4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/vmscan.h>
55 /* Incremented by the number of inactive pages that were scanned */
56 unsigned long nr_scanned
;
58 /* Number of pages freed so far during a call to shrink_zones() */
59 unsigned long nr_reclaimed
;
61 /* How many pages shrink_list() should reclaim */
62 unsigned long nr_to_reclaim
;
64 unsigned long hibernation_mode
;
66 /* This context's GFP mask */
71 /* Can mapped pages be reclaimed? */
74 /* Can pages be swapped as part of reclaim? */
82 * Intend to reclaim enough contenious memory rather than to reclaim
83 * enough amount memory. I.e, it's the mode for high order allocation.
85 bool lumpy_reclaim_mode
;
87 /* Which cgroup do we reclaim from */
88 struct mem_cgroup
*mem_cgroup
;
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
102 if ((_page)->lru.prev != _base) { \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
116 if ((_page)->lru.prev != _base) { \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
128 * From 0 .. 100. Higher means more swappy.
130 int vm_swappiness
= 60;
131 long vm_total_pages
; /* The total number of pages which the VM controls */
133 static LIST_HEAD(shrinker_list
);
134 static DECLARE_RWSEM(shrinker_rwsem
);
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
139 #define scanning_global_lru(sc) (1)
142 static struct zone_reclaim_stat
*get_reclaim_stat(struct zone
*zone
,
143 struct scan_control
*sc
)
145 if (!scanning_global_lru(sc
))
146 return mem_cgroup_get_reclaim_stat(sc
->mem_cgroup
, zone
);
148 return &zone
->reclaim_stat
;
151 static unsigned long zone_nr_lru_pages(struct zone
*zone
,
152 struct scan_control
*sc
, enum lru_list lru
)
154 if (!scanning_global_lru(sc
))
155 return mem_cgroup_zone_nr_pages(sc
->mem_cgroup
, zone
, lru
);
157 return zone_page_state(zone
, NR_LRU_BASE
+ lru
);
162 * Add a shrinker callback to be called from the vm
164 void register_shrinker(struct shrinker
*shrinker
)
167 down_write(&shrinker_rwsem
);
168 list_add_tail(&shrinker
->list
, &shrinker_list
);
169 up_write(&shrinker_rwsem
);
171 EXPORT_SYMBOL(register_shrinker
);
176 void unregister_shrinker(struct shrinker
*shrinker
)
178 down_write(&shrinker_rwsem
);
179 list_del(&shrinker
->list
);
180 up_write(&shrinker_rwsem
);
182 EXPORT_SYMBOL(unregister_shrinker
);
184 #define SHRINK_BATCH 128
186 * Call the shrink functions to age shrinkable caches
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
193 * If the vm encountered mapped pages on the LRU it increase the pressure on
194 * slab to avoid swapping.
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
202 * Returns the number of slab objects which we shrunk.
204 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
205 unsigned long lru_pages
)
207 struct shrinker
*shrinker
;
208 unsigned long ret
= 0;
211 scanned
= SWAP_CLUSTER_MAX
;
213 if (!down_read_trylock(&shrinker_rwsem
))
214 return 1; /* Assume we'll be able to shrink next time */
216 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
217 unsigned long long delta
;
218 unsigned long total_scan
;
219 unsigned long max_pass
;
221 max_pass
= (*shrinker
->shrink
)(shrinker
, 0, gfp_mask
);
222 delta
= (4 * scanned
) / shrinker
->seeks
;
224 do_div(delta
, lru_pages
+ 1);
225 shrinker
->nr
+= delta
;
226 if (shrinker
->nr
< 0) {
227 printk(KERN_ERR
"shrink_slab: %pF negative objects to "
229 shrinker
->shrink
, shrinker
->nr
);
230 shrinker
->nr
= max_pass
;
234 * Avoid risking looping forever due to too large nr value:
235 * never try to free more than twice the estimate number of
238 if (shrinker
->nr
> max_pass
* 2)
239 shrinker
->nr
= max_pass
* 2;
241 total_scan
= shrinker
->nr
;
244 while (total_scan
>= SHRINK_BATCH
) {
245 long this_scan
= SHRINK_BATCH
;
249 nr_before
= (*shrinker
->shrink
)(shrinker
, 0, gfp_mask
);
250 shrink_ret
= (*shrinker
->shrink
)(shrinker
, this_scan
,
252 if (shrink_ret
== -1)
254 if (shrink_ret
< nr_before
)
255 ret
+= nr_before
- shrink_ret
;
256 count_vm_events(SLABS_SCANNED
, this_scan
);
257 total_scan
-= this_scan
;
262 shrinker
->nr
+= total_scan
;
264 up_read(&shrinker_rwsem
);
268 static inline int is_page_cache_freeable(struct page
*page
)
271 * A freeable page cache page is referenced only by the caller
272 * that isolated the page, the page cache radix tree and
273 * optional buffer heads at page->private.
275 return page_count(page
) - page_has_private(page
) == 2;
278 static int may_write_to_queue(struct backing_dev_info
*bdi
)
280 if (current
->flags
& PF_SWAPWRITE
)
282 if (!bdi_write_congested(bdi
))
284 if (bdi
== current
->backing_dev_info
)
290 * We detected a synchronous write error writing a page out. Probably
291 * -ENOSPC. We need to propagate that into the address_space for a subsequent
292 * fsync(), msync() or close().
294 * The tricky part is that after writepage we cannot touch the mapping: nothing
295 * prevents it from being freed up. But we have a ref on the page and once
296 * that page is locked, the mapping is pinned.
298 * We're allowed to run sleeping lock_page() here because we know the caller has
301 static void handle_write_error(struct address_space
*mapping
,
302 struct page
*page
, int error
)
304 lock_page_nosync(page
);
305 if (page_mapping(page
) == mapping
)
306 mapping_set_error(mapping
, error
);
310 /* Request for sync pageout. */
316 /* possible outcome of pageout() */
318 /* failed to write page out, page is locked */
320 /* move page to the active list, page is locked */
322 /* page has been sent to the disk successfully, page is unlocked */
324 /* page is clean and locked */
329 * pageout is called by shrink_page_list() for each dirty page.
330 * Calls ->writepage().
332 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
333 enum pageout_io sync_writeback
)
336 * If the page is dirty, only perform writeback if that write
337 * will be non-blocking. To prevent this allocation from being
338 * stalled by pagecache activity. But note that there may be
339 * stalls if we need to run get_block(). We could test
340 * PagePrivate for that.
342 * If this process is currently in __generic_file_aio_write() against
343 * this page's queue, we can perform writeback even if that
346 * If the page is swapcache, write it back even if that would
347 * block, for some throttling. This happens by accident, because
348 * swap_backing_dev_info is bust: it doesn't reflect the
349 * congestion state of the swapdevs. Easy to fix, if needed.
351 if (!is_page_cache_freeable(page
))
355 * Some data journaling orphaned pages can have
356 * page->mapping == NULL while being dirty with clean buffers.
358 if (page_has_private(page
)) {
359 if (try_to_free_buffers(page
)) {
360 ClearPageDirty(page
);
361 printk("%s: orphaned page\n", __func__
);
367 if (mapping
->a_ops
->writepage
== NULL
)
368 return PAGE_ACTIVATE
;
369 if (!may_write_to_queue(mapping
->backing_dev_info
))
372 if (clear_page_dirty_for_io(page
)) {
374 struct writeback_control wbc
= {
375 .sync_mode
= WB_SYNC_NONE
,
376 .nr_to_write
= SWAP_CLUSTER_MAX
,
378 .range_end
= LLONG_MAX
,
383 SetPageReclaim(page
);
384 res
= mapping
->a_ops
->writepage(page
, &wbc
);
386 handle_write_error(mapping
, page
, res
);
387 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
388 ClearPageReclaim(page
);
389 return PAGE_ACTIVATE
;
393 * Wait on writeback if requested to. This happens when
394 * direct reclaiming a large contiguous area and the
395 * first attempt to free a range of pages fails.
397 if (PageWriteback(page
) && sync_writeback
== PAGEOUT_IO_SYNC
)
398 wait_on_page_writeback(page
);
400 if (!PageWriteback(page
)) {
401 /* synchronous write or broken a_ops? */
402 ClearPageReclaim(page
);
404 trace_mm_vmscan_writepage(page
,
405 trace_reclaim_flags(page
, sync_writeback
));
406 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
414 * Same as remove_mapping, but if the page is removed from the mapping, it
415 * gets returned with a refcount of 0.
417 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
419 BUG_ON(!PageLocked(page
));
420 BUG_ON(mapping
!= page_mapping(page
));
422 spin_lock_irq(&mapping
->tree_lock
);
424 * The non racy check for a busy page.
426 * Must be careful with the order of the tests. When someone has
427 * a ref to the page, it may be possible that they dirty it then
428 * drop the reference. So if PageDirty is tested before page_count
429 * here, then the following race may occur:
431 * get_user_pages(&page);
432 * [user mapping goes away]
434 * !PageDirty(page) [good]
435 * SetPageDirty(page);
437 * !page_count(page) [good, discard it]
439 * [oops, our write_to data is lost]
441 * Reversing the order of the tests ensures such a situation cannot
442 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
443 * load is not satisfied before that of page->_count.
445 * Note that if SetPageDirty is always performed via set_page_dirty,
446 * and thus under tree_lock, then this ordering is not required.
448 if (!page_freeze_refs(page
, 2))
450 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
451 if (unlikely(PageDirty(page
))) {
452 page_unfreeze_refs(page
, 2);
456 if (PageSwapCache(page
)) {
457 swp_entry_t swap
= { .val
= page_private(page
) };
458 __delete_from_swap_cache(page
);
459 spin_unlock_irq(&mapping
->tree_lock
);
460 swapcache_free(swap
, page
);
462 __remove_from_page_cache(page
);
463 spin_unlock_irq(&mapping
->tree_lock
);
464 mem_cgroup_uncharge_cache_page(page
);
470 spin_unlock_irq(&mapping
->tree_lock
);
475 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
476 * someone else has a ref on the page, abort and return 0. If it was
477 * successfully detached, return 1. Assumes the caller has a single ref on
480 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
482 if (__remove_mapping(mapping
, page
)) {
484 * Unfreezing the refcount with 1 rather than 2 effectively
485 * drops the pagecache ref for us without requiring another
488 page_unfreeze_refs(page
, 1);
495 * putback_lru_page - put previously isolated page onto appropriate LRU list
496 * @page: page to be put back to appropriate lru list
498 * Add previously isolated @page to appropriate LRU list.
499 * Page may still be unevictable for other reasons.
501 * lru_lock must not be held, interrupts must be enabled.
503 void putback_lru_page(struct page
*page
)
506 int active
= !!TestClearPageActive(page
);
507 int was_unevictable
= PageUnevictable(page
);
509 VM_BUG_ON(PageLRU(page
));
512 ClearPageUnevictable(page
);
514 if (page_evictable(page
, NULL
)) {
516 * For evictable pages, we can use the cache.
517 * In event of a race, worst case is we end up with an
518 * unevictable page on [in]active list.
519 * We know how to handle that.
521 lru
= active
+ page_lru_base_type(page
);
522 lru_cache_add_lru(page
, lru
);
525 * Put unevictable pages directly on zone's unevictable
528 lru
= LRU_UNEVICTABLE
;
529 add_page_to_unevictable_list(page
);
531 * When racing with an mlock clearing (page is
532 * unlocked), make sure that if the other thread does
533 * not observe our setting of PG_lru and fails
534 * isolation, we see PG_mlocked cleared below and move
535 * the page back to the evictable list.
537 * The other side is TestClearPageMlocked().
543 * page's status can change while we move it among lru. If an evictable
544 * page is on unevictable list, it never be freed. To avoid that,
545 * check after we added it to the list, again.
547 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
, NULL
)) {
548 if (!isolate_lru_page(page
)) {
552 /* This means someone else dropped this page from LRU
553 * So, it will be freed or putback to LRU again. There is
554 * nothing to do here.
558 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
559 count_vm_event(UNEVICTABLE_PGRESCUED
);
560 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
561 count_vm_event(UNEVICTABLE_PGCULLED
);
563 put_page(page
); /* drop ref from isolate */
566 enum page_references
{
568 PAGEREF_RECLAIM_CLEAN
,
573 static enum page_references
page_check_references(struct page
*page
,
574 struct scan_control
*sc
)
576 int referenced_ptes
, referenced_page
;
577 unsigned long vm_flags
;
579 referenced_ptes
= page_referenced(page
, 1, sc
->mem_cgroup
, &vm_flags
);
580 referenced_page
= TestClearPageReferenced(page
);
582 /* Lumpy reclaim - ignore references */
583 if (sc
->lumpy_reclaim_mode
)
584 return PAGEREF_RECLAIM
;
587 * Mlock lost the isolation race with us. Let try_to_unmap()
588 * move the page to the unevictable list.
590 if (vm_flags
& VM_LOCKED
)
591 return PAGEREF_RECLAIM
;
593 if (referenced_ptes
) {
595 return PAGEREF_ACTIVATE
;
597 * All mapped pages start out with page table
598 * references from the instantiating fault, so we need
599 * to look twice if a mapped file page is used more
602 * Mark it and spare it for another trip around the
603 * inactive list. Another page table reference will
604 * lead to its activation.
606 * Note: the mark is set for activated pages as well
607 * so that recently deactivated but used pages are
610 SetPageReferenced(page
);
613 return PAGEREF_ACTIVATE
;
618 /* Reclaim if clean, defer dirty pages to writeback */
620 return PAGEREF_RECLAIM_CLEAN
;
622 return PAGEREF_RECLAIM
;
625 static noinline_for_stack
void free_page_list(struct list_head
*free_pages
)
627 struct pagevec freed_pvec
;
628 struct page
*page
, *tmp
;
630 pagevec_init(&freed_pvec
, 1);
632 list_for_each_entry_safe(page
, tmp
, free_pages
, lru
) {
633 list_del(&page
->lru
);
634 if (!pagevec_add(&freed_pvec
, page
)) {
635 __pagevec_free(&freed_pvec
);
636 pagevec_reinit(&freed_pvec
);
640 pagevec_free(&freed_pvec
);
644 * shrink_page_list() returns the number of reclaimed pages
646 static unsigned long shrink_page_list(struct list_head
*page_list
,
647 struct scan_control
*sc
,
648 enum pageout_io sync_writeback
)
650 LIST_HEAD(ret_pages
);
651 LIST_HEAD(free_pages
);
653 unsigned long nr_reclaimed
= 0;
657 while (!list_empty(page_list
)) {
658 enum page_references references
;
659 struct address_space
*mapping
;
665 page
= lru_to_page(page_list
);
666 list_del(&page
->lru
);
668 if (!trylock_page(page
))
671 VM_BUG_ON(PageActive(page
));
675 if (unlikely(!page_evictable(page
, NULL
)))
678 if (!sc
->may_unmap
&& page_mapped(page
))
681 /* Double the slab pressure for mapped and swapcache pages */
682 if (page_mapped(page
) || PageSwapCache(page
))
685 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
686 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
688 if (PageWriteback(page
)) {
690 * Synchronous reclaim is performed in two passes,
691 * first an asynchronous pass over the list to
692 * start parallel writeback, and a second synchronous
693 * pass to wait for the IO to complete. Wait here
694 * for any page for which writeback has already
697 if (sync_writeback
== PAGEOUT_IO_SYNC
&& may_enter_fs
)
698 wait_on_page_writeback(page
);
703 references
= page_check_references(page
, sc
);
704 switch (references
) {
705 case PAGEREF_ACTIVATE
:
706 goto activate_locked
;
709 case PAGEREF_RECLAIM
:
710 case PAGEREF_RECLAIM_CLEAN
:
711 ; /* try to reclaim the page below */
715 * Anonymous process memory has backing store?
716 * Try to allocate it some swap space here.
718 if (PageAnon(page
) && !PageSwapCache(page
)) {
719 if (!(sc
->gfp_mask
& __GFP_IO
))
721 if (!add_to_swap(page
))
722 goto activate_locked
;
726 mapping
= page_mapping(page
);
729 * The page is mapped into the page tables of one or more
730 * processes. Try to unmap it here.
732 if (page_mapped(page
) && mapping
) {
733 switch (try_to_unmap(page
, TTU_UNMAP
)) {
735 goto activate_locked
;
741 ; /* try to free the page below */
745 if (PageDirty(page
)) {
746 if (references
== PAGEREF_RECLAIM_CLEAN
)
750 if (!sc
->may_writepage
)
753 /* Page is dirty, try to write it out here */
754 switch (pageout(page
, mapping
, sync_writeback
)) {
758 goto activate_locked
;
760 if (PageWriteback(page
) || PageDirty(page
))
763 * A synchronous write - probably a ramdisk. Go
764 * ahead and try to reclaim the page.
766 if (!trylock_page(page
))
768 if (PageDirty(page
) || PageWriteback(page
))
770 mapping
= page_mapping(page
);
772 ; /* try to free the page below */
777 * If the page has buffers, try to free the buffer mappings
778 * associated with this page. If we succeed we try to free
781 * We do this even if the page is PageDirty().
782 * try_to_release_page() does not perform I/O, but it is
783 * possible for a page to have PageDirty set, but it is actually
784 * clean (all its buffers are clean). This happens if the
785 * buffers were written out directly, with submit_bh(). ext3
786 * will do this, as well as the blockdev mapping.
787 * try_to_release_page() will discover that cleanness and will
788 * drop the buffers and mark the page clean - it can be freed.
790 * Rarely, pages can have buffers and no ->mapping. These are
791 * the pages which were not successfully invalidated in
792 * truncate_complete_page(). We try to drop those buffers here
793 * and if that worked, and the page is no longer mapped into
794 * process address space (page_count == 1) it can be freed.
795 * Otherwise, leave the page on the LRU so it is swappable.
797 if (page_has_private(page
)) {
798 if (!try_to_release_page(page
, sc
->gfp_mask
))
799 goto activate_locked
;
800 if (!mapping
&& page_count(page
) == 1) {
802 if (put_page_testzero(page
))
806 * rare race with speculative reference.
807 * the speculative reference will free
808 * this page shortly, so we may
809 * increment nr_reclaimed here (and
810 * leave it off the LRU).
818 if (!mapping
|| !__remove_mapping(mapping
, page
))
822 * At this point, we have no other references and there is
823 * no way to pick any more up (removed from LRU, removed
824 * from pagecache). Can use non-atomic bitops now (and
825 * we obviously don't have to worry about waking up a process
826 * waiting on the page lock, because there are no references.
828 __clear_page_locked(page
);
833 * Is there need to periodically free_page_list? It would
834 * appear not as the counts should be low
836 list_add(&page
->lru
, &free_pages
);
840 if (PageSwapCache(page
))
841 try_to_free_swap(page
);
843 putback_lru_page(page
);
847 /* Not a candidate for swapping, so reclaim swap space. */
848 if (PageSwapCache(page
) && vm_swap_full())
849 try_to_free_swap(page
);
850 VM_BUG_ON(PageActive(page
));
856 list_add(&page
->lru
, &ret_pages
);
857 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
860 free_page_list(&free_pages
);
862 list_splice(&ret_pages
, page_list
);
863 count_vm_events(PGACTIVATE
, pgactivate
);
868 * Attempt to remove the specified page from its LRU. Only take this page
869 * if it is of the appropriate PageActive status. Pages which are being
870 * freed elsewhere are also ignored.
872 * page: page to consider
873 * mode: one of the LRU isolation modes defined above
875 * returns 0 on success, -ve errno on failure.
877 int __isolate_lru_page(struct page
*page
, int mode
, int file
)
881 /* Only take pages on the LRU. */
886 * When checking the active state, we need to be sure we are
887 * dealing with comparible boolean values. Take the logical not
890 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
893 if (mode
!= ISOLATE_BOTH
&& page_is_file_cache(page
) != file
)
897 * When this function is being called for lumpy reclaim, we
898 * initially look into all LRU pages, active, inactive and
899 * unevictable; only give shrink_page_list evictable pages.
901 if (PageUnevictable(page
))
906 if (likely(get_page_unless_zero(page
))) {
908 * Be careful not to clear PageLRU until after we're
909 * sure the page is not being freed elsewhere -- the
910 * page release code relies on it.
920 * zone->lru_lock is heavily contended. Some of the functions that
921 * shrink the lists perform better by taking out a batch of pages
922 * and working on them outside the LRU lock.
924 * For pagecache intensive workloads, this function is the hottest
925 * spot in the kernel (apart from copy_*_user functions).
927 * Appropriate locks must be held before calling this function.
929 * @nr_to_scan: The number of pages to look through on the list.
930 * @src: The LRU list to pull pages off.
931 * @dst: The temp list to put pages on to.
932 * @scanned: The number of pages that were scanned.
933 * @order: The caller's attempted allocation order
934 * @mode: One of the LRU isolation modes
935 * @file: True [1] if isolating file [!anon] pages
937 * returns how many pages were moved onto *@dst.
939 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
940 struct list_head
*src
, struct list_head
*dst
,
941 unsigned long *scanned
, int order
, int mode
, int file
)
943 unsigned long nr_taken
= 0;
944 unsigned long nr_lumpy_taken
= 0;
945 unsigned long nr_lumpy_dirty
= 0;
946 unsigned long nr_lumpy_failed
= 0;
949 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
952 unsigned long end_pfn
;
953 unsigned long page_pfn
;
956 page
= lru_to_page(src
);
957 prefetchw_prev_lru_page(page
, src
, flags
);
959 VM_BUG_ON(!PageLRU(page
));
961 switch (__isolate_lru_page(page
, mode
, file
)) {
963 list_move(&page
->lru
, dst
);
964 mem_cgroup_del_lru(page
);
969 /* else it is being freed elsewhere */
970 list_move(&page
->lru
, src
);
971 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
982 * Attempt to take all pages in the order aligned region
983 * surrounding the tag page. Only take those pages of
984 * the same active state as that tag page. We may safely
985 * round the target page pfn down to the requested order
986 * as the mem_map is guarenteed valid out to MAX_ORDER,
987 * where that page is in a different zone we will detect
988 * it from its zone id and abort this block scan.
990 zone_id
= page_zone_id(page
);
991 page_pfn
= page_to_pfn(page
);
992 pfn
= page_pfn
& ~((1 << order
) - 1);
993 end_pfn
= pfn
+ (1 << order
);
994 for (; pfn
< end_pfn
; pfn
++) {
995 struct page
*cursor_page
;
997 /* The target page is in the block, ignore it. */
998 if (unlikely(pfn
== page_pfn
))
1001 /* Avoid holes within the zone. */
1002 if (unlikely(!pfn_valid_within(pfn
)))
1005 cursor_page
= pfn_to_page(pfn
);
1007 /* Check that we have not crossed a zone boundary. */
1008 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
1012 * If we don't have enough swap space, reclaiming of
1013 * anon page which don't already have a swap slot is
1016 if (nr_swap_pages
<= 0 && PageAnon(cursor_page
) &&
1017 !PageSwapCache(cursor_page
))
1020 if (__isolate_lru_page(cursor_page
, mode
, file
) == 0) {
1021 list_move(&cursor_page
->lru
, dst
);
1022 mem_cgroup_del_lru(cursor_page
);
1025 if (PageDirty(cursor_page
))
1029 if (mode
== ISOLATE_BOTH
&&
1030 page_count(cursor_page
))
1038 trace_mm_vmscan_lru_isolate(order
,
1041 nr_lumpy_taken
, nr_lumpy_dirty
, nr_lumpy_failed
,
1046 static unsigned long isolate_pages_global(unsigned long nr
,
1047 struct list_head
*dst
,
1048 unsigned long *scanned
, int order
,
1049 int mode
, struct zone
*z
,
1050 int active
, int file
)
1057 return isolate_lru_pages(nr
, &z
->lru
[lru
].list
, dst
, scanned
, order
,
1062 * clear_active_flags() is a helper for shrink_active_list(), clearing
1063 * any active bits from the pages in the list.
1065 static unsigned long clear_active_flags(struct list_head
*page_list
,
1066 unsigned int *count
)
1072 list_for_each_entry(page
, page_list
, lru
) {
1073 lru
= page_lru_base_type(page
);
1074 if (PageActive(page
)) {
1076 ClearPageActive(page
);
1087 * isolate_lru_page - tries to isolate a page from its LRU list
1088 * @page: page to isolate from its LRU list
1090 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1091 * vmstat statistic corresponding to whatever LRU list the page was on.
1093 * Returns 0 if the page was removed from an LRU list.
1094 * Returns -EBUSY if the page was not on an LRU list.
1096 * The returned page will have PageLRU() cleared. If it was found on
1097 * the active list, it will have PageActive set. If it was found on
1098 * the unevictable list, it will have the PageUnevictable bit set. That flag
1099 * may need to be cleared by the caller before letting the page go.
1101 * The vmstat statistic corresponding to the list on which the page was
1102 * found will be decremented.
1105 * (1) Must be called with an elevated refcount on the page. This is a
1106 * fundamentnal difference from isolate_lru_pages (which is called
1107 * without a stable reference).
1108 * (2) the lru_lock must not be held.
1109 * (3) interrupts must be enabled.
1111 int isolate_lru_page(struct page
*page
)
1115 if (PageLRU(page
)) {
1116 struct zone
*zone
= page_zone(page
);
1118 spin_lock_irq(&zone
->lru_lock
);
1119 if (PageLRU(page
) && get_page_unless_zero(page
)) {
1120 int lru
= page_lru(page
);
1124 del_page_from_lru_list(zone
, page
, lru
);
1126 spin_unlock_irq(&zone
->lru_lock
);
1132 * Are there way too many processes in the direct reclaim path already?
1134 static int too_many_isolated(struct zone
*zone
, int file
,
1135 struct scan_control
*sc
)
1137 unsigned long inactive
, isolated
;
1139 if (current_is_kswapd())
1142 if (!scanning_global_lru(sc
))
1146 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1147 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
);
1149 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1150 isolated
= zone_page_state(zone
, NR_ISOLATED_ANON
);
1153 return isolated
> inactive
;
1157 * TODO: Try merging with migrations version of putback_lru_pages
1159 static noinline_for_stack
void
1160 putback_lru_pages(struct zone
*zone
, struct scan_control
*sc
,
1161 unsigned long nr_anon
, unsigned long nr_file
,
1162 struct list_head
*page_list
)
1165 struct pagevec pvec
;
1166 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1168 pagevec_init(&pvec
, 1);
1171 * Put back any unfreeable pages.
1173 spin_lock(&zone
->lru_lock
);
1174 while (!list_empty(page_list
)) {
1176 page
= lru_to_page(page_list
);
1177 VM_BUG_ON(PageLRU(page
));
1178 list_del(&page
->lru
);
1179 if (unlikely(!page_evictable(page
, NULL
))) {
1180 spin_unlock_irq(&zone
->lru_lock
);
1181 putback_lru_page(page
);
1182 spin_lock_irq(&zone
->lru_lock
);
1186 lru
= page_lru(page
);
1187 add_page_to_lru_list(zone
, page
, lru
);
1188 if (is_active_lru(lru
)) {
1189 int file
= is_file_lru(lru
);
1190 reclaim_stat
->recent_rotated
[file
]++;
1192 if (!pagevec_add(&pvec
, page
)) {
1193 spin_unlock_irq(&zone
->lru_lock
);
1194 __pagevec_release(&pvec
);
1195 spin_lock_irq(&zone
->lru_lock
);
1198 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, -nr_anon
);
1199 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, -nr_file
);
1201 spin_unlock_irq(&zone
->lru_lock
);
1202 pagevec_release(&pvec
);
1205 static noinline_for_stack
void update_isolated_counts(struct zone
*zone
,
1206 struct scan_control
*sc
,
1207 unsigned long *nr_anon
,
1208 unsigned long *nr_file
,
1209 struct list_head
*isolated_list
)
1211 unsigned long nr_active
;
1212 unsigned int count
[NR_LRU_LISTS
] = { 0, };
1213 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1215 nr_active
= clear_active_flags(isolated_list
, count
);
1216 __count_vm_events(PGDEACTIVATE
, nr_active
);
1218 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
,
1219 -count
[LRU_ACTIVE_FILE
]);
1220 __mod_zone_page_state(zone
, NR_INACTIVE_FILE
,
1221 -count
[LRU_INACTIVE_FILE
]);
1222 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
,
1223 -count
[LRU_ACTIVE_ANON
]);
1224 __mod_zone_page_state(zone
, NR_INACTIVE_ANON
,
1225 -count
[LRU_INACTIVE_ANON
]);
1227 *nr_anon
= count
[LRU_ACTIVE_ANON
] + count
[LRU_INACTIVE_ANON
];
1228 *nr_file
= count
[LRU_ACTIVE_FILE
] + count
[LRU_INACTIVE_FILE
];
1229 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, *nr_anon
);
1230 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, *nr_file
);
1232 reclaim_stat
->recent_scanned
[0] += *nr_anon
;
1233 reclaim_stat
->recent_scanned
[1] += *nr_file
;
1237 * Returns true if the caller should wait to clean dirty/writeback pages.
1239 * If we are direct reclaiming for contiguous pages and we do not reclaim
1240 * everything in the list, try again and wait for writeback IO to complete.
1241 * This will stall high-order allocations noticeably. Only do that when really
1242 * need to free the pages under high memory pressure.
1244 static inline bool should_reclaim_stall(unsigned long nr_taken
,
1245 unsigned long nr_freed
,
1247 struct scan_control
*sc
)
1249 int lumpy_stall_priority
;
1251 /* kswapd should not stall on sync IO */
1252 if (current_is_kswapd())
1255 /* Only stall on lumpy reclaim */
1256 if (!sc
->lumpy_reclaim_mode
)
1259 /* If we have relaimed everything on the isolated list, no stall */
1260 if (nr_freed
== nr_taken
)
1264 * For high-order allocations, there are two stall thresholds.
1265 * High-cost allocations stall immediately where as lower
1266 * order allocations such as stacks require the scanning
1267 * priority to be much higher before stalling.
1269 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1270 lumpy_stall_priority
= DEF_PRIORITY
;
1272 lumpy_stall_priority
= DEF_PRIORITY
/ 3;
1274 return priority
<= lumpy_stall_priority
;
1278 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1279 * of reclaimed pages
1281 static noinline_for_stack
unsigned long
1282 shrink_inactive_list(unsigned long nr_to_scan
, struct zone
*zone
,
1283 struct scan_control
*sc
, int priority
, int file
)
1285 LIST_HEAD(page_list
);
1286 unsigned long nr_scanned
;
1287 unsigned long nr_reclaimed
= 0;
1288 unsigned long nr_taken
;
1289 unsigned long nr_active
;
1290 unsigned long nr_anon
;
1291 unsigned long nr_file
;
1293 while (unlikely(too_many_isolated(zone
, file
, sc
))) {
1294 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1296 /* We are about to die and free our memory. Return now. */
1297 if (fatal_signal_pending(current
))
1298 return SWAP_CLUSTER_MAX
;
1303 spin_lock_irq(&zone
->lru_lock
);
1305 if (scanning_global_lru(sc
)) {
1306 nr_taken
= isolate_pages_global(nr_to_scan
,
1307 &page_list
, &nr_scanned
, sc
->order
,
1308 sc
->lumpy_reclaim_mode
?
1309 ISOLATE_BOTH
: ISOLATE_INACTIVE
,
1311 zone
->pages_scanned
+= nr_scanned
;
1312 if (current_is_kswapd())
1313 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
,
1316 __count_zone_vm_events(PGSCAN_DIRECT
, zone
,
1319 nr_taken
= mem_cgroup_isolate_pages(nr_to_scan
,
1320 &page_list
, &nr_scanned
, sc
->order
,
1321 sc
->lumpy_reclaim_mode
?
1322 ISOLATE_BOTH
: ISOLATE_INACTIVE
,
1323 zone
, sc
->mem_cgroup
,
1326 * mem_cgroup_isolate_pages() keeps track of
1327 * scanned pages on its own.
1331 if (nr_taken
== 0) {
1332 spin_unlock_irq(&zone
->lru_lock
);
1336 update_isolated_counts(zone
, sc
, &nr_anon
, &nr_file
, &page_list
);
1338 spin_unlock_irq(&zone
->lru_lock
);
1340 nr_reclaimed
= shrink_page_list(&page_list
, sc
, PAGEOUT_IO_ASYNC
);
1342 /* Check if we should syncronously wait for writeback */
1343 if (should_reclaim_stall(nr_taken
, nr_reclaimed
, priority
, sc
)) {
1344 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1347 * The attempt at page out may have made some
1348 * of the pages active, mark them inactive again.
1350 nr_active
= clear_active_flags(&page_list
, NULL
);
1351 count_vm_events(PGDEACTIVATE
, nr_active
);
1353 nr_reclaimed
+= shrink_page_list(&page_list
, sc
, PAGEOUT_IO_SYNC
);
1356 local_irq_disable();
1357 if (current_is_kswapd())
1358 __count_vm_events(KSWAPD_STEAL
, nr_reclaimed
);
1359 __count_zone_vm_events(PGSTEAL
, zone
, nr_reclaimed
);
1361 putback_lru_pages(zone
, sc
, nr_anon
, nr_file
, &page_list
);
1362 return nr_reclaimed
;
1366 * This moves pages from the active list to the inactive list.
1368 * We move them the other way if the page is referenced by one or more
1369 * processes, from rmap.
1371 * If the pages are mostly unmapped, the processing is fast and it is
1372 * appropriate to hold zone->lru_lock across the whole operation. But if
1373 * the pages are mapped, the processing is slow (page_referenced()) so we
1374 * should drop zone->lru_lock around each page. It's impossible to balance
1375 * this, so instead we remove the pages from the LRU while processing them.
1376 * It is safe to rely on PG_active against the non-LRU pages in here because
1377 * nobody will play with that bit on a non-LRU page.
1379 * The downside is that we have to touch page->_count against each page.
1380 * But we had to alter page->flags anyway.
1383 static void move_active_pages_to_lru(struct zone
*zone
,
1384 struct list_head
*list
,
1387 unsigned long pgmoved
= 0;
1388 struct pagevec pvec
;
1391 pagevec_init(&pvec
, 1);
1393 while (!list_empty(list
)) {
1394 page
= lru_to_page(list
);
1396 VM_BUG_ON(PageLRU(page
));
1399 list_move(&page
->lru
, &zone
->lru
[lru
].list
);
1400 mem_cgroup_add_lru_list(page
, lru
);
1403 if (!pagevec_add(&pvec
, page
) || list_empty(list
)) {
1404 spin_unlock_irq(&zone
->lru_lock
);
1405 if (buffer_heads_over_limit
)
1406 pagevec_strip(&pvec
);
1407 __pagevec_release(&pvec
);
1408 spin_lock_irq(&zone
->lru_lock
);
1411 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1412 if (!is_active_lru(lru
))
1413 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1416 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1417 struct scan_control
*sc
, int priority
, int file
)
1419 unsigned long nr_taken
;
1420 unsigned long pgscanned
;
1421 unsigned long vm_flags
;
1422 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1423 LIST_HEAD(l_active
);
1424 LIST_HEAD(l_inactive
);
1426 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1427 unsigned long nr_rotated
= 0;
1430 spin_lock_irq(&zone
->lru_lock
);
1431 if (scanning_global_lru(sc
)) {
1432 nr_taken
= isolate_pages_global(nr_pages
, &l_hold
,
1433 &pgscanned
, sc
->order
,
1434 ISOLATE_ACTIVE
, zone
,
1436 zone
->pages_scanned
+= pgscanned
;
1438 nr_taken
= mem_cgroup_isolate_pages(nr_pages
, &l_hold
,
1439 &pgscanned
, sc
->order
,
1440 ISOLATE_ACTIVE
, zone
,
1441 sc
->mem_cgroup
, 1, file
);
1443 * mem_cgroup_isolate_pages() keeps track of
1444 * scanned pages on its own.
1448 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1450 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1452 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
, -nr_taken
);
1454 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
, -nr_taken
);
1455 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1456 spin_unlock_irq(&zone
->lru_lock
);
1458 while (!list_empty(&l_hold
)) {
1460 page
= lru_to_page(&l_hold
);
1461 list_del(&page
->lru
);
1463 if (unlikely(!page_evictable(page
, NULL
))) {
1464 putback_lru_page(page
);
1468 if (page_referenced(page
, 0, sc
->mem_cgroup
, &vm_flags
)) {
1471 * Identify referenced, file-backed active pages and
1472 * give them one more trip around the active list. So
1473 * that executable code get better chances to stay in
1474 * memory under moderate memory pressure. Anon pages
1475 * are not likely to be evicted by use-once streaming
1476 * IO, plus JVM can create lots of anon VM_EXEC pages,
1477 * so we ignore them here.
1479 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1480 list_add(&page
->lru
, &l_active
);
1485 ClearPageActive(page
); /* we are de-activating */
1486 list_add(&page
->lru
, &l_inactive
);
1490 * Move pages back to the lru list.
1492 spin_lock_irq(&zone
->lru_lock
);
1494 * Count referenced pages from currently used mappings as rotated,
1495 * even though only some of them are actually re-activated. This
1496 * helps balance scan pressure between file and anonymous pages in
1499 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1501 move_active_pages_to_lru(zone
, &l_active
,
1502 LRU_ACTIVE
+ file
* LRU_FILE
);
1503 move_active_pages_to_lru(zone
, &l_inactive
,
1504 LRU_BASE
+ file
* LRU_FILE
);
1505 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1506 spin_unlock_irq(&zone
->lru_lock
);
1509 static int inactive_anon_is_low_global(struct zone
*zone
)
1511 unsigned long active
, inactive
;
1513 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1514 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1516 if (inactive
* zone
->inactive_ratio
< active
)
1523 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1524 * @zone: zone to check
1525 * @sc: scan control of this context
1527 * Returns true if the zone does not have enough inactive anon pages,
1528 * meaning some active anon pages need to be deactivated.
1530 static int inactive_anon_is_low(struct zone
*zone
, struct scan_control
*sc
)
1534 if (scanning_global_lru(sc
))
1535 low
= inactive_anon_is_low_global(zone
);
1537 low
= mem_cgroup_inactive_anon_is_low(sc
->mem_cgroup
);
1541 static int inactive_file_is_low_global(struct zone
*zone
)
1543 unsigned long active
, inactive
;
1545 active
= zone_page_state(zone
, NR_ACTIVE_FILE
);
1546 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1548 return (active
> inactive
);
1552 * inactive_file_is_low - check if file pages need to be deactivated
1553 * @zone: zone to check
1554 * @sc: scan control of this context
1556 * When the system is doing streaming IO, memory pressure here
1557 * ensures that active file pages get deactivated, until more
1558 * than half of the file pages are on the inactive list.
1560 * Once we get to that situation, protect the system's working
1561 * set from being evicted by disabling active file page aging.
1563 * This uses a different ratio than the anonymous pages, because
1564 * the page cache uses a use-once replacement algorithm.
1566 static int inactive_file_is_low(struct zone
*zone
, struct scan_control
*sc
)
1570 if (scanning_global_lru(sc
))
1571 low
= inactive_file_is_low_global(zone
);
1573 low
= mem_cgroup_inactive_file_is_low(sc
->mem_cgroup
);
1577 static int inactive_list_is_low(struct zone
*zone
, struct scan_control
*sc
,
1581 return inactive_file_is_low(zone
, sc
);
1583 return inactive_anon_is_low(zone
, sc
);
1586 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1587 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1589 int file
= is_file_lru(lru
);
1591 if (is_active_lru(lru
)) {
1592 if (inactive_list_is_low(zone
, sc
, file
))
1593 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1597 return shrink_inactive_list(nr_to_scan
, zone
, sc
, priority
, file
);
1601 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1602 * until we collected @swap_cluster_max pages to scan.
1604 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan
,
1605 unsigned long *nr_saved_scan
)
1609 *nr_saved_scan
+= nr_to_scan
;
1610 nr
= *nr_saved_scan
;
1612 if (nr
>= SWAP_CLUSTER_MAX
)
1621 * Determine how aggressively the anon and file LRU lists should be
1622 * scanned. The relative value of each set of LRU lists is determined
1623 * by looking at the fraction of the pages scanned we did rotate back
1624 * onto the active list instead of evict.
1626 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1628 static void get_scan_count(struct zone
*zone
, struct scan_control
*sc
,
1629 unsigned long *nr
, int priority
)
1631 unsigned long anon
, file
, free
;
1632 unsigned long anon_prio
, file_prio
;
1633 unsigned long ap
, fp
;
1634 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1635 u64 fraction
[2], denominator
;
1639 /* If we have no swap space, do not bother scanning anon pages. */
1640 if (!sc
->may_swap
|| (nr_swap_pages
<= 0)) {
1648 anon
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_ANON
) +
1649 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_ANON
);
1650 file
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_FILE
) +
1651 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1653 if (scanning_global_lru(sc
)) {
1654 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1655 /* If we have very few page cache pages,
1656 force-scan anon pages. */
1657 if (unlikely(file
+ free
<= high_wmark_pages(zone
))) {
1666 * With swappiness at 100, anonymous and file have the same priority.
1667 * This scanning priority is essentially the inverse of IO cost.
1669 anon_prio
= sc
->swappiness
;
1670 file_prio
= 200 - sc
->swappiness
;
1673 * OK, so we have swap space and a fair amount of page cache
1674 * pages. We use the recently rotated / recently scanned
1675 * ratios to determine how valuable each cache is.
1677 * Because workloads change over time (and to avoid overflow)
1678 * we keep these statistics as a floating average, which ends
1679 * up weighing recent references more than old ones.
1681 * anon in [0], file in [1]
1683 spin_lock_irq(&zone
->lru_lock
);
1684 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1685 reclaim_stat
->recent_scanned
[0] /= 2;
1686 reclaim_stat
->recent_rotated
[0] /= 2;
1689 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
1690 reclaim_stat
->recent_scanned
[1] /= 2;
1691 reclaim_stat
->recent_rotated
[1] /= 2;
1695 * The amount of pressure on anon vs file pages is inversely
1696 * proportional to the fraction of recently scanned pages on
1697 * each list that were recently referenced and in active use.
1699 ap
= (anon_prio
+ 1) * (reclaim_stat
->recent_scanned
[0] + 1);
1700 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
1702 fp
= (file_prio
+ 1) * (reclaim_stat
->recent_scanned
[1] + 1);
1703 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
1704 spin_unlock_irq(&zone
->lru_lock
);
1708 denominator
= ap
+ fp
+ 1;
1710 for_each_evictable_lru(l
) {
1711 int file
= is_file_lru(l
);
1714 scan
= zone_nr_lru_pages(zone
, sc
, l
);
1715 if (priority
|| noswap
) {
1717 scan
= div64_u64(scan
* fraction
[file
], denominator
);
1719 nr
[l
] = nr_scan_try_batch(scan
,
1720 &reclaim_stat
->nr_saved_scan
[l
]);
1724 static void set_lumpy_reclaim_mode(int priority
, struct scan_control
*sc
)
1727 * If we need a large contiguous chunk of memory, or have
1728 * trouble getting a small set of contiguous pages, we
1729 * will reclaim both active and inactive pages.
1731 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1732 sc
->lumpy_reclaim_mode
= 1;
1733 else if (sc
->order
&& priority
< DEF_PRIORITY
- 2)
1734 sc
->lumpy_reclaim_mode
= 1;
1736 sc
->lumpy_reclaim_mode
= 0;
1740 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1742 static void shrink_zone(int priority
, struct zone
*zone
,
1743 struct scan_control
*sc
)
1745 unsigned long nr
[NR_LRU_LISTS
];
1746 unsigned long nr_to_scan
;
1748 unsigned long nr_reclaimed
= sc
->nr_reclaimed
;
1749 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
1751 get_scan_count(zone
, sc
, nr
, priority
);
1753 set_lumpy_reclaim_mode(priority
, sc
);
1755 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1756 nr
[LRU_INACTIVE_FILE
]) {
1757 for_each_evictable_lru(l
) {
1759 nr_to_scan
= min_t(unsigned long,
1760 nr
[l
], SWAP_CLUSTER_MAX
);
1761 nr
[l
] -= nr_to_scan
;
1763 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
1764 zone
, sc
, priority
);
1768 * On large memory systems, scan >> priority can become
1769 * really large. This is fine for the starting priority;
1770 * we want to put equal scanning pressure on each zone.
1771 * However, if the VM has a harder time of freeing pages,
1772 * with multiple processes reclaiming pages, the total
1773 * freeing target can get unreasonably large.
1775 if (nr_reclaimed
>= nr_to_reclaim
&& priority
< DEF_PRIORITY
)
1779 sc
->nr_reclaimed
= nr_reclaimed
;
1782 * Even if we did not try to evict anon pages at all, we want to
1783 * rebalance the anon lru active/inactive ratio.
1785 if (inactive_anon_is_low(zone
, sc
) && nr_swap_pages
> 0)
1786 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
1788 throttle_vm_writeout(sc
->gfp_mask
);
1792 * This is the direct reclaim path, for page-allocating processes. We only
1793 * try to reclaim pages from zones which will satisfy the caller's allocation
1796 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1798 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1800 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1801 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1802 * zone defense algorithm.
1804 * If a zone is deemed to be full of pinned pages then just give it a light
1805 * scan then give up on it.
1807 static bool shrink_zones(int priority
, struct zonelist
*zonelist
,
1808 struct scan_control
*sc
)
1812 bool all_unreclaimable
= true;
1814 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1815 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
1816 if (!populated_zone(zone
))
1819 * Take care memory controller reclaiming has small influence
1822 if (scanning_global_lru(sc
)) {
1823 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1825 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1826 continue; /* Let kswapd poll it */
1829 shrink_zone(priority
, zone
, sc
);
1830 all_unreclaimable
= false;
1832 return all_unreclaimable
;
1836 * This is the main entry point to direct page reclaim.
1838 * If a full scan of the inactive list fails to free enough memory then we
1839 * are "out of memory" and something needs to be killed.
1841 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1842 * high - the zone may be full of dirty or under-writeback pages, which this
1843 * caller can't do much about. We kick the writeback threads and take explicit
1844 * naps in the hope that some of these pages can be written. But if the
1845 * allocating task holds filesystem locks which prevent writeout this might not
1846 * work, and the allocation attempt will fail.
1848 * returns: 0, if no pages reclaimed
1849 * else, the number of pages reclaimed
1851 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
1852 struct scan_control
*sc
)
1855 bool all_unreclaimable
;
1856 unsigned long total_scanned
= 0;
1857 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1860 unsigned long writeback_threshold
;
1863 delayacct_freepages_start();
1865 if (scanning_global_lru(sc
))
1866 count_vm_event(ALLOCSTALL
);
1868 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1871 disable_swap_token();
1872 all_unreclaimable
= shrink_zones(priority
, zonelist
, sc
);
1874 * Don't shrink slabs when reclaiming memory from
1875 * over limit cgroups
1877 if (scanning_global_lru(sc
)) {
1878 unsigned long lru_pages
= 0;
1879 for_each_zone_zonelist(zone
, z
, zonelist
,
1880 gfp_zone(sc
->gfp_mask
)) {
1881 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1884 lru_pages
+= zone_reclaimable_pages(zone
);
1887 shrink_slab(sc
->nr_scanned
, sc
->gfp_mask
, lru_pages
);
1888 if (reclaim_state
) {
1889 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1890 reclaim_state
->reclaimed_slab
= 0;
1893 total_scanned
+= sc
->nr_scanned
;
1894 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
1898 * Try to write back as many pages as we just scanned. This
1899 * tends to cause slow streaming writers to write data to the
1900 * disk smoothly, at the dirtying rate, which is nice. But
1901 * that's undesirable in laptop mode, where we *want* lumpy
1902 * writeout. So in laptop mode, write out the whole world.
1904 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
1905 if (total_scanned
> writeback_threshold
) {
1906 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
);
1907 sc
->may_writepage
= 1;
1910 /* Take a nap, wait for some writeback to complete */
1911 if (!sc
->hibernation_mode
&& sc
->nr_scanned
&&
1912 priority
< DEF_PRIORITY
- 2)
1913 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1918 * Now that we've scanned all the zones at this priority level, note
1919 * that level within the zone so that the next thread which performs
1920 * scanning of this zone will immediately start out at this priority
1921 * level. This affects only the decision whether or not to bring
1922 * mapped pages onto the inactive list.
1927 delayacct_freepages_end();
1930 if (sc
->nr_reclaimed
)
1931 return sc
->nr_reclaimed
;
1933 /* top priority shrink_zones still had more to do? don't OOM, then */
1934 if (scanning_global_lru(sc
) && !all_unreclaimable
)
1940 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
1941 gfp_t gfp_mask
, nodemask_t
*nodemask
)
1943 unsigned long nr_reclaimed
;
1944 struct scan_control sc
= {
1945 .gfp_mask
= gfp_mask
,
1946 .may_writepage
= !laptop_mode
,
1947 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
1950 .swappiness
= vm_swappiness
,
1953 .nodemask
= nodemask
,
1956 trace_mm_vmscan_direct_reclaim_begin(order
,
1960 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
1962 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
1964 return nr_reclaimed
;
1967 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1969 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup
*mem
,
1970 gfp_t gfp_mask
, bool noswap
,
1971 unsigned int swappiness
,
1974 struct scan_control sc
= {
1975 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
1976 .may_writepage
= !laptop_mode
,
1978 .may_swap
= !noswap
,
1979 .swappiness
= swappiness
,
1983 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
1984 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
1986 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
1991 * NOTE: Although we can get the priority field, using it
1992 * here is not a good idea, since it limits the pages we can scan.
1993 * if we don't reclaim here, the shrink_zone from balance_pgdat
1994 * will pick up pages from other mem cgroup's as well. We hack
1995 * the priority and make it zero.
1997 shrink_zone(0, zone
, &sc
);
1999 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
2001 return sc
.nr_reclaimed
;
2004 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
2007 unsigned int swappiness
)
2009 struct zonelist
*zonelist
;
2010 unsigned long nr_reclaimed
;
2011 struct scan_control sc
= {
2012 .may_writepage
= !laptop_mode
,
2014 .may_swap
= !noswap
,
2015 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2016 .swappiness
= swappiness
,
2018 .mem_cgroup
= mem_cont
,
2019 .nodemask
= NULL
, /* we don't care the placement */
2022 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2023 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2024 zonelist
= NODE_DATA(numa_node_id())->node_zonelists
;
2026 trace_mm_vmscan_memcg_reclaim_begin(0,
2030 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2032 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
2034 return nr_reclaimed
;
2038 /* is kswapd sleeping prematurely? */
2039 static int sleeping_prematurely(pg_data_t
*pgdat
, int order
, long remaining
)
2043 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2047 /* If after HZ/10, a zone is below the high mark, it's premature */
2048 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
2049 struct zone
*zone
= pgdat
->node_zones
+ i
;
2051 if (!populated_zone(zone
))
2054 if (zone
->all_unreclaimable
)
2057 if (!zone_watermark_ok(zone
, order
, high_wmark_pages(zone
),
2066 * For kswapd, balance_pgdat() will work across all this node's zones until
2067 * they are all at high_wmark_pages(zone).
2069 * Returns the number of pages which were actually freed.
2071 * There is special handling here for zones which are full of pinned pages.
2072 * This can happen if the pages are all mlocked, or if they are all used by
2073 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2074 * What we do is to detect the case where all pages in the zone have been
2075 * scanned twice and there has been zero successful reclaim. Mark the zone as
2076 * dead and from now on, only perform a short scan. Basically we're polling
2077 * the zone for when the problem goes away.
2079 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2080 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2081 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2082 * lower zones regardless of the number of free pages in the lower zones. This
2083 * interoperates with the page allocator fallback scheme to ensure that aging
2084 * of pages is balanced across the zones.
2086 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
2091 unsigned long total_scanned
;
2092 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2093 struct scan_control sc
= {
2094 .gfp_mask
= GFP_KERNEL
,
2098 * kswapd doesn't want to be bailed out while reclaim. because
2099 * we want to put equal scanning pressure on each zone.
2101 .nr_to_reclaim
= ULONG_MAX
,
2102 .swappiness
= vm_swappiness
,
2108 sc
.nr_reclaimed
= 0;
2109 sc
.may_writepage
= !laptop_mode
;
2110 count_vm_event(PAGEOUTRUN
);
2112 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
2113 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
2114 unsigned long lru_pages
= 0;
2115 int has_under_min_watermark_zone
= 0;
2117 /* The swap token gets in the way of swapout... */
2119 disable_swap_token();
2124 * Scan in the highmem->dma direction for the highest
2125 * zone which needs scanning
2127 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
2128 struct zone
*zone
= pgdat
->node_zones
+ i
;
2130 if (!populated_zone(zone
))
2133 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2137 * Do some background aging of the anon list, to give
2138 * pages a chance to be referenced before reclaiming.
2140 if (inactive_anon_is_low(zone
, &sc
))
2141 shrink_active_list(SWAP_CLUSTER_MAX
, zone
,
2144 if (!zone_watermark_ok(zone
, order
,
2145 high_wmark_pages(zone
), 0, 0)) {
2153 for (i
= 0; i
<= end_zone
; i
++) {
2154 struct zone
*zone
= pgdat
->node_zones
+ i
;
2156 lru_pages
+= zone_reclaimable_pages(zone
);
2160 * Now scan the zone in the dma->highmem direction, stopping
2161 * at the last zone which needs scanning.
2163 * We do this because the page allocator works in the opposite
2164 * direction. This prevents the page allocator from allocating
2165 * pages behind kswapd's direction of progress, which would
2166 * cause too much scanning of the lower zones.
2168 for (i
= 0; i
<= end_zone
; i
++) {
2169 struct zone
*zone
= pgdat
->node_zones
+ i
;
2172 if (!populated_zone(zone
))
2175 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2181 * Call soft limit reclaim before calling shrink_zone.
2182 * For now we ignore the return value
2184 mem_cgroup_soft_limit_reclaim(zone
, order
, sc
.gfp_mask
);
2187 * We put equal pressure on every zone, unless one
2188 * zone has way too many pages free already.
2190 if (!zone_watermark_ok(zone
, order
,
2191 8*high_wmark_pages(zone
), end_zone
, 0))
2192 shrink_zone(priority
, zone
, &sc
);
2193 reclaim_state
->reclaimed_slab
= 0;
2194 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
2196 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2197 total_scanned
+= sc
.nr_scanned
;
2198 if (zone
->all_unreclaimable
)
2201 zone
->pages_scanned
>= (zone_reclaimable_pages(zone
) * 6))
2202 zone
->all_unreclaimable
= 1;
2204 * If we've done a decent amount of scanning and
2205 * the reclaim ratio is low, start doing writepage
2206 * even in laptop mode
2208 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
2209 total_scanned
> sc
.nr_reclaimed
+ sc
.nr_reclaimed
/ 2)
2210 sc
.may_writepage
= 1;
2212 if (!zone_watermark_ok(zone
, order
,
2213 high_wmark_pages(zone
), end_zone
, 0)) {
2216 * We are still under min water mark. This
2217 * means that we have a GFP_ATOMIC allocation
2218 * failure risk. Hurry up!
2220 if (!zone_watermark_ok(zone
, order
,
2221 min_wmark_pages(zone
), end_zone
, 0))
2222 has_under_min_watermark_zone
= 1;
2227 break; /* kswapd: all done */
2229 * OK, kswapd is getting into trouble. Take a nap, then take
2230 * another pass across the zones.
2232 if (total_scanned
&& (priority
< DEF_PRIORITY
- 2)) {
2233 if (has_under_min_watermark_zone
)
2234 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT
);
2236 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2240 * We do this so kswapd doesn't build up large priorities for
2241 * example when it is freeing in parallel with allocators. It
2242 * matches the direct reclaim path behaviour in terms of impact
2243 * on zone->*_priority.
2245 if (sc
.nr_reclaimed
>= SWAP_CLUSTER_MAX
)
2249 if (!all_zones_ok
) {
2255 * Fragmentation may mean that the system cannot be
2256 * rebalanced for high-order allocations in all zones.
2257 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2258 * it means the zones have been fully scanned and are still
2259 * not balanced. For high-order allocations, there is
2260 * little point trying all over again as kswapd may
2263 * Instead, recheck all watermarks at order-0 as they
2264 * are the most important. If watermarks are ok, kswapd will go
2265 * back to sleep. High-order users can still perform direct
2266 * reclaim if they wish.
2268 if (sc
.nr_reclaimed
< SWAP_CLUSTER_MAX
)
2269 order
= sc
.order
= 0;
2274 return sc
.nr_reclaimed
;
2278 * The background pageout daemon, started as a kernel thread
2279 * from the init process.
2281 * This basically trickles out pages so that we have _some_
2282 * free memory available even if there is no other activity
2283 * that frees anything up. This is needed for things like routing
2284 * etc, where we otherwise might have all activity going on in
2285 * asynchronous contexts that cannot page things out.
2287 * If there are applications that are active memory-allocators
2288 * (most normal use), this basically shouldn't matter.
2290 static int kswapd(void *p
)
2292 unsigned long order
;
2293 pg_data_t
*pgdat
= (pg_data_t
*)p
;
2294 struct task_struct
*tsk
= current
;
2296 struct reclaim_state reclaim_state
= {
2297 .reclaimed_slab
= 0,
2299 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
2301 lockdep_set_current_reclaim_state(GFP_KERNEL
);
2303 if (!cpumask_empty(cpumask
))
2304 set_cpus_allowed_ptr(tsk
, cpumask
);
2305 current
->reclaim_state
= &reclaim_state
;
2308 * Tell the memory management that we're a "memory allocator",
2309 * and that if we need more memory we should get access to it
2310 * regardless (see "__alloc_pages()"). "kswapd" should
2311 * never get caught in the normal page freeing logic.
2313 * (Kswapd normally doesn't need memory anyway, but sometimes
2314 * you need a small amount of memory in order to be able to
2315 * page out something else, and this flag essentially protects
2316 * us from recursively trying to free more memory as we're
2317 * trying to free the first piece of memory in the first place).
2319 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
2324 unsigned long new_order
;
2327 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2328 new_order
= pgdat
->kswapd_max_order
;
2329 pgdat
->kswapd_max_order
= 0;
2330 if (order
< new_order
) {
2332 * Don't sleep if someone wants a larger 'order'
2337 if (!freezing(current
) && !kthread_should_stop()) {
2340 /* Try to sleep for a short interval */
2341 if (!sleeping_prematurely(pgdat
, order
, remaining
)) {
2342 remaining
= schedule_timeout(HZ
/10);
2343 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2344 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2348 * After a short sleep, check if it was a
2349 * premature sleep. If not, then go fully
2350 * to sleep until explicitly woken up
2352 if (!sleeping_prematurely(pgdat
, order
, remaining
)) {
2353 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
2357 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
2359 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
2363 order
= pgdat
->kswapd_max_order
;
2365 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2367 ret
= try_to_freeze();
2368 if (kthread_should_stop())
2372 * We can speed up thawing tasks if we don't call balance_pgdat
2373 * after returning from the refrigerator
2376 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, order
);
2377 balance_pgdat(pgdat
, order
);
2384 * A zone is low on free memory, so wake its kswapd task to service it.
2386 void wakeup_kswapd(struct zone
*zone
, int order
)
2390 if (!populated_zone(zone
))
2393 pgdat
= zone
->zone_pgdat
;
2394 if (zone_watermark_ok(zone
, order
, low_wmark_pages(zone
), 0, 0))
2396 if (pgdat
->kswapd_max_order
< order
)
2397 pgdat
->kswapd_max_order
= order
;
2398 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, zone_idx(zone
), order
);
2399 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2401 if (!waitqueue_active(&pgdat
->kswapd_wait
))
2403 wake_up_interruptible(&pgdat
->kswapd_wait
);
2407 * The reclaimable count would be mostly accurate.
2408 * The less reclaimable pages may be
2409 * - mlocked pages, which will be moved to unevictable list when encountered
2410 * - mapped pages, which may require several travels to be reclaimed
2411 * - dirty pages, which is not "instantly" reclaimable
2413 unsigned long global_reclaimable_pages(void)
2417 nr
= global_page_state(NR_ACTIVE_FILE
) +
2418 global_page_state(NR_INACTIVE_FILE
);
2420 if (nr_swap_pages
> 0)
2421 nr
+= global_page_state(NR_ACTIVE_ANON
) +
2422 global_page_state(NR_INACTIVE_ANON
);
2427 unsigned long zone_reclaimable_pages(struct zone
*zone
)
2431 nr
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
2432 zone_page_state(zone
, NR_INACTIVE_FILE
);
2434 if (nr_swap_pages
> 0)
2435 nr
+= zone_page_state(zone
, NR_ACTIVE_ANON
) +
2436 zone_page_state(zone
, NR_INACTIVE_ANON
);
2441 #ifdef CONFIG_HIBERNATION
2443 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2446 * Rather than trying to age LRUs the aim is to preserve the overall
2447 * LRU order by reclaiming preferentially
2448 * inactive > active > active referenced > active mapped
2450 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
2452 struct reclaim_state reclaim_state
;
2453 struct scan_control sc
= {
2454 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
2458 .nr_to_reclaim
= nr_to_reclaim
,
2459 .hibernation_mode
= 1,
2460 .swappiness
= vm_swappiness
,
2463 struct zonelist
* zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
2464 struct task_struct
*p
= current
;
2465 unsigned long nr_reclaimed
;
2467 p
->flags
|= PF_MEMALLOC
;
2468 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
2469 reclaim_state
.reclaimed_slab
= 0;
2470 p
->reclaim_state
= &reclaim_state
;
2472 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2474 p
->reclaim_state
= NULL
;
2475 lockdep_clear_current_reclaim_state();
2476 p
->flags
&= ~PF_MEMALLOC
;
2478 return nr_reclaimed
;
2480 #endif /* CONFIG_HIBERNATION */
2482 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2483 not required for correctness. So if the last cpu in a node goes
2484 away, we get changed to run anywhere: as the first one comes back,
2485 restore their cpu bindings. */
2486 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
2487 unsigned long action
, void *hcpu
)
2491 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
2492 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2493 pg_data_t
*pgdat
= NODE_DATA(nid
);
2494 const struct cpumask
*mask
;
2496 mask
= cpumask_of_node(pgdat
->node_id
);
2498 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2499 /* One of our CPUs online: restore mask */
2500 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
2507 * This kswapd start function will be called by init and node-hot-add.
2508 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2510 int kswapd_run(int nid
)
2512 pg_data_t
*pgdat
= NODE_DATA(nid
);
2518 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
2519 if (IS_ERR(pgdat
->kswapd
)) {
2520 /* failure at boot is fatal */
2521 BUG_ON(system_state
== SYSTEM_BOOTING
);
2522 printk("Failed to start kswapd on node %d\n",nid
);
2529 * Called by memory hotplug when all memory in a node is offlined.
2531 void kswapd_stop(int nid
)
2533 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
2536 kthread_stop(kswapd
);
2539 static int __init
kswapd_init(void)
2544 for_each_node_state(nid
, N_HIGH_MEMORY
)
2546 hotcpu_notifier(cpu_callback
, 0);
2550 module_init(kswapd_init
)
2556 * If non-zero call zone_reclaim when the number of free pages falls below
2559 int zone_reclaim_mode __read_mostly
;
2561 #define RECLAIM_OFF 0
2562 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2563 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2564 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2567 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2568 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2571 #define ZONE_RECLAIM_PRIORITY 4
2574 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2577 int sysctl_min_unmapped_ratio
= 1;
2580 * If the number of slab pages in a zone grows beyond this percentage then
2581 * slab reclaim needs to occur.
2583 int sysctl_min_slab_ratio
= 5;
2585 static inline unsigned long zone_unmapped_file_pages(struct zone
*zone
)
2587 unsigned long file_mapped
= zone_page_state(zone
, NR_FILE_MAPPED
);
2588 unsigned long file_lru
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
2589 zone_page_state(zone
, NR_ACTIVE_FILE
);
2592 * It's possible for there to be more file mapped pages than
2593 * accounted for by the pages on the file LRU lists because
2594 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2596 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
2599 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2600 static long zone_pagecache_reclaimable(struct zone
*zone
)
2602 long nr_pagecache_reclaimable
;
2606 * If RECLAIM_SWAP is set, then all file pages are considered
2607 * potentially reclaimable. Otherwise, we have to worry about
2608 * pages like swapcache and zone_unmapped_file_pages() provides
2611 if (zone_reclaim_mode
& RECLAIM_SWAP
)
2612 nr_pagecache_reclaimable
= zone_page_state(zone
, NR_FILE_PAGES
);
2614 nr_pagecache_reclaimable
= zone_unmapped_file_pages(zone
);
2616 /* If we can't clean pages, remove dirty pages from consideration */
2617 if (!(zone_reclaim_mode
& RECLAIM_WRITE
))
2618 delta
+= zone_page_state(zone
, NR_FILE_DIRTY
);
2620 /* Watch for any possible underflows due to delta */
2621 if (unlikely(delta
> nr_pagecache_reclaimable
))
2622 delta
= nr_pagecache_reclaimable
;
2624 return nr_pagecache_reclaimable
- delta
;
2628 * Try to free up some pages from this zone through reclaim.
2630 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2632 /* Minimum pages needed in order to stay on node */
2633 const unsigned long nr_pages
= 1 << order
;
2634 struct task_struct
*p
= current
;
2635 struct reclaim_state reclaim_state
;
2637 struct scan_control sc
= {
2638 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
2639 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
2641 .nr_to_reclaim
= max_t(unsigned long, nr_pages
,
2643 .gfp_mask
= gfp_mask
,
2644 .swappiness
= vm_swappiness
,
2647 unsigned long nr_slab_pages0
, nr_slab_pages1
;
2651 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2652 * and we also need to be able to write out pages for RECLAIM_WRITE
2655 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
2656 lockdep_set_current_reclaim_state(gfp_mask
);
2657 reclaim_state
.reclaimed_slab
= 0;
2658 p
->reclaim_state
= &reclaim_state
;
2660 if (zone_pagecache_reclaimable(zone
) > zone
->min_unmapped_pages
) {
2662 * Free memory by calling shrink zone with increasing
2663 * priorities until we have enough memory freed.
2665 priority
= ZONE_RECLAIM_PRIORITY
;
2667 shrink_zone(priority
, zone
, &sc
);
2669 } while (priority
>= 0 && sc
.nr_reclaimed
< nr_pages
);
2672 nr_slab_pages0
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2673 if (nr_slab_pages0
> zone
->min_slab_pages
) {
2675 * shrink_slab() does not currently allow us to determine how
2676 * many pages were freed in this zone. So we take the current
2677 * number of slab pages and shake the slab until it is reduced
2678 * by the same nr_pages that we used for reclaiming unmapped
2681 * Note that shrink_slab will free memory on all zones and may
2685 unsigned long lru_pages
= zone_reclaimable_pages(zone
);
2687 /* No reclaimable slab or very low memory pressure */
2688 if (!shrink_slab(sc
.nr_scanned
, gfp_mask
, lru_pages
))
2691 /* Freed enough memory */
2692 nr_slab_pages1
= zone_page_state(zone
,
2693 NR_SLAB_RECLAIMABLE
);
2694 if (nr_slab_pages1
+ nr_pages
<= nr_slab_pages0
)
2699 * Update nr_reclaimed by the number of slab pages we
2700 * reclaimed from this zone.
2702 nr_slab_pages1
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2703 if (nr_slab_pages1
< nr_slab_pages0
)
2704 sc
.nr_reclaimed
+= nr_slab_pages0
- nr_slab_pages1
;
2707 p
->reclaim_state
= NULL
;
2708 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
2709 lockdep_clear_current_reclaim_state();
2710 return sc
.nr_reclaimed
>= nr_pages
;
2713 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2719 * Zone reclaim reclaims unmapped file backed pages and
2720 * slab pages if we are over the defined limits.
2722 * A small portion of unmapped file backed pages is needed for
2723 * file I/O otherwise pages read by file I/O will be immediately
2724 * thrown out if the zone is overallocated. So we do not reclaim
2725 * if less than a specified percentage of the zone is used by
2726 * unmapped file backed pages.
2728 if (zone_pagecache_reclaimable(zone
) <= zone
->min_unmapped_pages
&&
2729 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) <= zone
->min_slab_pages
)
2730 return ZONE_RECLAIM_FULL
;
2732 if (zone
->all_unreclaimable
)
2733 return ZONE_RECLAIM_FULL
;
2736 * Do not scan if the allocation should not be delayed.
2738 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
2739 return ZONE_RECLAIM_NOSCAN
;
2742 * Only run zone reclaim on the local zone or on zones that do not
2743 * have associated processors. This will favor the local processor
2744 * over remote processors and spread off node memory allocations
2745 * as wide as possible.
2747 node_id
= zone_to_nid(zone
);
2748 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
2749 return ZONE_RECLAIM_NOSCAN
;
2751 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
2752 return ZONE_RECLAIM_NOSCAN
;
2754 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
2755 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
2758 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
2765 * page_evictable - test whether a page is evictable
2766 * @page: the page to test
2767 * @vma: the VMA in which the page is or will be mapped, may be NULL
2769 * Test whether page is evictable--i.e., should be placed on active/inactive
2770 * lists vs unevictable list. The vma argument is !NULL when called from the
2771 * fault path to determine how to instantate a new page.
2773 * Reasons page might not be evictable:
2774 * (1) page's mapping marked unevictable
2775 * (2) page is part of an mlocked VMA
2778 int page_evictable(struct page
*page
, struct vm_area_struct
*vma
)
2781 if (mapping_unevictable(page_mapping(page
)))
2784 if (PageMlocked(page
) || (vma
&& is_mlocked_vma(vma
, page
)))
2791 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2792 * @page: page to check evictability and move to appropriate lru list
2793 * @zone: zone page is in
2795 * Checks a page for evictability and moves the page to the appropriate
2798 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2799 * have PageUnevictable set.
2801 static void check_move_unevictable_page(struct page
*page
, struct zone
*zone
)
2803 VM_BUG_ON(PageActive(page
));
2806 ClearPageUnevictable(page
);
2807 if (page_evictable(page
, NULL
)) {
2808 enum lru_list l
= page_lru_base_type(page
);
2810 __dec_zone_state(zone
, NR_UNEVICTABLE
);
2811 list_move(&page
->lru
, &zone
->lru
[l
].list
);
2812 mem_cgroup_move_lists(page
, LRU_UNEVICTABLE
, l
);
2813 __inc_zone_state(zone
, NR_INACTIVE_ANON
+ l
);
2814 __count_vm_event(UNEVICTABLE_PGRESCUED
);
2817 * rotate unevictable list
2819 SetPageUnevictable(page
);
2820 list_move(&page
->lru
, &zone
->lru
[LRU_UNEVICTABLE
].list
);
2821 mem_cgroup_rotate_lru_list(page
, LRU_UNEVICTABLE
);
2822 if (page_evictable(page
, NULL
))
2828 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2829 * @mapping: struct address_space to scan for evictable pages
2831 * Scan all pages in mapping. Check unevictable pages for
2832 * evictability and move them to the appropriate zone lru list.
2834 void scan_mapping_unevictable_pages(struct address_space
*mapping
)
2837 pgoff_t end
= (i_size_read(mapping
->host
) + PAGE_CACHE_SIZE
- 1) >>
2840 struct pagevec pvec
;
2842 if (mapping
->nrpages
== 0)
2845 pagevec_init(&pvec
, 0);
2846 while (next
< end
&&
2847 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
2853 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
2854 struct page
*page
= pvec
.pages
[i
];
2855 pgoff_t page_index
= page
->index
;
2856 struct zone
*pagezone
= page_zone(page
);
2859 if (page_index
> next
)
2863 if (pagezone
!= zone
) {
2865 spin_unlock_irq(&zone
->lru_lock
);
2867 spin_lock_irq(&zone
->lru_lock
);
2870 if (PageLRU(page
) && PageUnevictable(page
))
2871 check_move_unevictable_page(page
, zone
);
2874 spin_unlock_irq(&zone
->lru_lock
);
2875 pagevec_release(&pvec
);
2877 count_vm_events(UNEVICTABLE_PGSCANNED
, pg_scanned
);
2883 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2884 * @zone - zone of which to scan the unevictable list
2886 * Scan @zone's unevictable LRU lists to check for pages that have become
2887 * evictable. Move those that have to @zone's inactive list where they
2888 * become candidates for reclaim, unless shrink_inactive_zone() decides
2889 * to reactivate them. Pages that are still unevictable are rotated
2890 * back onto @zone's unevictable list.
2892 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2893 static void scan_zone_unevictable_pages(struct zone
*zone
)
2895 struct list_head
*l_unevictable
= &zone
->lru
[LRU_UNEVICTABLE
].list
;
2897 unsigned long nr_to_scan
= zone_page_state(zone
, NR_UNEVICTABLE
);
2899 while (nr_to_scan
> 0) {
2900 unsigned long batch_size
= min(nr_to_scan
,
2901 SCAN_UNEVICTABLE_BATCH_SIZE
);
2903 spin_lock_irq(&zone
->lru_lock
);
2904 for (scan
= 0; scan
< batch_size
; scan
++) {
2905 struct page
*page
= lru_to_page(l_unevictable
);
2907 if (!trylock_page(page
))
2910 prefetchw_prev_lru_page(page
, l_unevictable
, flags
);
2912 if (likely(PageLRU(page
) && PageUnevictable(page
)))
2913 check_move_unevictable_page(page
, zone
);
2917 spin_unlock_irq(&zone
->lru_lock
);
2919 nr_to_scan
-= batch_size
;
2925 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2927 * A really big hammer: scan all zones' unevictable LRU lists to check for
2928 * pages that have become evictable. Move those back to the zones'
2929 * inactive list where they become candidates for reclaim.
2930 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2931 * and we add swap to the system. As such, it runs in the context of a task
2932 * that has possibly/probably made some previously unevictable pages
2935 static void scan_all_zones_unevictable_pages(void)
2939 for_each_zone(zone
) {
2940 scan_zone_unevictable_pages(zone
);
2945 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2946 * all nodes' unevictable lists for evictable pages
2948 unsigned long scan_unevictable_pages
;
2950 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
2951 void __user
*buffer
,
2952 size_t *length
, loff_t
*ppos
)
2954 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2956 if (write
&& *(unsigned long *)table
->data
)
2957 scan_all_zones_unevictable_pages();
2959 scan_unevictable_pages
= 0;
2964 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2965 * a specified node's per zone unevictable lists for evictable pages.
2968 static ssize_t
read_scan_unevictable_node(struct sys_device
*dev
,
2969 struct sysdev_attribute
*attr
,
2972 return sprintf(buf
, "0\n"); /* always zero; should fit... */
2975 static ssize_t
write_scan_unevictable_node(struct sys_device
*dev
,
2976 struct sysdev_attribute
*attr
,
2977 const char *buf
, size_t count
)
2979 struct zone
*node_zones
= NODE_DATA(dev
->id
)->node_zones
;
2982 unsigned long req
= strict_strtoul(buf
, 10, &res
);
2985 return 1; /* zero is no-op */
2987 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2988 if (!populated_zone(zone
))
2990 scan_zone_unevictable_pages(zone
);
2996 static SYSDEV_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
2997 read_scan_unevictable_node
,
2998 write_scan_unevictable_node
);
3000 int scan_unevictable_register_node(struct node
*node
)
3002 return sysdev_create_file(&node
->sysdev
, &attr_scan_unevictable_pages
);
3005 void scan_unevictable_unregister_node(struct node
*node
)
3007 sysdev_remove_file(&node
->sysdev
, &attr_scan_unevictable_pages
);