exofs: confusion between kmap() and kmap_atomic() api
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / hugetlb.c
blobf5a106eeb2bd532c258c0b0d83c422de17a7b924
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/io.h>
26 #include <linux/hugetlb.h>
27 #include "internal.h"
29 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
33 static int max_hstate;
34 unsigned int default_hstate_idx;
35 struct hstate hstates[HUGE_MAX_HSTATE];
37 __initdata LIST_HEAD(huge_boot_pages);
39 /* for command line parsing */
40 static struct hstate * __initdata parsed_hstate;
41 static unsigned long __initdata default_hstate_max_huge_pages;
42 static unsigned long __initdata default_hstate_size;
44 #define for_each_hstate(h) \
45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50 static DEFINE_SPINLOCK(hugetlb_lock);
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 * across the pages in a mapping.
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex. To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
61 * down_write(&mm->mmap_sem);
62 * or
63 * down_read(&mm->mmap_sem);
64 * mutex_lock(&hugetlb_instantiation_mutex);
66 struct file_region {
67 struct list_head link;
68 long from;
69 long to;
72 static long region_add(struct list_head *head, long f, long t)
74 struct file_region *rg, *nrg, *trg;
76 /* Locate the region we are either in or before. */
77 list_for_each_entry(rg, head, link)
78 if (f <= rg->to)
79 break;
81 /* Round our left edge to the current segment if it encloses us. */
82 if (f > rg->from)
83 f = rg->from;
85 /* Check for and consume any regions we now overlap with. */
86 nrg = rg;
87 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88 if (&rg->link == head)
89 break;
90 if (rg->from > t)
91 break;
93 /* If this area reaches higher then extend our area to
94 * include it completely. If this is not the first area
95 * which we intend to reuse, free it. */
96 if (rg->to > t)
97 t = rg->to;
98 if (rg != nrg) {
99 list_del(&rg->link);
100 kfree(rg);
103 nrg->from = f;
104 nrg->to = t;
105 return 0;
108 static long region_chg(struct list_head *head, long f, long t)
110 struct file_region *rg, *nrg;
111 long chg = 0;
113 /* Locate the region we are before or in. */
114 list_for_each_entry(rg, head, link)
115 if (f <= rg->to)
116 break;
118 /* If we are below the current region then a new region is required.
119 * Subtle, allocate a new region at the position but make it zero
120 * size such that we can guarantee to record the reservation. */
121 if (&rg->link == head || t < rg->from) {
122 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123 if (!nrg)
124 return -ENOMEM;
125 nrg->from = f;
126 nrg->to = f;
127 INIT_LIST_HEAD(&nrg->link);
128 list_add(&nrg->link, rg->link.prev);
130 return t - f;
133 /* Round our left edge to the current segment if it encloses us. */
134 if (f > rg->from)
135 f = rg->from;
136 chg = t - f;
138 /* Check for and consume any regions we now overlap with. */
139 list_for_each_entry(rg, rg->link.prev, link) {
140 if (&rg->link == head)
141 break;
142 if (rg->from > t)
143 return chg;
145 /* We overlap with this area, if it extends futher than
146 * us then we must extend ourselves. Account for its
147 * existing reservation. */
148 if (rg->to > t) {
149 chg += rg->to - t;
150 t = rg->to;
152 chg -= rg->to - rg->from;
154 return chg;
157 static long region_truncate(struct list_head *head, long end)
159 struct file_region *rg, *trg;
160 long chg = 0;
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg, head, link)
164 if (end <= rg->to)
165 break;
166 if (&rg->link == head)
167 return 0;
169 /* If we are in the middle of a region then adjust it. */
170 if (end > rg->from) {
171 chg = rg->to - end;
172 rg->to = end;
173 rg = list_entry(rg->link.next, typeof(*rg), link);
176 /* Drop any remaining regions. */
177 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178 if (&rg->link == head)
179 break;
180 chg += rg->to - rg->from;
181 list_del(&rg->link);
182 kfree(rg);
184 return chg;
187 static long region_count(struct list_head *head, long f, long t)
189 struct file_region *rg;
190 long chg = 0;
192 /* Locate each segment we overlap with, and count that overlap. */
193 list_for_each_entry(rg, head, link) {
194 int seg_from;
195 int seg_to;
197 if (rg->to <= f)
198 continue;
199 if (rg->from >= t)
200 break;
202 seg_from = max(rg->from, f);
203 seg_to = min(rg->to, t);
205 chg += seg_to - seg_from;
208 return chg;
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
215 static pgoff_t vma_hugecache_offset(struct hstate *h,
216 struct vm_area_struct *vma, unsigned long address)
218 return ((address - vma->vm_start) >> huge_page_shift(h)) +
219 (vma->vm_pgoff >> huge_page_order(h));
223 * Return the size of the pages allocated when backing a VMA. In the majority
224 * cases this will be same size as used by the page table entries.
226 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
228 struct hstate *hstate;
230 if (!is_vm_hugetlb_page(vma))
231 return PAGE_SIZE;
233 hstate = hstate_vma(vma);
235 return 1UL << (hstate->order + PAGE_SHIFT);
237 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
240 * Return the page size being used by the MMU to back a VMA. In the majority
241 * of cases, the page size used by the kernel matches the MMU size. On
242 * architectures where it differs, an architecture-specific version of this
243 * function is required.
245 #ifndef vma_mmu_pagesize
246 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
248 return vma_kernel_pagesize(vma);
250 #endif
253 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
254 * bits of the reservation map pointer, which are always clear due to
255 * alignment.
257 #define HPAGE_RESV_OWNER (1UL << 0)
258 #define HPAGE_RESV_UNMAPPED (1UL << 1)
259 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
262 * These helpers are used to track how many pages are reserved for
263 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
264 * is guaranteed to have their future faults succeed.
266 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
267 * the reserve counters are updated with the hugetlb_lock held. It is safe
268 * to reset the VMA at fork() time as it is not in use yet and there is no
269 * chance of the global counters getting corrupted as a result of the values.
271 * The private mapping reservation is represented in a subtly different
272 * manner to a shared mapping. A shared mapping has a region map associated
273 * with the underlying file, this region map represents the backing file
274 * pages which have ever had a reservation assigned which this persists even
275 * after the page is instantiated. A private mapping has a region map
276 * associated with the original mmap which is attached to all VMAs which
277 * reference it, this region map represents those offsets which have consumed
278 * reservation ie. where pages have been instantiated.
280 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
282 return (unsigned long)vma->vm_private_data;
285 static void set_vma_private_data(struct vm_area_struct *vma,
286 unsigned long value)
288 vma->vm_private_data = (void *)value;
291 struct resv_map {
292 struct kref refs;
293 struct list_head regions;
296 static struct resv_map *resv_map_alloc(void)
298 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
299 if (!resv_map)
300 return NULL;
302 kref_init(&resv_map->refs);
303 INIT_LIST_HEAD(&resv_map->regions);
305 return resv_map;
308 static void resv_map_release(struct kref *ref)
310 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
312 /* Clear out any active regions before we release the map. */
313 region_truncate(&resv_map->regions, 0);
314 kfree(resv_map);
317 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
319 VM_BUG_ON(!is_vm_hugetlb_page(vma));
320 if (!(vma->vm_flags & VM_MAYSHARE))
321 return (struct resv_map *)(get_vma_private_data(vma) &
322 ~HPAGE_RESV_MASK);
323 return NULL;
326 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
328 VM_BUG_ON(!is_vm_hugetlb_page(vma));
329 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
331 set_vma_private_data(vma, (get_vma_private_data(vma) &
332 HPAGE_RESV_MASK) | (unsigned long)map);
335 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
337 VM_BUG_ON(!is_vm_hugetlb_page(vma));
338 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
343 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
345 VM_BUG_ON(!is_vm_hugetlb_page(vma));
347 return (get_vma_private_data(vma) & flag) != 0;
350 /* Decrement the reserved pages in the hugepage pool by one */
351 static void decrement_hugepage_resv_vma(struct hstate *h,
352 struct vm_area_struct *vma)
354 if (vma->vm_flags & VM_NORESERVE)
355 return;
357 if (vma->vm_flags & VM_MAYSHARE) {
358 /* Shared mappings always use reserves */
359 h->resv_huge_pages--;
360 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
362 * Only the process that called mmap() has reserves for
363 * private mappings.
365 h->resv_huge_pages--;
369 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
370 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
372 VM_BUG_ON(!is_vm_hugetlb_page(vma));
373 if (!(vma->vm_flags & VM_MAYSHARE))
374 vma->vm_private_data = (void *)0;
377 /* Returns true if the VMA has associated reserve pages */
378 static int vma_has_reserves(struct vm_area_struct *vma)
380 if (vma->vm_flags & VM_MAYSHARE)
381 return 1;
382 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
383 return 1;
384 return 0;
387 static void clear_gigantic_page(struct page *page,
388 unsigned long addr, unsigned long sz)
390 int i;
391 struct page *p = page;
393 might_sleep();
394 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
395 cond_resched();
396 clear_user_highpage(p, addr + i * PAGE_SIZE);
399 static void clear_huge_page(struct page *page,
400 unsigned long addr, unsigned long sz)
402 int i;
404 if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
405 clear_gigantic_page(page, addr, sz);
406 return;
409 might_sleep();
410 for (i = 0; i < sz/PAGE_SIZE; i++) {
411 cond_resched();
412 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
416 static void copy_gigantic_page(struct page *dst, struct page *src,
417 unsigned long addr, struct vm_area_struct *vma)
419 int i;
420 struct hstate *h = hstate_vma(vma);
421 struct page *dst_base = dst;
422 struct page *src_base = src;
423 might_sleep();
424 for (i = 0; i < pages_per_huge_page(h); ) {
425 cond_resched();
426 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
428 i++;
429 dst = mem_map_next(dst, dst_base, i);
430 src = mem_map_next(src, src_base, i);
433 static void copy_huge_page(struct page *dst, struct page *src,
434 unsigned long addr, struct vm_area_struct *vma)
436 int i;
437 struct hstate *h = hstate_vma(vma);
439 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
440 copy_gigantic_page(dst, src, addr, vma);
441 return;
444 might_sleep();
445 for (i = 0; i < pages_per_huge_page(h); i++) {
446 cond_resched();
447 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
451 static void enqueue_huge_page(struct hstate *h, struct page *page)
453 int nid = page_to_nid(page);
454 list_add(&page->lru, &h->hugepage_freelists[nid]);
455 h->free_huge_pages++;
456 h->free_huge_pages_node[nid]++;
459 static struct page *dequeue_huge_page_vma(struct hstate *h,
460 struct vm_area_struct *vma,
461 unsigned long address, int avoid_reserve)
463 int nid;
464 struct page *page = NULL;
465 struct mempolicy *mpol;
466 nodemask_t *nodemask;
467 struct zonelist *zonelist = huge_zonelist(vma, address,
468 htlb_alloc_mask, &mpol, &nodemask);
469 struct zone *zone;
470 struct zoneref *z;
473 * A child process with MAP_PRIVATE mappings created by their parent
474 * have no page reserves. This check ensures that reservations are
475 * not "stolen". The child may still get SIGKILLed
477 if (!vma_has_reserves(vma) &&
478 h->free_huge_pages - h->resv_huge_pages == 0)
479 return NULL;
481 /* If reserves cannot be used, ensure enough pages are in the pool */
482 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
483 return NULL;
485 for_each_zone_zonelist_nodemask(zone, z, zonelist,
486 MAX_NR_ZONES - 1, nodemask) {
487 nid = zone_to_nid(zone);
488 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
489 !list_empty(&h->hugepage_freelists[nid])) {
490 page = list_entry(h->hugepage_freelists[nid].next,
491 struct page, lru);
492 list_del(&page->lru);
493 h->free_huge_pages--;
494 h->free_huge_pages_node[nid]--;
496 if (!avoid_reserve)
497 decrement_hugepage_resv_vma(h, vma);
499 break;
502 mpol_cond_put(mpol);
503 return page;
506 static void update_and_free_page(struct hstate *h, struct page *page)
508 int i;
510 VM_BUG_ON(h->order >= MAX_ORDER);
512 h->nr_huge_pages--;
513 h->nr_huge_pages_node[page_to_nid(page)]--;
514 for (i = 0; i < pages_per_huge_page(h); i++) {
515 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
516 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
517 1 << PG_private | 1<< PG_writeback);
519 set_compound_page_dtor(page, NULL);
520 set_page_refcounted(page);
521 arch_release_hugepage(page);
522 __free_pages(page, huge_page_order(h));
525 struct hstate *size_to_hstate(unsigned long size)
527 struct hstate *h;
529 for_each_hstate(h) {
530 if (huge_page_size(h) == size)
531 return h;
533 return NULL;
536 static void free_huge_page(struct page *page)
539 * Can't pass hstate in here because it is called from the
540 * compound page destructor.
542 struct hstate *h = page_hstate(page);
543 int nid = page_to_nid(page);
544 struct address_space *mapping;
546 mapping = (struct address_space *) page_private(page);
547 set_page_private(page, 0);
548 page->mapping = NULL;
549 BUG_ON(page_count(page));
550 INIT_LIST_HEAD(&page->lru);
552 spin_lock(&hugetlb_lock);
553 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
554 update_and_free_page(h, page);
555 h->surplus_huge_pages--;
556 h->surplus_huge_pages_node[nid]--;
557 } else {
558 enqueue_huge_page(h, page);
560 spin_unlock(&hugetlb_lock);
561 if (mapping)
562 hugetlb_put_quota(mapping, 1);
565 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
567 set_compound_page_dtor(page, free_huge_page);
568 spin_lock(&hugetlb_lock);
569 h->nr_huge_pages++;
570 h->nr_huge_pages_node[nid]++;
571 spin_unlock(&hugetlb_lock);
572 put_page(page); /* free it into the hugepage allocator */
575 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
577 int i;
578 int nr_pages = 1 << order;
579 struct page *p = page + 1;
581 /* we rely on prep_new_huge_page to set the destructor */
582 set_compound_order(page, order);
583 __SetPageHead(page);
584 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
585 __SetPageTail(p);
586 p->first_page = page;
590 int PageHuge(struct page *page)
592 compound_page_dtor *dtor;
594 if (!PageCompound(page))
595 return 0;
597 page = compound_head(page);
598 dtor = get_compound_page_dtor(page);
600 return dtor == free_huge_page;
603 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
605 struct page *page;
607 if (h->order >= MAX_ORDER)
608 return NULL;
610 page = alloc_pages_exact_node(nid,
611 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
612 __GFP_REPEAT|__GFP_NOWARN,
613 huge_page_order(h));
614 if (page) {
615 if (arch_prepare_hugepage(page)) {
616 __free_pages(page, huge_page_order(h));
617 return NULL;
619 prep_new_huge_page(h, page, nid);
622 return page;
626 * Use a helper variable to find the next node and then
627 * copy it back to next_nid_to_alloc afterwards:
628 * otherwise there's a window in which a racer might
629 * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
630 * But we don't need to use a spin_lock here: it really
631 * doesn't matter if occasionally a racer chooses the
632 * same nid as we do. Move nid forward in the mask even
633 * if we just successfully allocated a hugepage so that
634 * the next caller gets hugepages on the next node.
636 static int hstate_next_node_to_alloc(struct hstate *h)
638 int next_nid;
639 next_nid = next_node(h->next_nid_to_alloc, node_online_map);
640 if (next_nid == MAX_NUMNODES)
641 next_nid = first_node(node_online_map);
642 h->next_nid_to_alloc = next_nid;
643 return next_nid;
646 static int alloc_fresh_huge_page(struct hstate *h)
648 struct page *page;
649 int start_nid;
650 int next_nid;
651 int ret = 0;
653 start_nid = h->next_nid_to_alloc;
654 next_nid = start_nid;
656 do {
657 page = alloc_fresh_huge_page_node(h, next_nid);
658 if (page)
659 ret = 1;
660 next_nid = hstate_next_node_to_alloc(h);
661 } while (!page && next_nid != start_nid);
663 if (ret)
664 count_vm_event(HTLB_BUDDY_PGALLOC);
665 else
666 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
668 return ret;
672 * helper for free_pool_huge_page() - find next node
673 * from which to free a huge page
675 static int hstate_next_node_to_free(struct hstate *h)
677 int next_nid;
678 next_nid = next_node(h->next_nid_to_free, node_online_map);
679 if (next_nid == MAX_NUMNODES)
680 next_nid = first_node(node_online_map);
681 h->next_nid_to_free = next_nid;
682 return next_nid;
686 * Free huge page from pool from next node to free.
687 * Attempt to keep persistent huge pages more or less
688 * balanced over allowed nodes.
689 * Called with hugetlb_lock locked.
691 static int free_pool_huge_page(struct hstate *h, bool acct_surplus)
693 int start_nid;
694 int next_nid;
695 int ret = 0;
697 start_nid = h->next_nid_to_free;
698 next_nid = start_nid;
700 do {
702 * If we're returning unused surplus pages, only examine
703 * nodes with surplus pages.
705 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
706 !list_empty(&h->hugepage_freelists[next_nid])) {
707 struct page *page =
708 list_entry(h->hugepage_freelists[next_nid].next,
709 struct page, lru);
710 list_del(&page->lru);
711 h->free_huge_pages--;
712 h->free_huge_pages_node[next_nid]--;
713 if (acct_surplus) {
714 h->surplus_huge_pages--;
715 h->surplus_huge_pages_node[next_nid]--;
717 update_and_free_page(h, page);
718 ret = 1;
720 next_nid = hstate_next_node_to_free(h);
721 } while (!ret && next_nid != start_nid);
723 return ret;
726 static struct page *alloc_buddy_huge_page(struct hstate *h,
727 struct vm_area_struct *vma, unsigned long address)
729 struct page *page;
730 unsigned int nid;
732 if (h->order >= MAX_ORDER)
733 return NULL;
736 * Assume we will successfully allocate the surplus page to
737 * prevent racing processes from causing the surplus to exceed
738 * overcommit
740 * This however introduces a different race, where a process B
741 * tries to grow the static hugepage pool while alloc_pages() is
742 * called by process A. B will only examine the per-node
743 * counters in determining if surplus huge pages can be
744 * converted to normal huge pages in adjust_pool_surplus(). A
745 * won't be able to increment the per-node counter, until the
746 * lock is dropped by B, but B doesn't drop hugetlb_lock until
747 * no more huge pages can be converted from surplus to normal
748 * state (and doesn't try to convert again). Thus, we have a
749 * case where a surplus huge page exists, the pool is grown, and
750 * the surplus huge page still exists after, even though it
751 * should just have been converted to a normal huge page. This
752 * does not leak memory, though, as the hugepage will be freed
753 * once it is out of use. It also does not allow the counters to
754 * go out of whack in adjust_pool_surplus() as we don't modify
755 * the node values until we've gotten the hugepage and only the
756 * per-node value is checked there.
758 spin_lock(&hugetlb_lock);
759 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
760 spin_unlock(&hugetlb_lock);
761 return NULL;
762 } else {
763 h->nr_huge_pages++;
764 h->surplus_huge_pages++;
766 spin_unlock(&hugetlb_lock);
768 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
769 __GFP_REPEAT|__GFP_NOWARN,
770 huge_page_order(h));
772 if (page && arch_prepare_hugepage(page)) {
773 __free_pages(page, huge_page_order(h));
774 return NULL;
777 spin_lock(&hugetlb_lock);
778 if (page) {
780 * This page is now managed by the hugetlb allocator and has
781 * no users -- drop the buddy allocator's reference.
783 put_page_testzero(page);
784 VM_BUG_ON(page_count(page));
785 nid = page_to_nid(page);
786 set_compound_page_dtor(page, free_huge_page);
788 * We incremented the global counters already
790 h->nr_huge_pages_node[nid]++;
791 h->surplus_huge_pages_node[nid]++;
792 __count_vm_event(HTLB_BUDDY_PGALLOC);
793 } else {
794 h->nr_huge_pages--;
795 h->surplus_huge_pages--;
796 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
798 spin_unlock(&hugetlb_lock);
800 return page;
804 * Increase the hugetlb pool such that it can accomodate a reservation
805 * of size 'delta'.
807 static int gather_surplus_pages(struct hstate *h, int delta)
809 struct list_head surplus_list;
810 struct page *page, *tmp;
811 int ret, i;
812 int needed, allocated;
814 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
815 if (needed <= 0) {
816 h->resv_huge_pages += delta;
817 return 0;
820 allocated = 0;
821 INIT_LIST_HEAD(&surplus_list);
823 ret = -ENOMEM;
824 retry:
825 spin_unlock(&hugetlb_lock);
826 for (i = 0; i < needed; i++) {
827 page = alloc_buddy_huge_page(h, NULL, 0);
828 if (!page) {
830 * We were not able to allocate enough pages to
831 * satisfy the entire reservation so we free what
832 * we've allocated so far.
834 spin_lock(&hugetlb_lock);
835 needed = 0;
836 goto free;
839 list_add(&page->lru, &surplus_list);
841 allocated += needed;
844 * After retaking hugetlb_lock, we need to recalculate 'needed'
845 * because either resv_huge_pages or free_huge_pages may have changed.
847 spin_lock(&hugetlb_lock);
848 needed = (h->resv_huge_pages + delta) -
849 (h->free_huge_pages + allocated);
850 if (needed > 0)
851 goto retry;
854 * The surplus_list now contains _at_least_ the number of extra pages
855 * needed to accomodate the reservation. Add the appropriate number
856 * of pages to the hugetlb pool and free the extras back to the buddy
857 * allocator. Commit the entire reservation here to prevent another
858 * process from stealing the pages as they are added to the pool but
859 * before they are reserved.
861 needed += allocated;
862 h->resv_huge_pages += delta;
863 ret = 0;
864 free:
865 /* Free the needed pages to the hugetlb pool */
866 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
867 if ((--needed) < 0)
868 break;
869 list_del(&page->lru);
870 enqueue_huge_page(h, page);
873 /* Free unnecessary surplus pages to the buddy allocator */
874 if (!list_empty(&surplus_list)) {
875 spin_unlock(&hugetlb_lock);
876 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
877 list_del(&page->lru);
879 * The page has a reference count of zero already, so
880 * call free_huge_page directly instead of using
881 * put_page. This must be done with hugetlb_lock
882 * unlocked which is safe because free_huge_page takes
883 * hugetlb_lock before deciding how to free the page.
885 free_huge_page(page);
887 spin_lock(&hugetlb_lock);
890 return ret;
894 * When releasing a hugetlb pool reservation, any surplus pages that were
895 * allocated to satisfy the reservation must be explicitly freed if they were
896 * never used.
897 * Called with hugetlb_lock held.
899 static void return_unused_surplus_pages(struct hstate *h,
900 unsigned long unused_resv_pages)
902 unsigned long nr_pages;
904 /* Uncommit the reservation */
905 h->resv_huge_pages -= unused_resv_pages;
907 /* Cannot return gigantic pages currently */
908 if (h->order >= MAX_ORDER)
909 return;
911 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
914 * We want to release as many surplus pages as possible, spread
915 * evenly across all nodes. Iterate across all nodes until we
916 * can no longer free unreserved surplus pages. This occurs when
917 * the nodes with surplus pages have no free pages.
918 * free_pool_huge_page() will balance the the frees across the
919 * on-line nodes for us and will handle the hstate accounting.
921 while (nr_pages--) {
922 if (!free_pool_huge_page(h, 1))
923 break;
928 * Determine if the huge page at addr within the vma has an associated
929 * reservation. Where it does not we will need to logically increase
930 * reservation and actually increase quota before an allocation can occur.
931 * Where any new reservation would be required the reservation change is
932 * prepared, but not committed. Once the page has been quota'd allocated
933 * an instantiated the change should be committed via vma_commit_reservation.
934 * No action is required on failure.
936 static long vma_needs_reservation(struct hstate *h,
937 struct vm_area_struct *vma, unsigned long addr)
939 struct address_space *mapping = vma->vm_file->f_mapping;
940 struct inode *inode = mapping->host;
942 if (vma->vm_flags & VM_MAYSHARE) {
943 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
944 return region_chg(&inode->i_mapping->private_list,
945 idx, idx + 1);
947 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
948 return 1;
950 } else {
951 long err;
952 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
953 struct resv_map *reservations = vma_resv_map(vma);
955 err = region_chg(&reservations->regions, idx, idx + 1);
956 if (err < 0)
957 return err;
958 return 0;
961 static void vma_commit_reservation(struct hstate *h,
962 struct vm_area_struct *vma, unsigned long addr)
964 struct address_space *mapping = vma->vm_file->f_mapping;
965 struct inode *inode = mapping->host;
967 if (vma->vm_flags & VM_MAYSHARE) {
968 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
969 region_add(&inode->i_mapping->private_list, idx, idx + 1);
971 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
972 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
973 struct resv_map *reservations = vma_resv_map(vma);
975 /* Mark this page used in the map. */
976 region_add(&reservations->regions, idx, idx + 1);
980 static struct page *alloc_huge_page(struct vm_area_struct *vma,
981 unsigned long addr, int avoid_reserve)
983 struct hstate *h = hstate_vma(vma);
984 struct page *page;
985 struct address_space *mapping = vma->vm_file->f_mapping;
986 struct inode *inode = mapping->host;
987 long chg;
990 * Processes that did not create the mapping will have no reserves and
991 * will not have accounted against quota. Check that the quota can be
992 * made before satisfying the allocation
993 * MAP_NORESERVE mappings may also need pages and quota allocated
994 * if no reserve mapping overlaps.
996 chg = vma_needs_reservation(h, vma, addr);
997 if (chg < 0)
998 return ERR_PTR(chg);
999 if (chg)
1000 if (hugetlb_get_quota(inode->i_mapping, chg))
1001 return ERR_PTR(-ENOSPC);
1003 spin_lock(&hugetlb_lock);
1004 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1005 spin_unlock(&hugetlb_lock);
1007 if (!page) {
1008 page = alloc_buddy_huge_page(h, vma, addr);
1009 if (!page) {
1010 hugetlb_put_quota(inode->i_mapping, chg);
1011 return ERR_PTR(-VM_FAULT_SIGBUS);
1015 set_page_refcounted(page);
1016 set_page_private(page, (unsigned long) mapping);
1018 vma_commit_reservation(h, vma, addr);
1020 return page;
1023 int __weak alloc_bootmem_huge_page(struct hstate *h)
1025 struct huge_bootmem_page *m;
1026 int nr_nodes = nodes_weight(node_online_map);
1028 while (nr_nodes) {
1029 void *addr;
1031 addr = __alloc_bootmem_node_nopanic(
1032 NODE_DATA(h->next_nid_to_alloc),
1033 huge_page_size(h), huge_page_size(h), 0);
1035 hstate_next_node_to_alloc(h);
1036 if (addr) {
1038 * Use the beginning of the huge page to store the
1039 * huge_bootmem_page struct (until gather_bootmem
1040 * puts them into the mem_map).
1042 m = addr;
1043 goto found;
1045 nr_nodes--;
1047 return 0;
1049 found:
1050 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1051 /* Put them into a private list first because mem_map is not up yet */
1052 list_add(&m->list, &huge_boot_pages);
1053 m->hstate = h;
1054 return 1;
1057 static void prep_compound_huge_page(struct page *page, int order)
1059 if (unlikely(order > (MAX_ORDER - 1)))
1060 prep_compound_gigantic_page(page, order);
1061 else
1062 prep_compound_page(page, order);
1065 /* Put bootmem huge pages into the standard lists after mem_map is up */
1066 static void __init gather_bootmem_prealloc(void)
1068 struct huge_bootmem_page *m;
1070 list_for_each_entry(m, &huge_boot_pages, list) {
1071 struct page *page = virt_to_page(m);
1072 struct hstate *h = m->hstate;
1073 __ClearPageReserved(page);
1074 WARN_ON(page_count(page) != 1);
1075 prep_compound_huge_page(page, h->order);
1076 prep_new_huge_page(h, page, page_to_nid(page));
1080 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1082 unsigned long i;
1084 for (i = 0; i < h->max_huge_pages; ++i) {
1085 if (h->order >= MAX_ORDER) {
1086 if (!alloc_bootmem_huge_page(h))
1087 break;
1088 } else if (!alloc_fresh_huge_page(h))
1089 break;
1091 h->max_huge_pages = i;
1094 static void __init hugetlb_init_hstates(void)
1096 struct hstate *h;
1098 for_each_hstate(h) {
1099 /* oversize hugepages were init'ed in early boot */
1100 if (h->order < MAX_ORDER)
1101 hugetlb_hstate_alloc_pages(h);
1105 static char * __init memfmt(char *buf, unsigned long n)
1107 if (n >= (1UL << 30))
1108 sprintf(buf, "%lu GB", n >> 30);
1109 else if (n >= (1UL << 20))
1110 sprintf(buf, "%lu MB", n >> 20);
1111 else
1112 sprintf(buf, "%lu KB", n >> 10);
1113 return buf;
1116 static void __init report_hugepages(void)
1118 struct hstate *h;
1120 for_each_hstate(h) {
1121 char buf[32];
1122 printk(KERN_INFO "HugeTLB registered %s page size, "
1123 "pre-allocated %ld pages\n",
1124 memfmt(buf, huge_page_size(h)),
1125 h->free_huge_pages);
1129 #ifdef CONFIG_HIGHMEM
1130 static void try_to_free_low(struct hstate *h, unsigned long count)
1132 int i;
1134 if (h->order >= MAX_ORDER)
1135 return;
1137 for (i = 0; i < MAX_NUMNODES; ++i) {
1138 struct page *page, *next;
1139 struct list_head *freel = &h->hugepage_freelists[i];
1140 list_for_each_entry_safe(page, next, freel, lru) {
1141 if (count >= h->nr_huge_pages)
1142 return;
1143 if (PageHighMem(page))
1144 continue;
1145 list_del(&page->lru);
1146 update_and_free_page(h, page);
1147 h->free_huge_pages--;
1148 h->free_huge_pages_node[page_to_nid(page)]--;
1152 #else
1153 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1156 #endif
1159 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1160 * balanced by operating on them in a round-robin fashion.
1161 * Returns 1 if an adjustment was made.
1163 static int adjust_pool_surplus(struct hstate *h, int delta)
1165 int start_nid, next_nid;
1166 int ret = 0;
1168 VM_BUG_ON(delta != -1 && delta != 1);
1170 if (delta < 0)
1171 start_nid = h->next_nid_to_alloc;
1172 else
1173 start_nid = h->next_nid_to_free;
1174 next_nid = start_nid;
1176 do {
1177 int nid = next_nid;
1178 if (delta < 0) {
1179 next_nid = hstate_next_node_to_alloc(h);
1181 * To shrink on this node, there must be a surplus page
1183 if (!h->surplus_huge_pages_node[nid])
1184 continue;
1186 if (delta > 0) {
1187 next_nid = hstate_next_node_to_free(h);
1189 * Surplus cannot exceed the total number of pages
1191 if (h->surplus_huge_pages_node[nid] >=
1192 h->nr_huge_pages_node[nid])
1193 continue;
1196 h->surplus_huge_pages += delta;
1197 h->surplus_huge_pages_node[nid] += delta;
1198 ret = 1;
1199 break;
1200 } while (next_nid != start_nid);
1202 return ret;
1205 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1206 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1208 unsigned long min_count, ret;
1210 if (h->order >= MAX_ORDER)
1211 return h->max_huge_pages;
1214 * Increase the pool size
1215 * First take pages out of surplus state. Then make up the
1216 * remaining difference by allocating fresh huge pages.
1218 * We might race with alloc_buddy_huge_page() here and be unable
1219 * to convert a surplus huge page to a normal huge page. That is
1220 * not critical, though, it just means the overall size of the
1221 * pool might be one hugepage larger than it needs to be, but
1222 * within all the constraints specified by the sysctls.
1224 spin_lock(&hugetlb_lock);
1225 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1226 if (!adjust_pool_surplus(h, -1))
1227 break;
1230 while (count > persistent_huge_pages(h)) {
1232 * If this allocation races such that we no longer need the
1233 * page, free_huge_page will handle it by freeing the page
1234 * and reducing the surplus.
1236 spin_unlock(&hugetlb_lock);
1237 ret = alloc_fresh_huge_page(h);
1238 spin_lock(&hugetlb_lock);
1239 if (!ret)
1240 goto out;
1245 * Decrease the pool size
1246 * First return free pages to the buddy allocator (being careful
1247 * to keep enough around to satisfy reservations). Then place
1248 * pages into surplus state as needed so the pool will shrink
1249 * to the desired size as pages become free.
1251 * By placing pages into the surplus state independent of the
1252 * overcommit value, we are allowing the surplus pool size to
1253 * exceed overcommit. There are few sane options here. Since
1254 * alloc_buddy_huge_page() is checking the global counter,
1255 * though, we'll note that we're not allowed to exceed surplus
1256 * and won't grow the pool anywhere else. Not until one of the
1257 * sysctls are changed, or the surplus pages go out of use.
1259 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1260 min_count = max(count, min_count);
1261 try_to_free_low(h, min_count);
1262 while (min_count < persistent_huge_pages(h)) {
1263 if (!free_pool_huge_page(h, 0))
1264 break;
1266 while (count < persistent_huge_pages(h)) {
1267 if (!adjust_pool_surplus(h, 1))
1268 break;
1270 out:
1271 ret = persistent_huge_pages(h);
1272 spin_unlock(&hugetlb_lock);
1273 return ret;
1276 #define HSTATE_ATTR_RO(_name) \
1277 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1279 #define HSTATE_ATTR(_name) \
1280 static struct kobj_attribute _name##_attr = \
1281 __ATTR(_name, 0644, _name##_show, _name##_store)
1283 static struct kobject *hugepages_kobj;
1284 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1286 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1288 int i;
1289 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1290 if (hstate_kobjs[i] == kobj)
1291 return &hstates[i];
1292 BUG();
1293 return NULL;
1296 static ssize_t nr_hugepages_show(struct kobject *kobj,
1297 struct kobj_attribute *attr, char *buf)
1299 struct hstate *h = kobj_to_hstate(kobj);
1300 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1302 static ssize_t nr_hugepages_store(struct kobject *kobj,
1303 struct kobj_attribute *attr, const char *buf, size_t count)
1305 int err;
1306 unsigned long input;
1307 struct hstate *h = kobj_to_hstate(kobj);
1309 err = strict_strtoul(buf, 10, &input);
1310 if (err)
1311 return 0;
1313 h->max_huge_pages = set_max_huge_pages(h, input);
1315 return count;
1317 HSTATE_ATTR(nr_hugepages);
1319 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1320 struct kobj_attribute *attr, char *buf)
1322 struct hstate *h = kobj_to_hstate(kobj);
1323 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1325 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1326 struct kobj_attribute *attr, const char *buf, size_t count)
1328 int err;
1329 unsigned long input;
1330 struct hstate *h = kobj_to_hstate(kobj);
1332 err = strict_strtoul(buf, 10, &input);
1333 if (err)
1334 return 0;
1336 spin_lock(&hugetlb_lock);
1337 h->nr_overcommit_huge_pages = input;
1338 spin_unlock(&hugetlb_lock);
1340 return count;
1342 HSTATE_ATTR(nr_overcommit_hugepages);
1344 static ssize_t free_hugepages_show(struct kobject *kobj,
1345 struct kobj_attribute *attr, char *buf)
1347 struct hstate *h = kobj_to_hstate(kobj);
1348 return sprintf(buf, "%lu\n", h->free_huge_pages);
1350 HSTATE_ATTR_RO(free_hugepages);
1352 static ssize_t resv_hugepages_show(struct kobject *kobj,
1353 struct kobj_attribute *attr, char *buf)
1355 struct hstate *h = kobj_to_hstate(kobj);
1356 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1358 HSTATE_ATTR_RO(resv_hugepages);
1360 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1361 struct kobj_attribute *attr, char *buf)
1363 struct hstate *h = kobj_to_hstate(kobj);
1364 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1366 HSTATE_ATTR_RO(surplus_hugepages);
1368 static struct attribute *hstate_attrs[] = {
1369 &nr_hugepages_attr.attr,
1370 &nr_overcommit_hugepages_attr.attr,
1371 &free_hugepages_attr.attr,
1372 &resv_hugepages_attr.attr,
1373 &surplus_hugepages_attr.attr,
1374 NULL,
1377 static struct attribute_group hstate_attr_group = {
1378 .attrs = hstate_attrs,
1381 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1383 int retval;
1385 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1386 hugepages_kobj);
1387 if (!hstate_kobjs[h - hstates])
1388 return -ENOMEM;
1390 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1391 &hstate_attr_group);
1392 if (retval)
1393 kobject_put(hstate_kobjs[h - hstates]);
1395 return retval;
1398 static void __init hugetlb_sysfs_init(void)
1400 struct hstate *h;
1401 int err;
1403 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1404 if (!hugepages_kobj)
1405 return;
1407 for_each_hstate(h) {
1408 err = hugetlb_sysfs_add_hstate(h);
1409 if (err)
1410 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1411 h->name);
1415 static void __exit hugetlb_exit(void)
1417 struct hstate *h;
1419 for_each_hstate(h) {
1420 kobject_put(hstate_kobjs[h - hstates]);
1423 kobject_put(hugepages_kobj);
1425 module_exit(hugetlb_exit);
1427 static int __init hugetlb_init(void)
1429 /* Some platform decide whether they support huge pages at boot
1430 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1431 * there is no such support
1433 if (HPAGE_SHIFT == 0)
1434 return 0;
1436 if (!size_to_hstate(default_hstate_size)) {
1437 default_hstate_size = HPAGE_SIZE;
1438 if (!size_to_hstate(default_hstate_size))
1439 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1441 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1442 if (default_hstate_max_huge_pages)
1443 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1445 hugetlb_init_hstates();
1447 gather_bootmem_prealloc();
1449 report_hugepages();
1451 hugetlb_sysfs_init();
1453 return 0;
1455 module_init(hugetlb_init);
1457 /* Should be called on processing a hugepagesz=... option */
1458 void __init hugetlb_add_hstate(unsigned order)
1460 struct hstate *h;
1461 unsigned long i;
1463 if (size_to_hstate(PAGE_SIZE << order)) {
1464 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1465 return;
1467 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1468 BUG_ON(order == 0);
1469 h = &hstates[max_hstate++];
1470 h->order = order;
1471 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1472 h->nr_huge_pages = 0;
1473 h->free_huge_pages = 0;
1474 for (i = 0; i < MAX_NUMNODES; ++i)
1475 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1476 h->next_nid_to_alloc = first_node(node_online_map);
1477 h->next_nid_to_free = first_node(node_online_map);
1478 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1479 huge_page_size(h)/1024);
1481 parsed_hstate = h;
1484 static int __init hugetlb_nrpages_setup(char *s)
1486 unsigned long *mhp;
1487 static unsigned long *last_mhp;
1490 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1491 * so this hugepages= parameter goes to the "default hstate".
1493 if (!max_hstate)
1494 mhp = &default_hstate_max_huge_pages;
1495 else
1496 mhp = &parsed_hstate->max_huge_pages;
1498 if (mhp == last_mhp) {
1499 printk(KERN_WARNING "hugepages= specified twice without "
1500 "interleaving hugepagesz=, ignoring\n");
1501 return 1;
1504 if (sscanf(s, "%lu", mhp) <= 0)
1505 *mhp = 0;
1508 * Global state is always initialized later in hugetlb_init.
1509 * But we need to allocate >= MAX_ORDER hstates here early to still
1510 * use the bootmem allocator.
1512 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1513 hugetlb_hstate_alloc_pages(parsed_hstate);
1515 last_mhp = mhp;
1517 return 1;
1519 __setup("hugepages=", hugetlb_nrpages_setup);
1521 static int __init hugetlb_default_setup(char *s)
1523 default_hstate_size = memparse(s, &s);
1524 return 1;
1526 __setup("default_hugepagesz=", hugetlb_default_setup);
1528 static unsigned int cpuset_mems_nr(unsigned int *array)
1530 int node;
1531 unsigned int nr = 0;
1533 for_each_node_mask(node, cpuset_current_mems_allowed)
1534 nr += array[node];
1536 return nr;
1539 #ifdef CONFIG_SYSCTL
1540 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1541 void __user *buffer,
1542 size_t *length, loff_t *ppos)
1544 struct hstate *h = &default_hstate;
1545 unsigned long tmp;
1547 if (!write)
1548 tmp = h->max_huge_pages;
1550 table->data = &tmp;
1551 table->maxlen = sizeof(unsigned long);
1552 proc_doulongvec_minmax(table, write, buffer, length, ppos);
1554 if (write)
1555 h->max_huge_pages = set_max_huge_pages(h, tmp);
1557 return 0;
1560 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1561 void __user *buffer,
1562 size_t *length, loff_t *ppos)
1564 proc_dointvec(table, write, buffer, length, ppos);
1565 if (hugepages_treat_as_movable)
1566 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1567 else
1568 htlb_alloc_mask = GFP_HIGHUSER;
1569 return 0;
1572 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1573 void __user *buffer,
1574 size_t *length, loff_t *ppos)
1576 struct hstate *h = &default_hstate;
1577 unsigned long tmp;
1579 if (!write)
1580 tmp = h->nr_overcommit_huge_pages;
1582 table->data = &tmp;
1583 table->maxlen = sizeof(unsigned long);
1584 proc_doulongvec_minmax(table, write, buffer, length, ppos);
1586 if (write) {
1587 spin_lock(&hugetlb_lock);
1588 h->nr_overcommit_huge_pages = tmp;
1589 spin_unlock(&hugetlb_lock);
1592 return 0;
1595 #endif /* CONFIG_SYSCTL */
1597 void hugetlb_report_meminfo(struct seq_file *m)
1599 struct hstate *h = &default_hstate;
1600 seq_printf(m,
1601 "HugePages_Total: %5lu\n"
1602 "HugePages_Free: %5lu\n"
1603 "HugePages_Rsvd: %5lu\n"
1604 "HugePages_Surp: %5lu\n"
1605 "Hugepagesize: %8lu kB\n",
1606 h->nr_huge_pages,
1607 h->free_huge_pages,
1608 h->resv_huge_pages,
1609 h->surplus_huge_pages,
1610 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1613 int hugetlb_report_node_meminfo(int nid, char *buf)
1615 struct hstate *h = &default_hstate;
1616 return sprintf(buf,
1617 "Node %d HugePages_Total: %5u\n"
1618 "Node %d HugePages_Free: %5u\n"
1619 "Node %d HugePages_Surp: %5u\n",
1620 nid, h->nr_huge_pages_node[nid],
1621 nid, h->free_huge_pages_node[nid],
1622 nid, h->surplus_huge_pages_node[nid]);
1625 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1626 unsigned long hugetlb_total_pages(void)
1628 struct hstate *h = &default_hstate;
1629 return h->nr_huge_pages * pages_per_huge_page(h);
1632 static int hugetlb_acct_memory(struct hstate *h, long delta)
1634 int ret = -ENOMEM;
1636 spin_lock(&hugetlb_lock);
1638 * When cpuset is configured, it breaks the strict hugetlb page
1639 * reservation as the accounting is done on a global variable. Such
1640 * reservation is completely rubbish in the presence of cpuset because
1641 * the reservation is not checked against page availability for the
1642 * current cpuset. Application can still potentially OOM'ed by kernel
1643 * with lack of free htlb page in cpuset that the task is in.
1644 * Attempt to enforce strict accounting with cpuset is almost
1645 * impossible (or too ugly) because cpuset is too fluid that
1646 * task or memory node can be dynamically moved between cpusets.
1648 * The change of semantics for shared hugetlb mapping with cpuset is
1649 * undesirable. However, in order to preserve some of the semantics,
1650 * we fall back to check against current free page availability as
1651 * a best attempt and hopefully to minimize the impact of changing
1652 * semantics that cpuset has.
1654 if (delta > 0) {
1655 if (gather_surplus_pages(h, delta) < 0)
1656 goto out;
1658 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1659 return_unused_surplus_pages(h, delta);
1660 goto out;
1664 ret = 0;
1665 if (delta < 0)
1666 return_unused_surplus_pages(h, (unsigned long) -delta);
1668 out:
1669 spin_unlock(&hugetlb_lock);
1670 return ret;
1673 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1675 struct resv_map *reservations = vma_resv_map(vma);
1678 * This new VMA should share its siblings reservation map if present.
1679 * The VMA will only ever have a valid reservation map pointer where
1680 * it is being copied for another still existing VMA. As that VMA
1681 * has a reference to the reservation map it cannot dissappear until
1682 * after this open call completes. It is therefore safe to take a
1683 * new reference here without additional locking.
1685 if (reservations)
1686 kref_get(&reservations->refs);
1689 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1691 struct hstate *h = hstate_vma(vma);
1692 struct resv_map *reservations = vma_resv_map(vma);
1693 unsigned long reserve;
1694 unsigned long start;
1695 unsigned long end;
1697 if (reservations) {
1698 start = vma_hugecache_offset(h, vma, vma->vm_start);
1699 end = vma_hugecache_offset(h, vma, vma->vm_end);
1701 reserve = (end - start) -
1702 region_count(&reservations->regions, start, end);
1704 kref_put(&reservations->refs, resv_map_release);
1706 if (reserve) {
1707 hugetlb_acct_memory(h, -reserve);
1708 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1714 * We cannot handle pagefaults against hugetlb pages at all. They cause
1715 * handle_mm_fault() to try to instantiate regular-sized pages in the
1716 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1717 * this far.
1719 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1721 BUG();
1722 return 0;
1725 const struct vm_operations_struct hugetlb_vm_ops = {
1726 .fault = hugetlb_vm_op_fault,
1727 .open = hugetlb_vm_op_open,
1728 .close = hugetlb_vm_op_close,
1731 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1732 int writable)
1734 pte_t entry;
1736 if (writable) {
1737 entry =
1738 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1739 } else {
1740 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1742 entry = pte_mkyoung(entry);
1743 entry = pte_mkhuge(entry);
1745 return entry;
1748 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1749 unsigned long address, pte_t *ptep)
1751 pte_t entry;
1753 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1754 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1755 update_mmu_cache(vma, address, entry);
1760 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1761 struct vm_area_struct *vma)
1763 pte_t *src_pte, *dst_pte, entry;
1764 struct page *ptepage;
1765 unsigned long addr;
1766 int cow;
1767 struct hstate *h = hstate_vma(vma);
1768 unsigned long sz = huge_page_size(h);
1770 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1772 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1773 src_pte = huge_pte_offset(src, addr);
1774 if (!src_pte)
1775 continue;
1776 dst_pte = huge_pte_alloc(dst, addr, sz);
1777 if (!dst_pte)
1778 goto nomem;
1780 /* If the pagetables are shared don't copy or take references */
1781 if (dst_pte == src_pte)
1782 continue;
1784 spin_lock(&dst->page_table_lock);
1785 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1786 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1787 if (cow)
1788 huge_ptep_set_wrprotect(src, addr, src_pte);
1789 entry = huge_ptep_get(src_pte);
1790 ptepage = pte_page(entry);
1791 get_page(ptepage);
1792 set_huge_pte_at(dst, addr, dst_pte, entry);
1794 spin_unlock(&src->page_table_lock);
1795 spin_unlock(&dst->page_table_lock);
1797 return 0;
1799 nomem:
1800 return -ENOMEM;
1803 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1804 unsigned long end, struct page *ref_page)
1806 struct mm_struct *mm = vma->vm_mm;
1807 unsigned long address;
1808 pte_t *ptep;
1809 pte_t pte;
1810 struct page *page;
1811 struct page *tmp;
1812 struct hstate *h = hstate_vma(vma);
1813 unsigned long sz = huge_page_size(h);
1816 * A page gathering list, protected by per file i_mmap_lock. The
1817 * lock is used to avoid list corruption from multiple unmapping
1818 * of the same page since we are using page->lru.
1820 LIST_HEAD(page_list);
1822 WARN_ON(!is_vm_hugetlb_page(vma));
1823 BUG_ON(start & ~huge_page_mask(h));
1824 BUG_ON(end & ~huge_page_mask(h));
1826 mmu_notifier_invalidate_range_start(mm, start, end);
1827 spin_lock(&mm->page_table_lock);
1828 for (address = start; address < end; address += sz) {
1829 ptep = huge_pte_offset(mm, address);
1830 if (!ptep)
1831 continue;
1833 if (huge_pmd_unshare(mm, &address, ptep))
1834 continue;
1837 * If a reference page is supplied, it is because a specific
1838 * page is being unmapped, not a range. Ensure the page we
1839 * are about to unmap is the actual page of interest.
1841 if (ref_page) {
1842 pte = huge_ptep_get(ptep);
1843 if (huge_pte_none(pte))
1844 continue;
1845 page = pte_page(pte);
1846 if (page != ref_page)
1847 continue;
1850 * Mark the VMA as having unmapped its page so that
1851 * future faults in this VMA will fail rather than
1852 * looking like data was lost
1854 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1857 pte = huge_ptep_get_and_clear(mm, address, ptep);
1858 if (huge_pte_none(pte))
1859 continue;
1861 page = pte_page(pte);
1862 if (pte_dirty(pte))
1863 set_page_dirty(page);
1864 list_add(&page->lru, &page_list);
1866 spin_unlock(&mm->page_table_lock);
1867 flush_tlb_range(vma, start, end);
1868 mmu_notifier_invalidate_range_end(mm, start, end);
1869 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1870 list_del(&page->lru);
1871 put_page(page);
1875 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1876 unsigned long end, struct page *ref_page)
1878 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1879 __unmap_hugepage_range(vma, start, end, ref_page);
1880 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1884 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1885 * mappping it owns the reserve page for. The intention is to unmap the page
1886 * from other VMAs and let the children be SIGKILLed if they are faulting the
1887 * same region.
1889 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1890 struct page *page, unsigned long address)
1892 struct hstate *h = hstate_vma(vma);
1893 struct vm_area_struct *iter_vma;
1894 struct address_space *mapping;
1895 struct prio_tree_iter iter;
1896 pgoff_t pgoff;
1899 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1900 * from page cache lookup which is in HPAGE_SIZE units.
1902 address = address & huge_page_mask(h);
1903 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1904 + (vma->vm_pgoff >> PAGE_SHIFT);
1905 mapping = (struct address_space *)page_private(page);
1907 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1908 /* Do not unmap the current VMA */
1909 if (iter_vma == vma)
1910 continue;
1913 * Unmap the page from other VMAs without their own reserves.
1914 * They get marked to be SIGKILLed if they fault in these
1915 * areas. This is because a future no-page fault on this VMA
1916 * could insert a zeroed page instead of the data existing
1917 * from the time of fork. This would look like data corruption
1919 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1920 unmap_hugepage_range(iter_vma,
1921 address, address + huge_page_size(h),
1922 page);
1925 return 1;
1928 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1929 unsigned long address, pte_t *ptep, pte_t pte,
1930 struct page *pagecache_page)
1932 struct hstate *h = hstate_vma(vma);
1933 struct page *old_page, *new_page;
1934 int avoidcopy;
1935 int outside_reserve = 0;
1937 old_page = pte_page(pte);
1939 retry_avoidcopy:
1940 /* If no-one else is actually using this page, avoid the copy
1941 * and just make the page writable */
1942 avoidcopy = (page_count(old_page) == 1);
1943 if (avoidcopy) {
1944 set_huge_ptep_writable(vma, address, ptep);
1945 return 0;
1949 * If the process that created a MAP_PRIVATE mapping is about to
1950 * perform a COW due to a shared page count, attempt to satisfy
1951 * the allocation without using the existing reserves. The pagecache
1952 * page is used to determine if the reserve at this address was
1953 * consumed or not. If reserves were used, a partial faulted mapping
1954 * at the time of fork() could consume its reserves on COW instead
1955 * of the full address range.
1957 if (!(vma->vm_flags & VM_MAYSHARE) &&
1958 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1959 old_page != pagecache_page)
1960 outside_reserve = 1;
1962 page_cache_get(old_page);
1963 new_page = alloc_huge_page(vma, address, outside_reserve);
1965 if (IS_ERR(new_page)) {
1966 page_cache_release(old_page);
1969 * If a process owning a MAP_PRIVATE mapping fails to COW,
1970 * it is due to references held by a child and an insufficient
1971 * huge page pool. To guarantee the original mappers
1972 * reliability, unmap the page from child processes. The child
1973 * may get SIGKILLed if it later faults.
1975 if (outside_reserve) {
1976 BUG_ON(huge_pte_none(pte));
1977 if (unmap_ref_private(mm, vma, old_page, address)) {
1978 BUG_ON(page_count(old_page) != 1);
1979 BUG_ON(huge_pte_none(pte));
1980 goto retry_avoidcopy;
1982 WARN_ON_ONCE(1);
1985 return -PTR_ERR(new_page);
1988 spin_unlock(&mm->page_table_lock);
1989 copy_huge_page(new_page, old_page, address, vma);
1990 __SetPageUptodate(new_page);
1991 spin_lock(&mm->page_table_lock);
1993 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1994 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1995 /* Break COW */
1996 huge_ptep_clear_flush(vma, address, ptep);
1997 set_huge_pte_at(mm, address, ptep,
1998 make_huge_pte(vma, new_page, 1));
1999 /* Make the old page be freed below */
2000 new_page = old_page;
2002 page_cache_release(new_page);
2003 page_cache_release(old_page);
2004 return 0;
2007 /* Return the pagecache page at a given address within a VMA */
2008 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2009 struct vm_area_struct *vma, unsigned long address)
2011 struct address_space *mapping;
2012 pgoff_t idx;
2014 mapping = vma->vm_file->f_mapping;
2015 idx = vma_hugecache_offset(h, vma, address);
2017 return find_lock_page(mapping, idx);
2021 * Return whether there is a pagecache page to back given address within VMA.
2022 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2024 static bool hugetlbfs_pagecache_present(struct hstate *h,
2025 struct vm_area_struct *vma, unsigned long address)
2027 struct address_space *mapping;
2028 pgoff_t idx;
2029 struct page *page;
2031 mapping = vma->vm_file->f_mapping;
2032 idx = vma_hugecache_offset(h, vma, address);
2034 page = find_get_page(mapping, idx);
2035 if (page)
2036 put_page(page);
2037 return page != NULL;
2040 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2041 unsigned long address, pte_t *ptep, unsigned int flags)
2043 struct hstate *h = hstate_vma(vma);
2044 int ret = VM_FAULT_SIGBUS;
2045 pgoff_t idx;
2046 unsigned long size;
2047 struct page *page;
2048 struct address_space *mapping;
2049 pte_t new_pte;
2052 * Currently, we are forced to kill the process in the event the
2053 * original mapper has unmapped pages from the child due to a failed
2054 * COW. Warn that such a situation has occured as it may not be obvious
2056 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2057 printk(KERN_WARNING
2058 "PID %d killed due to inadequate hugepage pool\n",
2059 current->pid);
2060 return ret;
2063 mapping = vma->vm_file->f_mapping;
2064 idx = vma_hugecache_offset(h, vma, address);
2067 * Use page lock to guard against racing truncation
2068 * before we get page_table_lock.
2070 retry:
2071 page = find_lock_page(mapping, idx);
2072 if (!page) {
2073 size = i_size_read(mapping->host) >> huge_page_shift(h);
2074 if (idx >= size)
2075 goto out;
2076 page = alloc_huge_page(vma, address, 0);
2077 if (IS_ERR(page)) {
2078 ret = -PTR_ERR(page);
2079 goto out;
2081 clear_huge_page(page, address, huge_page_size(h));
2082 __SetPageUptodate(page);
2084 if (vma->vm_flags & VM_MAYSHARE) {
2085 int err;
2086 struct inode *inode = mapping->host;
2088 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2089 if (err) {
2090 put_page(page);
2091 if (err == -EEXIST)
2092 goto retry;
2093 goto out;
2096 spin_lock(&inode->i_lock);
2097 inode->i_blocks += blocks_per_huge_page(h);
2098 spin_unlock(&inode->i_lock);
2099 } else {
2100 lock_page(page);
2101 page->mapping = HUGETLB_POISON;
2106 * If we are going to COW a private mapping later, we examine the
2107 * pending reservations for this page now. This will ensure that
2108 * any allocations necessary to record that reservation occur outside
2109 * the spinlock.
2111 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2112 if (vma_needs_reservation(h, vma, address) < 0) {
2113 ret = VM_FAULT_OOM;
2114 goto backout_unlocked;
2117 spin_lock(&mm->page_table_lock);
2118 size = i_size_read(mapping->host) >> huge_page_shift(h);
2119 if (idx >= size)
2120 goto backout;
2122 ret = 0;
2123 if (!huge_pte_none(huge_ptep_get(ptep)))
2124 goto backout;
2126 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2127 && (vma->vm_flags & VM_SHARED)));
2128 set_huge_pte_at(mm, address, ptep, new_pte);
2130 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2131 /* Optimization, do the COW without a second fault */
2132 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2135 spin_unlock(&mm->page_table_lock);
2136 unlock_page(page);
2137 out:
2138 return ret;
2140 backout:
2141 spin_unlock(&mm->page_table_lock);
2142 backout_unlocked:
2143 unlock_page(page);
2144 put_page(page);
2145 goto out;
2148 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2149 unsigned long address, unsigned int flags)
2151 pte_t *ptep;
2152 pte_t entry;
2153 int ret;
2154 struct page *pagecache_page = NULL;
2155 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2156 struct hstate *h = hstate_vma(vma);
2158 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2159 if (!ptep)
2160 return VM_FAULT_OOM;
2163 * Serialize hugepage allocation and instantiation, so that we don't
2164 * get spurious allocation failures if two CPUs race to instantiate
2165 * the same page in the page cache.
2167 mutex_lock(&hugetlb_instantiation_mutex);
2168 entry = huge_ptep_get(ptep);
2169 if (huge_pte_none(entry)) {
2170 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2171 goto out_mutex;
2174 ret = 0;
2177 * If we are going to COW the mapping later, we examine the pending
2178 * reservations for this page now. This will ensure that any
2179 * allocations necessary to record that reservation occur outside the
2180 * spinlock. For private mappings, we also lookup the pagecache
2181 * page now as it is used to determine if a reservation has been
2182 * consumed.
2184 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2185 if (vma_needs_reservation(h, vma, address) < 0) {
2186 ret = VM_FAULT_OOM;
2187 goto out_mutex;
2190 if (!(vma->vm_flags & VM_MAYSHARE))
2191 pagecache_page = hugetlbfs_pagecache_page(h,
2192 vma, address);
2195 spin_lock(&mm->page_table_lock);
2196 /* Check for a racing update before calling hugetlb_cow */
2197 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2198 goto out_page_table_lock;
2201 if (flags & FAULT_FLAG_WRITE) {
2202 if (!pte_write(entry)) {
2203 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2204 pagecache_page);
2205 goto out_page_table_lock;
2207 entry = pte_mkdirty(entry);
2209 entry = pte_mkyoung(entry);
2210 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2211 flags & FAULT_FLAG_WRITE))
2212 update_mmu_cache(vma, address, entry);
2214 out_page_table_lock:
2215 spin_unlock(&mm->page_table_lock);
2217 if (pagecache_page) {
2218 unlock_page(pagecache_page);
2219 put_page(pagecache_page);
2222 out_mutex:
2223 mutex_unlock(&hugetlb_instantiation_mutex);
2225 return ret;
2228 /* Can be overriden by architectures */
2229 __attribute__((weak)) struct page *
2230 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2231 pud_t *pud, int write)
2233 BUG();
2234 return NULL;
2237 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2238 struct page **pages, struct vm_area_struct **vmas,
2239 unsigned long *position, int *length, int i,
2240 unsigned int flags)
2242 unsigned long pfn_offset;
2243 unsigned long vaddr = *position;
2244 int remainder = *length;
2245 struct hstate *h = hstate_vma(vma);
2247 spin_lock(&mm->page_table_lock);
2248 while (vaddr < vma->vm_end && remainder) {
2249 pte_t *pte;
2250 int absent;
2251 struct page *page;
2254 * Some archs (sparc64, sh*) have multiple pte_ts to
2255 * each hugepage. We have to make sure we get the
2256 * first, for the page indexing below to work.
2258 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2259 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2262 * When coredumping, it suits get_dump_page if we just return
2263 * an error where there's an empty slot with no huge pagecache
2264 * to back it. This way, we avoid allocating a hugepage, and
2265 * the sparse dumpfile avoids allocating disk blocks, but its
2266 * huge holes still show up with zeroes where they need to be.
2268 if (absent && (flags & FOLL_DUMP) &&
2269 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2270 remainder = 0;
2271 break;
2274 if (absent ||
2275 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2276 int ret;
2278 spin_unlock(&mm->page_table_lock);
2279 ret = hugetlb_fault(mm, vma, vaddr,
2280 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2281 spin_lock(&mm->page_table_lock);
2282 if (!(ret & VM_FAULT_ERROR))
2283 continue;
2285 remainder = 0;
2286 break;
2289 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2290 page = pte_page(huge_ptep_get(pte));
2291 same_page:
2292 if (pages) {
2293 pages[i] = mem_map_offset(page, pfn_offset);
2294 get_page(pages[i]);
2297 if (vmas)
2298 vmas[i] = vma;
2300 vaddr += PAGE_SIZE;
2301 ++pfn_offset;
2302 --remainder;
2303 ++i;
2304 if (vaddr < vma->vm_end && remainder &&
2305 pfn_offset < pages_per_huge_page(h)) {
2307 * We use pfn_offset to avoid touching the pageframes
2308 * of this compound page.
2310 goto same_page;
2313 spin_unlock(&mm->page_table_lock);
2314 *length = remainder;
2315 *position = vaddr;
2317 return i ? i : -EFAULT;
2320 void hugetlb_change_protection(struct vm_area_struct *vma,
2321 unsigned long address, unsigned long end, pgprot_t newprot)
2323 struct mm_struct *mm = vma->vm_mm;
2324 unsigned long start = address;
2325 pte_t *ptep;
2326 pte_t pte;
2327 struct hstate *h = hstate_vma(vma);
2329 BUG_ON(address >= end);
2330 flush_cache_range(vma, address, end);
2332 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2333 spin_lock(&mm->page_table_lock);
2334 for (; address < end; address += huge_page_size(h)) {
2335 ptep = huge_pte_offset(mm, address);
2336 if (!ptep)
2337 continue;
2338 if (huge_pmd_unshare(mm, &address, ptep))
2339 continue;
2340 if (!huge_pte_none(huge_ptep_get(ptep))) {
2341 pte = huge_ptep_get_and_clear(mm, address, ptep);
2342 pte = pte_mkhuge(pte_modify(pte, newprot));
2343 set_huge_pte_at(mm, address, ptep, pte);
2346 spin_unlock(&mm->page_table_lock);
2347 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2349 flush_tlb_range(vma, start, end);
2352 int hugetlb_reserve_pages(struct inode *inode,
2353 long from, long to,
2354 struct vm_area_struct *vma,
2355 int acctflag)
2357 long ret, chg;
2358 struct hstate *h = hstate_inode(inode);
2361 * Only apply hugepage reservation if asked. At fault time, an
2362 * attempt will be made for VM_NORESERVE to allocate a page
2363 * and filesystem quota without using reserves
2365 if (acctflag & VM_NORESERVE)
2366 return 0;
2369 * Shared mappings base their reservation on the number of pages that
2370 * are already allocated on behalf of the file. Private mappings need
2371 * to reserve the full area even if read-only as mprotect() may be
2372 * called to make the mapping read-write. Assume !vma is a shm mapping
2374 if (!vma || vma->vm_flags & VM_MAYSHARE)
2375 chg = region_chg(&inode->i_mapping->private_list, from, to);
2376 else {
2377 struct resv_map *resv_map = resv_map_alloc();
2378 if (!resv_map)
2379 return -ENOMEM;
2381 chg = to - from;
2383 set_vma_resv_map(vma, resv_map);
2384 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2387 if (chg < 0)
2388 return chg;
2390 /* There must be enough filesystem quota for the mapping */
2391 if (hugetlb_get_quota(inode->i_mapping, chg))
2392 return -ENOSPC;
2395 * Check enough hugepages are available for the reservation.
2396 * Hand back the quota if there are not
2398 ret = hugetlb_acct_memory(h, chg);
2399 if (ret < 0) {
2400 hugetlb_put_quota(inode->i_mapping, chg);
2401 return ret;
2405 * Account for the reservations made. Shared mappings record regions
2406 * that have reservations as they are shared by multiple VMAs.
2407 * When the last VMA disappears, the region map says how much
2408 * the reservation was and the page cache tells how much of
2409 * the reservation was consumed. Private mappings are per-VMA and
2410 * only the consumed reservations are tracked. When the VMA
2411 * disappears, the original reservation is the VMA size and the
2412 * consumed reservations are stored in the map. Hence, nothing
2413 * else has to be done for private mappings here
2415 if (!vma || vma->vm_flags & VM_MAYSHARE)
2416 region_add(&inode->i_mapping->private_list, from, to);
2417 return 0;
2420 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2422 struct hstate *h = hstate_inode(inode);
2423 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2425 spin_lock(&inode->i_lock);
2426 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2427 spin_unlock(&inode->i_lock);
2429 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2430 hugetlb_acct_memory(h, -(chg - freed));