
== in_f
->ilf_asize
);
2489 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2490 case XFS_ILOG_ADATA
:
2492 dest
= XFS_DFORK_APTR(dip
);
2493 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
2494 memcpy(dest
, src
, len
);
2497 case XFS_ILOG_ABROOT
:
2498 dest
= XFS_DFORK_APTR(dip
);
2499 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
,
2500 len
, (xfs_bmdr_block_t
*)dest
,
2501 XFS_DFORK_ASIZE(dip
, mp
));
2505 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2514 if (ITEM_TYPE(item
) == XFS_LI_INODE
) {
2515 ASSERT(bp
->b_mount
== NULL
|| bp
->b_mount
== mp
);
2517 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2518 xfs_bdwrite(mp
, bp
);
2521 error
= xfs_bwrite(mp
, bp
);
2527 return XFS_ERROR(error
);
2531 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2532 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2536 xlog_recover_do_quotaoff_trans(
2538 xlog_recover_item_t
*item
,
2541 xfs_qoff_logformat_t
*qoff_f
;
2543 if (pass
== XLOG_RECOVER_PASS2
) {
2547 qoff_f
= (xfs_qoff_logformat_t
*)item
->ri_buf
[0].i_addr
;
2551 * The logitem format's flag tells us if this was user quotaoff,
2552 * group/project quotaoff or both.
2554 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
2555 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
2556 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
2557 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
2558 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
2559 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
2565 * Recover a dquot record
2568 xlog_recover_do_dquot_trans(
2570 xlog_recover_item_t
*item
,
2575 struct xfs_disk_dquot
*ddq
, *recddq
;
2577 xfs_dq_logformat_t
*dq_f
;
2580 if (pass
== XLOG_RECOVER_PASS1
) {
2586 * Filesystems are required to send in quota flags at mount time.
2588 if (mp
->m_qflags
== 0)
2591 recddq
= (xfs_disk_dquot_t
*)item
->ri_buf
[1].i_addr
;
2594 * This type of quotas was turned off, so ignore this record.
2596 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
2598 if (log
->l_quotaoffs_flag
& type
)
2602 * At this point we know that quota was _not_ turned off.
2603 * Since the mount flags are not indicating to us otherwise, this
2604 * must mean that quota is on, and the dquot needs to be replayed.
2605 * Remember that we may not have fully recovered the superblock yet,
2606 * so we can't do the usual trick of looking at the SB quota bits.
2608 * The other possibility, of course, is that the quota subsystem was
2609 * removed since the last mount - ENOSYS.
2611 dq_f
= (xfs_dq_logformat_t
*)item
->ri_buf
[0].i_addr
;
2613 if ((error
= xfs_qm_dqcheck(recddq
,
2615 0, XFS_QMOPT_DOWARN
,
2616 "xlog_recover_do_dquot_trans (log copy)"))) {
2617 return XFS_ERROR(EIO
);
2619 ASSERT(dq_f
->qlf_len
== 1);
2621 error
= xfs_read_buf(mp
, mp
->m_ddev_targp
,
2623 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
),
2626 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp
,
2627 bp
, dq_f
->qlf_blkno
);
2631 ddq
= (xfs_disk_dquot_t
*)xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
2634 * At least the magic num portion should be on disk because this
2635 * was among a chunk of dquots created earlier, and we did some
2636 * minimal initialization then.
2638 if (xfs_qm_dqcheck(ddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
2639 "xlog_recover_do_dquot_trans")) {
2641 return XFS_ERROR(EIO
);
2644 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
2646 ASSERT(dq_f
->qlf_size
== 2);
2647 ASSERT(bp
->b_mount
== NULL
|| bp
->b_mount
== mp
);
2649 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2650 xfs_bdwrite(mp
, bp
);
2656 * This routine is called to create an in-core extent free intent
2657 * item from the efi format structure which was logged on disk.
2658 * It allocates an in-core efi, copies the extents from the format
2659 * structure into it, and adds the efi to the AIL with the given
2663 xlog_recover_do_efi_trans(
2665 xlog_recover_item_t
*item
,
2671 xfs_efi_log_item_t
*efip
;
2672 xfs_efi_log_format_t
*efi_formatp
;
2674 if (pass
== XLOG_RECOVER_PASS1
) {
2678 efi_formatp
= (xfs_efi_log_format_t
*)item
->ri_buf
[0].i_addr
;
2681 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
2682 if ((error
= xfs_efi_copy_format(&(item
->ri_buf
[0]),
2683 &(efip
->efi_format
)))) {
2684 xfs_efi_item_free(efip
);
2687 efip
->efi_next_extent
= efi_formatp
->efi_nextents
;
2688 efip
->efi_flags
|= XFS_EFI_COMMITTED
;
2690 spin_lock(&log
->l_ailp
->xa_lock
);
2692 * xfs_trans_ail_update() drops the AIL lock.
2694 xfs_trans_ail_update(log
->l_ailp
, (xfs_log_item_t
*)efip
, lsn
);
2700 * This routine is called when an efd format structure is found in
2701 * a committed transaction in the log. It's purpose is to cancel
2702 * the corresponding efi if it was still in the log. To do this
2703 * it searches the AIL for the efi with an id equal to that in the
2704 * efd format structure. If we find it, we remove the efi from the
2708 xlog_recover_do_efd_trans(
2710 xlog_recover_item_t
*item
,
2713 xfs_efd_log_format_t
*efd_formatp
;
2714 xfs_efi_log_item_t
*efip
= NULL
;
2715 xfs_log_item_t
*lip
;
2717 struct xfs_ail_cursor cur
;
2718 struct xfs_ail
*ailp
= log
->l_ailp
;
2720 if (pass
== XLOG_RECOVER_PASS1
) {
2724 efd_formatp
= (xfs_efd_log_format_t
*)item
->ri_buf
[0].i_addr
;
2725 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
2726 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
2727 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
2728 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
2729 efi_id
= efd_formatp
->efd_efi_id
;
2732 * Search for the efi with the id in the efd format structure
2735 spin_lock(&ailp
->xa_lock
);
2736 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
2737 while (lip
!= NULL
) {
2738 if (lip
->li_type
== XFS_LI_EFI
) {
2739 efip
= (xfs_efi_log_item_t
*)lip
;
2740 if (efip
->efi_format
.efi_id
== efi_id
) {
2742 * xfs_trans_ail_delete() drops the
2745 xfs_trans_ail_delete(ailp
, lip
);
2746 xfs_efi_item_free(efip
);
2747 spin_lock(&ailp
->xa_lock
);
2751 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
2753 xfs_trans_ail_cursor_done(ailp
, &cur
);
2754 spin_unlock(&ailp
->xa_lock
);
2758 * Perform the transaction
2760 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2761 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2764 xlog_recover_do_trans(
2766 xlog_recover_t
*trans
,
2770 xlog_recover_item_t
*item
, *first_item
;
2772 if ((error
= xlog_recover_reorder_trans(trans
)))
2774 first_item
= item
= trans
->r_itemq
;
2777 * we don't need to worry about the block number being
2778 * truncated in > 1 TB buffers because in user-land,
2779 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2780 * the blknos will get through the user-mode buffer
2781 * cache properly. The only bad case is o32 kernels
2782 * where xfs_daddr_t is 32-bits but mount will warn us
2783 * off a > 1 TB filesystem before we get here.
2785 if ((ITEM_TYPE(item
) == XFS_LI_BUF
)) {
2786 if ((error
= xlog_recover_do_buffer_trans(log
, item
,
2789 } else if ((ITEM_TYPE(item
) == XFS_LI_INODE
)) {
2790 if ((error
= xlog_recover_do_inode_trans(log
, item
,
2793 } else if (ITEM_TYPE(item
) == XFS_LI_EFI
) {
2794 if ((error
= xlog_recover_do_efi_trans(log
, item
, trans
->r_lsn
,
2797 } else if (ITEM_TYPE(item
) == XFS_LI_EFD
) {
2798 xlog_recover_do_efd_trans(log
, item
, pass
);
2799 } else if (ITEM_TYPE(item
) == XFS_LI_DQUOT
) {
2800 if ((error
= xlog_recover_do_dquot_trans(log
, item
,
2803 } else if ((ITEM_TYPE(item
) == XFS_LI_QUOTAOFF
)) {
2804 if ((error
= xlog_recover_do_quotaoff_trans(log
, item
,
2808 xlog_warn("XFS: xlog_recover_do_trans");
2810 error
= XFS_ERROR(EIO
);
2813 item
= item
->ri_next
;
2814 } while (first_item
!= item
);
2820 * Free up any resources allocated by the transaction
2822 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2825 xlog_recover_free_trans(
2826 xlog_recover_t
*trans
)
2828 xlog_recover_item_t
*first_item
, *item
, *free_item
;
2831 item
= first_item
= trans
->r_itemq
;
2834 item
= item
->ri_next
;
2835 /* Free the regions in the item. */
2836 for (i
= 0; i
< free_item
->ri_cnt
; i
++) {
2837 kmem_free(free_item
->ri_buf
[i
].i_addr
);
2839 /* Free the item itself */
2840 kmem_free(free_item
->ri_buf
);
2841 kmem_free(free_item
);
2842 } while (first_item
!= item
);
2843 /* Free the transaction recover structure */
2848 xlog_recover_commit_trans(
2851 xlog_recover_t
*trans
,
2856 if ((error
= xlog_recover_unlink_tid(q
, trans
)))
2858 if ((error
= xlog_recover_do_trans(log
, trans
, pass
)))
2860 xlog_recover_free_trans(trans
); /* no error */
2865 xlog_recover_unmount_trans(
2866 xlog_recover_t
*trans
)
2868 /* Do nothing now */
2869 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2874 * There are two valid states of the r_state field. 0 indicates that the
2875 * transaction structure is in a normal state. We have either seen the
2876 * start of the transaction or the last operation we added was not a partial
2877 * operation. If the last operation we added to the transaction was a
2878 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2880 * NOTE: skip LRs with 0 data length.
2883 xlog_recover_process_data(
2885 xlog_recover_t
*rhash
[],
2886 xlog_rec_header_t
*rhead
,
2892 xlog_op_header_t
*ohead
;
2893 xlog_recover_t
*trans
;
2899 lp
= dp
+ be32_to_cpu(rhead
->h_len
);
2900 num_logops
= be32_to_cpu(rhead
->h_num_logops
);
2902 /* check the log format matches our own - else we can't recover */
2903 if (xlog_header_check_recover(log
->l_mp
, rhead
))
2904 return (XFS_ERROR(EIO
));
2906 while ((dp
< lp
) && num_logops
) {
2907 ASSERT(dp
+ sizeof(xlog_op_header_t
) <= lp
);
2908 ohead
= (xlog_op_header_t
*)dp
;
2909 dp
+= sizeof(xlog_op_header_t
);
2910 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
2911 ohead
->oh_clientid
!= XFS_LOG
) {
2913 "XFS: xlog_recover_process_data: bad clientid");
2915 return (XFS_ERROR(EIO
));
2917 tid
= be32_to_cpu(ohead
->oh_tid
);
2918 hash
= XLOG_RHASH(tid
);
2919 trans
= xlog_recover_find_tid(rhash
[hash
], tid
);
2920 if (trans
== NULL
) { /* not found; add new tid */
2921 if (ohead
->oh_flags
& XLOG_START_TRANS
)
2922 xlog_recover_new_tid(&rhash
[hash
], tid
,
2923 be64_to_cpu(rhead
->h_lsn
));
2925 if (dp
+ be32_to_cpu(ohead
->oh_len
) > lp
) {
2927 "XFS: xlog_recover_process_data: bad length");
2929 return (XFS_ERROR(EIO
));
2931 flags
= ohead
->oh_flags
& ~XLOG_END_TRANS
;
2932 if (flags
& XLOG_WAS_CONT_TRANS
)
2933 flags
&= ~XLOG_CONTINUE_TRANS
;
2935 case XLOG_COMMIT_TRANS
:
2936 error
= xlog_recover_commit_trans(log
,
2937 &rhash
[hash
], trans
, pass
);
2939 case XLOG_UNMOUNT_TRANS
:
2940 error
= xlog_recover_unmount_trans(trans
);
2942 case XLOG_WAS_CONT_TRANS
:
2943 error
= xlog_recover_add_to_cont_trans(trans
,
2944 dp
, be32_to_cpu(ohead
->oh_len
));
2946 case XLOG_START_TRANS
:
2948 "XFS: xlog_recover_process_data: bad transaction");
2950 error
= XFS_ERROR(EIO
);
2953 case XLOG_CONTINUE_TRANS
:
2954 error
= xlog_recover_add_to_trans(trans
,
2955 dp
, be32_to_cpu(ohead
->oh_len
));
2959 "XFS: xlog_recover_process_data: bad flag");
2961 error
= XFS_ERROR(EIO
);
2967 dp
+= be32_to_cpu(ohead
->oh_len
);
2974 * Process an extent free intent item that was recovered from
2975 * the log. We need to free the extents that it describes.
2978 xlog_recover_process_efi(
2980 xfs_efi_log_item_t
*efip
)
2982 xfs_efd_log_item_t
*efdp
;
2987 xfs_fsblock_t startblock_fsb
;
2989 ASSERT(!(efip
->efi_flags
& XFS_EFI_RECOVERED
));
2992 * First check the validity of the extents described by the
2993 * EFI. If any are bad, then assume that all are bad and
2994 * just toss the EFI.
2996 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
2997 extp
= &(efip
->efi_format
.efi_extents
[i
]);
2998 startblock_fsb
= XFS_BB_TO_FSB(mp
,
2999 XFS_FSB_TO_DADDR(mp
, extp
->ext_start
));
3000 if ((startblock_fsb
== 0) ||
3001 (extp
->ext_len
== 0) ||
3002 (startblock_fsb
>= mp
->m_sb
.sb_dblocks
) ||
3003 (extp
->ext_len
>= mp
->m_sb
.sb_agblocks
)) {
3005 * This will pull the EFI from the AIL and
3006 * free the memory associated with it.
3008 xfs_efi_release(efip
, efip
->efi_format
.efi_nextents
);
3009 return XFS_ERROR(EIO
);
3013 tp
= xfs_trans_alloc(mp
, 0);
3014 error
= xfs_trans_reserve(tp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0, 0, 0);
3017 efdp
= xfs_trans_get_efd(tp
, efip
, efip
->efi_format
.efi_nextents
);
3019 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
3020 extp
= &(efip
->efi_format
.efi_extents
[i
]);
3021 error
= xfs_free_extent(tp
, extp
->ext_start
, extp
->ext_len
);
3024 xfs_trans_log_efd_extent(tp
, efdp
, extp
->ext_start
,
3028 efip
->efi_flags
|= XFS_EFI_RECOVERED
;
3029 error
= xfs_trans_commit(tp
, 0);
3033 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3038 * When this is called, all of the EFIs which did not have
3039 * corresponding EFDs should be in the AIL. What we do now
3040 * is free the extents associated with each one.
3042 * Since we process the EFIs in normal transactions, they
3043 * will be removed at some point after the commit. This prevents
3044 * us from just walking down the list processing each one.
3045 * We'll use a flag in the EFI to skip those that we've already
3046 * processed and use the AIL iteration mechanism's generation
3047 * count to try to speed this up at least a bit.
3049 * When we start, we know that the EFIs are the only things in
3050 * the AIL. As we process them, however, other items are added
3051 * to the AIL. Since everything added to the AIL must come after
3052 * everything already in the AIL, we stop processing as soon as
3053 * we see something other than an EFI in the AIL.
3056 xlog_recover_process_efis(
3059 xfs_log_item_t
*lip
;
3060 xfs_efi_log_item_t
*efip
;
3062 struct xfs_ail_cursor cur
;
3063 struct xfs_ail
*ailp
;
3066 spin_lock(&ailp
->xa_lock
);
3067 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3068 while (lip
!= NULL
) {
3070 * We're done when we see something other than an EFI.
3071 * There should be no EFIs left in the AIL now.
3073 if (lip
->li_type
!= XFS_LI_EFI
) {
3075 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
3076 ASSERT(lip
->li_type
!= XFS_LI_EFI
);
3082 * Skip EFIs that we've already processed.
3084 efip
= (xfs_efi_log_item_t
*)lip
;
3085 if (efip
->efi_flags
& XFS_EFI_RECOVERED
) {
3086 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3090 spin_unlock(&ailp
->xa_lock
);
3091 error
= xlog_recover_process_efi(log
->l_mp
, efip
);
3092 spin_lock(&ailp
->xa_lock
);
3095 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3098 xfs_trans_ail_cursor_done(ailp
, &cur
);
3099 spin_unlock(&ailp
->xa_lock
);
3104 * This routine performs a transaction to null out a bad inode pointer
3105 * in an agi unlinked inode hash bucket.
3108 xlog_recover_clear_agi_bucket(
3110 xfs_agnumber_t agno
,
3119 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CLEAR_AGI_BUCKET
);
3120 error
= xfs_trans_reserve(tp
, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp
),
3125 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
3129 agi
= XFS_BUF_TO_AGI(agibp
);
3130 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
3131 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
3132 (sizeof(xfs_agino_t
) * bucket
);
3133 xfs_trans_log_buf(tp
, agibp
, offset
,
3134 (offset
+ sizeof(xfs_agino_t
) - 1));
3136 error
= xfs_trans_commit(tp
, 0);
3142 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3144 xfs_fs_cmn_err(CE_WARN
, mp
, "xlog_recover_clear_agi_bucket: "
3145 "failed to clear agi %d. Continuing.", agno
);
3150 xlog_recover_process_one_iunlink(
3151 struct xfs_mount
*mp
,
3152 xfs_agnumber_t agno
,
3156 struct xfs_buf
*ibp
;
3157 struct xfs_dinode
*dip
;
3158 struct xfs_inode
*ip
;
3162 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
3163 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
, 0);
3168 * Get the on disk inode to find the next inode in the bucket.
3170 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &ibp
, XFS_BUF_LOCK
);
3174 ASSERT(ip
->i_d
.di_nlink
== 0);
3175 ASSERT(ip
->i_d
.di_mode
!= 0);
3177 /* setup for the next pass */
3178 agino
= be32_to_cpu(dip
->di_next_unlinked
);
3182 * Prevent any DMAPI event from being sent when the reference on
3183 * the inode is dropped.
3185 ip
->i_d
.di_dmevmask
= 0;
3194 * We can't read in the inode this bucket points to, or this inode
3195 * is messed up. Just ditch this bucket of inodes. We will lose
3196 * some inodes and space, but at least we won't hang.
3198 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3199 * clear the inode pointer in the bucket.
3201 xlog_recover_clear_agi_bucket(mp
, agno
, bucket
);
3206 * xlog_iunlink_recover
3208 * This is called during recovery to process any inodes which
3209 * we unlinked but not freed when the system crashed. These
3210 * inodes will be on the lists in the AGI blocks. What we do
3211 * here is scan all the AGIs and fully truncate and free any
3212 * inodes found on the lists. Each inode is removed from the
3213 * lists when it has been fully truncated and is freed. The
3214 * freeing of the inode and its removal from the list must be
3218 xlog_recover_process_iunlinks(
3222 xfs_agnumber_t agno
;
3233 * Prevent any DMAPI event from being sent while in this function.
3235 mp_dmevmask
= mp
->m_dmevmask
;
3238 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3240 * Find the agi for this ag.
3242 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3245 * AGI is b0rked. Don't process it.
3247 * We should probably mark the filesystem as corrupt
3248 * after we've recovered all the ag's we can....
3252 agi
= XFS_BUF_TO_AGI(agibp
);
3254 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
3255 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
3256 while (agino
!= NULLAGINO
) {
3258 * Release the agi buffer so that it can
3259 * be acquired in the normal course of the
3260 * transaction to truncate and free the inode.
3262 xfs_buf_relse(agibp
);
3264 agino
= xlog_recover_process_one_iunlink(mp
,
3265 agno
, agino
, bucket
);
3268 * Reacquire the agibuffer and continue around
3269 * the loop. This should never fail as we know
3270 * the buffer was good earlier on.
3272 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3274 agi
= XFS_BUF_TO_AGI(agibp
);
3279 * Release the buffer for the current agi so we can
3280 * go on to the next one.
3282 xfs_buf_relse(agibp
);
3285 mp
->m_dmevmask
= mp_dmevmask
;
3291 xlog_pack_data_checksum(
3293 xlog_in_core_t
*iclog
,
3300 up
= (__be32
*)iclog
->ic_datap
;
3301 /* divide length by 4 to get # words */
3302 for (i
= 0; i
< (size
>> 2); i
++) {
3303 chksum
^= be32_to_cpu(*up
);
3306 iclog
->ic_header
.h_chksum
= cpu_to_be32(chksum
);
3309 #define xlog_pack_data_checksum(log, iclog, size)
3313 * Stamp cycle number in every block
3318 xlog_in_core_t
*iclog
,
3322 int size
= iclog
->ic_offset
+ roundoff
;
3326 xlog_pack_data_checksum(log
, iclog
, size
);
3328 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
3330 dp
= iclog
->ic_datap
;
3331 for (i
= 0; i
< BTOBB(size
) &&
3332 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3333 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
3334 *(__be32
*)dp
= cycle_lsn
;
3338 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3339 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
3341 for ( ; i
< BTOBB(size
); i
++) {
3342 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3343 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3344 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
3345 *(__be32
*)dp
= cycle_lsn
;
3349 for (i
= 1; i
< log
->l_iclog_heads
; i
++) {
3350 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
3355 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3357 xlog_unpack_data_checksum(
3358 xlog_rec_header_t
*rhead
,
3362 __be32
*up
= (__be32
*)dp
;
3366 /* divide length by 4 to get # words */
3367 for (i
=0; i
< be32_to_cpu(rhead
->h_len
) >> 2; i
++) {
3368 chksum
^= be32_to_cpu(*up
);
3371 if (chksum
!= be32_to_cpu(rhead
->h_chksum
)) {
3372 if (rhead
->h_chksum
||
3373 ((log
->l_flags
& XLOG_CHKSUM_MISMATCH
) == 0)) {
3375 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3376 be32_to_cpu(rhead
->h_chksum
), chksum
);
3378 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3379 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3381 "XFS: LogR this is a LogV2 filesystem\n");
3383 log
->l_flags
|= XLOG_CHKSUM_MISMATCH
;
3388 #define xlog_unpack_data_checksum(rhead, dp, log)
3393 xlog_rec_header_t
*rhead
,
3399 for (i
= 0; i
< BTOBB(be32_to_cpu(rhead
->h_len
)) &&
3400 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3401 *(__be32
*)dp
= *(__be32
*)&rhead
->h_cycle_data
[i
];
3405 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3406 xlog_in_core_2_t
*xhdr
= (xlog_in_core_2_t
*)rhead
;
3407 for ( ; i
< BTOBB(be32_to_cpu(rhead
->h_len
)); i
++) {
3408 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3409 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3410 *(__be32
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
3415 xlog_unpack_data_checksum(rhead
, dp
, log
);
3419 xlog_valid_rec_header(
3421 xlog_rec_header_t
*rhead
,
3426 if (unlikely(be32_to_cpu(rhead
->h_magicno
) != XLOG_HEADER_MAGIC_NUM
)) {
3427 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3428 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3429 return XFS_ERROR(EFSCORRUPTED
);
3432 (!rhead
->h_version
||
3433 (be32_to_cpu(rhead
->h_version
) & (~XLOG_VERSION_OKBITS
))))) {
3434 xlog_warn("XFS: %s: unrecognised log version (%d).",
3435 __func__
, be32_to_cpu(rhead
->h_version
));
3436 return XFS_ERROR(EIO
);
3439 /* LR body must have data or it wouldn't have been written */
3440 hlen
= be32_to_cpu(rhead
->h_len
);
3441 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
3442 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3443 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3444 return XFS_ERROR(EFSCORRUPTED
);
3446 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
3447 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3448 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3449 return XFS_ERROR(EFSCORRUPTED
);
3455 * Read the log from tail to head and process the log records found.
3456 * Handle the two cases where the tail and head are in the same cycle
3457 * and where the active portion of the log wraps around the end of
3458 * the physical log separately. The pass parameter is passed through
3459 * to the routines called to process the data and is not looked at
3463 xlog_do_recovery_pass(
3465 xfs_daddr_t head_blk
,
3466 xfs_daddr_t tail_blk
,
3469 xlog_rec_header_t
*rhead
;
3471 xfs_caddr_t bufaddr
, offset
;
3472 xfs_buf_t
*hbp
, *dbp
;
3473 int error
= 0, h_size
;
3474 int bblks
, split_bblks
;
3475 int hblks
, split_hblks
, wrapped_hblks
;
3476 xlog_recover_t
*rhash
[XLOG_RHASH_SIZE
];
3478 ASSERT(head_blk
!= tail_blk
);
3481 * Read the header of the tail block and get the iclog buffer size from
3482 * h_size. Use this to tell how many sectors make up the log header.
3484 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3486 * When using variable length iclogs, read first sector of
3487 * iclog header and extract the header size from it. Get a
3488 * new hbp that is the correct size.
3490 hbp
= xlog_get_bp(log
, 1);
3493 if ((error
= xlog_bread(log
, tail_blk
, 1, hbp
)))
3495 offset
= xlog_align(log
, tail_blk
, 1, hbp
);
3496 rhead
= (xlog_rec_header_t
*)offset
;
3497 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
3500 h_size
= be32_to_cpu(rhead
->h_size
);
3501 if ((be32_to_cpu(rhead
->h_version
) & XLOG_VERSION_2
) &&
3502 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
3503 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
3504 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
3507 hbp
= xlog_get_bp(log
, hblks
);
3512 ASSERT(log
->l_sectbb_log
== 0);
3514 hbp
= xlog_get_bp(log
, 1);
3515 h_size
= XLOG_BIG_RECORD_BSIZE
;
3520 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
3526 memset(rhash
, 0, sizeof(rhash
));
3527 if (tail_blk
<= head_blk
) {
3528 for (blk_no
= tail_blk
; blk_no
< head_blk
; ) {
3529 if ((error
= xlog_bread(log
, blk_no
, hblks
, hbp
)))
3531 offset
= xlog_align(log
, blk_no
, hblks
, hbp
);
3532 rhead
= (xlog_rec_header_t
*)offset
;
3533 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3537 /* blocks in data section */
3538 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3539 error
= xlog_bread(log
, blk_no
+ hblks
, bblks
, dbp
);
3542 offset
= xlog_align(log
, blk_no
+ hblks
, bblks
, dbp
);
3543 xlog_unpack_data(rhead
, offset
, log
);
3544 if ((error
= xlog_recover_process_data(log
,
3545 rhash
, rhead
, offset
, pass
)))
3547 blk_no
+= bblks
+ hblks
;
3551 * Perform recovery around the end of the physical log.
3552 * When the head is not on the same cycle number as the tail,
3553 * we can't do a sequential recovery as above.
3556 while (blk_no
< log
->l_logBBsize
) {
3558 * Check for header wrapping around physical end-of-log
3563 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
3564 /* Read header in one read */
3565 error
= xlog_bread(log
, blk_no
, hblks
, hbp
);
3568 offset
= xlog_align(log
, blk_no
, hblks
, hbp
);
3570 /* This LR is split across physical log end */
3571 if (blk_no
!= log
->l_logBBsize
) {
3572 /* some data before physical log end */
3573 ASSERT(blk_no
<= INT_MAX
);
3574 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
3575 ASSERT(split_hblks
> 0);
3576 if ((error
= xlog_bread(log
, blk_no
,
3579 offset
= xlog_align(log
, blk_no
,
3583 * Note: this black magic still works with
3584 * large sector sizes (non-512) only because:
3585 * - we increased the buffer size originally
3586 * by 1 sector giving us enough extra space
3587 * for the second read;
3588 * - the log start is guaranteed to be sector
3590 * - we read the log end (LR header start)
3591 * _first_, then the log start (LR header end)
3592 * - order is important.
3594 wrapped_hblks
= hblks
- split_hblks
;
3595 bufaddr
= XFS_BUF_PTR(hbp
);
3596 error
= XFS_BUF_SET_PTR(hbp
,
3597 bufaddr
+ BBTOB(split_hblks
),
3598 BBTOB(hblks
- split_hblks
));
3600 error
= xlog_bread(log
, 0,
3601 wrapped_hblks
, hbp
);
3603 error
= XFS_BUF_SET_PTR(hbp
, bufaddr
,
3608 offset
= xlog_align(log
, 0,
3609 wrapped_hblks
, hbp
);
3611 rhead
= (xlog_rec_header_t
*)offset
;
3612 error
= xlog_valid_rec_header(log
, rhead
,
3613 split_hblks
? blk_no
: 0);
3617 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3620 /* Read in data for log record */
3621 if (blk_no
+ bblks
<= log
->l_logBBsize
) {
3622 error
= xlog_bread(log
, blk_no
, bblks
, dbp
);
3625 offset
= xlog_align(log
, blk_no
, bblks
, dbp
);
3627 /* This log record is split across the
3628 * physical end of log */
3631 if (blk_no
!= log
->l_logBBsize
) {
3632 /* some data is before the physical
3634 ASSERT(!wrapped_hblks
);
3635 ASSERT(blk_no
<= INT_MAX
);
3637 log
->l_logBBsize
- (int)blk_no
;
3638 ASSERT(split_bblks
> 0);
3639 if ((error
= xlog_bread(log
, blk_no
,
3642 offset
= xlog_align(log
, blk_no
,
3646 * Note: this black magic still works with
3647 * large sector sizes (non-512) only because:
3648 * - we increased the buffer size originally
3649 * by 1 sector giving us enough extra space
3650 * for the second read;
3651 * - the log start is guaranteed to be sector
3653 * - we read the log end (LR header start)
3654 * _first_, then the log start (LR header end)
3655 * - order is important.
3657 bufaddr
= XFS_BUF_PTR(dbp
);
3658 error
= XFS_BUF_SET_PTR(dbp
,
3659 bufaddr
+ BBTOB(split_bblks
),
3660 BBTOB(bblks
- split_bblks
));
3662 error
= xlog_bread(log
, wrapped_hblks
,
3663 bblks
- split_bblks
,
3666 error
= XFS_BUF_SET_PTR(dbp
, bufaddr
,
3671 offset
= xlog_align(log
, wrapped_hblks
,
3672 bblks
- split_bblks
, dbp
);
3674 xlog_unpack_data(rhead
, offset
, log
);
3675 if ((error
= xlog_recover_process_data(log
, rhash
,
3676 rhead
, offset
, pass
)))
3681 ASSERT(blk_no
>= log
->l_logBBsize
);
3682 blk_no
-= log
->l_logBBsize
;
3684 /* read first part of physical log */
3685 while (blk_no
< head_blk
) {
3686 if ((error
= xlog_bread(log
, blk_no
, hblks
, hbp
)))
3688 offset
= xlog_align(log
, blk_no
, hblks
, hbp
);
3689 rhead
= (xlog_rec_header_t
*)offset
;
3690 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3693 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3694 if ((error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
)))
3696 offset
= xlog_align(log
, blk_no
+hblks
, bblks
, dbp
);
3697 xlog_unpack_data(rhead
, offset
, log
);
3698 if ((error
= xlog_recover_process_data(log
, rhash
,
3699 rhead
, offset
, pass
)))
3701 blk_no
+= bblks
+ hblks
;
3713 * Do the recovery of the log. We actually do this in two phases.
3714 * The two passes are necessary in order to implement the function
3715 * of cancelling a record written into the log. The first pass
3716 * determines those things which have been cancelled, and the
3717 * second pass replays log items normally except for those which
3718 * have been cancelled. The handling of the replay and cancellations
3719 * takes place in the log item type specific routines.
3721 * The table of items which have cancel records in the log is allocated
3722 * and freed at this level, since only here do we know when all of
3723 * the log recovery has been completed.
3726 xlog_do_log_recovery(
3728 xfs_daddr_t head_blk
,
3729 xfs_daddr_t tail_blk
)
3733 ASSERT(head_blk
!= tail_blk
);
3736 * First do a pass to find all of the cancelled buf log items.
3737 * Store them in the buf_cancel_table for use in the second pass.
3739 log
->l_buf_cancel_table
=
3740 (xfs_buf_cancel_t
**)kmem_zalloc(XLOG_BC_TABLE_SIZE
*
3741 sizeof(xfs_buf_cancel_t
*),
3743 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3744 XLOG_RECOVER_PASS1
);
3746 kmem_free(log
->l_buf_cancel_table
);
3747 log
->l_buf_cancel_table
= NULL
;
3751 * Then do a second pass to actually recover the items in the log.
3752 * When it is complete free the table of buf cancel items.
3754 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3755 XLOG_RECOVER_PASS2
);
3760 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
3761 ASSERT(log
->l_buf_cancel_table
[i
] == NULL
);
3765 kmem_free(log
->l_buf_cancel_table
);
3766 log
->l_buf_cancel_table
= NULL
;
3772 * Do the actual recovery
3777 xfs_daddr_t head_blk
,
3778 xfs_daddr_t tail_blk
)
3785 * First replay the images in the log.
3787 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
3792 XFS_bflush(log
->l_mp
->m_ddev_targp
);
3795 * If IO errors happened during recovery, bail out.
3797 if (XFS_FORCED_SHUTDOWN(log
->l_mp
)) {
3802 * We now update the tail_lsn since much of the recovery has completed
3803 * and there may be space available to use. If there were no extent
3804 * or iunlinks, we can free up the entire log and set the tail_lsn to
3805 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3806 * lsn of the last known good LR on disk. If there are extent frees
3807 * or iunlinks they will have some entries in the AIL; so we look at
3808 * the AIL to determine how to set the tail_lsn.
3810 xlog_assign_tail_lsn(log
->l_mp
);
3813 * Now that we've finished replaying all buffer and inode
3814 * updates, re-read in the superblock.
3816 bp
= xfs_getsb(log
->l_mp
, 0);
3818 ASSERT(!(XFS_BUF_ISWRITE(bp
)));
3819 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp
)));
3821 XFS_BUF_UNASYNC(bp
);
3822 xfsbdstrat(log
->l_mp
, bp
);
3823 error
= xfs_iowait(bp
);
3825 xfs_ioerror_alert("xlog_do_recover",
3826 log
->l_mp
, bp
, XFS_BUF_ADDR(bp
));
3832 /* Convert superblock from on-disk format */
3833 sbp
= &log
->l_mp
->m_sb
;
3834 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
3835 ASSERT(sbp
->sb_magicnum
== XFS_SB_MAGIC
);
3836 ASSERT(xfs_sb_good_version(sbp
));
3839 /* We've re-read the superblock so re-initialize per-cpu counters */
3840 xfs_icsb_reinit_counters(log
->l_mp
);
3842 xlog_recover_check_summary(log
);
3844 /* Normal transactions can now occur */
3845 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
3850 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3852 * Return error or zero.
3858 xfs_daddr_t head_blk
, tail_blk
;
3861 /* find the tail of the log */
3862 if ((error
= xlog_find_tail(log
, &head_blk
, &tail_blk
)))
3865 if (tail_blk
!= head_blk
) {
3866 /* There used to be a comment here:
3868 * disallow recovery on read-only mounts. note -- mount
3869 * checks for ENOSPC and turns it into an intelligent
3871 * ...but this is no longer true. Now, unless you specify
3872 * NORECOVERY (in which case this function would never be
3873 * called), we just go ahead and recover. We do this all
3874 * under the vfs layer, so we can get away with it unless
3875 * the device itself is read-only, in which case we fail.
3877 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
3882 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3883 log
->l_mp
->m_fsname
, log
->l_mp
->m_logname
?
3884 log
->l_mp
->m_logname
: "internal");
3886 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
3887 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
3893 * In the first part of recovery we replay inodes and buffers and build
3894 * up the list of extent free items which need to be processed. Here
3895 * we process the extent free items and clean up the on disk unlinked
3896 * inode lists. This is separated from the first part of recovery so
3897 * that the root and real-time bitmap inodes can be read in from disk in
3898 * between the two stages. This is necessary so that we can free space
3899 * in the real-time portion of the file system.
3902 xlog_recover_finish(
3906 * Now we're ready to do the transactions needed for the
3907 * rest of recovery. Start with completing all the extent
3908 * free intent records and then process the unlinked inode
3909 * lists. At this point, we essentially run in normal mode
3910 * except that we're still performing recovery actions
3911 * rather than accepting new requests.
3913 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
3915 error
= xlog_recover_process_efis(log
);
3918 "Failed to recover EFIs on filesystem: %s",
3919 log
->l_mp
->m_fsname
);
3923 * Sync the log to get all the EFIs out of the AIL.
3924 * This isn't absolutely necessary, but it helps in
3925 * case the unlink transactions would have problems
3926 * pushing the EFIs out of the way.
3928 xfs_log_force(log
->l_mp
, (xfs_lsn_t
)0,
3929 (XFS_LOG_FORCE
| XFS_LOG_SYNC
));
3931 xlog_recover_process_iunlinks(log
);
3933 xlog_recover_check_summary(log
);
3936 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3937 log
->l_mp
->m_fsname
, log
->l_mp
->m_logname
?
3938 log
->l_mp
->m_logname
: "internal");
3939 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
3942 "!Ending clean XFS mount for filesystem: %s\n",
3943 log
->l_mp
->m_fsname
);
3951 * Read all of the agf and agi counters and check that they
3952 * are consistent with the superblock counters.
3955 xlog_recover_check_summary(
3963 #ifdef XFS_LOUD_RECOVERY
3966 xfs_agnumber_t agno
;
3967 __uint64_t freeblks
;
3977 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3978 error
= xfs_read_agf(mp
, NULL
, agno
, 0, &agfbp
);
3980 xfs_fs_cmn_err(CE_ALERT
, mp
,
3981 "xlog_recover_check_summary(agf)"
3982 "agf read failed agno %d error %d",
3985 agfp
= XFS_BUF_TO_AGF(agfbp
);
3986 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
3987 be32_to_cpu(agfp
->agf_flcount
);
3988 xfs_buf_relse(agfbp
);
3991 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3993 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agibp
);
3995 itotal
+= be32_to_cpu(agi
->agi_count
);
3996 ifree
+= be32_to_cpu(agi
->agi_freecount
);
3997 xfs_buf_relse(agibp
);
4001 sbbp
= xfs_getsb(mp
, 0);
4002 #ifdef XFS_LOUD_RECOVERY
4004 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(sbbp
));
4006 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4007 sbp
->sb_icount
, itotal
);
4009 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4010 sbp
->sb_ifree
, ifree
);
4012 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4013 sbp
->sb_fdblocks
, freeblks
);
4016 * This is turned off until I account for the allocation
4017 * btree blocks which live in free space.
4019 ASSERT(sbp
->sb_icount
== itotal
);
4020 ASSERT(sbp
->sb_ifree
== ifree
);
4021 ASSERT(sbp
->sb_fdblocks
== freeblks
);
4024 xfs_buf_relse(sbbp
);