Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / inode.c
blob4a0107e18747865e0d884351015638e92503e32b
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
54 struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 struct inode *inode, struct inode *dir)
95 int err;
97 err = btrfs_init_acl(trans, inode, dir);
98 if (!err)
99 err = btrfs_xattr_security_init(trans, inode, dir);
100 return err;
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root, struct inode *inode,
110 u64 start, size_t size, size_t compressed_size,
111 struct page **compressed_pages)
113 struct btrfs_key key;
114 struct btrfs_path *path;
115 struct extent_buffer *leaf;
116 struct page *page = NULL;
117 char *kaddr;
118 unsigned long ptr;
119 struct btrfs_file_extent_item *ei;
120 int err = 0;
121 int ret;
122 size_t cur_size = size;
123 size_t datasize;
124 unsigned long offset;
125 int compress_type = BTRFS_COMPRESS_NONE;
127 if (compressed_size && compressed_pages) {
128 compress_type = root->fs_info->compress_type;
129 cur_size = compressed_size;
132 path = btrfs_alloc_path();
133 if (!path)
134 return -ENOMEM;
136 path->leave_spinning = 1;
137 btrfs_set_trans_block_group(trans, inode);
139 key.objectid = inode->i_ino;
140 key.offset = start;
141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 datasize = btrfs_file_extent_calc_inline_size(cur_size);
144 inode_add_bytes(inode, size);
145 ret = btrfs_insert_empty_item(trans, root, path, &key,
146 datasize);
147 BUG_ON(ret);
148 if (ret) {
149 err = ret;
150 goto fail;
152 leaf = path->nodes[0];
153 ei = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_file_extent_item);
155 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 btrfs_set_file_extent_encryption(leaf, ei, 0);
158 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 ptr = btrfs_file_extent_inline_start(ei);
162 if (compress_type != BTRFS_COMPRESS_NONE) {
163 struct page *cpage;
164 int i = 0;
165 while (compressed_size > 0) {
166 cpage = compressed_pages[i];
167 cur_size = min_t(unsigned long, compressed_size,
168 PAGE_CACHE_SIZE);
170 kaddr = kmap_atomic(cpage, KM_USER0);
171 write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 kunmap_atomic(kaddr, KM_USER0);
174 i++;
175 ptr += cur_size;
176 compressed_size -= cur_size;
178 btrfs_set_file_extent_compression(leaf, ei,
179 compress_type);
180 } else {
181 page = find_get_page(inode->i_mapping,
182 start >> PAGE_CACHE_SHIFT);
183 btrfs_set_file_extent_compression(leaf, ei, 0);
184 kaddr = kmap_atomic(page, KM_USER0);
185 offset = start & (PAGE_CACHE_SIZE - 1);
186 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 kunmap_atomic(kaddr, KM_USER0);
188 page_cache_release(page);
190 btrfs_mark_buffer_dirty(leaf);
191 btrfs_free_path(path);
194 * we're an inline extent, so nobody can
195 * extend the file past i_size without locking
196 * a page we already have locked.
198 * We must do any isize and inode updates
199 * before we unlock the pages. Otherwise we
200 * could end up racing with unlink.
202 BTRFS_I(inode)->disk_i_size = inode->i_size;
203 btrfs_update_inode(trans, root, inode);
205 return 0;
206 fail:
207 btrfs_free_path(path);
208 return err;
213 * conditionally insert an inline extent into the file. This
214 * does the checks required to make sure the data is small enough
215 * to fit as an inline extent.
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218 struct btrfs_root *root,
219 struct inode *inode, u64 start, u64 end,
220 size_t compressed_size,
221 struct page **compressed_pages)
223 u64 isize = i_size_read(inode);
224 u64 actual_end = min(end + 1, isize);
225 u64 inline_len = actual_end - start;
226 u64 aligned_end = (end + root->sectorsize - 1) &
227 ~((u64)root->sectorsize - 1);
228 u64 hint_byte;
229 u64 data_len = inline_len;
230 int ret;
232 if (compressed_size)
233 data_len = compressed_size;
235 if (start > 0 ||
236 actual_end >= PAGE_CACHE_SIZE ||
237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238 (!compressed_size &&
239 (actual_end & (root->sectorsize - 1)) == 0) ||
240 end + 1 < isize ||
241 data_len > root->fs_info->max_inline) {
242 return 1;
245 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246 &hint_byte, 1);
247 BUG_ON(ret);
249 if (isize > actual_end)
250 inline_len = min_t(u64, isize, actual_end);
251 ret = insert_inline_extent(trans, root, inode, start,
252 inline_len, compressed_size,
253 compressed_pages);
254 BUG_ON(ret);
255 btrfs_delalloc_release_metadata(inode, end + 1 - start);
256 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
257 return 0;
260 struct async_extent {
261 u64 start;
262 u64 ram_size;
263 u64 compressed_size;
264 struct page **pages;
265 unsigned long nr_pages;
266 int compress_type;
267 struct list_head list;
270 struct async_cow {
271 struct inode *inode;
272 struct btrfs_root *root;
273 struct page *locked_page;
274 u64 start;
275 u64 end;
276 struct list_head extents;
277 struct btrfs_work work;
280 static noinline int add_async_extent(struct async_cow *cow,
281 u64 start, u64 ram_size,
282 u64 compressed_size,
283 struct page **pages,
284 unsigned long nr_pages,
285 int compress_type)
287 struct async_extent *async_extent;
289 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
290 async_extent->start = start;
291 async_extent->ram_size = ram_size;
292 async_extent->compressed_size = compressed_size;
293 async_extent->pages = pages;
294 async_extent->nr_pages = nr_pages;
295 async_extent->compress_type = compress_type;
296 list_add_tail(&async_extent->list, &cow->extents);
297 return 0;
301 * we create compressed extents in two phases. The first
302 * phase compresses a range of pages that have already been
303 * locked (both pages and state bits are locked).
305 * This is done inside an ordered work queue, and the compression
306 * is spread across many cpus. The actual IO submission is step
307 * two, and the ordered work queue takes care of making sure that
308 * happens in the same order things were put onto the queue by
309 * writepages and friends.
311 * If this code finds it can't get good compression, it puts an
312 * entry onto the work queue to write the uncompressed bytes. This
313 * makes sure that both compressed inodes and uncompressed inodes
314 * are written in the same order that pdflush sent them down.
316 static noinline int compress_file_range(struct inode *inode,
317 struct page *locked_page,
318 u64 start, u64 end,
319 struct async_cow *async_cow,
320 int *num_added)
322 struct btrfs_root *root = BTRFS_I(inode)->root;
323 struct btrfs_trans_handle *trans;
324 u64 num_bytes;
325 u64 blocksize = root->sectorsize;
326 u64 actual_end;
327 u64 isize = i_size_read(inode);
328 int ret = 0;
329 struct page **pages = NULL;
330 unsigned long nr_pages;
331 unsigned long nr_pages_ret = 0;
332 unsigned long total_compressed = 0;
333 unsigned long total_in = 0;
334 unsigned long max_compressed = 128 * 1024;
335 unsigned long max_uncompressed = 128 * 1024;
336 int i;
337 int will_compress;
338 int compress_type = root->fs_info->compress_type;
340 actual_end = min_t(u64, isize, end + 1);
341 again:
342 will_compress = 0;
343 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
344 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
347 * we don't want to send crud past the end of i_size through
348 * compression, that's just a waste of CPU time. So, if the
349 * end of the file is before the start of our current
350 * requested range of bytes, we bail out to the uncompressed
351 * cleanup code that can deal with all of this.
353 * It isn't really the fastest way to fix things, but this is a
354 * very uncommon corner.
356 if (actual_end <= start)
357 goto cleanup_and_bail_uncompressed;
359 total_compressed = actual_end - start;
361 /* we want to make sure that amount of ram required to uncompress
362 * an extent is reasonable, so we limit the total size in ram
363 * of a compressed extent to 128k. This is a crucial number
364 * because it also controls how easily we can spread reads across
365 * cpus for decompression.
367 * We also want to make sure the amount of IO required to do
368 * a random read is reasonably small, so we limit the size of
369 * a compressed extent to 128k.
371 total_compressed = min(total_compressed, max_uncompressed);
372 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
373 num_bytes = max(blocksize, num_bytes);
374 total_in = 0;
375 ret = 0;
378 * we do compression for mount -o compress and when the
379 * inode has not been flagged as nocompress. This flag can
380 * change at any time if we discover bad compression ratios.
382 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
383 (btrfs_test_opt(root, COMPRESS) ||
384 (BTRFS_I(inode)->force_compress))) {
385 WARN_ON(pages);
386 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
388 if (BTRFS_I(inode)->force_compress)
389 compress_type = BTRFS_I(inode)->force_compress;
391 ret = btrfs_compress_pages(compress_type,
392 inode->i_mapping, start,
393 total_compressed, pages,
394 nr_pages, &nr_pages_ret,
395 &total_in,
396 &total_compressed,
397 max_compressed);
399 if (!ret) {
400 unsigned long offset = total_compressed &
401 (PAGE_CACHE_SIZE - 1);
402 struct page *page = pages[nr_pages_ret - 1];
403 char *kaddr;
405 /* zero the tail end of the last page, we might be
406 * sending it down to disk
408 if (offset) {
409 kaddr = kmap_atomic(page, KM_USER0);
410 memset(kaddr + offset, 0,
411 PAGE_CACHE_SIZE - offset);
412 kunmap_atomic(kaddr, KM_USER0);
414 will_compress = 1;
417 if (start == 0) {
418 trans = btrfs_join_transaction(root, 1);
419 BUG_ON(IS_ERR(trans));
420 btrfs_set_trans_block_group(trans, inode);
421 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
423 /* lets try to make an inline extent */
424 if (ret || total_in < (actual_end - start)) {
425 /* we didn't compress the entire range, try
426 * to make an uncompressed inline extent.
428 ret = cow_file_range_inline(trans, root, inode,
429 start, end, 0, NULL);
430 } else {
431 /* try making a compressed inline extent */
432 ret = cow_file_range_inline(trans, root, inode,
433 start, end,
434 total_compressed, pages);
436 if (ret == 0) {
438 * inline extent creation worked, we don't need
439 * to create any more async work items. Unlock
440 * and free up our temp pages.
442 extent_clear_unlock_delalloc(inode,
443 &BTRFS_I(inode)->io_tree,
444 start, end, NULL,
445 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
446 EXTENT_CLEAR_DELALLOC |
447 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
449 btrfs_end_transaction(trans, root);
450 goto free_pages_out;
452 btrfs_end_transaction(trans, root);
455 if (will_compress) {
457 * we aren't doing an inline extent round the compressed size
458 * up to a block size boundary so the allocator does sane
459 * things
461 total_compressed = (total_compressed + blocksize - 1) &
462 ~(blocksize - 1);
465 * one last check to make sure the compression is really a
466 * win, compare the page count read with the blocks on disk
468 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
469 ~(PAGE_CACHE_SIZE - 1);
470 if (total_compressed >= total_in) {
471 will_compress = 0;
472 } else {
473 num_bytes = total_in;
476 if (!will_compress && pages) {
478 * the compression code ran but failed to make things smaller,
479 * free any pages it allocated and our page pointer array
481 for (i = 0; i < nr_pages_ret; i++) {
482 WARN_ON(pages[i]->mapping);
483 page_cache_release(pages[i]);
485 kfree(pages);
486 pages = NULL;
487 total_compressed = 0;
488 nr_pages_ret = 0;
490 /* flag the file so we don't compress in the future */
491 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
492 !(BTRFS_I(inode)->force_compress)) {
493 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
496 if (will_compress) {
497 *num_added += 1;
499 /* the async work queues will take care of doing actual
500 * allocation on disk for these compressed pages,
501 * and will submit them to the elevator.
503 add_async_extent(async_cow, start, num_bytes,
504 total_compressed, pages, nr_pages_ret,
505 compress_type);
507 if (start + num_bytes < end) {
508 start += num_bytes;
509 pages = NULL;
510 cond_resched();
511 goto again;
513 } else {
514 cleanup_and_bail_uncompressed:
516 * No compression, but we still need to write the pages in
517 * the file we've been given so far. redirty the locked
518 * page if it corresponds to our extent and set things up
519 * for the async work queue to run cow_file_range to do
520 * the normal delalloc dance
522 if (page_offset(locked_page) >= start &&
523 page_offset(locked_page) <= end) {
524 __set_page_dirty_nobuffers(locked_page);
525 /* unlocked later on in the async handlers */
527 add_async_extent(async_cow, start, end - start + 1,
528 0, NULL, 0, BTRFS_COMPRESS_NONE);
529 *num_added += 1;
532 out:
533 return 0;
535 free_pages_out:
536 for (i = 0; i < nr_pages_ret; i++) {
537 WARN_ON(pages[i]->mapping);
538 page_cache_release(pages[i]);
540 kfree(pages);
542 goto out;
546 * phase two of compressed writeback. This is the ordered portion
547 * of the code, which only gets called in the order the work was
548 * queued. We walk all the async extents created by compress_file_range
549 * and send them down to the disk.
551 static noinline int submit_compressed_extents(struct inode *inode,
552 struct async_cow *async_cow)
554 struct async_extent *async_extent;
555 u64 alloc_hint = 0;
556 struct btrfs_trans_handle *trans;
557 struct btrfs_key ins;
558 struct extent_map *em;
559 struct btrfs_root *root = BTRFS_I(inode)->root;
560 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
561 struct extent_io_tree *io_tree;
562 int ret = 0;
564 if (list_empty(&async_cow->extents))
565 return 0;
568 while (!list_empty(&async_cow->extents)) {
569 async_extent = list_entry(async_cow->extents.next,
570 struct async_extent, list);
571 list_del(&async_extent->list);
573 io_tree = &BTRFS_I(inode)->io_tree;
575 retry:
576 /* did the compression code fall back to uncompressed IO? */
577 if (!async_extent->pages) {
578 int page_started = 0;
579 unsigned long nr_written = 0;
581 lock_extent(io_tree, async_extent->start,
582 async_extent->start +
583 async_extent->ram_size - 1, GFP_NOFS);
585 /* allocate blocks */
586 ret = cow_file_range(inode, async_cow->locked_page,
587 async_extent->start,
588 async_extent->start +
589 async_extent->ram_size - 1,
590 &page_started, &nr_written, 0);
593 * if page_started, cow_file_range inserted an
594 * inline extent and took care of all the unlocking
595 * and IO for us. Otherwise, we need to submit
596 * all those pages down to the drive.
598 if (!page_started && !ret)
599 extent_write_locked_range(io_tree,
600 inode, async_extent->start,
601 async_extent->start +
602 async_extent->ram_size - 1,
603 btrfs_get_extent,
604 WB_SYNC_ALL);
605 kfree(async_extent);
606 cond_resched();
607 continue;
610 lock_extent(io_tree, async_extent->start,
611 async_extent->start + async_extent->ram_size - 1,
612 GFP_NOFS);
614 trans = btrfs_join_transaction(root, 1);
615 BUG_ON(IS_ERR(trans));
616 ret = btrfs_reserve_extent(trans, root,
617 async_extent->compressed_size,
618 async_extent->compressed_size,
619 0, alloc_hint,
620 (u64)-1, &ins, 1);
621 btrfs_end_transaction(trans, root);
623 if (ret) {
624 int i;
625 for (i = 0; i < async_extent->nr_pages; i++) {
626 WARN_ON(async_extent->pages[i]->mapping);
627 page_cache_release(async_extent->pages[i]);
629 kfree(async_extent->pages);
630 async_extent->nr_pages = 0;
631 async_extent->pages = NULL;
632 unlock_extent(io_tree, async_extent->start,
633 async_extent->start +
634 async_extent->ram_size - 1, GFP_NOFS);
635 goto retry;
639 * here we're doing allocation and writeback of the
640 * compressed pages
642 btrfs_drop_extent_cache(inode, async_extent->start,
643 async_extent->start +
644 async_extent->ram_size - 1, 0);
646 em = alloc_extent_map(GFP_NOFS);
647 BUG_ON(!em);
648 em->start = async_extent->start;
649 em->len = async_extent->ram_size;
650 em->orig_start = em->start;
652 em->block_start = ins.objectid;
653 em->block_len = ins.offset;
654 em->bdev = root->fs_info->fs_devices->latest_bdev;
655 em->compress_type = async_extent->compress_type;
656 set_bit(EXTENT_FLAG_PINNED, &em->flags);
657 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
659 while (1) {
660 write_lock(&em_tree->lock);
661 ret = add_extent_mapping(em_tree, em);
662 write_unlock(&em_tree->lock);
663 if (ret != -EEXIST) {
664 free_extent_map(em);
665 break;
667 btrfs_drop_extent_cache(inode, async_extent->start,
668 async_extent->start +
669 async_extent->ram_size - 1, 0);
672 ret = btrfs_add_ordered_extent_compress(inode,
673 async_extent->start,
674 ins.objectid,
675 async_extent->ram_size,
676 ins.offset,
677 BTRFS_ORDERED_COMPRESSED,
678 async_extent->compress_type);
679 BUG_ON(ret);
682 * clear dirty, set writeback and unlock the pages.
684 extent_clear_unlock_delalloc(inode,
685 &BTRFS_I(inode)->io_tree,
686 async_extent->start,
687 async_extent->start +
688 async_extent->ram_size - 1,
689 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
690 EXTENT_CLEAR_UNLOCK |
691 EXTENT_CLEAR_DELALLOC |
692 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
694 ret = btrfs_submit_compressed_write(inode,
695 async_extent->start,
696 async_extent->ram_size,
697 ins.objectid,
698 ins.offset, async_extent->pages,
699 async_extent->nr_pages);
701 BUG_ON(ret);
702 alloc_hint = ins.objectid + ins.offset;
703 kfree(async_extent);
704 cond_resched();
707 return 0;
710 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
711 u64 num_bytes)
713 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
714 struct extent_map *em;
715 u64 alloc_hint = 0;
717 read_lock(&em_tree->lock);
718 em = search_extent_mapping(em_tree, start, num_bytes);
719 if (em) {
721 * if block start isn't an actual block number then find the
722 * first block in this inode and use that as a hint. If that
723 * block is also bogus then just don't worry about it.
725 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
726 free_extent_map(em);
727 em = search_extent_mapping(em_tree, 0, 0);
728 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
729 alloc_hint = em->block_start;
730 if (em)
731 free_extent_map(em);
732 } else {
733 alloc_hint = em->block_start;
734 free_extent_map(em);
737 read_unlock(&em_tree->lock);
739 return alloc_hint;
743 * when extent_io.c finds a delayed allocation range in the file,
744 * the call backs end up in this code. The basic idea is to
745 * allocate extents on disk for the range, and create ordered data structs
746 * in ram to track those extents.
748 * locked_page is the page that writepage had locked already. We use
749 * it to make sure we don't do extra locks or unlocks.
751 * *page_started is set to one if we unlock locked_page and do everything
752 * required to start IO on it. It may be clean and already done with
753 * IO when we return.
755 static noinline int cow_file_range(struct inode *inode,
756 struct page *locked_page,
757 u64 start, u64 end, int *page_started,
758 unsigned long *nr_written,
759 int unlock)
761 struct btrfs_root *root = BTRFS_I(inode)->root;
762 struct btrfs_trans_handle *trans;
763 u64 alloc_hint = 0;
764 u64 num_bytes;
765 unsigned long ram_size;
766 u64 disk_num_bytes;
767 u64 cur_alloc_size;
768 u64 blocksize = root->sectorsize;
769 struct btrfs_key ins;
770 struct extent_map *em;
771 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
772 int ret = 0;
774 BUG_ON(root == root->fs_info->tree_root);
775 trans = btrfs_join_transaction(root, 1);
776 BUG_ON(IS_ERR(trans));
777 btrfs_set_trans_block_group(trans, inode);
778 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
780 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
781 num_bytes = max(blocksize, num_bytes);
782 disk_num_bytes = num_bytes;
783 ret = 0;
785 if (start == 0) {
786 /* lets try to make an inline extent */
787 ret = cow_file_range_inline(trans, root, inode,
788 start, end, 0, NULL);
789 if (ret == 0) {
790 extent_clear_unlock_delalloc(inode,
791 &BTRFS_I(inode)->io_tree,
792 start, end, NULL,
793 EXTENT_CLEAR_UNLOCK_PAGE |
794 EXTENT_CLEAR_UNLOCK |
795 EXTENT_CLEAR_DELALLOC |
796 EXTENT_CLEAR_DIRTY |
797 EXTENT_SET_WRITEBACK |
798 EXTENT_END_WRITEBACK);
800 *nr_written = *nr_written +
801 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
802 *page_started = 1;
803 ret = 0;
804 goto out;
808 BUG_ON(disk_num_bytes >
809 btrfs_super_total_bytes(&root->fs_info->super_copy));
811 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
812 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
814 while (disk_num_bytes > 0) {
815 unsigned long op;
817 cur_alloc_size = disk_num_bytes;
818 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
819 root->sectorsize, 0, alloc_hint,
820 (u64)-1, &ins, 1);
821 BUG_ON(ret);
823 em = alloc_extent_map(GFP_NOFS);
824 BUG_ON(!em);
825 em->start = start;
826 em->orig_start = em->start;
827 ram_size = ins.offset;
828 em->len = ins.offset;
830 em->block_start = ins.objectid;
831 em->block_len = ins.offset;
832 em->bdev = root->fs_info->fs_devices->latest_bdev;
833 set_bit(EXTENT_FLAG_PINNED, &em->flags);
835 while (1) {
836 write_lock(&em_tree->lock);
837 ret = add_extent_mapping(em_tree, em);
838 write_unlock(&em_tree->lock);
839 if (ret != -EEXIST) {
840 free_extent_map(em);
841 break;
843 btrfs_drop_extent_cache(inode, start,
844 start + ram_size - 1, 0);
847 cur_alloc_size = ins.offset;
848 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
849 ram_size, cur_alloc_size, 0);
850 BUG_ON(ret);
852 if (root->root_key.objectid ==
853 BTRFS_DATA_RELOC_TREE_OBJECTID) {
854 ret = btrfs_reloc_clone_csums(inode, start,
855 cur_alloc_size);
856 BUG_ON(ret);
859 if (disk_num_bytes < cur_alloc_size)
860 break;
862 /* we're not doing compressed IO, don't unlock the first
863 * page (which the caller expects to stay locked), don't
864 * clear any dirty bits and don't set any writeback bits
866 * Do set the Private2 bit so we know this page was properly
867 * setup for writepage
869 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
870 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
871 EXTENT_SET_PRIVATE2;
873 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
874 start, start + ram_size - 1,
875 locked_page, op);
876 disk_num_bytes -= cur_alloc_size;
877 num_bytes -= cur_alloc_size;
878 alloc_hint = ins.objectid + ins.offset;
879 start += cur_alloc_size;
881 out:
882 ret = 0;
883 btrfs_end_transaction(trans, root);
885 return ret;
889 * work queue call back to started compression on a file and pages
891 static noinline void async_cow_start(struct btrfs_work *work)
893 struct async_cow *async_cow;
894 int num_added = 0;
895 async_cow = container_of(work, struct async_cow, work);
897 compress_file_range(async_cow->inode, async_cow->locked_page,
898 async_cow->start, async_cow->end, async_cow,
899 &num_added);
900 if (num_added == 0)
901 async_cow->inode = NULL;
905 * work queue call back to submit previously compressed pages
907 static noinline void async_cow_submit(struct btrfs_work *work)
909 struct async_cow *async_cow;
910 struct btrfs_root *root;
911 unsigned long nr_pages;
913 async_cow = container_of(work, struct async_cow, work);
915 root = async_cow->root;
916 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
917 PAGE_CACHE_SHIFT;
919 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
921 if (atomic_read(&root->fs_info->async_delalloc_pages) <
922 5 * 1042 * 1024 &&
923 waitqueue_active(&root->fs_info->async_submit_wait))
924 wake_up(&root->fs_info->async_submit_wait);
926 if (async_cow->inode)
927 submit_compressed_extents(async_cow->inode, async_cow);
930 static noinline void async_cow_free(struct btrfs_work *work)
932 struct async_cow *async_cow;
933 async_cow = container_of(work, struct async_cow, work);
934 kfree(async_cow);
937 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
938 u64 start, u64 end, int *page_started,
939 unsigned long *nr_written)
941 struct async_cow *async_cow;
942 struct btrfs_root *root = BTRFS_I(inode)->root;
943 unsigned long nr_pages;
944 u64 cur_end;
945 int limit = 10 * 1024 * 1042;
947 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
948 1, 0, NULL, GFP_NOFS);
949 while (start < end) {
950 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
951 async_cow->inode = inode;
952 async_cow->root = root;
953 async_cow->locked_page = locked_page;
954 async_cow->start = start;
956 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
957 cur_end = end;
958 else
959 cur_end = min(end, start + 512 * 1024 - 1);
961 async_cow->end = cur_end;
962 INIT_LIST_HEAD(&async_cow->extents);
964 async_cow->work.func = async_cow_start;
965 async_cow->work.ordered_func = async_cow_submit;
966 async_cow->work.ordered_free = async_cow_free;
967 async_cow->work.flags = 0;
969 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
970 PAGE_CACHE_SHIFT;
971 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
973 btrfs_queue_worker(&root->fs_info->delalloc_workers,
974 &async_cow->work);
976 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
977 wait_event(root->fs_info->async_submit_wait,
978 (atomic_read(&root->fs_info->async_delalloc_pages) <
979 limit));
982 while (atomic_read(&root->fs_info->async_submit_draining) &&
983 atomic_read(&root->fs_info->async_delalloc_pages)) {
984 wait_event(root->fs_info->async_submit_wait,
985 (atomic_read(&root->fs_info->async_delalloc_pages) ==
986 0));
989 *nr_written += nr_pages;
990 start = cur_end + 1;
992 *page_started = 1;
993 return 0;
996 static noinline int csum_exist_in_range(struct btrfs_root *root,
997 u64 bytenr, u64 num_bytes)
999 int ret;
1000 struct btrfs_ordered_sum *sums;
1001 LIST_HEAD(list);
1003 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1004 bytenr + num_bytes - 1, &list);
1005 if (ret == 0 && list_empty(&list))
1006 return 0;
1008 while (!list_empty(&list)) {
1009 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1010 list_del(&sums->list);
1011 kfree(sums);
1013 return 1;
1017 * when nowcow writeback call back. This checks for snapshots or COW copies
1018 * of the extents that exist in the file, and COWs the file as required.
1020 * If no cow copies or snapshots exist, we write directly to the existing
1021 * blocks on disk
1023 static noinline int run_delalloc_nocow(struct inode *inode,
1024 struct page *locked_page,
1025 u64 start, u64 end, int *page_started, int force,
1026 unsigned long *nr_written)
1028 struct btrfs_root *root = BTRFS_I(inode)->root;
1029 struct btrfs_trans_handle *trans;
1030 struct extent_buffer *leaf;
1031 struct btrfs_path *path;
1032 struct btrfs_file_extent_item *fi;
1033 struct btrfs_key found_key;
1034 u64 cow_start;
1035 u64 cur_offset;
1036 u64 extent_end;
1037 u64 extent_offset;
1038 u64 disk_bytenr;
1039 u64 num_bytes;
1040 int extent_type;
1041 int ret;
1042 int type;
1043 int nocow;
1044 int check_prev = 1;
1045 bool nolock = false;
1047 path = btrfs_alloc_path();
1048 BUG_ON(!path);
1049 if (root == root->fs_info->tree_root) {
1050 nolock = true;
1051 trans = btrfs_join_transaction_nolock(root, 1);
1052 } else {
1053 trans = btrfs_join_transaction(root, 1);
1055 BUG_ON(IS_ERR(trans));
1057 cow_start = (u64)-1;
1058 cur_offset = start;
1059 while (1) {
1060 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1061 cur_offset, 0);
1062 BUG_ON(ret < 0);
1063 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1064 leaf = path->nodes[0];
1065 btrfs_item_key_to_cpu(leaf, &found_key,
1066 path->slots[0] - 1);
1067 if (found_key.objectid == inode->i_ino &&
1068 found_key.type == BTRFS_EXTENT_DATA_KEY)
1069 path->slots[0]--;
1071 check_prev = 0;
1072 next_slot:
1073 leaf = path->nodes[0];
1074 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1075 ret = btrfs_next_leaf(root, path);
1076 if (ret < 0)
1077 BUG_ON(1);
1078 if (ret > 0)
1079 break;
1080 leaf = path->nodes[0];
1083 nocow = 0;
1084 disk_bytenr = 0;
1085 num_bytes = 0;
1086 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1088 if (found_key.objectid > inode->i_ino ||
1089 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1090 found_key.offset > end)
1091 break;
1093 if (found_key.offset > cur_offset) {
1094 extent_end = found_key.offset;
1095 extent_type = 0;
1096 goto out_check;
1099 fi = btrfs_item_ptr(leaf, path->slots[0],
1100 struct btrfs_file_extent_item);
1101 extent_type = btrfs_file_extent_type(leaf, fi);
1103 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1104 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1105 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1106 extent_offset = btrfs_file_extent_offset(leaf, fi);
1107 extent_end = found_key.offset +
1108 btrfs_file_extent_num_bytes(leaf, fi);
1109 if (extent_end <= start) {
1110 path->slots[0]++;
1111 goto next_slot;
1113 if (disk_bytenr == 0)
1114 goto out_check;
1115 if (btrfs_file_extent_compression(leaf, fi) ||
1116 btrfs_file_extent_encryption(leaf, fi) ||
1117 btrfs_file_extent_other_encoding(leaf, fi))
1118 goto out_check;
1119 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1120 goto out_check;
1121 if (btrfs_extent_readonly(root, disk_bytenr))
1122 goto out_check;
1123 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1124 found_key.offset -
1125 extent_offset, disk_bytenr))
1126 goto out_check;
1127 disk_bytenr += extent_offset;
1128 disk_bytenr += cur_offset - found_key.offset;
1129 num_bytes = min(end + 1, extent_end) - cur_offset;
1131 * force cow if csum exists in the range.
1132 * this ensure that csum for a given extent are
1133 * either valid or do not exist.
1135 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1136 goto out_check;
1137 nocow = 1;
1138 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1139 extent_end = found_key.offset +
1140 btrfs_file_extent_inline_len(leaf, fi);
1141 extent_end = ALIGN(extent_end, root->sectorsize);
1142 } else {
1143 BUG_ON(1);
1145 out_check:
1146 if (extent_end <= start) {
1147 path->slots[0]++;
1148 goto next_slot;
1150 if (!nocow) {
1151 if (cow_start == (u64)-1)
1152 cow_start = cur_offset;
1153 cur_offset = extent_end;
1154 if (cur_offset > end)
1155 break;
1156 path->slots[0]++;
1157 goto next_slot;
1160 btrfs_release_path(root, path);
1161 if (cow_start != (u64)-1) {
1162 ret = cow_file_range(inode, locked_page, cow_start,
1163 found_key.offset - 1, page_started,
1164 nr_written, 1);
1165 BUG_ON(ret);
1166 cow_start = (u64)-1;
1169 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1170 struct extent_map *em;
1171 struct extent_map_tree *em_tree;
1172 em_tree = &BTRFS_I(inode)->extent_tree;
1173 em = alloc_extent_map(GFP_NOFS);
1174 BUG_ON(!em);
1175 em->start = cur_offset;
1176 em->orig_start = em->start;
1177 em->len = num_bytes;
1178 em->block_len = num_bytes;
1179 em->block_start = disk_bytenr;
1180 em->bdev = root->fs_info->fs_devices->latest_bdev;
1181 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1182 while (1) {
1183 write_lock(&em_tree->lock);
1184 ret = add_extent_mapping(em_tree, em);
1185 write_unlock(&em_tree->lock);
1186 if (ret != -EEXIST) {
1187 free_extent_map(em);
1188 break;
1190 btrfs_drop_extent_cache(inode, em->start,
1191 em->start + em->len - 1, 0);
1193 type = BTRFS_ORDERED_PREALLOC;
1194 } else {
1195 type = BTRFS_ORDERED_NOCOW;
1198 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1199 num_bytes, num_bytes, type);
1200 BUG_ON(ret);
1202 if (root->root_key.objectid ==
1203 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1204 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1205 num_bytes);
1206 BUG_ON(ret);
1209 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1210 cur_offset, cur_offset + num_bytes - 1,
1211 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1212 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1213 EXTENT_SET_PRIVATE2);
1214 cur_offset = extent_end;
1215 if (cur_offset > end)
1216 break;
1218 btrfs_release_path(root, path);
1220 if (cur_offset <= end && cow_start == (u64)-1)
1221 cow_start = cur_offset;
1222 if (cow_start != (u64)-1) {
1223 ret = cow_file_range(inode, locked_page, cow_start, end,
1224 page_started, nr_written, 1);
1225 BUG_ON(ret);
1228 if (nolock) {
1229 ret = btrfs_end_transaction_nolock(trans, root);
1230 BUG_ON(ret);
1231 } else {
1232 ret = btrfs_end_transaction(trans, root);
1233 BUG_ON(ret);
1235 btrfs_free_path(path);
1236 return 0;
1240 * extent_io.c call back to do delayed allocation processing
1242 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1243 u64 start, u64 end, int *page_started,
1244 unsigned long *nr_written)
1246 int ret;
1247 struct btrfs_root *root = BTRFS_I(inode)->root;
1249 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1250 ret = run_delalloc_nocow(inode, locked_page, start, end,
1251 page_started, 1, nr_written);
1252 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1253 ret = run_delalloc_nocow(inode, locked_page, start, end,
1254 page_started, 0, nr_written);
1255 else if (!btrfs_test_opt(root, COMPRESS) &&
1256 !(BTRFS_I(inode)->force_compress))
1257 ret = cow_file_range(inode, locked_page, start, end,
1258 page_started, nr_written, 1);
1259 else
1260 ret = cow_file_range_async(inode, locked_page, start, end,
1261 page_started, nr_written);
1262 return ret;
1265 static int btrfs_split_extent_hook(struct inode *inode,
1266 struct extent_state *orig, u64 split)
1268 /* not delalloc, ignore it */
1269 if (!(orig->state & EXTENT_DELALLOC))
1270 return 0;
1272 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1273 return 0;
1277 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1278 * extents so we can keep track of new extents that are just merged onto old
1279 * extents, such as when we are doing sequential writes, so we can properly
1280 * account for the metadata space we'll need.
1282 static int btrfs_merge_extent_hook(struct inode *inode,
1283 struct extent_state *new,
1284 struct extent_state *other)
1286 /* not delalloc, ignore it */
1287 if (!(other->state & EXTENT_DELALLOC))
1288 return 0;
1290 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1291 return 0;
1295 * extent_io.c set_bit_hook, used to track delayed allocation
1296 * bytes in this file, and to maintain the list of inodes that
1297 * have pending delalloc work to be done.
1299 static int btrfs_set_bit_hook(struct inode *inode,
1300 struct extent_state *state, int *bits)
1304 * set_bit and clear bit hooks normally require _irqsave/restore
1305 * but in this case, we are only testeing for the DELALLOC
1306 * bit, which is only set or cleared with irqs on
1308 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1309 struct btrfs_root *root = BTRFS_I(inode)->root;
1310 u64 len = state->end + 1 - state->start;
1311 int do_list = (root->root_key.objectid !=
1312 BTRFS_ROOT_TREE_OBJECTID);
1314 if (*bits & EXTENT_FIRST_DELALLOC)
1315 *bits &= ~EXTENT_FIRST_DELALLOC;
1316 else
1317 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1319 spin_lock(&root->fs_info->delalloc_lock);
1320 BTRFS_I(inode)->delalloc_bytes += len;
1321 root->fs_info->delalloc_bytes += len;
1322 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1323 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1324 &root->fs_info->delalloc_inodes);
1326 spin_unlock(&root->fs_info->delalloc_lock);
1328 return 0;
1332 * extent_io.c clear_bit_hook, see set_bit_hook for why
1334 static int btrfs_clear_bit_hook(struct inode *inode,
1335 struct extent_state *state, int *bits)
1338 * set_bit and clear bit hooks normally require _irqsave/restore
1339 * but in this case, we are only testeing for the DELALLOC
1340 * bit, which is only set or cleared with irqs on
1342 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1343 struct btrfs_root *root = BTRFS_I(inode)->root;
1344 u64 len = state->end + 1 - state->start;
1345 int do_list = (root->root_key.objectid !=
1346 BTRFS_ROOT_TREE_OBJECTID);
1348 if (*bits & EXTENT_FIRST_DELALLOC)
1349 *bits &= ~EXTENT_FIRST_DELALLOC;
1350 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1351 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1353 if (*bits & EXTENT_DO_ACCOUNTING)
1354 btrfs_delalloc_release_metadata(inode, len);
1356 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1357 && do_list)
1358 btrfs_free_reserved_data_space(inode, len);
1360 spin_lock(&root->fs_info->delalloc_lock);
1361 root->fs_info->delalloc_bytes -= len;
1362 BTRFS_I(inode)->delalloc_bytes -= len;
1364 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1365 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1366 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1368 spin_unlock(&root->fs_info->delalloc_lock);
1370 return 0;
1374 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1375 * we don't create bios that span stripes or chunks
1377 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1378 size_t size, struct bio *bio,
1379 unsigned long bio_flags)
1381 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1382 struct btrfs_mapping_tree *map_tree;
1383 u64 logical = (u64)bio->bi_sector << 9;
1384 u64 length = 0;
1385 u64 map_length;
1386 int ret;
1388 if (bio_flags & EXTENT_BIO_COMPRESSED)
1389 return 0;
1391 length = bio->bi_size;
1392 map_tree = &root->fs_info->mapping_tree;
1393 map_length = length;
1394 ret = btrfs_map_block(map_tree, READ, logical,
1395 &map_length, NULL, 0);
1397 if (map_length < length + size)
1398 return 1;
1399 return ret;
1403 * in order to insert checksums into the metadata in large chunks,
1404 * we wait until bio submission time. All the pages in the bio are
1405 * checksummed and sums are attached onto the ordered extent record.
1407 * At IO completion time the cums attached on the ordered extent record
1408 * are inserted into the btree
1410 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1411 struct bio *bio, int mirror_num,
1412 unsigned long bio_flags,
1413 u64 bio_offset)
1415 struct btrfs_root *root = BTRFS_I(inode)->root;
1416 int ret = 0;
1418 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1419 BUG_ON(ret);
1420 return 0;
1424 * in order to insert checksums into the metadata in large chunks,
1425 * we wait until bio submission time. All the pages in the bio are
1426 * checksummed and sums are attached onto the ordered extent record.
1428 * At IO completion time the cums attached on the ordered extent record
1429 * are inserted into the btree
1431 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1432 int mirror_num, unsigned long bio_flags,
1433 u64 bio_offset)
1435 struct btrfs_root *root = BTRFS_I(inode)->root;
1436 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1440 * extent_io.c submission hook. This does the right thing for csum calculation
1441 * on write, or reading the csums from the tree before a read
1443 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1444 int mirror_num, unsigned long bio_flags,
1445 u64 bio_offset)
1447 struct btrfs_root *root = BTRFS_I(inode)->root;
1448 int ret = 0;
1449 int skip_sum;
1451 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1453 if (root == root->fs_info->tree_root)
1454 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1455 else
1456 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1457 BUG_ON(ret);
1459 if (!(rw & REQ_WRITE)) {
1460 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1461 return btrfs_submit_compressed_read(inode, bio,
1462 mirror_num, bio_flags);
1463 } else if (!skip_sum)
1464 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1465 goto mapit;
1466 } else if (!skip_sum) {
1467 /* csum items have already been cloned */
1468 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1469 goto mapit;
1470 /* we're doing a write, do the async checksumming */
1471 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1472 inode, rw, bio, mirror_num,
1473 bio_flags, bio_offset,
1474 __btrfs_submit_bio_start,
1475 __btrfs_submit_bio_done);
1478 mapit:
1479 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1483 * given a list of ordered sums record them in the inode. This happens
1484 * at IO completion time based on sums calculated at bio submission time.
1486 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1487 struct inode *inode, u64 file_offset,
1488 struct list_head *list)
1490 struct btrfs_ordered_sum *sum;
1492 btrfs_set_trans_block_group(trans, inode);
1494 list_for_each_entry(sum, list, list) {
1495 btrfs_csum_file_blocks(trans,
1496 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1498 return 0;
1501 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1502 struct extent_state **cached_state)
1504 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1505 WARN_ON(1);
1506 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1507 cached_state, GFP_NOFS);
1510 /* see btrfs_writepage_start_hook for details on why this is required */
1511 struct btrfs_writepage_fixup {
1512 struct page *page;
1513 struct btrfs_work work;
1516 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1518 struct btrfs_writepage_fixup *fixup;
1519 struct btrfs_ordered_extent *ordered;
1520 struct extent_state *cached_state = NULL;
1521 struct page *page;
1522 struct inode *inode;
1523 u64 page_start;
1524 u64 page_end;
1526 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1527 page = fixup->page;
1528 again:
1529 lock_page(page);
1530 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1531 ClearPageChecked(page);
1532 goto out_page;
1535 inode = page->mapping->host;
1536 page_start = page_offset(page);
1537 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1539 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1540 &cached_state, GFP_NOFS);
1542 /* already ordered? We're done */
1543 if (PagePrivate2(page))
1544 goto out;
1546 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1547 if (ordered) {
1548 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1549 page_end, &cached_state, GFP_NOFS);
1550 unlock_page(page);
1551 btrfs_start_ordered_extent(inode, ordered, 1);
1552 goto again;
1555 BUG();
1556 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1557 ClearPageChecked(page);
1558 out:
1559 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1560 &cached_state, GFP_NOFS);
1561 out_page:
1562 unlock_page(page);
1563 page_cache_release(page);
1564 kfree(fixup);
1568 * There are a few paths in the higher layers of the kernel that directly
1569 * set the page dirty bit without asking the filesystem if it is a
1570 * good idea. This causes problems because we want to make sure COW
1571 * properly happens and the data=ordered rules are followed.
1573 * In our case any range that doesn't have the ORDERED bit set
1574 * hasn't been properly setup for IO. We kick off an async process
1575 * to fix it up. The async helper will wait for ordered extents, set
1576 * the delalloc bit and make it safe to write the page.
1578 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1580 struct inode *inode = page->mapping->host;
1581 struct btrfs_writepage_fixup *fixup;
1582 struct btrfs_root *root = BTRFS_I(inode)->root;
1584 /* this page is properly in the ordered list */
1585 if (TestClearPagePrivate2(page))
1586 return 0;
1588 if (PageChecked(page))
1589 return -EAGAIN;
1591 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1592 if (!fixup)
1593 return -EAGAIN;
1595 SetPageChecked(page);
1596 page_cache_get(page);
1597 fixup->work.func = btrfs_writepage_fixup_worker;
1598 fixup->page = page;
1599 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1600 return -EAGAIN;
1603 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1604 struct inode *inode, u64 file_pos,
1605 u64 disk_bytenr, u64 disk_num_bytes,
1606 u64 num_bytes, u64 ram_bytes,
1607 u8 compression, u8 encryption,
1608 u16 other_encoding, int extent_type)
1610 struct btrfs_root *root = BTRFS_I(inode)->root;
1611 struct btrfs_file_extent_item *fi;
1612 struct btrfs_path *path;
1613 struct extent_buffer *leaf;
1614 struct btrfs_key ins;
1615 u64 hint;
1616 int ret;
1618 path = btrfs_alloc_path();
1619 BUG_ON(!path);
1621 path->leave_spinning = 1;
1624 * we may be replacing one extent in the tree with another.
1625 * The new extent is pinned in the extent map, and we don't want
1626 * to drop it from the cache until it is completely in the btree.
1628 * So, tell btrfs_drop_extents to leave this extent in the cache.
1629 * the caller is expected to unpin it and allow it to be merged
1630 * with the others.
1632 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1633 &hint, 0);
1634 BUG_ON(ret);
1636 ins.objectid = inode->i_ino;
1637 ins.offset = file_pos;
1638 ins.type = BTRFS_EXTENT_DATA_KEY;
1639 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1640 BUG_ON(ret);
1641 leaf = path->nodes[0];
1642 fi = btrfs_item_ptr(leaf, path->slots[0],
1643 struct btrfs_file_extent_item);
1644 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1645 btrfs_set_file_extent_type(leaf, fi, extent_type);
1646 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1647 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1648 btrfs_set_file_extent_offset(leaf, fi, 0);
1649 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1650 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1651 btrfs_set_file_extent_compression(leaf, fi, compression);
1652 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1653 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1655 btrfs_unlock_up_safe(path, 1);
1656 btrfs_set_lock_blocking(leaf);
1658 btrfs_mark_buffer_dirty(leaf);
1660 inode_add_bytes(inode, num_bytes);
1662 ins.objectid = disk_bytenr;
1663 ins.offset = disk_num_bytes;
1664 ins.type = BTRFS_EXTENT_ITEM_KEY;
1665 ret = btrfs_alloc_reserved_file_extent(trans, root,
1666 root->root_key.objectid,
1667 inode->i_ino, file_pos, &ins);
1668 BUG_ON(ret);
1669 btrfs_free_path(path);
1671 return 0;
1675 * helper function for btrfs_finish_ordered_io, this
1676 * just reads in some of the csum leaves to prime them into ram
1677 * before we start the transaction. It limits the amount of btree
1678 * reads required while inside the transaction.
1680 /* as ordered data IO finishes, this gets called so we can finish
1681 * an ordered extent if the range of bytes in the file it covers are
1682 * fully written.
1684 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1686 struct btrfs_root *root = BTRFS_I(inode)->root;
1687 struct btrfs_trans_handle *trans = NULL;
1688 struct btrfs_ordered_extent *ordered_extent = NULL;
1689 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1690 struct extent_state *cached_state = NULL;
1691 int compress_type = 0;
1692 int ret;
1693 bool nolock = false;
1695 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1696 end - start + 1);
1697 if (!ret)
1698 return 0;
1699 BUG_ON(!ordered_extent);
1701 nolock = (root == root->fs_info->tree_root);
1703 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1704 BUG_ON(!list_empty(&ordered_extent->list));
1705 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1706 if (!ret) {
1707 if (nolock)
1708 trans = btrfs_join_transaction_nolock(root, 1);
1709 else
1710 trans = btrfs_join_transaction(root, 1);
1711 BUG_ON(IS_ERR(trans));
1712 btrfs_set_trans_block_group(trans, inode);
1713 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1714 ret = btrfs_update_inode(trans, root, inode);
1715 BUG_ON(ret);
1717 goto out;
1720 lock_extent_bits(io_tree, ordered_extent->file_offset,
1721 ordered_extent->file_offset + ordered_extent->len - 1,
1722 0, &cached_state, GFP_NOFS);
1724 if (nolock)
1725 trans = btrfs_join_transaction_nolock(root, 1);
1726 else
1727 trans = btrfs_join_transaction(root, 1);
1728 BUG_ON(IS_ERR(trans));
1729 btrfs_set_trans_block_group(trans, inode);
1730 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1732 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1733 compress_type = ordered_extent->compress_type;
1734 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1735 BUG_ON(compress_type);
1736 ret = btrfs_mark_extent_written(trans, inode,
1737 ordered_extent->file_offset,
1738 ordered_extent->file_offset +
1739 ordered_extent->len);
1740 BUG_ON(ret);
1741 } else {
1742 BUG_ON(root == root->fs_info->tree_root);
1743 ret = insert_reserved_file_extent(trans, inode,
1744 ordered_extent->file_offset,
1745 ordered_extent->start,
1746 ordered_extent->disk_len,
1747 ordered_extent->len,
1748 ordered_extent->len,
1749 compress_type, 0, 0,
1750 BTRFS_FILE_EXTENT_REG);
1751 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1752 ordered_extent->file_offset,
1753 ordered_extent->len);
1754 BUG_ON(ret);
1756 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1757 ordered_extent->file_offset +
1758 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1760 add_pending_csums(trans, inode, ordered_extent->file_offset,
1761 &ordered_extent->list);
1763 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1764 ret = btrfs_update_inode(trans, root, inode);
1765 BUG_ON(ret);
1766 out:
1767 if (nolock) {
1768 if (trans)
1769 btrfs_end_transaction_nolock(trans, root);
1770 } else {
1771 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1772 if (trans)
1773 btrfs_end_transaction(trans, root);
1776 /* once for us */
1777 btrfs_put_ordered_extent(ordered_extent);
1778 /* once for the tree */
1779 btrfs_put_ordered_extent(ordered_extent);
1781 return 0;
1784 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1785 struct extent_state *state, int uptodate)
1787 ClearPagePrivate2(page);
1788 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1792 * When IO fails, either with EIO or csum verification fails, we
1793 * try other mirrors that might have a good copy of the data. This
1794 * io_failure_record is used to record state as we go through all the
1795 * mirrors. If another mirror has good data, the page is set up to date
1796 * and things continue. If a good mirror can't be found, the original
1797 * bio end_io callback is called to indicate things have failed.
1799 struct io_failure_record {
1800 struct page *page;
1801 u64 start;
1802 u64 len;
1803 u64 logical;
1804 unsigned long bio_flags;
1805 int last_mirror;
1808 static int btrfs_io_failed_hook(struct bio *failed_bio,
1809 struct page *page, u64 start, u64 end,
1810 struct extent_state *state)
1812 struct io_failure_record *failrec = NULL;
1813 u64 private;
1814 struct extent_map *em;
1815 struct inode *inode = page->mapping->host;
1816 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1817 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1818 struct bio *bio;
1819 int num_copies;
1820 int ret;
1821 int rw;
1822 u64 logical;
1824 ret = get_state_private(failure_tree, start, &private);
1825 if (ret) {
1826 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1827 if (!failrec)
1828 return -ENOMEM;
1829 failrec->start = start;
1830 failrec->len = end - start + 1;
1831 failrec->last_mirror = 0;
1832 failrec->bio_flags = 0;
1834 read_lock(&em_tree->lock);
1835 em = lookup_extent_mapping(em_tree, start, failrec->len);
1836 if (em->start > start || em->start + em->len < start) {
1837 free_extent_map(em);
1838 em = NULL;
1840 read_unlock(&em_tree->lock);
1842 if (!em || IS_ERR(em)) {
1843 kfree(failrec);
1844 return -EIO;
1846 logical = start - em->start;
1847 logical = em->block_start + logical;
1848 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1849 logical = em->block_start;
1850 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1851 extent_set_compress_type(&failrec->bio_flags,
1852 em->compress_type);
1854 failrec->logical = logical;
1855 free_extent_map(em);
1856 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1857 EXTENT_DIRTY, GFP_NOFS);
1858 set_state_private(failure_tree, start,
1859 (u64)(unsigned long)failrec);
1860 } else {
1861 failrec = (struct io_failure_record *)(unsigned long)private;
1863 num_copies = btrfs_num_copies(
1864 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1865 failrec->logical, failrec->len);
1866 failrec->last_mirror++;
1867 if (!state) {
1868 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1869 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1870 failrec->start,
1871 EXTENT_LOCKED);
1872 if (state && state->start != failrec->start)
1873 state = NULL;
1874 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1876 if (!state || failrec->last_mirror > num_copies) {
1877 set_state_private(failure_tree, failrec->start, 0);
1878 clear_extent_bits(failure_tree, failrec->start,
1879 failrec->start + failrec->len - 1,
1880 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1881 kfree(failrec);
1882 return -EIO;
1884 bio = bio_alloc(GFP_NOFS, 1);
1885 bio->bi_private = state;
1886 bio->bi_end_io = failed_bio->bi_end_io;
1887 bio->bi_sector = failrec->logical >> 9;
1888 bio->bi_bdev = failed_bio->bi_bdev;
1889 bio->bi_size = 0;
1891 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1892 if (failed_bio->bi_rw & REQ_WRITE)
1893 rw = WRITE;
1894 else
1895 rw = READ;
1897 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1898 failrec->last_mirror,
1899 failrec->bio_flags, 0);
1900 return 0;
1904 * each time an IO finishes, we do a fast check in the IO failure tree
1905 * to see if we need to process or clean up an io_failure_record
1907 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1909 u64 private;
1910 u64 private_failure;
1911 struct io_failure_record *failure;
1912 int ret;
1914 private = 0;
1915 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1916 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1917 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1918 start, &private_failure);
1919 if (ret == 0) {
1920 failure = (struct io_failure_record *)(unsigned long)
1921 private_failure;
1922 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1923 failure->start, 0);
1924 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1925 failure->start,
1926 failure->start + failure->len - 1,
1927 EXTENT_DIRTY | EXTENT_LOCKED,
1928 GFP_NOFS);
1929 kfree(failure);
1932 return 0;
1936 * when reads are done, we need to check csums to verify the data is correct
1937 * if there's a match, we allow the bio to finish. If not, we go through
1938 * the io_failure_record routines to find good copies
1940 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1941 struct extent_state *state)
1943 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1944 struct inode *inode = page->mapping->host;
1945 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1946 char *kaddr;
1947 u64 private = ~(u32)0;
1948 int ret;
1949 struct btrfs_root *root = BTRFS_I(inode)->root;
1950 u32 csum = ~(u32)0;
1952 if (PageChecked(page)) {
1953 ClearPageChecked(page);
1954 goto good;
1957 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1958 return 0;
1960 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1961 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1962 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1963 GFP_NOFS);
1964 return 0;
1967 if (state && state->start == start) {
1968 private = state->private;
1969 ret = 0;
1970 } else {
1971 ret = get_state_private(io_tree, start, &private);
1973 kaddr = kmap_atomic(page, KM_USER0);
1974 if (ret)
1975 goto zeroit;
1977 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1978 btrfs_csum_final(csum, (char *)&csum);
1979 if (csum != private)
1980 goto zeroit;
1982 kunmap_atomic(kaddr, KM_USER0);
1983 good:
1984 /* if the io failure tree for this inode is non-empty,
1985 * check to see if we've recovered from a failed IO
1987 btrfs_clean_io_failures(inode, start);
1988 return 0;
1990 zeroit:
1991 if (printk_ratelimit()) {
1992 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1993 "private %llu\n", page->mapping->host->i_ino,
1994 (unsigned long long)start, csum,
1995 (unsigned long long)private);
1997 memset(kaddr + offset, 1, end - start + 1);
1998 flush_dcache_page(page);
1999 kunmap_atomic(kaddr, KM_USER0);
2000 if (private == 0)
2001 return 0;
2002 return -EIO;
2005 struct delayed_iput {
2006 struct list_head list;
2007 struct inode *inode;
2010 void btrfs_add_delayed_iput(struct inode *inode)
2012 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2013 struct delayed_iput *delayed;
2015 if (atomic_add_unless(&inode->i_count, -1, 1))
2016 return;
2018 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2019 delayed->inode = inode;
2021 spin_lock(&fs_info->delayed_iput_lock);
2022 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2023 spin_unlock(&fs_info->delayed_iput_lock);
2026 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2028 LIST_HEAD(list);
2029 struct btrfs_fs_info *fs_info = root->fs_info;
2030 struct delayed_iput *delayed;
2031 int empty;
2033 spin_lock(&fs_info->delayed_iput_lock);
2034 empty = list_empty(&fs_info->delayed_iputs);
2035 spin_unlock(&fs_info->delayed_iput_lock);
2036 if (empty)
2037 return;
2039 down_read(&root->fs_info->cleanup_work_sem);
2040 spin_lock(&fs_info->delayed_iput_lock);
2041 list_splice_init(&fs_info->delayed_iputs, &list);
2042 spin_unlock(&fs_info->delayed_iput_lock);
2044 while (!list_empty(&list)) {
2045 delayed = list_entry(list.next, struct delayed_iput, list);
2046 list_del(&delayed->list);
2047 iput(delayed->inode);
2048 kfree(delayed);
2050 up_read(&root->fs_info->cleanup_work_sem);
2054 * calculate extra metadata reservation when snapshotting a subvolume
2055 * contains orphan files.
2057 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2058 struct btrfs_pending_snapshot *pending,
2059 u64 *bytes_to_reserve)
2061 struct btrfs_root *root;
2062 struct btrfs_block_rsv *block_rsv;
2063 u64 num_bytes;
2064 int index;
2066 root = pending->root;
2067 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2068 return;
2070 block_rsv = root->orphan_block_rsv;
2072 /* orphan block reservation for the snapshot */
2073 num_bytes = block_rsv->size;
2076 * after the snapshot is created, COWing tree blocks may use more
2077 * space than it frees. So we should make sure there is enough
2078 * reserved space.
2080 index = trans->transid & 0x1;
2081 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2082 num_bytes += block_rsv->size -
2083 (block_rsv->reserved + block_rsv->freed[index]);
2086 *bytes_to_reserve += num_bytes;
2089 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2090 struct btrfs_pending_snapshot *pending)
2092 struct btrfs_root *root = pending->root;
2093 struct btrfs_root *snap = pending->snap;
2094 struct btrfs_block_rsv *block_rsv;
2095 u64 num_bytes;
2096 int index;
2097 int ret;
2099 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2100 return;
2102 /* refill source subvolume's orphan block reservation */
2103 block_rsv = root->orphan_block_rsv;
2104 index = trans->transid & 0x1;
2105 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2106 num_bytes = block_rsv->size -
2107 (block_rsv->reserved + block_rsv->freed[index]);
2108 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2109 root->orphan_block_rsv,
2110 num_bytes);
2111 BUG_ON(ret);
2114 /* setup orphan block reservation for the snapshot */
2115 block_rsv = btrfs_alloc_block_rsv(snap);
2116 BUG_ON(!block_rsv);
2118 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2119 snap->orphan_block_rsv = block_rsv;
2121 num_bytes = root->orphan_block_rsv->size;
2122 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2123 block_rsv, num_bytes);
2124 BUG_ON(ret);
2126 #if 0
2127 /* insert orphan item for the snapshot */
2128 WARN_ON(!root->orphan_item_inserted);
2129 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2130 snap->root_key.objectid);
2131 BUG_ON(ret);
2132 snap->orphan_item_inserted = 1;
2133 #endif
2136 enum btrfs_orphan_cleanup_state {
2137 ORPHAN_CLEANUP_STARTED = 1,
2138 ORPHAN_CLEANUP_DONE = 2,
2142 * This is called in transaction commmit time. If there are no orphan
2143 * files in the subvolume, it removes orphan item and frees block_rsv
2144 * structure.
2146 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2147 struct btrfs_root *root)
2149 int ret;
2151 if (!list_empty(&root->orphan_list) ||
2152 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2153 return;
2155 if (root->orphan_item_inserted &&
2156 btrfs_root_refs(&root->root_item) > 0) {
2157 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2158 root->root_key.objectid);
2159 BUG_ON(ret);
2160 root->orphan_item_inserted = 0;
2163 if (root->orphan_block_rsv) {
2164 WARN_ON(root->orphan_block_rsv->size > 0);
2165 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2166 root->orphan_block_rsv = NULL;
2171 * This creates an orphan entry for the given inode in case something goes
2172 * wrong in the middle of an unlink/truncate.
2174 * NOTE: caller of this function should reserve 5 units of metadata for
2175 * this function.
2177 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2179 struct btrfs_root *root = BTRFS_I(inode)->root;
2180 struct btrfs_block_rsv *block_rsv = NULL;
2181 int reserve = 0;
2182 int insert = 0;
2183 int ret;
2185 if (!root->orphan_block_rsv) {
2186 block_rsv = btrfs_alloc_block_rsv(root);
2187 BUG_ON(!block_rsv);
2190 spin_lock(&root->orphan_lock);
2191 if (!root->orphan_block_rsv) {
2192 root->orphan_block_rsv = block_rsv;
2193 } else if (block_rsv) {
2194 btrfs_free_block_rsv(root, block_rsv);
2195 block_rsv = NULL;
2198 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2199 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2200 #if 0
2202 * For proper ENOSPC handling, we should do orphan
2203 * cleanup when mounting. But this introduces backward
2204 * compatibility issue.
2206 if (!xchg(&root->orphan_item_inserted, 1))
2207 insert = 2;
2208 else
2209 insert = 1;
2210 #endif
2211 insert = 1;
2212 } else {
2213 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2216 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2217 BTRFS_I(inode)->orphan_meta_reserved = 1;
2218 reserve = 1;
2220 spin_unlock(&root->orphan_lock);
2222 if (block_rsv)
2223 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2225 /* grab metadata reservation from transaction handle */
2226 if (reserve) {
2227 ret = btrfs_orphan_reserve_metadata(trans, inode);
2228 BUG_ON(ret);
2231 /* insert an orphan item to track this unlinked/truncated file */
2232 if (insert >= 1) {
2233 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2234 BUG_ON(ret);
2237 /* insert an orphan item to track subvolume contains orphan files */
2238 if (insert >= 2) {
2239 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2240 root->root_key.objectid);
2241 BUG_ON(ret);
2243 return 0;
2247 * We have done the truncate/delete so we can go ahead and remove the orphan
2248 * item for this particular inode.
2250 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2252 struct btrfs_root *root = BTRFS_I(inode)->root;
2253 int delete_item = 0;
2254 int release_rsv = 0;
2255 int ret = 0;
2257 spin_lock(&root->orphan_lock);
2258 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2259 list_del_init(&BTRFS_I(inode)->i_orphan);
2260 delete_item = 1;
2263 if (BTRFS_I(inode)->orphan_meta_reserved) {
2264 BTRFS_I(inode)->orphan_meta_reserved = 0;
2265 release_rsv = 1;
2267 spin_unlock(&root->orphan_lock);
2269 if (trans && delete_item) {
2270 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2271 BUG_ON(ret);
2274 if (release_rsv)
2275 btrfs_orphan_release_metadata(inode);
2277 return 0;
2281 * this cleans up any orphans that may be left on the list from the last use
2282 * of this root.
2284 void btrfs_orphan_cleanup(struct btrfs_root *root)
2286 struct btrfs_path *path;
2287 struct extent_buffer *leaf;
2288 struct btrfs_key key, found_key;
2289 struct btrfs_trans_handle *trans;
2290 struct inode *inode;
2291 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2293 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2294 return;
2296 path = btrfs_alloc_path();
2297 BUG_ON(!path);
2298 path->reada = -1;
2300 key.objectid = BTRFS_ORPHAN_OBJECTID;
2301 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2302 key.offset = (u64)-1;
2304 while (1) {
2305 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2306 if (ret < 0) {
2307 printk(KERN_ERR "Error searching slot for orphan: %d"
2308 "\n", ret);
2309 break;
2313 * if ret == 0 means we found what we were searching for, which
2314 * is weird, but possible, so only screw with path if we didnt
2315 * find the key and see if we have stuff that matches
2317 if (ret > 0) {
2318 if (path->slots[0] == 0)
2319 break;
2320 path->slots[0]--;
2323 /* pull out the item */
2324 leaf = path->nodes[0];
2325 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2327 /* make sure the item matches what we want */
2328 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2329 break;
2330 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2331 break;
2333 /* release the path since we're done with it */
2334 btrfs_release_path(root, path);
2337 * this is where we are basically btrfs_lookup, without the
2338 * crossing root thing. we store the inode number in the
2339 * offset of the orphan item.
2341 found_key.objectid = found_key.offset;
2342 found_key.type = BTRFS_INODE_ITEM_KEY;
2343 found_key.offset = 0;
2344 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2345 BUG_ON(IS_ERR(inode));
2348 * add this inode to the orphan list so btrfs_orphan_del does
2349 * the proper thing when we hit it
2351 spin_lock(&root->orphan_lock);
2352 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2353 spin_unlock(&root->orphan_lock);
2356 * if this is a bad inode, means we actually succeeded in
2357 * removing the inode, but not the orphan record, which means
2358 * we need to manually delete the orphan since iput will just
2359 * do a destroy_inode
2361 if (is_bad_inode(inode)) {
2362 trans = btrfs_start_transaction(root, 0);
2363 BUG_ON(IS_ERR(trans));
2364 btrfs_orphan_del(trans, inode);
2365 btrfs_end_transaction(trans, root);
2366 iput(inode);
2367 continue;
2370 /* if we have links, this was a truncate, lets do that */
2371 if (inode->i_nlink) {
2372 nr_truncate++;
2373 btrfs_truncate(inode);
2374 } else {
2375 nr_unlink++;
2378 /* this will do delete_inode and everything for us */
2379 iput(inode);
2381 btrfs_free_path(path);
2383 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2385 if (root->orphan_block_rsv)
2386 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2387 (u64)-1);
2389 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2390 trans = btrfs_join_transaction(root, 1);
2391 BUG_ON(IS_ERR(trans));
2392 btrfs_end_transaction(trans, root);
2395 if (nr_unlink)
2396 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2397 if (nr_truncate)
2398 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2402 * very simple check to peek ahead in the leaf looking for xattrs. If we
2403 * don't find any xattrs, we know there can't be any acls.
2405 * slot is the slot the inode is in, objectid is the objectid of the inode
2407 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2408 int slot, u64 objectid)
2410 u32 nritems = btrfs_header_nritems(leaf);
2411 struct btrfs_key found_key;
2412 int scanned = 0;
2414 slot++;
2415 while (slot < nritems) {
2416 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2418 /* we found a different objectid, there must not be acls */
2419 if (found_key.objectid != objectid)
2420 return 0;
2422 /* we found an xattr, assume we've got an acl */
2423 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2424 return 1;
2427 * we found a key greater than an xattr key, there can't
2428 * be any acls later on
2430 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2431 return 0;
2433 slot++;
2434 scanned++;
2437 * it goes inode, inode backrefs, xattrs, extents,
2438 * so if there are a ton of hard links to an inode there can
2439 * be a lot of backrefs. Don't waste time searching too hard,
2440 * this is just an optimization
2442 if (scanned >= 8)
2443 break;
2445 /* we hit the end of the leaf before we found an xattr or
2446 * something larger than an xattr. We have to assume the inode
2447 * has acls
2449 return 1;
2453 * read an inode from the btree into the in-memory inode
2455 static void btrfs_read_locked_inode(struct inode *inode)
2457 struct btrfs_path *path;
2458 struct extent_buffer *leaf;
2459 struct btrfs_inode_item *inode_item;
2460 struct btrfs_timespec *tspec;
2461 struct btrfs_root *root = BTRFS_I(inode)->root;
2462 struct btrfs_key location;
2463 int maybe_acls;
2464 u64 alloc_group_block;
2465 u32 rdev;
2466 int ret;
2468 path = btrfs_alloc_path();
2469 BUG_ON(!path);
2470 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2472 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2473 if (ret)
2474 goto make_bad;
2476 leaf = path->nodes[0];
2477 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2478 struct btrfs_inode_item);
2480 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2481 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2482 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2483 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2484 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2486 tspec = btrfs_inode_atime(inode_item);
2487 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2488 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2490 tspec = btrfs_inode_mtime(inode_item);
2491 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2492 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2494 tspec = btrfs_inode_ctime(inode_item);
2495 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2496 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2498 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2499 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2500 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2501 inode->i_generation = BTRFS_I(inode)->generation;
2502 inode->i_rdev = 0;
2503 rdev = btrfs_inode_rdev(leaf, inode_item);
2505 BTRFS_I(inode)->index_cnt = (u64)-1;
2506 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2508 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2511 * try to precache a NULL acl entry for files that don't have
2512 * any xattrs or acls
2514 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2515 if (!maybe_acls)
2516 cache_no_acl(inode);
2518 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2519 alloc_group_block, 0);
2520 btrfs_free_path(path);
2521 inode_item = NULL;
2523 switch (inode->i_mode & S_IFMT) {
2524 case S_IFREG:
2525 inode->i_mapping->a_ops = &btrfs_aops;
2526 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2527 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2528 inode->i_fop = &btrfs_file_operations;
2529 inode->i_op = &btrfs_file_inode_operations;
2530 break;
2531 case S_IFDIR:
2532 inode->i_fop = &btrfs_dir_file_operations;
2533 if (root == root->fs_info->tree_root)
2534 inode->i_op = &btrfs_dir_ro_inode_operations;
2535 else
2536 inode->i_op = &btrfs_dir_inode_operations;
2537 break;
2538 case S_IFLNK:
2539 inode->i_op = &btrfs_symlink_inode_operations;
2540 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2541 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2542 break;
2543 default:
2544 inode->i_op = &btrfs_special_inode_operations;
2545 init_special_inode(inode, inode->i_mode, rdev);
2546 break;
2549 btrfs_update_iflags(inode);
2550 return;
2552 make_bad:
2553 btrfs_free_path(path);
2554 make_bad_inode(inode);
2558 * given a leaf and an inode, copy the inode fields into the leaf
2560 static void fill_inode_item(struct btrfs_trans_handle *trans,
2561 struct extent_buffer *leaf,
2562 struct btrfs_inode_item *item,
2563 struct inode *inode)
2565 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2566 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2567 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2568 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2569 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2571 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2572 inode->i_atime.tv_sec);
2573 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2574 inode->i_atime.tv_nsec);
2576 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2577 inode->i_mtime.tv_sec);
2578 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2579 inode->i_mtime.tv_nsec);
2581 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2582 inode->i_ctime.tv_sec);
2583 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2584 inode->i_ctime.tv_nsec);
2586 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2587 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2588 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2589 btrfs_set_inode_transid(leaf, item, trans->transid);
2590 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2591 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2592 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2596 * copy everything in the in-memory inode into the btree.
2598 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2599 struct btrfs_root *root, struct inode *inode)
2601 struct btrfs_inode_item *inode_item;
2602 struct btrfs_path *path;
2603 struct extent_buffer *leaf;
2604 int ret;
2606 path = btrfs_alloc_path();
2607 BUG_ON(!path);
2608 path->leave_spinning = 1;
2609 ret = btrfs_lookup_inode(trans, root, path,
2610 &BTRFS_I(inode)->location, 1);
2611 if (ret) {
2612 if (ret > 0)
2613 ret = -ENOENT;
2614 goto failed;
2617 btrfs_unlock_up_safe(path, 1);
2618 leaf = path->nodes[0];
2619 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2620 struct btrfs_inode_item);
2622 fill_inode_item(trans, leaf, inode_item, inode);
2623 btrfs_mark_buffer_dirty(leaf);
2624 btrfs_set_inode_last_trans(trans, inode);
2625 ret = 0;
2626 failed:
2627 btrfs_free_path(path);
2628 return ret;
2633 * unlink helper that gets used here in inode.c and in the tree logging
2634 * recovery code. It remove a link in a directory with a given name, and
2635 * also drops the back refs in the inode to the directory
2637 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2638 struct btrfs_root *root,
2639 struct inode *dir, struct inode *inode,
2640 const char *name, int name_len)
2642 struct btrfs_path *path;
2643 int ret = 0;
2644 struct extent_buffer *leaf;
2645 struct btrfs_dir_item *di;
2646 struct btrfs_key key;
2647 u64 index;
2649 path = btrfs_alloc_path();
2650 if (!path) {
2651 ret = -ENOMEM;
2652 goto out;
2655 path->leave_spinning = 1;
2656 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2657 name, name_len, -1);
2658 if (IS_ERR(di)) {
2659 ret = PTR_ERR(di);
2660 goto err;
2662 if (!di) {
2663 ret = -ENOENT;
2664 goto err;
2666 leaf = path->nodes[0];
2667 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2668 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2669 if (ret)
2670 goto err;
2671 btrfs_release_path(root, path);
2673 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2674 inode->i_ino,
2675 dir->i_ino, &index);
2676 if (ret) {
2677 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2678 "inode %lu parent %lu\n", name_len, name,
2679 inode->i_ino, dir->i_ino);
2680 goto err;
2683 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2684 index, name, name_len, -1);
2685 if (IS_ERR(di)) {
2686 ret = PTR_ERR(di);
2687 goto err;
2689 if (!di) {
2690 ret = -ENOENT;
2691 goto err;
2693 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2694 btrfs_release_path(root, path);
2696 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2697 inode, dir->i_ino);
2698 BUG_ON(ret != 0 && ret != -ENOENT);
2700 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2701 dir, index);
2702 if (ret == -ENOENT)
2703 ret = 0;
2704 err:
2705 btrfs_free_path(path);
2706 if (ret)
2707 goto out;
2709 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2710 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2711 btrfs_update_inode(trans, root, dir);
2712 btrfs_drop_nlink(inode);
2713 ret = btrfs_update_inode(trans, root, inode);
2714 out:
2715 return ret;
2718 /* helper to check if there is any shared block in the path */
2719 static int check_path_shared(struct btrfs_root *root,
2720 struct btrfs_path *path)
2722 struct extent_buffer *eb;
2723 int level;
2724 u64 refs = 1;
2726 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2727 int ret;
2729 if (!path->nodes[level])
2730 break;
2731 eb = path->nodes[level];
2732 if (!btrfs_block_can_be_shared(root, eb))
2733 continue;
2734 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2735 &refs, NULL);
2736 if (refs > 1)
2737 return 1;
2739 return 0;
2743 * helper to start transaction for unlink and rmdir.
2745 * unlink and rmdir are special in btrfs, they do not always free space.
2746 * so in enospc case, we should make sure they will free space before
2747 * allowing them to use the global metadata reservation.
2749 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2750 struct dentry *dentry)
2752 struct btrfs_trans_handle *trans;
2753 struct btrfs_root *root = BTRFS_I(dir)->root;
2754 struct btrfs_path *path;
2755 struct btrfs_inode_ref *ref;
2756 struct btrfs_dir_item *di;
2757 struct inode *inode = dentry->d_inode;
2758 u64 index;
2759 int check_link = 1;
2760 int err = -ENOSPC;
2761 int ret;
2763 trans = btrfs_start_transaction(root, 10);
2764 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2765 return trans;
2767 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2768 return ERR_PTR(-ENOSPC);
2770 /* check if there is someone else holds reference */
2771 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2772 return ERR_PTR(-ENOSPC);
2774 if (atomic_read(&inode->i_count) > 2)
2775 return ERR_PTR(-ENOSPC);
2777 if (xchg(&root->fs_info->enospc_unlink, 1))
2778 return ERR_PTR(-ENOSPC);
2780 path = btrfs_alloc_path();
2781 if (!path) {
2782 root->fs_info->enospc_unlink = 0;
2783 return ERR_PTR(-ENOMEM);
2786 trans = btrfs_start_transaction(root, 0);
2787 if (IS_ERR(trans)) {
2788 btrfs_free_path(path);
2789 root->fs_info->enospc_unlink = 0;
2790 return trans;
2793 path->skip_locking = 1;
2794 path->search_commit_root = 1;
2796 ret = btrfs_lookup_inode(trans, root, path,
2797 &BTRFS_I(dir)->location, 0);
2798 if (ret < 0) {
2799 err = ret;
2800 goto out;
2802 if (ret == 0) {
2803 if (check_path_shared(root, path))
2804 goto out;
2805 } else {
2806 check_link = 0;
2808 btrfs_release_path(root, path);
2810 ret = btrfs_lookup_inode(trans, root, path,
2811 &BTRFS_I(inode)->location, 0);
2812 if (ret < 0) {
2813 err = ret;
2814 goto out;
2816 if (ret == 0) {
2817 if (check_path_shared(root, path))
2818 goto out;
2819 } else {
2820 check_link = 0;
2822 btrfs_release_path(root, path);
2824 if (ret == 0 && S_ISREG(inode->i_mode)) {
2825 ret = btrfs_lookup_file_extent(trans, root, path,
2826 inode->i_ino, (u64)-1, 0);
2827 if (ret < 0) {
2828 err = ret;
2829 goto out;
2831 BUG_ON(ret == 0);
2832 if (check_path_shared(root, path))
2833 goto out;
2834 btrfs_release_path(root, path);
2837 if (!check_link) {
2838 err = 0;
2839 goto out;
2842 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2843 dentry->d_name.name, dentry->d_name.len, 0);
2844 if (IS_ERR(di)) {
2845 err = PTR_ERR(di);
2846 goto out;
2848 if (di) {
2849 if (check_path_shared(root, path))
2850 goto out;
2851 } else {
2852 err = 0;
2853 goto out;
2855 btrfs_release_path(root, path);
2857 ref = btrfs_lookup_inode_ref(trans, root, path,
2858 dentry->d_name.name, dentry->d_name.len,
2859 inode->i_ino, dir->i_ino, 0);
2860 if (IS_ERR(ref)) {
2861 err = PTR_ERR(ref);
2862 goto out;
2864 BUG_ON(!ref);
2865 if (check_path_shared(root, path))
2866 goto out;
2867 index = btrfs_inode_ref_index(path->nodes[0], ref);
2868 btrfs_release_path(root, path);
2870 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2871 dentry->d_name.name, dentry->d_name.len, 0);
2872 if (IS_ERR(di)) {
2873 err = PTR_ERR(di);
2874 goto out;
2876 BUG_ON(ret == -ENOENT);
2877 if (check_path_shared(root, path))
2878 goto out;
2880 err = 0;
2881 out:
2882 btrfs_free_path(path);
2883 if (err) {
2884 btrfs_end_transaction(trans, root);
2885 root->fs_info->enospc_unlink = 0;
2886 return ERR_PTR(err);
2889 trans->block_rsv = &root->fs_info->global_block_rsv;
2890 return trans;
2893 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2894 struct btrfs_root *root)
2896 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2897 BUG_ON(!root->fs_info->enospc_unlink);
2898 root->fs_info->enospc_unlink = 0;
2900 btrfs_end_transaction_throttle(trans, root);
2903 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2905 struct btrfs_root *root = BTRFS_I(dir)->root;
2906 struct btrfs_trans_handle *trans;
2907 struct inode *inode = dentry->d_inode;
2908 int ret;
2909 unsigned long nr = 0;
2911 trans = __unlink_start_trans(dir, dentry);
2912 if (IS_ERR(trans))
2913 return PTR_ERR(trans);
2915 btrfs_set_trans_block_group(trans, dir);
2917 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2919 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2920 dentry->d_name.name, dentry->d_name.len);
2921 BUG_ON(ret);
2923 if (inode->i_nlink == 0) {
2924 ret = btrfs_orphan_add(trans, inode);
2925 BUG_ON(ret);
2928 nr = trans->blocks_used;
2929 __unlink_end_trans(trans, root);
2930 btrfs_btree_balance_dirty(root, nr);
2931 return ret;
2934 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2935 struct btrfs_root *root,
2936 struct inode *dir, u64 objectid,
2937 const char *name, int name_len)
2939 struct btrfs_path *path;
2940 struct extent_buffer *leaf;
2941 struct btrfs_dir_item *di;
2942 struct btrfs_key key;
2943 u64 index;
2944 int ret;
2946 path = btrfs_alloc_path();
2947 if (!path)
2948 return -ENOMEM;
2950 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2951 name, name_len, -1);
2952 BUG_ON(!di || IS_ERR(di));
2954 leaf = path->nodes[0];
2955 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2956 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2957 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2958 BUG_ON(ret);
2959 btrfs_release_path(root, path);
2961 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2962 objectid, root->root_key.objectid,
2963 dir->i_ino, &index, name, name_len);
2964 if (ret < 0) {
2965 BUG_ON(ret != -ENOENT);
2966 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2967 name, name_len);
2968 BUG_ON(!di || IS_ERR(di));
2970 leaf = path->nodes[0];
2971 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2972 btrfs_release_path(root, path);
2973 index = key.offset;
2976 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2977 index, name, name_len, -1);
2978 BUG_ON(!di || IS_ERR(di));
2980 leaf = path->nodes[0];
2981 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2982 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2983 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2984 BUG_ON(ret);
2985 btrfs_release_path(root, path);
2987 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2988 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2989 ret = btrfs_update_inode(trans, root, dir);
2990 BUG_ON(ret);
2992 btrfs_free_path(path);
2993 return 0;
2996 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2998 struct inode *inode = dentry->d_inode;
2999 int err = 0;
3000 struct btrfs_root *root = BTRFS_I(dir)->root;
3001 struct btrfs_trans_handle *trans;
3002 unsigned long nr = 0;
3004 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3005 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3006 return -ENOTEMPTY;
3008 trans = __unlink_start_trans(dir, dentry);
3009 if (IS_ERR(trans))
3010 return PTR_ERR(trans);
3012 btrfs_set_trans_block_group(trans, dir);
3014 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3015 err = btrfs_unlink_subvol(trans, root, dir,
3016 BTRFS_I(inode)->location.objectid,
3017 dentry->d_name.name,
3018 dentry->d_name.len);
3019 goto out;
3022 err = btrfs_orphan_add(trans, inode);
3023 if (err)
3024 goto out;
3026 /* now the directory is empty */
3027 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3028 dentry->d_name.name, dentry->d_name.len);
3029 if (!err)
3030 btrfs_i_size_write(inode, 0);
3031 out:
3032 nr = trans->blocks_used;
3033 __unlink_end_trans(trans, root);
3034 btrfs_btree_balance_dirty(root, nr);
3036 return err;
3039 #if 0
3041 * when truncating bytes in a file, it is possible to avoid reading
3042 * the leaves that contain only checksum items. This can be the
3043 * majority of the IO required to delete a large file, but it must
3044 * be done carefully.
3046 * The keys in the level just above the leaves are checked to make sure
3047 * the lowest key in a given leaf is a csum key, and starts at an offset
3048 * after the new size.
3050 * Then the key for the next leaf is checked to make sure it also has
3051 * a checksum item for the same file. If it does, we know our target leaf
3052 * contains only checksum items, and it can be safely freed without reading
3053 * it.
3055 * This is just an optimization targeted at large files. It may do
3056 * nothing. It will return 0 unless things went badly.
3058 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3059 struct btrfs_root *root,
3060 struct btrfs_path *path,
3061 struct inode *inode, u64 new_size)
3063 struct btrfs_key key;
3064 int ret;
3065 int nritems;
3066 struct btrfs_key found_key;
3067 struct btrfs_key other_key;
3068 struct btrfs_leaf_ref *ref;
3069 u64 leaf_gen;
3070 u64 leaf_start;
3072 path->lowest_level = 1;
3073 key.objectid = inode->i_ino;
3074 key.type = BTRFS_CSUM_ITEM_KEY;
3075 key.offset = new_size;
3076 again:
3077 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3078 if (ret < 0)
3079 goto out;
3081 if (path->nodes[1] == NULL) {
3082 ret = 0;
3083 goto out;
3085 ret = 0;
3086 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3087 nritems = btrfs_header_nritems(path->nodes[1]);
3089 if (!nritems)
3090 goto out;
3092 if (path->slots[1] >= nritems)
3093 goto next_node;
3095 /* did we find a key greater than anything we want to delete? */
3096 if (found_key.objectid > inode->i_ino ||
3097 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3098 goto out;
3100 /* we check the next key in the node to make sure the leave contains
3101 * only checksum items. This comparison doesn't work if our
3102 * leaf is the last one in the node
3104 if (path->slots[1] + 1 >= nritems) {
3105 next_node:
3106 /* search forward from the last key in the node, this
3107 * will bring us into the next node in the tree
3109 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3111 /* unlikely, but we inc below, so check to be safe */
3112 if (found_key.offset == (u64)-1)
3113 goto out;
3115 /* search_forward needs a path with locks held, do the
3116 * search again for the original key. It is possible
3117 * this will race with a balance and return a path that
3118 * we could modify, but this drop is just an optimization
3119 * and is allowed to miss some leaves.
3121 btrfs_release_path(root, path);
3122 found_key.offset++;
3124 /* setup a max key for search_forward */
3125 other_key.offset = (u64)-1;
3126 other_key.type = key.type;
3127 other_key.objectid = key.objectid;
3129 path->keep_locks = 1;
3130 ret = btrfs_search_forward(root, &found_key, &other_key,
3131 path, 0, 0);
3132 path->keep_locks = 0;
3133 if (ret || found_key.objectid != key.objectid ||
3134 found_key.type != key.type) {
3135 ret = 0;
3136 goto out;
3139 key.offset = found_key.offset;
3140 btrfs_release_path(root, path);
3141 cond_resched();
3142 goto again;
3145 /* we know there's one more slot after us in the tree,
3146 * read that key so we can verify it is also a checksum item
3148 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3150 if (found_key.objectid < inode->i_ino)
3151 goto next_key;
3153 if (found_key.type != key.type || found_key.offset < new_size)
3154 goto next_key;
3157 * if the key for the next leaf isn't a csum key from this objectid,
3158 * we can't be sure there aren't good items inside this leaf.
3159 * Bail out
3161 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3162 goto out;
3164 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3165 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3167 * it is safe to delete this leaf, it contains only
3168 * csum items from this inode at an offset >= new_size
3170 ret = btrfs_del_leaf(trans, root, path, leaf_start);
3171 BUG_ON(ret);
3173 if (root->ref_cows && leaf_gen < trans->transid) {
3174 ref = btrfs_alloc_leaf_ref(root, 0);
3175 if (ref) {
3176 ref->root_gen = root->root_key.offset;
3177 ref->bytenr = leaf_start;
3178 ref->owner = 0;
3179 ref->generation = leaf_gen;
3180 ref->nritems = 0;
3182 btrfs_sort_leaf_ref(ref);
3184 ret = btrfs_add_leaf_ref(root, ref, 0);
3185 WARN_ON(ret);
3186 btrfs_free_leaf_ref(root, ref);
3187 } else {
3188 WARN_ON(1);
3191 next_key:
3192 btrfs_release_path(root, path);
3194 if (other_key.objectid == inode->i_ino &&
3195 other_key.type == key.type && other_key.offset > key.offset) {
3196 key.offset = other_key.offset;
3197 cond_resched();
3198 goto again;
3200 ret = 0;
3201 out:
3202 /* fixup any changes we've made to the path */
3203 path->lowest_level = 0;
3204 path->keep_locks = 0;
3205 btrfs_release_path(root, path);
3206 return ret;
3209 #endif
3212 * this can truncate away extent items, csum items and directory items.
3213 * It starts at a high offset and removes keys until it can't find
3214 * any higher than new_size
3216 * csum items that cross the new i_size are truncated to the new size
3217 * as well.
3219 * min_type is the minimum key type to truncate down to. If set to 0, this
3220 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3222 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3223 struct btrfs_root *root,
3224 struct inode *inode,
3225 u64 new_size, u32 min_type)
3227 struct btrfs_path *path;
3228 struct extent_buffer *leaf;
3229 struct btrfs_file_extent_item *fi;
3230 struct btrfs_key key;
3231 struct btrfs_key found_key;
3232 u64 extent_start = 0;
3233 u64 extent_num_bytes = 0;
3234 u64 extent_offset = 0;
3235 u64 item_end = 0;
3236 u64 mask = root->sectorsize - 1;
3237 u32 found_type = (u8)-1;
3238 int found_extent;
3239 int del_item;
3240 int pending_del_nr = 0;
3241 int pending_del_slot = 0;
3242 int extent_type = -1;
3243 int encoding;
3244 int ret;
3245 int err = 0;
3247 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3249 if (root->ref_cows || root == root->fs_info->tree_root)
3250 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3252 path = btrfs_alloc_path();
3253 BUG_ON(!path);
3254 path->reada = -1;
3256 key.objectid = inode->i_ino;
3257 key.offset = (u64)-1;
3258 key.type = (u8)-1;
3260 search_again:
3261 path->leave_spinning = 1;
3262 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3263 if (ret < 0) {
3264 err = ret;
3265 goto out;
3268 if (ret > 0) {
3269 /* there are no items in the tree for us to truncate, we're
3270 * done
3272 if (path->slots[0] == 0)
3273 goto out;
3274 path->slots[0]--;
3277 while (1) {
3278 fi = NULL;
3279 leaf = path->nodes[0];
3280 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3281 found_type = btrfs_key_type(&found_key);
3282 encoding = 0;
3284 if (found_key.objectid != inode->i_ino)
3285 break;
3287 if (found_type < min_type)
3288 break;
3290 item_end = found_key.offset;
3291 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3292 fi = btrfs_item_ptr(leaf, path->slots[0],
3293 struct btrfs_file_extent_item);
3294 extent_type = btrfs_file_extent_type(leaf, fi);
3295 encoding = btrfs_file_extent_compression(leaf, fi);
3296 encoding |= btrfs_file_extent_encryption(leaf, fi);
3297 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3299 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3300 item_end +=
3301 btrfs_file_extent_num_bytes(leaf, fi);
3302 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3303 item_end += btrfs_file_extent_inline_len(leaf,
3304 fi);
3306 item_end--;
3308 if (found_type > min_type) {
3309 del_item = 1;
3310 } else {
3311 if (item_end < new_size)
3312 break;
3313 if (found_key.offset >= new_size)
3314 del_item = 1;
3315 else
3316 del_item = 0;
3318 found_extent = 0;
3319 /* FIXME, shrink the extent if the ref count is only 1 */
3320 if (found_type != BTRFS_EXTENT_DATA_KEY)
3321 goto delete;
3323 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3324 u64 num_dec;
3325 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3326 if (!del_item && !encoding) {
3327 u64 orig_num_bytes =
3328 btrfs_file_extent_num_bytes(leaf, fi);
3329 extent_num_bytes = new_size -
3330 found_key.offset + root->sectorsize - 1;
3331 extent_num_bytes = extent_num_bytes &
3332 ~((u64)root->sectorsize - 1);
3333 btrfs_set_file_extent_num_bytes(leaf, fi,
3334 extent_num_bytes);
3335 num_dec = (orig_num_bytes -
3336 extent_num_bytes);
3337 if (root->ref_cows && extent_start != 0)
3338 inode_sub_bytes(inode, num_dec);
3339 btrfs_mark_buffer_dirty(leaf);
3340 } else {
3341 extent_num_bytes =
3342 btrfs_file_extent_disk_num_bytes(leaf,
3343 fi);
3344 extent_offset = found_key.offset -
3345 btrfs_file_extent_offset(leaf, fi);
3347 /* FIXME blocksize != 4096 */
3348 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3349 if (extent_start != 0) {
3350 found_extent = 1;
3351 if (root->ref_cows)
3352 inode_sub_bytes(inode, num_dec);
3355 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3357 * we can't truncate inline items that have had
3358 * special encodings
3360 if (!del_item &&
3361 btrfs_file_extent_compression(leaf, fi) == 0 &&
3362 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3363 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3364 u32 size = new_size - found_key.offset;
3366 if (root->ref_cows) {
3367 inode_sub_bytes(inode, item_end + 1 -
3368 new_size);
3370 size =
3371 btrfs_file_extent_calc_inline_size(size);
3372 ret = btrfs_truncate_item(trans, root, path,
3373 size, 1);
3374 BUG_ON(ret);
3375 } else if (root->ref_cows) {
3376 inode_sub_bytes(inode, item_end + 1 -
3377 found_key.offset);
3380 delete:
3381 if (del_item) {
3382 if (!pending_del_nr) {
3383 /* no pending yet, add ourselves */
3384 pending_del_slot = path->slots[0];
3385 pending_del_nr = 1;
3386 } else if (pending_del_nr &&
3387 path->slots[0] + 1 == pending_del_slot) {
3388 /* hop on the pending chunk */
3389 pending_del_nr++;
3390 pending_del_slot = path->slots[0];
3391 } else {
3392 BUG();
3394 } else {
3395 break;
3397 if (found_extent && (root->ref_cows ||
3398 root == root->fs_info->tree_root)) {
3399 btrfs_set_path_blocking(path);
3400 ret = btrfs_free_extent(trans, root, extent_start,
3401 extent_num_bytes, 0,
3402 btrfs_header_owner(leaf),
3403 inode->i_ino, extent_offset);
3404 BUG_ON(ret);
3407 if (found_type == BTRFS_INODE_ITEM_KEY)
3408 break;
3410 if (path->slots[0] == 0 ||
3411 path->slots[0] != pending_del_slot) {
3412 if (root->ref_cows) {
3413 err = -EAGAIN;
3414 goto out;
3416 if (pending_del_nr) {
3417 ret = btrfs_del_items(trans, root, path,
3418 pending_del_slot,
3419 pending_del_nr);
3420 BUG_ON(ret);
3421 pending_del_nr = 0;
3423 btrfs_release_path(root, path);
3424 goto search_again;
3425 } else {
3426 path->slots[0]--;
3429 out:
3430 if (pending_del_nr) {
3431 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3432 pending_del_nr);
3433 BUG_ON(ret);
3435 btrfs_free_path(path);
3436 return err;
3440 * taken from block_truncate_page, but does cow as it zeros out
3441 * any bytes left in the last page in the file.
3443 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3445 struct inode *inode = mapping->host;
3446 struct btrfs_root *root = BTRFS_I(inode)->root;
3447 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3448 struct btrfs_ordered_extent *ordered;
3449 struct extent_state *cached_state = NULL;
3450 char *kaddr;
3451 u32 blocksize = root->sectorsize;
3452 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3453 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3454 struct page *page;
3455 int ret = 0;
3456 u64 page_start;
3457 u64 page_end;
3459 if ((offset & (blocksize - 1)) == 0)
3460 goto out;
3461 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3462 if (ret)
3463 goto out;
3465 ret = -ENOMEM;
3466 again:
3467 page = grab_cache_page(mapping, index);
3468 if (!page) {
3469 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3470 goto out;
3473 page_start = page_offset(page);
3474 page_end = page_start + PAGE_CACHE_SIZE - 1;
3476 if (!PageUptodate(page)) {
3477 ret = btrfs_readpage(NULL, page);
3478 lock_page(page);
3479 if (page->mapping != mapping) {
3480 unlock_page(page);
3481 page_cache_release(page);
3482 goto again;
3484 if (!PageUptodate(page)) {
3485 ret = -EIO;
3486 goto out_unlock;
3489 wait_on_page_writeback(page);
3491 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3492 GFP_NOFS);
3493 set_page_extent_mapped(page);
3495 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3496 if (ordered) {
3497 unlock_extent_cached(io_tree, page_start, page_end,
3498 &cached_state, GFP_NOFS);
3499 unlock_page(page);
3500 page_cache_release(page);
3501 btrfs_start_ordered_extent(inode, ordered, 1);
3502 btrfs_put_ordered_extent(ordered);
3503 goto again;
3506 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3507 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3508 0, 0, &cached_state, GFP_NOFS);
3510 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3511 &cached_state);
3512 if (ret) {
3513 unlock_extent_cached(io_tree, page_start, page_end,
3514 &cached_state, GFP_NOFS);
3515 goto out_unlock;
3518 ret = 0;
3519 if (offset != PAGE_CACHE_SIZE) {
3520 kaddr = kmap(page);
3521 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3522 flush_dcache_page(page);
3523 kunmap(page);
3525 ClearPageChecked(page);
3526 set_page_dirty(page);
3527 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3528 GFP_NOFS);
3530 out_unlock:
3531 if (ret)
3532 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3533 unlock_page(page);
3534 page_cache_release(page);
3535 out:
3536 return ret;
3539 int btrfs_cont_expand(struct inode *inode, loff_t size)
3541 struct btrfs_trans_handle *trans;
3542 struct btrfs_root *root = BTRFS_I(inode)->root;
3543 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3544 struct extent_map *em = NULL;
3545 struct extent_state *cached_state = NULL;
3546 u64 mask = root->sectorsize - 1;
3547 u64 hole_start = (inode->i_size + mask) & ~mask;
3548 u64 block_end = (size + mask) & ~mask;
3549 u64 last_byte;
3550 u64 cur_offset;
3551 u64 hole_size;
3552 int err = 0;
3554 if (size <= hole_start)
3555 return 0;
3557 while (1) {
3558 struct btrfs_ordered_extent *ordered;
3559 btrfs_wait_ordered_range(inode, hole_start,
3560 block_end - hole_start);
3561 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3562 &cached_state, GFP_NOFS);
3563 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3564 if (!ordered)
3565 break;
3566 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3567 &cached_state, GFP_NOFS);
3568 btrfs_put_ordered_extent(ordered);
3571 cur_offset = hole_start;
3572 while (1) {
3573 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3574 block_end - cur_offset, 0);
3575 BUG_ON(IS_ERR(em) || !em);
3576 last_byte = min(extent_map_end(em), block_end);
3577 last_byte = (last_byte + mask) & ~mask;
3578 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3579 u64 hint_byte = 0;
3580 hole_size = last_byte - cur_offset;
3582 trans = btrfs_start_transaction(root, 2);
3583 if (IS_ERR(trans)) {
3584 err = PTR_ERR(trans);
3585 break;
3587 btrfs_set_trans_block_group(trans, inode);
3589 err = btrfs_drop_extents(trans, inode, cur_offset,
3590 cur_offset + hole_size,
3591 &hint_byte, 1);
3592 BUG_ON(err);
3594 err = btrfs_insert_file_extent(trans, root,
3595 inode->i_ino, cur_offset, 0,
3596 0, hole_size, 0, hole_size,
3597 0, 0, 0);
3598 BUG_ON(err);
3600 btrfs_drop_extent_cache(inode, hole_start,
3601 last_byte - 1, 0);
3603 btrfs_end_transaction(trans, root);
3605 free_extent_map(em);
3606 em = NULL;
3607 cur_offset = last_byte;
3608 if (cur_offset >= block_end)
3609 break;
3612 free_extent_map(em);
3613 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3614 GFP_NOFS);
3615 return err;
3618 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3620 struct btrfs_root *root = BTRFS_I(inode)->root;
3621 struct btrfs_trans_handle *trans;
3622 unsigned long nr;
3623 int ret;
3625 if (attr->ia_size == inode->i_size)
3626 return 0;
3628 if (attr->ia_size > inode->i_size) {
3629 unsigned long limit;
3630 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3631 if (attr->ia_size > inode->i_sb->s_maxbytes)
3632 return -EFBIG;
3633 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3634 send_sig(SIGXFSZ, current, 0);
3635 return -EFBIG;
3639 trans = btrfs_start_transaction(root, 5);
3640 if (IS_ERR(trans))
3641 return PTR_ERR(trans);
3643 btrfs_set_trans_block_group(trans, inode);
3645 ret = btrfs_orphan_add(trans, inode);
3646 BUG_ON(ret);
3648 nr = trans->blocks_used;
3649 btrfs_end_transaction(trans, root);
3650 btrfs_btree_balance_dirty(root, nr);
3652 if (attr->ia_size > inode->i_size) {
3653 ret = btrfs_cont_expand(inode, attr->ia_size);
3654 if (ret) {
3655 btrfs_truncate(inode);
3656 return ret;
3659 i_size_write(inode, attr->ia_size);
3660 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3662 trans = btrfs_start_transaction(root, 0);
3663 BUG_ON(IS_ERR(trans));
3664 btrfs_set_trans_block_group(trans, inode);
3665 trans->block_rsv = root->orphan_block_rsv;
3666 BUG_ON(!trans->block_rsv);
3668 ret = btrfs_update_inode(trans, root, inode);
3669 BUG_ON(ret);
3670 if (inode->i_nlink > 0) {
3671 ret = btrfs_orphan_del(trans, inode);
3672 BUG_ON(ret);
3674 nr = trans->blocks_used;
3675 btrfs_end_transaction(trans, root);
3676 btrfs_btree_balance_dirty(root, nr);
3677 return 0;
3681 * We're truncating a file that used to have good data down to
3682 * zero. Make sure it gets into the ordered flush list so that
3683 * any new writes get down to disk quickly.
3685 if (attr->ia_size == 0)
3686 BTRFS_I(inode)->ordered_data_close = 1;
3688 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3689 ret = vmtruncate(inode, attr->ia_size);
3690 BUG_ON(ret);
3692 return 0;
3695 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3697 struct inode *inode = dentry->d_inode;
3698 struct btrfs_root *root = BTRFS_I(inode)->root;
3699 int err;
3701 if (btrfs_root_readonly(root))
3702 return -EROFS;
3704 err = inode_change_ok(inode, attr);
3705 if (err)
3706 return err;
3708 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3709 err = btrfs_setattr_size(inode, attr);
3710 if (err)
3711 return err;
3714 if (attr->ia_valid) {
3715 setattr_copy(inode, attr);
3716 mark_inode_dirty(inode);
3718 if (attr->ia_valid & ATTR_MODE)
3719 err = btrfs_acl_chmod(inode);
3722 return err;
3725 void btrfs_evict_inode(struct inode *inode)
3727 struct btrfs_trans_handle *trans;
3728 struct btrfs_root *root = BTRFS_I(inode)->root;
3729 unsigned long nr;
3730 int ret;
3732 truncate_inode_pages(&inode->i_data, 0);
3733 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3734 root == root->fs_info->tree_root))
3735 goto no_delete;
3737 if (is_bad_inode(inode)) {
3738 btrfs_orphan_del(NULL, inode);
3739 goto no_delete;
3741 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3742 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3744 if (root->fs_info->log_root_recovering) {
3745 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3746 goto no_delete;
3749 if (inode->i_nlink > 0) {
3750 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3751 goto no_delete;
3754 btrfs_i_size_write(inode, 0);
3756 while (1) {
3757 trans = btrfs_start_transaction(root, 0);
3758 BUG_ON(IS_ERR(trans));
3759 btrfs_set_trans_block_group(trans, inode);
3760 trans->block_rsv = root->orphan_block_rsv;
3762 ret = btrfs_block_rsv_check(trans, root,
3763 root->orphan_block_rsv, 0, 5);
3764 if (ret) {
3765 BUG_ON(ret != -EAGAIN);
3766 ret = btrfs_commit_transaction(trans, root);
3767 BUG_ON(ret);
3768 continue;
3771 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3772 if (ret != -EAGAIN)
3773 break;
3775 nr = trans->blocks_used;
3776 btrfs_end_transaction(trans, root);
3777 trans = NULL;
3778 btrfs_btree_balance_dirty(root, nr);
3782 if (ret == 0) {
3783 ret = btrfs_orphan_del(trans, inode);
3784 BUG_ON(ret);
3787 nr = trans->blocks_used;
3788 btrfs_end_transaction(trans, root);
3789 btrfs_btree_balance_dirty(root, nr);
3790 no_delete:
3791 end_writeback(inode);
3792 return;
3796 * this returns the key found in the dir entry in the location pointer.
3797 * If no dir entries were found, location->objectid is 0.
3799 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3800 struct btrfs_key *location)
3802 const char *name = dentry->d_name.name;
3803 int namelen = dentry->d_name.len;
3804 struct btrfs_dir_item *di;
3805 struct btrfs_path *path;
3806 struct btrfs_root *root = BTRFS_I(dir)->root;
3807 int ret = 0;
3809 path = btrfs_alloc_path();
3810 BUG_ON(!path);
3812 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3813 namelen, 0);
3814 if (IS_ERR(di))
3815 ret = PTR_ERR(di);
3817 if (!di || IS_ERR(di))
3818 goto out_err;
3820 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3821 out:
3822 btrfs_free_path(path);
3823 return ret;
3824 out_err:
3825 location->objectid = 0;
3826 goto out;
3830 * when we hit a tree root in a directory, the btrfs part of the inode
3831 * needs to be changed to reflect the root directory of the tree root. This
3832 * is kind of like crossing a mount point.
3834 static int fixup_tree_root_location(struct btrfs_root *root,
3835 struct inode *dir,
3836 struct dentry *dentry,
3837 struct btrfs_key *location,
3838 struct btrfs_root **sub_root)
3840 struct btrfs_path *path;
3841 struct btrfs_root *new_root;
3842 struct btrfs_root_ref *ref;
3843 struct extent_buffer *leaf;
3844 int ret;
3845 int err = 0;
3847 path = btrfs_alloc_path();
3848 if (!path) {
3849 err = -ENOMEM;
3850 goto out;
3853 err = -ENOENT;
3854 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3855 BTRFS_I(dir)->root->root_key.objectid,
3856 location->objectid);
3857 if (ret) {
3858 if (ret < 0)
3859 err = ret;
3860 goto out;
3863 leaf = path->nodes[0];
3864 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3865 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3866 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3867 goto out;
3869 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3870 (unsigned long)(ref + 1),
3871 dentry->d_name.len);
3872 if (ret)
3873 goto out;
3875 btrfs_release_path(root->fs_info->tree_root, path);
3877 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3878 if (IS_ERR(new_root)) {
3879 err = PTR_ERR(new_root);
3880 goto out;
3883 if (btrfs_root_refs(&new_root->root_item) == 0) {
3884 err = -ENOENT;
3885 goto out;
3888 *sub_root = new_root;
3889 location->objectid = btrfs_root_dirid(&new_root->root_item);
3890 location->type = BTRFS_INODE_ITEM_KEY;
3891 location->offset = 0;
3892 err = 0;
3893 out:
3894 btrfs_free_path(path);
3895 return err;
3898 static void inode_tree_add(struct inode *inode)
3900 struct btrfs_root *root = BTRFS_I(inode)->root;
3901 struct btrfs_inode *entry;
3902 struct rb_node **p;
3903 struct rb_node *parent;
3904 again:
3905 p = &root->inode_tree.rb_node;
3906 parent = NULL;
3908 if (inode_unhashed(inode))
3909 return;
3911 spin_lock(&root->inode_lock);
3912 while (*p) {
3913 parent = *p;
3914 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3916 if (inode->i_ino < entry->vfs_inode.i_ino)
3917 p = &parent->rb_left;
3918 else if (inode->i_ino > entry->vfs_inode.i_ino)
3919 p = &parent->rb_right;
3920 else {
3921 WARN_ON(!(entry->vfs_inode.i_state &
3922 (I_WILL_FREE | I_FREEING)));
3923 rb_erase(parent, &root->inode_tree);
3924 RB_CLEAR_NODE(parent);
3925 spin_unlock(&root->inode_lock);
3926 goto again;
3929 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3930 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3931 spin_unlock(&root->inode_lock);
3934 static void inode_tree_del(struct inode *inode)
3936 struct btrfs_root *root = BTRFS_I(inode)->root;
3937 int empty = 0;
3939 spin_lock(&root->inode_lock);
3940 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3941 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3942 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3943 empty = RB_EMPTY_ROOT(&root->inode_tree);
3945 spin_unlock(&root->inode_lock);
3948 * Free space cache has inodes in the tree root, but the tree root has a
3949 * root_refs of 0, so this could end up dropping the tree root as a
3950 * snapshot, so we need the extra !root->fs_info->tree_root check to
3951 * make sure we don't drop it.
3953 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3954 root != root->fs_info->tree_root) {
3955 synchronize_srcu(&root->fs_info->subvol_srcu);
3956 spin_lock(&root->inode_lock);
3957 empty = RB_EMPTY_ROOT(&root->inode_tree);
3958 spin_unlock(&root->inode_lock);
3959 if (empty)
3960 btrfs_add_dead_root(root);
3964 int btrfs_invalidate_inodes(struct btrfs_root *root)
3966 struct rb_node *node;
3967 struct rb_node *prev;
3968 struct btrfs_inode *entry;
3969 struct inode *inode;
3970 u64 objectid = 0;
3972 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3974 spin_lock(&root->inode_lock);
3975 again:
3976 node = root->inode_tree.rb_node;
3977 prev = NULL;
3978 while (node) {
3979 prev = node;
3980 entry = rb_entry(node, struct btrfs_inode, rb_node);
3982 if (objectid < entry->vfs_inode.i_ino)
3983 node = node->rb_left;
3984 else if (objectid > entry->vfs_inode.i_ino)
3985 node = node->rb_right;
3986 else
3987 break;
3989 if (!node) {
3990 while (prev) {
3991 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3992 if (objectid <= entry->vfs_inode.i_ino) {
3993 node = prev;
3994 break;
3996 prev = rb_next(prev);
3999 while (node) {
4000 entry = rb_entry(node, struct btrfs_inode, rb_node);
4001 objectid = entry->vfs_inode.i_ino + 1;
4002 inode = igrab(&entry->vfs_inode);
4003 if (inode) {
4004 spin_unlock(&root->inode_lock);
4005 if (atomic_read(&inode->i_count) > 1)
4006 d_prune_aliases(inode);
4008 * btrfs_drop_inode will have it removed from
4009 * the inode cache when its usage count
4010 * hits zero.
4012 iput(inode);
4013 cond_resched();
4014 spin_lock(&root->inode_lock);
4015 goto again;
4018 if (cond_resched_lock(&root->inode_lock))
4019 goto again;
4021 node = rb_next(node);
4023 spin_unlock(&root->inode_lock);
4024 return 0;
4027 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4029 struct btrfs_iget_args *args = p;
4030 inode->i_ino = args->ino;
4031 BTRFS_I(inode)->root = args->root;
4032 btrfs_set_inode_space_info(args->root, inode);
4033 return 0;
4036 static int btrfs_find_actor(struct inode *inode, void *opaque)
4038 struct btrfs_iget_args *args = opaque;
4039 return args->ino == inode->i_ino &&
4040 args->root == BTRFS_I(inode)->root;
4043 static struct inode *btrfs_iget_locked(struct super_block *s,
4044 u64 objectid,
4045 struct btrfs_root *root)
4047 struct inode *inode;
4048 struct btrfs_iget_args args;
4049 args.ino = objectid;
4050 args.root = root;
4052 inode = iget5_locked(s, objectid, btrfs_find_actor,
4053 btrfs_init_locked_inode,
4054 (void *)&args);
4055 return inode;
4058 /* Get an inode object given its location and corresponding root.
4059 * Returns in *is_new if the inode was read from disk
4061 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4062 struct btrfs_root *root, int *new)
4064 struct inode *inode;
4066 inode = btrfs_iget_locked(s, location->objectid, root);
4067 if (!inode)
4068 return ERR_PTR(-ENOMEM);
4070 if (inode->i_state & I_NEW) {
4071 BTRFS_I(inode)->root = root;
4072 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4073 btrfs_read_locked_inode(inode);
4075 inode_tree_add(inode);
4076 unlock_new_inode(inode);
4077 if (new)
4078 *new = 1;
4081 return inode;
4084 static struct inode *new_simple_dir(struct super_block *s,
4085 struct btrfs_key *key,
4086 struct btrfs_root *root)
4088 struct inode *inode = new_inode(s);
4090 if (!inode)
4091 return ERR_PTR(-ENOMEM);
4093 BTRFS_I(inode)->root = root;
4094 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4095 BTRFS_I(inode)->dummy_inode = 1;
4097 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4098 inode->i_op = &simple_dir_inode_operations;
4099 inode->i_fop = &simple_dir_operations;
4100 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4101 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4103 return inode;
4106 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4108 struct inode *inode;
4109 struct btrfs_root *root = BTRFS_I(dir)->root;
4110 struct btrfs_root *sub_root = root;
4111 struct btrfs_key location;
4112 int index;
4113 int ret;
4115 if (dentry->d_name.len > BTRFS_NAME_LEN)
4116 return ERR_PTR(-ENAMETOOLONG);
4118 ret = btrfs_inode_by_name(dir, dentry, &location);
4120 if (ret < 0)
4121 return ERR_PTR(ret);
4123 if (location.objectid == 0)
4124 return NULL;
4126 if (location.type == BTRFS_INODE_ITEM_KEY) {
4127 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4128 return inode;
4131 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4133 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4134 ret = fixup_tree_root_location(root, dir, dentry,
4135 &location, &sub_root);
4136 if (ret < 0) {
4137 if (ret != -ENOENT)
4138 inode = ERR_PTR(ret);
4139 else
4140 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4141 } else {
4142 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4144 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4146 if (!IS_ERR(inode) && root != sub_root) {
4147 down_read(&root->fs_info->cleanup_work_sem);
4148 if (!(inode->i_sb->s_flags & MS_RDONLY))
4149 btrfs_orphan_cleanup(sub_root);
4150 up_read(&root->fs_info->cleanup_work_sem);
4153 return inode;
4156 static int btrfs_dentry_delete(const struct dentry *dentry)
4158 struct btrfs_root *root;
4160 if (!dentry->d_inode && !IS_ROOT(dentry))
4161 dentry = dentry->d_parent;
4163 if (dentry->d_inode) {
4164 root = BTRFS_I(dentry->d_inode)->root;
4165 if (btrfs_root_refs(&root->root_item) == 0)
4166 return 1;
4168 return 0;
4171 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4172 struct nameidata *nd)
4174 struct inode *inode;
4176 inode = btrfs_lookup_dentry(dir, dentry);
4177 if (IS_ERR(inode))
4178 return ERR_CAST(inode);
4180 return d_splice_alias(inode, dentry);
4183 static unsigned char btrfs_filetype_table[] = {
4184 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4187 static int btrfs_real_readdir(struct file *filp, void *dirent,
4188 filldir_t filldir)
4190 struct inode *inode = filp->f_dentry->d_inode;
4191 struct btrfs_root *root = BTRFS_I(inode)->root;
4192 struct btrfs_item *item;
4193 struct btrfs_dir_item *di;
4194 struct btrfs_key key;
4195 struct btrfs_key found_key;
4196 struct btrfs_path *path;
4197 int ret;
4198 u32 nritems;
4199 struct extent_buffer *leaf;
4200 int slot;
4201 int advance;
4202 unsigned char d_type;
4203 int over = 0;
4204 u32 di_cur;
4205 u32 di_total;
4206 u32 di_len;
4207 int key_type = BTRFS_DIR_INDEX_KEY;
4208 char tmp_name[32];
4209 char *name_ptr;
4210 int name_len;
4212 /* FIXME, use a real flag for deciding about the key type */
4213 if (root->fs_info->tree_root == root)
4214 key_type = BTRFS_DIR_ITEM_KEY;
4216 /* special case for "." */
4217 if (filp->f_pos == 0) {
4218 over = filldir(dirent, ".", 1,
4219 1, inode->i_ino,
4220 DT_DIR);
4221 if (over)
4222 return 0;
4223 filp->f_pos = 1;
4225 /* special case for .., just use the back ref */
4226 if (filp->f_pos == 1) {
4227 u64 pino = parent_ino(filp->f_path.dentry);
4228 over = filldir(dirent, "..", 2,
4229 2, pino, DT_DIR);
4230 if (over)
4231 return 0;
4232 filp->f_pos = 2;
4234 path = btrfs_alloc_path();
4235 path->reada = 2;
4237 btrfs_set_key_type(&key, key_type);
4238 key.offset = filp->f_pos;
4239 key.objectid = inode->i_ino;
4241 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4242 if (ret < 0)
4243 goto err;
4244 advance = 0;
4246 while (1) {
4247 leaf = path->nodes[0];
4248 nritems = btrfs_header_nritems(leaf);
4249 slot = path->slots[0];
4250 if (advance || slot >= nritems) {
4251 if (slot >= nritems - 1) {
4252 ret = btrfs_next_leaf(root, path);
4253 if (ret)
4254 break;
4255 leaf = path->nodes[0];
4256 nritems = btrfs_header_nritems(leaf);
4257 slot = path->slots[0];
4258 } else {
4259 slot++;
4260 path->slots[0]++;
4264 advance = 1;
4265 item = btrfs_item_nr(leaf, slot);
4266 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4268 if (found_key.objectid != key.objectid)
4269 break;
4270 if (btrfs_key_type(&found_key) != key_type)
4271 break;
4272 if (found_key.offset < filp->f_pos)
4273 continue;
4275 filp->f_pos = found_key.offset;
4277 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4278 di_cur = 0;
4279 di_total = btrfs_item_size(leaf, item);
4281 while (di_cur < di_total) {
4282 struct btrfs_key location;
4284 name_len = btrfs_dir_name_len(leaf, di);
4285 if (name_len <= sizeof(tmp_name)) {
4286 name_ptr = tmp_name;
4287 } else {
4288 name_ptr = kmalloc(name_len, GFP_NOFS);
4289 if (!name_ptr) {
4290 ret = -ENOMEM;
4291 goto err;
4294 read_extent_buffer(leaf, name_ptr,
4295 (unsigned long)(di + 1), name_len);
4297 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4298 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4300 /* is this a reference to our own snapshot? If so
4301 * skip it
4303 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4304 location.objectid == root->root_key.objectid) {
4305 over = 0;
4306 goto skip;
4308 over = filldir(dirent, name_ptr, name_len,
4309 found_key.offset, location.objectid,
4310 d_type);
4312 skip:
4313 if (name_ptr != tmp_name)
4314 kfree(name_ptr);
4316 if (over)
4317 goto nopos;
4318 di_len = btrfs_dir_name_len(leaf, di) +
4319 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4320 di_cur += di_len;
4321 di = (struct btrfs_dir_item *)((char *)di + di_len);
4325 /* Reached end of directory/root. Bump pos past the last item. */
4326 if (key_type == BTRFS_DIR_INDEX_KEY)
4328 * 32-bit glibc will use getdents64, but then strtol -
4329 * so the last number we can serve is this.
4331 filp->f_pos = 0x7fffffff;
4332 else
4333 filp->f_pos++;
4334 nopos:
4335 ret = 0;
4336 err:
4337 btrfs_free_path(path);
4338 return ret;
4341 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4343 struct btrfs_root *root = BTRFS_I(inode)->root;
4344 struct btrfs_trans_handle *trans;
4345 int ret = 0;
4346 bool nolock = false;
4348 if (BTRFS_I(inode)->dummy_inode)
4349 return 0;
4351 smp_mb();
4352 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4354 if (wbc->sync_mode == WB_SYNC_ALL) {
4355 if (nolock)
4356 trans = btrfs_join_transaction_nolock(root, 1);
4357 else
4358 trans = btrfs_join_transaction(root, 1);
4359 if (IS_ERR(trans))
4360 return PTR_ERR(trans);
4361 btrfs_set_trans_block_group(trans, inode);
4362 if (nolock)
4363 ret = btrfs_end_transaction_nolock(trans, root);
4364 else
4365 ret = btrfs_commit_transaction(trans, root);
4367 return ret;
4371 * This is somewhat expensive, updating the tree every time the
4372 * inode changes. But, it is most likely to find the inode in cache.
4373 * FIXME, needs more benchmarking...there are no reasons other than performance
4374 * to keep or drop this code.
4376 void btrfs_dirty_inode(struct inode *inode)
4378 struct btrfs_root *root = BTRFS_I(inode)->root;
4379 struct btrfs_trans_handle *trans;
4380 int ret;
4382 if (BTRFS_I(inode)->dummy_inode)
4383 return;
4385 trans = btrfs_join_transaction(root, 1);
4386 BUG_ON(IS_ERR(trans));
4387 btrfs_set_trans_block_group(trans, inode);
4389 ret = btrfs_update_inode(trans, root, inode);
4390 if (ret && ret == -ENOSPC) {
4391 /* whoops, lets try again with the full transaction */
4392 btrfs_end_transaction(trans, root);
4393 trans = btrfs_start_transaction(root, 1);
4394 if (IS_ERR(trans)) {
4395 if (printk_ratelimit()) {
4396 printk(KERN_ERR "btrfs: fail to "
4397 "dirty inode %lu error %ld\n",
4398 inode->i_ino, PTR_ERR(trans));
4400 return;
4402 btrfs_set_trans_block_group(trans, inode);
4404 ret = btrfs_update_inode(trans, root, inode);
4405 if (ret) {
4406 if (printk_ratelimit()) {
4407 printk(KERN_ERR "btrfs: fail to "
4408 "dirty inode %lu error %d\n",
4409 inode->i_ino, ret);
4413 btrfs_end_transaction(trans, root);
4417 * find the highest existing sequence number in a directory
4418 * and then set the in-memory index_cnt variable to reflect
4419 * free sequence numbers
4421 static int btrfs_set_inode_index_count(struct inode *inode)
4423 struct btrfs_root *root = BTRFS_I(inode)->root;
4424 struct btrfs_key key, found_key;
4425 struct btrfs_path *path;
4426 struct extent_buffer *leaf;
4427 int ret;
4429 key.objectid = inode->i_ino;
4430 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4431 key.offset = (u64)-1;
4433 path = btrfs_alloc_path();
4434 if (!path)
4435 return -ENOMEM;
4437 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4438 if (ret < 0)
4439 goto out;
4440 /* FIXME: we should be able to handle this */
4441 if (ret == 0)
4442 goto out;
4443 ret = 0;
4446 * MAGIC NUMBER EXPLANATION:
4447 * since we search a directory based on f_pos we have to start at 2
4448 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4449 * else has to start at 2
4451 if (path->slots[0] == 0) {
4452 BTRFS_I(inode)->index_cnt = 2;
4453 goto out;
4456 path->slots[0]--;
4458 leaf = path->nodes[0];
4459 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4461 if (found_key.objectid != inode->i_ino ||
4462 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4463 BTRFS_I(inode)->index_cnt = 2;
4464 goto out;
4467 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4468 out:
4469 btrfs_free_path(path);
4470 return ret;
4474 * helper to find a free sequence number in a given directory. This current
4475 * code is very simple, later versions will do smarter things in the btree
4477 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4479 int ret = 0;
4481 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4482 ret = btrfs_set_inode_index_count(dir);
4483 if (ret)
4484 return ret;
4487 *index = BTRFS_I(dir)->index_cnt;
4488 BTRFS_I(dir)->index_cnt++;
4490 return ret;
4493 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4494 struct btrfs_root *root,
4495 struct inode *dir,
4496 const char *name, int name_len,
4497 u64 ref_objectid, u64 objectid,
4498 u64 alloc_hint, int mode, u64 *index)
4500 struct inode *inode;
4501 struct btrfs_inode_item *inode_item;
4502 struct btrfs_key *location;
4503 struct btrfs_path *path;
4504 struct btrfs_inode_ref *ref;
4505 struct btrfs_key key[2];
4506 u32 sizes[2];
4507 unsigned long ptr;
4508 int ret;
4509 int owner;
4511 path = btrfs_alloc_path();
4512 BUG_ON(!path);
4514 inode = new_inode(root->fs_info->sb);
4515 if (!inode)
4516 return ERR_PTR(-ENOMEM);
4518 if (dir) {
4519 ret = btrfs_set_inode_index(dir, index);
4520 if (ret) {
4521 iput(inode);
4522 return ERR_PTR(ret);
4526 * index_cnt is ignored for everything but a dir,
4527 * btrfs_get_inode_index_count has an explanation for the magic
4528 * number
4530 BTRFS_I(inode)->index_cnt = 2;
4531 BTRFS_I(inode)->root = root;
4532 BTRFS_I(inode)->generation = trans->transid;
4533 inode->i_generation = BTRFS_I(inode)->generation;
4534 btrfs_set_inode_space_info(root, inode);
4536 if (mode & S_IFDIR)
4537 owner = 0;
4538 else
4539 owner = 1;
4540 BTRFS_I(inode)->block_group =
4541 btrfs_find_block_group(root, 0, alloc_hint, owner);
4543 key[0].objectid = objectid;
4544 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4545 key[0].offset = 0;
4547 key[1].objectid = objectid;
4548 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4549 key[1].offset = ref_objectid;
4551 sizes[0] = sizeof(struct btrfs_inode_item);
4552 sizes[1] = name_len + sizeof(*ref);
4554 path->leave_spinning = 1;
4555 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4556 if (ret != 0)
4557 goto fail;
4559 inode_init_owner(inode, dir, mode);
4560 inode->i_ino = objectid;
4561 inode_set_bytes(inode, 0);
4562 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4563 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4564 struct btrfs_inode_item);
4565 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4567 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4568 struct btrfs_inode_ref);
4569 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4570 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4571 ptr = (unsigned long)(ref + 1);
4572 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4574 btrfs_mark_buffer_dirty(path->nodes[0]);
4575 btrfs_free_path(path);
4577 location = &BTRFS_I(inode)->location;
4578 location->objectid = objectid;
4579 location->offset = 0;
4580 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4582 btrfs_inherit_iflags(inode, dir);
4584 if ((mode & S_IFREG)) {
4585 if (btrfs_test_opt(root, NODATASUM))
4586 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4587 if (btrfs_test_opt(root, NODATACOW))
4588 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4591 insert_inode_hash(inode);
4592 inode_tree_add(inode);
4593 return inode;
4594 fail:
4595 if (dir)
4596 BTRFS_I(dir)->index_cnt--;
4597 btrfs_free_path(path);
4598 iput(inode);
4599 return ERR_PTR(ret);
4602 static inline u8 btrfs_inode_type(struct inode *inode)
4604 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4608 * utility function to add 'inode' into 'parent_inode' with
4609 * a give name and a given sequence number.
4610 * if 'add_backref' is true, also insert a backref from the
4611 * inode to the parent directory.
4613 int btrfs_add_link(struct btrfs_trans_handle *trans,
4614 struct inode *parent_inode, struct inode *inode,
4615 const char *name, int name_len, int add_backref, u64 index)
4617 int ret = 0;
4618 struct btrfs_key key;
4619 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4621 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4622 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4623 } else {
4624 key.objectid = inode->i_ino;
4625 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4626 key.offset = 0;
4629 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4630 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4631 key.objectid, root->root_key.objectid,
4632 parent_inode->i_ino,
4633 index, name, name_len);
4634 } else if (add_backref) {
4635 ret = btrfs_insert_inode_ref(trans, root,
4636 name, name_len, inode->i_ino,
4637 parent_inode->i_ino, index);
4640 if (ret == 0) {
4641 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4642 parent_inode->i_ino, &key,
4643 btrfs_inode_type(inode), index);
4644 BUG_ON(ret);
4646 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4647 name_len * 2);
4648 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4649 ret = btrfs_update_inode(trans, root, parent_inode);
4651 return ret;
4654 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4655 struct inode *dir, struct dentry *dentry,
4656 struct inode *inode, int backref, u64 index)
4658 int err = btrfs_add_link(trans, dir, inode,
4659 dentry->d_name.name, dentry->d_name.len,
4660 backref, index);
4661 if (!err) {
4662 d_instantiate(dentry, inode);
4663 return 0;
4665 if (err > 0)
4666 err = -EEXIST;
4667 return err;
4670 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4671 int mode, dev_t rdev)
4673 struct btrfs_trans_handle *trans;
4674 struct btrfs_root *root = BTRFS_I(dir)->root;
4675 struct inode *inode = NULL;
4676 int err;
4677 int drop_inode = 0;
4678 u64 objectid;
4679 unsigned long nr = 0;
4680 u64 index = 0;
4682 if (!new_valid_dev(rdev))
4683 return -EINVAL;
4685 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4686 if (err)
4687 return err;
4690 * 2 for inode item and ref
4691 * 2 for dir items
4692 * 1 for xattr if selinux is on
4694 trans = btrfs_start_transaction(root, 5);
4695 if (IS_ERR(trans))
4696 return PTR_ERR(trans);
4698 btrfs_set_trans_block_group(trans, dir);
4700 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4701 dentry->d_name.len, dir->i_ino, objectid,
4702 BTRFS_I(dir)->block_group, mode, &index);
4703 err = PTR_ERR(inode);
4704 if (IS_ERR(inode))
4705 goto out_unlock;
4707 err = btrfs_init_inode_security(trans, inode, dir);
4708 if (err) {
4709 drop_inode = 1;
4710 goto out_unlock;
4713 btrfs_set_trans_block_group(trans, inode);
4714 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4715 if (err)
4716 drop_inode = 1;
4717 else {
4718 inode->i_op = &btrfs_special_inode_operations;
4719 init_special_inode(inode, inode->i_mode, rdev);
4720 btrfs_update_inode(trans, root, inode);
4722 btrfs_update_inode_block_group(trans, inode);
4723 btrfs_update_inode_block_group(trans, dir);
4724 out_unlock:
4725 nr = trans->blocks_used;
4726 btrfs_end_transaction_throttle(trans, root);
4727 btrfs_btree_balance_dirty(root, nr);
4728 if (drop_inode) {
4729 inode_dec_link_count(inode);
4730 iput(inode);
4732 return err;
4735 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4736 int mode, struct nameidata *nd)
4738 struct btrfs_trans_handle *trans;
4739 struct btrfs_root *root = BTRFS_I(dir)->root;
4740 struct inode *inode = NULL;
4741 int drop_inode = 0;
4742 int err;
4743 unsigned long nr = 0;
4744 u64 objectid;
4745 u64 index = 0;
4747 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4748 if (err)
4749 return err;
4751 * 2 for inode item and ref
4752 * 2 for dir items
4753 * 1 for xattr if selinux is on
4755 trans = btrfs_start_transaction(root, 5);
4756 if (IS_ERR(trans))
4757 return PTR_ERR(trans);
4759 btrfs_set_trans_block_group(trans, dir);
4761 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4762 dentry->d_name.len, dir->i_ino, objectid,
4763 BTRFS_I(dir)->block_group, mode, &index);
4764 err = PTR_ERR(inode);
4765 if (IS_ERR(inode))
4766 goto out_unlock;
4768 err = btrfs_init_inode_security(trans, inode, dir);
4769 if (err) {
4770 drop_inode = 1;
4771 goto out_unlock;
4774 btrfs_set_trans_block_group(trans, inode);
4775 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4776 if (err)
4777 drop_inode = 1;
4778 else {
4779 inode->i_mapping->a_ops = &btrfs_aops;
4780 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4781 inode->i_fop = &btrfs_file_operations;
4782 inode->i_op = &btrfs_file_inode_operations;
4783 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4785 btrfs_update_inode_block_group(trans, inode);
4786 btrfs_update_inode_block_group(trans, dir);
4787 out_unlock:
4788 nr = trans->blocks_used;
4789 btrfs_end_transaction_throttle(trans, root);
4790 if (drop_inode) {
4791 inode_dec_link_count(inode);
4792 iput(inode);
4794 btrfs_btree_balance_dirty(root, nr);
4795 return err;
4798 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4799 struct dentry *dentry)
4801 struct btrfs_trans_handle *trans;
4802 struct btrfs_root *root = BTRFS_I(dir)->root;
4803 struct inode *inode = old_dentry->d_inode;
4804 u64 index;
4805 unsigned long nr = 0;
4806 int err;
4807 int drop_inode = 0;
4809 /* do not allow sys_link's with other subvols of the same device */
4810 if (root->objectid != BTRFS_I(inode)->root->objectid)
4811 return -EPERM;
4813 btrfs_inc_nlink(inode);
4814 inode->i_ctime = CURRENT_TIME;
4816 err = btrfs_set_inode_index(dir, &index);
4817 if (err)
4818 goto fail;
4821 * 2 items for inode and inode ref
4822 * 2 items for dir items
4823 * 1 item for parent inode
4825 trans = btrfs_start_transaction(root, 5);
4826 if (IS_ERR(trans)) {
4827 err = PTR_ERR(trans);
4828 goto fail;
4831 btrfs_set_trans_block_group(trans, dir);
4832 ihold(inode);
4834 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4836 if (err) {
4837 drop_inode = 1;
4838 } else {
4839 struct dentry *parent = dget_parent(dentry);
4840 btrfs_update_inode_block_group(trans, dir);
4841 err = btrfs_update_inode(trans, root, inode);
4842 BUG_ON(err);
4843 btrfs_log_new_name(trans, inode, NULL, parent);
4844 dput(parent);
4847 nr = trans->blocks_used;
4848 btrfs_end_transaction_throttle(trans, root);
4849 fail:
4850 if (drop_inode) {
4851 inode_dec_link_count(inode);
4852 iput(inode);
4854 btrfs_btree_balance_dirty(root, nr);
4855 return err;
4858 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4860 struct inode *inode = NULL;
4861 struct btrfs_trans_handle *trans;
4862 struct btrfs_root *root = BTRFS_I(dir)->root;
4863 int err = 0;
4864 int drop_on_err = 0;
4865 u64 objectid = 0;
4866 u64 index = 0;
4867 unsigned long nr = 1;
4869 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4870 if (err)
4871 return err;
4874 * 2 items for inode and ref
4875 * 2 items for dir items
4876 * 1 for xattr if selinux is on
4878 trans = btrfs_start_transaction(root, 5);
4879 if (IS_ERR(trans))
4880 return PTR_ERR(trans);
4881 btrfs_set_trans_block_group(trans, dir);
4883 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4884 dentry->d_name.len, dir->i_ino, objectid,
4885 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4886 &index);
4887 if (IS_ERR(inode)) {
4888 err = PTR_ERR(inode);
4889 goto out_fail;
4892 drop_on_err = 1;
4894 err = btrfs_init_inode_security(trans, inode, dir);
4895 if (err)
4896 goto out_fail;
4898 inode->i_op = &btrfs_dir_inode_operations;
4899 inode->i_fop = &btrfs_dir_file_operations;
4900 btrfs_set_trans_block_group(trans, inode);
4902 btrfs_i_size_write(inode, 0);
4903 err = btrfs_update_inode(trans, root, inode);
4904 if (err)
4905 goto out_fail;
4907 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4908 dentry->d_name.len, 0, index);
4909 if (err)
4910 goto out_fail;
4912 d_instantiate(dentry, inode);
4913 drop_on_err = 0;
4914 btrfs_update_inode_block_group(trans, inode);
4915 btrfs_update_inode_block_group(trans, dir);
4917 out_fail:
4918 nr = trans->blocks_used;
4919 btrfs_end_transaction_throttle(trans, root);
4920 if (drop_on_err)
4921 iput(inode);
4922 btrfs_btree_balance_dirty(root, nr);
4923 return err;
4926 /* helper for btfs_get_extent. Given an existing extent in the tree,
4927 * and an extent that you want to insert, deal with overlap and insert
4928 * the new extent into the tree.
4930 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4931 struct extent_map *existing,
4932 struct extent_map *em,
4933 u64 map_start, u64 map_len)
4935 u64 start_diff;
4937 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4938 start_diff = map_start - em->start;
4939 em->start = map_start;
4940 em->len = map_len;
4941 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4942 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4943 em->block_start += start_diff;
4944 em->block_len -= start_diff;
4946 return add_extent_mapping(em_tree, em);
4949 static noinline int uncompress_inline(struct btrfs_path *path,
4950 struct inode *inode, struct page *page,
4951 size_t pg_offset, u64 extent_offset,
4952 struct btrfs_file_extent_item *item)
4954 int ret;
4955 struct extent_buffer *leaf = path->nodes[0];
4956 char *tmp;
4957 size_t max_size;
4958 unsigned long inline_size;
4959 unsigned long ptr;
4960 int compress_type;
4962 WARN_ON(pg_offset != 0);
4963 compress_type = btrfs_file_extent_compression(leaf, item);
4964 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4965 inline_size = btrfs_file_extent_inline_item_len(leaf,
4966 btrfs_item_nr(leaf, path->slots[0]));
4967 tmp = kmalloc(inline_size, GFP_NOFS);
4968 ptr = btrfs_file_extent_inline_start(item);
4970 read_extent_buffer(leaf, tmp, ptr, inline_size);
4972 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4973 ret = btrfs_decompress(compress_type, tmp, page,
4974 extent_offset, inline_size, max_size);
4975 if (ret) {
4976 char *kaddr = kmap_atomic(page, KM_USER0);
4977 unsigned long copy_size = min_t(u64,
4978 PAGE_CACHE_SIZE - pg_offset,
4979 max_size - extent_offset);
4980 memset(kaddr + pg_offset, 0, copy_size);
4981 kunmap_atomic(kaddr, KM_USER0);
4983 kfree(tmp);
4984 return 0;
4988 * a bit scary, this does extent mapping from logical file offset to the disk.
4989 * the ugly parts come from merging extents from the disk with the in-ram
4990 * representation. This gets more complex because of the data=ordered code,
4991 * where the in-ram extents might be locked pending data=ordered completion.
4993 * This also copies inline extents directly into the page.
4996 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4997 size_t pg_offset, u64 start, u64 len,
4998 int create)
5000 int ret;
5001 int err = 0;
5002 u64 bytenr;
5003 u64 extent_start = 0;
5004 u64 extent_end = 0;
5005 u64 objectid = inode->i_ino;
5006 u32 found_type;
5007 struct btrfs_path *path = NULL;
5008 struct btrfs_root *root = BTRFS_I(inode)->root;
5009 struct btrfs_file_extent_item *item;
5010 struct extent_buffer *leaf;
5011 struct btrfs_key found_key;
5012 struct extent_map *em = NULL;
5013 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5014 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5015 struct btrfs_trans_handle *trans = NULL;
5016 int compress_type;
5018 again:
5019 read_lock(&em_tree->lock);
5020 em = lookup_extent_mapping(em_tree, start, len);
5021 if (em)
5022 em->bdev = root->fs_info->fs_devices->latest_bdev;
5023 read_unlock(&em_tree->lock);
5025 if (em) {
5026 if (em->start > start || em->start + em->len <= start)
5027 free_extent_map(em);
5028 else if (em->block_start == EXTENT_MAP_INLINE && page)
5029 free_extent_map(em);
5030 else
5031 goto out;
5033 em = alloc_extent_map(GFP_NOFS);
5034 if (!em) {
5035 err = -ENOMEM;
5036 goto out;
5038 em->bdev = root->fs_info->fs_devices->latest_bdev;
5039 em->start = EXTENT_MAP_HOLE;
5040 em->orig_start = EXTENT_MAP_HOLE;
5041 em->len = (u64)-1;
5042 em->block_len = (u64)-1;
5044 if (!path) {
5045 path = btrfs_alloc_path();
5046 BUG_ON(!path);
5049 ret = btrfs_lookup_file_extent(trans, root, path,
5050 objectid, start, trans != NULL);
5051 if (ret < 0) {
5052 err = ret;
5053 goto out;
5056 if (ret != 0) {
5057 if (path->slots[0] == 0)
5058 goto not_found;
5059 path->slots[0]--;
5062 leaf = path->nodes[0];
5063 item = btrfs_item_ptr(leaf, path->slots[0],
5064 struct btrfs_file_extent_item);
5065 /* are we inside the extent that was found? */
5066 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5067 found_type = btrfs_key_type(&found_key);
5068 if (found_key.objectid != objectid ||
5069 found_type != BTRFS_EXTENT_DATA_KEY) {
5070 goto not_found;
5073 found_type = btrfs_file_extent_type(leaf, item);
5074 extent_start = found_key.offset;
5075 compress_type = btrfs_file_extent_compression(leaf, item);
5076 if (found_type == BTRFS_FILE_EXTENT_REG ||
5077 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5078 extent_end = extent_start +
5079 btrfs_file_extent_num_bytes(leaf, item);
5080 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5081 size_t size;
5082 size = btrfs_file_extent_inline_len(leaf, item);
5083 extent_end = (extent_start + size + root->sectorsize - 1) &
5084 ~((u64)root->sectorsize - 1);
5087 if (start >= extent_end) {
5088 path->slots[0]++;
5089 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5090 ret = btrfs_next_leaf(root, path);
5091 if (ret < 0) {
5092 err = ret;
5093 goto out;
5095 if (ret > 0)
5096 goto not_found;
5097 leaf = path->nodes[0];
5099 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5100 if (found_key.objectid != objectid ||
5101 found_key.type != BTRFS_EXTENT_DATA_KEY)
5102 goto not_found;
5103 if (start + len <= found_key.offset)
5104 goto not_found;
5105 em->start = start;
5106 em->len = found_key.offset - start;
5107 goto not_found_em;
5110 if (found_type == BTRFS_FILE_EXTENT_REG ||
5111 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5112 em->start = extent_start;
5113 em->len = extent_end - extent_start;
5114 em->orig_start = extent_start -
5115 btrfs_file_extent_offset(leaf, item);
5116 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5117 if (bytenr == 0) {
5118 em->block_start = EXTENT_MAP_HOLE;
5119 goto insert;
5121 if (compress_type != BTRFS_COMPRESS_NONE) {
5122 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5123 em->compress_type = compress_type;
5124 em->block_start = bytenr;
5125 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5126 item);
5127 } else {
5128 bytenr += btrfs_file_extent_offset(leaf, item);
5129 em->block_start = bytenr;
5130 em->block_len = em->len;
5131 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5132 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5134 goto insert;
5135 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5136 unsigned long ptr;
5137 char *map;
5138 size_t size;
5139 size_t extent_offset;
5140 size_t copy_size;
5142 em->block_start = EXTENT_MAP_INLINE;
5143 if (!page || create) {
5144 em->start = extent_start;
5145 em->len = extent_end - extent_start;
5146 goto out;
5149 size = btrfs_file_extent_inline_len(leaf, item);
5150 extent_offset = page_offset(page) + pg_offset - extent_start;
5151 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5152 size - extent_offset);
5153 em->start = extent_start + extent_offset;
5154 em->len = (copy_size + root->sectorsize - 1) &
5155 ~((u64)root->sectorsize - 1);
5156 em->orig_start = EXTENT_MAP_INLINE;
5157 if (compress_type) {
5158 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5159 em->compress_type = compress_type;
5161 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5162 if (create == 0 && !PageUptodate(page)) {
5163 if (btrfs_file_extent_compression(leaf, item) !=
5164 BTRFS_COMPRESS_NONE) {
5165 ret = uncompress_inline(path, inode, page,
5166 pg_offset,
5167 extent_offset, item);
5168 BUG_ON(ret);
5169 } else {
5170 map = kmap(page);
5171 read_extent_buffer(leaf, map + pg_offset, ptr,
5172 copy_size);
5173 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5174 memset(map + pg_offset + copy_size, 0,
5175 PAGE_CACHE_SIZE - pg_offset -
5176 copy_size);
5178 kunmap(page);
5180 flush_dcache_page(page);
5181 } else if (create && PageUptodate(page)) {
5182 WARN_ON(1);
5183 if (!trans) {
5184 kunmap(page);
5185 free_extent_map(em);
5186 em = NULL;
5187 btrfs_release_path(root, path);
5188 trans = btrfs_join_transaction(root, 1);
5189 if (IS_ERR(trans))
5190 return ERR_CAST(trans);
5191 goto again;
5193 map = kmap(page);
5194 write_extent_buffer(leaf, map + pg_offset, ptr,
5195 copy_size);
5196 kunmap(page);
5197 btrfs_mark_buffer_dirty(leaf);
5199 set_extent_uptodate(io_tree, em->start,
5200 extent_map_end(em) - 1, GFP_NOFS);
5201 goto insert;
5202 } else {
5203 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5204 WARN_ON(1);
5206 not_found:
5207 em->start = start;
5208 em->len = len;
5209 not_found_em:
5210 em->block_start = EXTENT_MAP_HOLE;
5211 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5212 insert:
5213 btrfs_release_path(root, path);
5214 if (em->start > start || extent_map_end(em) <= start) {
5215 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5216 "[%llu %llu]\n", (unsigned long long)em->start,
5217 (unsigned long long)em->len,
5218 (unsigned long long)start,
5219 (unsigned long long)len);
5220 err = -EIO;
5221 goto out;
5224 err = 0;
5225 write_lock(&em_tree->lock);
5226 ret = add_extent_mapping(em_tree, em);
5227 /* it is possible that someone inserted the extent into the tree
5228 * while we had the lock dropped. It is also possible that
5229 * an overlapping map exists in the tree
5231 if (ret == -EEXIST) {
5232 struct extent_map *existing;
5234 ret = 0;
5236 existing = lookup_extent_mapping(em_tree, start, len);
5237 if (existing && (existing->start > start ||
5238 existing->start + existing->len <= start)) {
5239 free_extent_map(existing);
5240 existing = NULL;
5242 if (!existing) {
5243 existing = lookup_extent_mapping(em_tree, em->start,
5244 em->len);
5245 if (existing) {
5246 err = merge_extent_mapping(em_tree, existing,
5247 em, start,
5248 root->sectorsize);
5249 free_extent_map(existing);
5250 if (err) {
5251 free_extent_map(em);
5252 em = NULL;
5254 } else {
5255 err = -EIO;
5256 free_extent_map(em);
5257 em = NULL;
5259 } else {
5260 free_extent_map(em);
5261 em = existing;
5262 err = 0;
5265 write_unlock(&em_tree->lock);
5266 out:
5267 if (path)
5268 btrfs_free_path(path);
5269 if (trans) {
5270 ret = btrfs_end_transaction(trans, root);
5271 if (!err)
5272 err = ret;
5274 if (err) {
5275 free_extent_map(em);
5276 return ERR_PTR(err);
5278 return em;
5281 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5282 size_t pg_offset, u64 start, u64 len,
5283 int create)
5285 struct extent_map *em;
5286 struct extent_map *hole_em = NULL;
5287 u64 range_start = start;
5288 u64 end;
5289 u64 found;
5290 u64 found_end;
5291 int err = 0;
5293 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5294 if (IS_ERR(em))
5295 return em;
5296 if (em) {
5298 * if our em maps to a hole, there might
5299 * actually be delalloc bytes behind it
5301 if (em->block_start != EXTENT_MAP_HOLE)
5302 return em;
5303 else
5304 hole_em = em;
5307 /* check to see if we've wrapped (len == -1 or similar) */
5308 end = start + len;
5309 if (end < start)
5310 end = (u64)-1;
5311 else
5312 end -= 1;
5314 em = NULL;
5316 /* ok, we didn't find anything, lets look for delalloc */
5317 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5318 end, len, EXTENT_DELALLOC, 1);
5319 found_end = range_start + found;
5320 if (found_end < range_start)
5321 found_end = (u64)-1;
5324 * we didn't find anything useful, return
5325 * the original results from get_extent()
5327 if (range_start > end || found_end <= start) {
5328 em = hole_em;
5329 hole_em = NULL;
5330 goto out;
5333 /* adjust the range_start to make sure it doesn't
5334 * go backwards from the start they passed in
5336 range_start = max(start,range_start);
5337 found = found_end - range_start;
5339 if (found > 0) {
5340 u64 hole_start = start;
5341 u64 hole_len = len;
5343 em = alloc_extent_map(GFP_NOFS);
5344 if (!em) {
5345 err = -ENOMEM;
5346 goto out;
5349 * when btrfs_get_extent can't find anything it
5350 * returns one huge hole
5352 * make sure what it found really fits our range, and
5353 * adjust to make sure it is based on the start from
5354 * the caller
5356 if (hole_em) {
5357 u64 calc_end = extent_map_end(hole_em);
5359 if (calc_end <= start || (hole_em->start > end)) {
5360 free_extent_map(hole_em);
5361 hole_em = NULL;
5362 } else {
5363 hole_start = max(hole_em->start, start);
5364 hole_len = calc_end - hole_start;
5367 em->bdev = NULL;
5368 if (hole_em && range_start > hole_start) {
5369 /* our hole starts before our delalloc, so we
5370 * have to return just the parts of the hole
5371 * that go until the delalloc starts
5373 em->len = min(hole_len,
5374 range_start - hole_start);
5375 em->start = hole_start;
5376 em->orig_start = hole_start;
5378 * don't adjust block start at all,
5379 * it is fixed at EXTENT_MAP_HOLE
5381 em->block_start = hole_em->block_start;
5382 em->block_len = hole_len;
5383 } else {
5384 em->start = range_start;
5385 em->len = found;
5386 em->orig_start = range_start;
5387 em->block_start = EXTENT_MAP_DELALLOC;
5388 em->block_len = found;
5390 } else if (hole_em) {
5391 return hole_em;
5393 out:
5395 free_extent_map(hole_em);
5396 if (err) {
5397 free_extent_map(em);
5398 return ERR_PTR(err);
5400 return em;
5403 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5404 u64 start, u64 len)
5406 struct btrfs_root *root = BTRFS_I(inode)->root;
5407 struct btrfs_trans_handle *trans;
5408 struct extent_map *em;
5409 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5410 struct btrfs_key ins;
5411 u64 alloc_hint;
5412 int ret;
5414 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5416 trans = btrfs_join_transaction(root, 0);
5417 if (IS_ERR(trans))
5418 return ERR_CAST(trans);
5420 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5422 alloc_hint = get_extent_allocation_hint(inode, start, len);
5423 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5424 alloc_hint, (u64)-1, &ins, 1);
5425 if (ret) {
5426 em = ERR_PTR(ret);
5427 goto out;
5430 em = alloc_extent_map(GFP_NOFS);
5431 if (!em) {
5432 em = ERR_PTR(-ENOMEM);
5433 goto out;
5436 em->start = start;
5437 em->orig_start = em->start;
5438 em->len = ins.offset;
5440 em->block_start = ins.objectid;
5441 em->block_len = ins.offset;
5442 em->bdev = root->fs_info->fs_devices->latest_bdev;
5443 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5445 while (1) {
5446 write_lock(&em_tree->lock);
5447 ret = add_extent_mapping(em_tree, em);
5448 write_unlock(&em_tree->lock);
5449 if (ret != -EEXIST)
5450 break;
5451 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5454 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5455 ins.offset, ins.offset, 0);
5456 if (ret) {
5457 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5458 em = ERR_PTR(ret);
5460 out:
5461 btrfs_end_transaction(trans, root);
5462 return em;
5466 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5467 * block must be cow'd
5469 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5470 struct inode *inode, u64 offset, u64 len)
5472 struct btrfs_path *path;
5473 int ret;
5474 struct extent_buffer *leaf;
5475 struct btrfs_root *root = BTRFS_I(inode)->root;
5476 struct btrfs_file_extent_item *fi;
5477 struct btrfs_key key;
5478 u64 disk_bytenr;
5479 u64 backref_offset;
5480 u64 extent_end;
5481 u64 num_bytes;
5482 int slot;
5483 int found_type;
5485 path = btrfs_alloc_path();
5486 if (!path)
5487 return -ENOMEM;
5489 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5490 offset, 0);
5491 if (ret < 0)
5492 goto out;
5494 slot = path->slots[0];
5495 if (ret == 1) {
5496 if (slot == 0) {
5497 /* can't find the item, must cow */
5498 ret = 0;
5499 goto out;
5501 slot--;
5503 ret = 0;
5504 leaf = path->nodes[0];
5505 btrfs_item_key_to_cpu(leaf, &key, slot);
5506 if (key.objectid != inode->i_ino ||
5507 key.type != BTRFS_EXTENT_DATA_KEY) {
5508 /* not our file or wrong item type, must cow */
5509 goto out;
5512 if (key.offset > offset) {
5513 /* Wrong offset, must cow */
5514 goto out;
5517 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5518 found_type = btrfs_file_extent_type(leaf, fi);
5519 if (found_type != BTRFS_FILE_EXTENT_REG &&
5520 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5521 /* not a regular extent, must cow */
5522 goto out;
5524 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5525 backref_offset = btrfs_file_extent_offset(leaf, fi);
5527 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5528 if (extent_end < offset + len) {
5529 /* extent doesn't include our full range, must cow */
5530 goto out;
5533 if (btrfs_extent_readonly(root, disk_bytenr))
5534 goto out;
5537 * look for other files referencing this extent, if we
5538 * find any we must cow
5540 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5541 key.offset - backref_offset, disk_bytenr))
5542 goto out;
5545 * adjust disk_bytenr and num_bytes to cover just the bytes
5546 * in this extent we are about to write. If there
5547 * are any csums in that range we have to cow in order
5548 * to keep the csums correct
5550 disk_bytenr += backref_offset;
5551 disk_bytenr += offset - key.offset;
5552 num_bytes = min(offset + len, extent_end) - offset;
5553 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5554 goto out;
5556 * all of the above have passed, it is safe to overwrite this extent
5557 * without cow
5559 ret = 1;
5560 out:
5561 btrfs_free_path(path);
5562 return ret;
5565 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5566 struct buffer_head *bh_result, int create)
5568 struct extent_map *em;
5569 struct btrfs_root *root = BTRFS_I(inode)->root;
5570 u64 start = iblock << inode->i_blkbits;
5571 u64 len = bh_result->b_size;
5572 struct btrfs_trans_handle *trans;
5574 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5575 if (IS_ERR(em))
5576 return PTR_ERR(em);
5579 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5580 * io. INLINE is special, and we could probably kludge it in here, but
5581 * it's still buffered so for safety lets just fall back to the generic
5582 * buffered path.
5584 * For COMPRESSED we _have_ to read the entire extent in so we can
5585 * decompress it, so there will be buffering required no matter what we
5586 * do, so go ahead and fallback to buffered.
5588 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5589 * to buffered IO. Don't blame me, this is the price we pay for using
5590 * the generic code.
5592 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5593 em->block_start == EXTENT_MAP_INLINE) {
5594 free_extent_map(em);
5595 return -ENOTBLK;
5598 /* Just a good old fashioned hole, return */
5599 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5600 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5601 free_extent_map(em);
5602 /* DIO will do one hole at a time, so just unlock a sector */
5603 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5604 start + root->sectorsize - 1, GFP_NOFS);
5605 return 0;
5609 * We don't allocate a new extent in the following cases
5611 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5612 * existing extent.
5613 * 2) The extent is marked as PREALLOC. We're good to go here and can
5614 * just use the extent.
5617 if (!create) {
5618 len = em->len - (start - em->start);
5619 goto map;
5622 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5623 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5624 em->block_start != EXTENT_MAP_HOLE)) {
5625 int type;
5626 int ret;
5627 u64 block_start;
5629 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5630 type = BTRFS_ORDERED_PREALLOC;
5631 else
5632 type = BTRFS_ORDERED_NOCOW;
5633 len = min(len, em->len - (start - em->start));
5634 block_start = em->block_start + (start - em->start);
5637 * we're not going to log anything, but we do need
5638 * to make sure the current transaction stays open
5639 * while we look for nocow cross refs
5641 trans = btrfs_join_transaction(root, 0);
5642 if (IS_ERR(trans))
5643 goto must_cow;
5645 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5646 ret = btrfs_add_ordered_extent_dio(inode, start,
5647 block_start, len, len, type);
5648 btrfs_end_transaction(trans, root);
5649 if (ret) {
5650 free_extent_map(em);
5651 return ret;
5653 goto unlock;
5655 btrfs_end_transaction(trans, root);
5657 must_cow:
5659 * this will cow the extent, reset the len in case we changed
5660 * it above
5662 len = bh_result->b_size;
5663 free_extent_map(em);
5664 em = btrfs_new_extent_direct(inode, start, len);
5665 if (IS_ERR(em))
5666 return PTR_ERR(em);
5667 len = min(len, em->len - (start - em->start));
5668 unlock:
5669 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5670 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5671 0, NULL, GFP_NOFS);
5672 map:
5673 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5674 inode->i_blkbits;
5675 bh_result->b_size = len;
5676 bh_result->b_bdev = em->bdev;
5677 set_buffer_mapped(bh_result);
5678 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5679 set_buffer_new(bh_result);
5681 free_extent_map(em);
5683 return 0;
5686 struct btrfs_dio_private {
5687 struct inode *inode;
5688 u64 logical_offset;
5689 u64 disk_bytenr;
5690 u64 bytes;
5691 u32 *csums;
5692 void *private;
5694 /* number of bios pending for this dio */
5695 atomic_t pending_bios;
5697 /* IO errors */
5698 int errors;
5700 struct bio *orig_bio;
5703 static void btrfs_endio_direct_read(struct bio *bio, int err)
5705 struct btrfs_dio_private *dip = bio->bi_private;
5706 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5707 struct bio_vec *bvec = bio->bi_io_vec;
5708 struct inode *inode = dip->inode;
5709 struct btrfs_root *root = BTRFS_I(inode)->root;
5710 u64 start;
5711 u32 *private = dip->csums;
5713 start = dip->logical_offset;
5714 do {
5715 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5716 struct page *page = bvec->bv_page;
5717 char *kaddr;
5718 u32 csum = ~(u32)0;
5719 unsigned long flags;
5721 local_irq_save(flags);
5722 kaddr = kmap_atomic(page, KM_IRQ0);
5723 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5724 csum, bvec->bv_len);
5725 btrfs_csum_final(csum, (char *)&csum);
5726 kunmap_atomic(kaddr, KM_IRQ0);
5727 local_irq_restore(flags);
5729 flush_dcache_page(bvec->bv_page);
5730 if (csum != *private) {
5731 printk(KERN_ERR "btrfs csum failed ino %lu off"
5732 " %llu csum %u private %u\n",
5733 inode->i_ino, (unsigned long long)start,
5734 csum, *private);
5735 err = -EIO;
5739 start += bvec->bv_len;
5740 private++;
5741 bvec++;
5742 } while (bvec <= bvec_end);
5744 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5745 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5746 bio->bi_private = dip->private;
5748 kfree(dip->csums);
5749 kfree(dip);
5750 dio_end_io(bio, err);
5753 static void btrfs_endio_direct_write(struct bio *bio, int err)
5755 struct btrfs_dio_private *dip = bio->bi_private;
5756 struct inode *inode = dip->inode;
5757 struct btrfs_root *root = BTRFS_I(inode)->root;
5758 struct btrfs_trans_handle *trans;
5759 struct btrfs_ordered_extent *ordered = NULL;
5760 struct extent_state *cached_state = NULL;
5761 u64 ordered_offset = dip->logical_offset;
5762 u64 ordered_bytes = dip->bytes;
5763 int ret;
5765 if (err)
5766 goto out_done;
5767 again:
5768 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5769 &ordered_offset,
5770 ordered_bytes);
5771 if (!ret)
5772 goto out_test;
5774 BUG_ON(!ordered);
5776 trans = btrfs_join_transaction(root, 1);
5777 if (IS_ERR(trans)) {
5778 err = -ENOMEM;
5779 goto out;
5781 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5783 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5784 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5785 if (!ret)
5786 ret = btrfs_update_inode(trans, root, inode);
5787 err = ret;
5788 goto out;
5791 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5792 ordered->file_offset + ordered->len - 1, 0,
5793 &cached_state, GFP_NOFS);
5795 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5796 ret = btrfs_mark_extent_written(trans, inode,
5797 ordered->file_offset,
5798 ordered->file_offset +
5799 ordered->len);
5800 if (ret) {
5801 err = ret;
5802 goto out_unlock;
5804 } else {
5805 ret = insert_reserved_file_extent(trans, inode,
5806 ordered->file_offset,
5807 ordered->start,
5808 ordered->disk_len,
5809 ordered->len,
5810 ordered->len,
5811 0, 0, 0,
5812 BTRFS_FILE_EXTENT_REG);
5813 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5814 ordered->file_offset, ordered->len);
5815 if (ret) {
5816 err = ret;
5817 WARN_ON(1);
5818 goto out_unlock;
5822 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5823 btrfs_ordered_update_i_size(inode, 0, ordered);
5824 btrfs_update_inode(trans, root, inode);
5825 out_unlock:
5826 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5827 ordered->file_offset + ordered->len - 1,
5828 &cached_state, GFP_NOFS);
5829 out:
5830 btrfs_delalloc_release_metadata(inode, ordered->len);
5831 btrfs_end_transaction(trans, root);
5832 ordered_offset = ordered->file_offset + ordered->len;
5833 btrfs_put_ordered_extent(ordered);
5834 btrfs_put_ordered_extent(ordered);
5836 out_test:
5838 * our bio might span multiple ordered extents. If we haven't
5839 * completed the accounting for the whole dio, go back and try again
5841 if (ordered_offset < dip->logical_offset + dip->bytes) {
5842 ordered_bytes = dip->logical_offset + dip->bytes -
5843 ordered_offset;
5844 goto again;
5846 out_done:
5847 bio->bi_private = dip->private;
5849 kfree(dip->csums);
5850 kfree(dip);
5851 dio_end_io(bio, err);
5854 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5855 struct bio *bio, int mirror_num,
5856 unsigned long bio_flags, u64 offset)
5858 int ret;
5859 struct btrfs_root *root = BTRFS_I(inode)->root;
5860 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5861 BUG_ON(ret);
5862 return 0;
5865 static void btrfs_end_dio_bio(struct bio *bio, int err)
5867 struct btrfs_dio_private *dip = bio->bi_private;
5869 if (err) {
5870 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5871 "sector %#Lx len %u err no %d\n",
5872 dip->inode->i_ino, bio->bi_rw,
5873 (unsigned long long)bio->bi_sector, bio->bi_size, err);
5874 dip->errors = 1;
5877 * before atomic variable goto zero, we must make sure
5878 * dip->errors is perceived to be set.
5880 smp_mb__before_atomic_dec();
5883 /* if there are more bios still pending for this dio, just exit */
5884 if (!atomic_dec_and_test(&dip->pending_bios))
5885 goto out;
5887 if (dip->errors)
5888 bio_io_error(dip->orig_bio);
5889 else {
5890 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5891 bio_endio(dip->orig_bio, 0);
5893 out:
5894 bio_put(bio);
5897 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5898 u64 first_sector, gfp_t gfp_flags)
5900 int nr_vecs = bio_get_nr_vecs(bdev);
5901 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5904 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5905 int rw, u64 file_offset, int skip_sum,
5906 u32 *csums)
5908 int write = rw & REQ_WRITE;
5909 struct btrfs_root *root = BTRFS_I(inode)->root;
5910 int ret;
5912 bio_get(bio);
5913 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5914 if (ret)
5915 goto err;
5917 if (write && !skip_sum) {
5918 ret = btrfs_wq_submit_bio(root->fs_info,
5919 inode, rw, bio, 0, 0,
5920 file_offset,
5921 __btrfs_submit_bio_start_direct_io,
5922 __btrfs_submit_bio_done);
5923 goto err;
5924 } else if (!skip_sum)
5925 btrfs_lookup_bio_sums_dio(root, inode, bio,
5926 file_offset, csums);
5928 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5929 err:
5930 bio_put(bio);
5931 return ret;
5934 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5935 int skip_sum)
5937 struct inode *inode = dip->inode;
5938 struct btrfs_root *root = BTRFS_I(inode)->root;
5939 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5940 struct bio *bio;
5941 struct bio *orig_bio = dip->orig_bio;
5942 struct bio_vec *bvec = orig_bio->bi_io_vec;
5943 u64 start_sector = orig_bio->bi_sector;
5944 u64 file_offset = dip->logical_offset;
5945 u64 submit_len = 0;
5946 u64 map_length;
5947 int nr_pages = 0;
5948 u32 *csums = dip->csums;
5949 int ret = 0;
5951 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5952 if (!bio)
5953 return -ENOMEM;
5954 bio->bi_private = dip;
5955 bio->bi_end_io = btrfs_end_dio_bio;
5956 atomic_inc(&dip->pending_bios);
5958 map_length = orig_bio->bi_size;
5959 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5960 &map_length, NULL, 0);
5961 if (ret) {
5962 bio_put(bio);
5963 return -EIO;
5966 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5967 if (unlikely(map_length < submit_len + bvec->bv_len ||
5968 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5969 bvec->bv_offset) < bvec->bv_len)) {
5971 * inc the count before we submit the bio so
5972 * we know the end IO handler won't happen before
5973 * we inc the count. Otherwise, the dip might get freed
5974 * before we're done setting it up
5976 atomic_inc(&dip->pending_bios);
5977 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5978 file_offset, skip_sum,
5979 csums);
5980 if (ret) {
5981 bio_put(bio);
5982 atomic_dec(&dip->pending_bios);
5983 goto out_err;
5986 if (!skip_sum)
5987 csums = csums + nr_pages;
5988 start_sector += submit_len >> 9;
5989 file_offset += submit_len;
5991 submit_len = 0;
5992 nr_pages = 0;
5994 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5995 start_sector, GFP_NOFS);
5996 if (!bio)
5997 goto out_err;
5998 bio->bi_private = dip;
5999 bio->bi_end_io = btrfs_end_dio_bio;
6001 map_length = orig_bio->bi_size;
6002 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6003 &map_length, NULL, 0);
6004 if (ret) {
6005 bio_put(bio);
6006 goto out_err;
6008 } else {
6009 submit_len += bvec->bv_len;
6010 nr_pages ++;
6011 bvec++;
6015 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6016 csums);
6017 if (!ret)
6018 return 0;
6020 bio_put(bio);
6021 out_err:
6022 dip->errors = 1;
6024 * before atomic variable goto zero, we must
6025 * make sure dip->errors is perceived to be set.
6027 smp_mb__before_atomic_dec();
6028 if (atomic_dec_and_test(&dip->pending_bios))
6029 bio_io_error(dip->orig_bio);
6031 /* bio_end_io() will handle error, so we needn't return it */
6032 return 0;
6035 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6036 loff_t file_offset)
6038 struct btrfs_root *root = BTRFS_I(inode)->root;
6039 struct btrfs_dio_private *dip;
6040 struct bio_vec *bvec = bio->bi_io_vec;
6041 int skip_sum;
6042 int write = rw & REQ_WRITE;
6043 int ret = 0;
6045 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6047 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6048 if (!dip) {
6049 ret = -ENOMEM;
6050 goto free_ordered;
6052 dip->csums = NULL;
6054 if (!skip_sum) {
6055 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6056 if (!dip->csums) {
6057 kfree(dip);
6058 ret = -ENOMEM;
6059 goto free_ordered;
6063 dip->private = bio->bi_private;
6064 dip->inode = inode;
6065 dip->logical_offset = file_offset;
6067 dip->bytes = 0;
6068 do {
6069 dip->bytes += bvec->bv_len;
6070 bvec++;
6071 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6073 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6074 bio->bi_private = dip;
6075 dip->errors = 0;
6076 dip->orig_bio = bio;
6077 atomic_set(&dip->pending_bios, 0);
6079 if (write)
6080 bio->bi_end_io = btrfs_endio_direct_write;
6081 else
6082 bio->bi_end_io = btrfs_endio_direct_read;
6084 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6085 if (!ret)
6086 return;
6087 free_ordered:
6089 * If this is a write, we need to clean up the reserved space and kill
6090 * the ordered extent.
6092 if (write) {
6093 struct btrfs_ordered_extent *ordered;
6094 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6095 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6096 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6097 btrfs_free_reserved_extent(root, ordered->start,
6098 ordered->disk_len);
6099 btrfs_put_ordered_extent(ordered);
6100 btrfs_put_ordered_extent(ordered);
6102 bio_endio(bio, ret);
6105 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6106 const struct iovec *iov, loff_t offset,
6107 unsigned long nr_segs)
6109 int seg;
6110 size_t size;
6111 unsigned long addr;
6112 unsigned blocksize_mask = root->sectorsize - 1;
6113 ssize_t retval = -EINVAL;
6114 loff_t end = offset;
6116 if (offset & blocksize_mask)
6117 goto out;
6119 /* Check the memory alignment. Blocks cannot straddle pages */
6120 for (seg = 0; seg < nr_segs; seg++) {
6121 addr = (unsigned long)iov[seg].iov_base;
6122 size = iov[seg].iov_len;
6123 end += size;
6124 if ((addr & blocksize_mask) || (size & blocksize_mask))
6125 goto out;
6127 retval = 0;
6128 out:
6129 return retval;
6131 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6132 const struct iovec *iov, loff_t offset,
6133 unsigned long nr_segs)
6135 struct file *file = iocb->ki_filp;
6136 struct inode *inode = file->f_mapping->host;
6137 struct btrfs_ordered_extent *ordered;
6138 struct extent_state *cached_state = NULL;
6139 u64 lockstart, lockend;
6140 ssize_t ret;
6141 int writing = rw & WRITE;
6142 int write_bits = 0;
6143 size_t count = iov_length(iov, nr_segs);
6145 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6146 offset, nr_segs)) {
6147 return 0;
6150 lockstart = offset;
6151 lockend = offset + count - 1;
6153 if (writing) {
6154 ret = btrfs_delalloc_reserve_space(inode, count);
6155 if (ret)
6156 goto out;
6159 while (1) {
6160 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6161 0, &cached_state, GFP_NOFS);
6163 * We're concerned with the entire range that we're going to be
6164 * doing DIO to, so we need to make sure theres no ordered
6165 * extents in this range.
6167 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6168 lockend - lockstart + 1);
6169 if (!ordered)
6170 break;
6171 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6172 &cached_state, GFP_NOFS);
6173 btrfs_start_ordered_extent(inode, ordered, 1);
6174 btrfs_put_ordered_extent(ordered);
6175 cond_resched();
6179 * we don't use btrfs_set_extent_delalloc because we don't want
6180 * the dirty or uptodate bits
6182 if (writing) {
6183 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6184 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6185 EXTENT_DELALLOC, 0, NULL, &cached_state,
6186 GFP_NOFS);
6187 if (ret) {
6188 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6189 lockend, EXTENT_LOCKED | write_bits,
6190 1, 0, &cached_state, GFP_NOFS);
6191 goto out;
6195 free_extent_state(cached_state);
6196 cached_state = NULL;
6198 ret = __blockdev_direct_IO(rw, iocb, inode,
6199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6200 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6201 btrfs_submit_direct, 0);
6203 if (ret < 0 && ret != -EIOCBQUEUED) {
6204 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6205 offset + iov_length(iov, nr_segs) - 1,
6206 EXTENT_LOCKED | write_bits, 1, 0,
6207 &cached_state, GFP_NOFS);
6208 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6210 * We're falling back to buffered, unlock the section we didn't
6211 * do IO on.
6213 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6214 offset + iov_length(iov, nr_segs) - 1,
6215 EXTENT_LOCKED | write_bits, 1, 0,
6216 &cached_state, GFP_NOFS);
6218 out:
6219 free_extent_state(cached_state);
6220 return ret;
6223 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6224 __u64 start, __u64 len)
6226 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6229 int btrfs_readpage(struct file *file, struct page *page)
6231 struct extent_io_tree *tree;
6232 tree = &BTRFS_I(page->mapping->host)->io_tree;
6233 return extent_read_full_page(tree, page, btrfs_get_extent);
6236 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6238 struct extent_io_tree *tree;
6241 if (current->flags & PF_MEMALLOC) {
6242 redirty_page_for_writepage(wbc, page);
6243 unlock_page(page);
6244 return 0;
6246 tree = &BTRFS_I(page->mapping->host)->io_tree;
6247 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6250 int btrfs_writepages(struct address_space *mapping,
6251 struct writeback_control *wbc)
6253 struct extent_io_tree *tree;
6255 tree = &BTRFS_I(mapping->host)->io_tree;
6256 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6259 static int
6260 btrfs_readpages(struct file *file, struct address_space *mapping,
6261 struct list_head *pages, unsigned nr_pages)
6263 struct extent_io_tree *tree;
6264 tree = &BTRFS_I(mapping->host)->io_tree;
6265 return extent_readpages(tree, mapping, pages, nr_pages,
6266 btrfs_get_extent);
6268 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6270 struct extent_io_tree *tree;
6271 struct extent_map_tree *map;
6272 int ret;
6274 tree = &BTRFS_I(page->mapping->host)->io_tree;
6275 map = &BTRFS_I(page->mapping->host)->extent_tree;
6276 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6277 if (ret == 1) {
6278 ClearPagePrivate(page);
6279 set_page_private(page, 0);
6280 page_cache_release(page);
6282 return ret;
6285 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6287 if (PageWriteback(page) || PageDirty(page))
6288 return 0;
6289 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6292 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6294 struct extent_io_tree *tree;
6295 struct btrfs_ordered_extent *ordered;
6296 struct extent_state *cached_state = NULL;
6297 u64 page_start = page_offset(page);
6298 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6302 * we have the page locked, so new writeback can't start,
6303 * and the dirty bit won't be cleared while we are here.
6305 * Wait for IO on this page so that we can safely clear
6306 * the PagePrivate2 bit and do ordered accounting
6308 wait_on_page_writeback(page);
6310 tree = &BTRFS_I(page->mapping->host)->io_tree;
6311 if (offset) {
6312 btrfs_releasepage(page, GFP_NOFS);
6313 return;
6315 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6316 GFP_NOFS);
6317 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6318 page_offset(page));
6319 if (ordered) {
6321 * IO on this page will never be started, so we need
6322 * to account for any ordered extents now
6324 clear_extent_bit(tree, page_start, page_end,
6325 EXTENT_DIRTY | EXTENT_DELALLOC |
6326 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6327 &cached_state, GFP_NOFS);
6329 * whoever cleared the private bit is responsible
6330 * for the finish_ordered_io
6332 if (TestClearPagePrivate2(page)) {
6333 btrfs_finish_ordered_io(page->mapping->host,
6334 page_start, page_end);
6336 btrfs_put_ordered_extent(ordered);
6337 cached_state = NULL;
6338 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6339 GFP_NOFS);
6341 clear_extent_bit(tree, page_start, page_end,
6342 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6343 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6344 __btrfs_releasepage(page, GFP_NOFS);
6346 ClearPageChecked(page);
6347 if (PagePrivate(page)) {
6348 ClearPagePrivate(page);
6349 set_page_private(page, 0);
6350 page_cache_release(page);
6355 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6356 * called from a page fault handler when a page is first dirtied. Hence we must
6357 * be careful to check for EOF conditions here. We set the page up correctly
6358 * for a written page which means we get ENOSPC checking when writing into
6359 * holes and correct delalloc and unwritten extent mapping on filesystems that
6360 * support these features.
6362 * We are not allowed to take the i_mutex here so we have to play games to
6363 * protect against truncate races as the page could now be beyond EOF. Because
6364 * vmtruncate() writes the inode size before removing pages, once we have the
6365 * page lock we can determine safely if the page is beyond EOF. If it is not
6366 * beyond EOF, then the page is guaranteed safe against truncation until we
6367 * unlock the page.
6369 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6371 struct page *page = vmf->page;
6372 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6373 struct btrfs_root *root = BTRFS_I(inode)->root;
6374 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6375 struct btrfs_ordered_extent *ordered;
6376 struct extent_state *cached_state = NULL;
6377 char *kaddr;
6378 unsigned long zero_start;
6379 loff_t size;
6380 int ret;
6381 u64 page_start;
6382 u64 page_end;
6384 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6385 if (ret) {
6386 if (ret == -ENOMEM)
6387 ret = VM_FAULT_OOM;
6388 else /* -ENOSPC, -EIO, etc */
6389 ret = VM_FAULT_SIGBUS;
6390 goto out;
6393 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6394 again:
6395 lock_page(page);
6396 size = i_size_read(inode);
6397 page_start = page_offset(page);
6398 page_end = page_start + PAGE_CACHE_SIZE - 1;
6400 if ((page->mapping != inode->i_mapping) ||
6401 (page_start >= size)) {
6402 /* page got truncated out from underneath us */
6403 goto out_unlock;
6405 wait_on_page_writeback(page);
6407 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6408 GFP_NOFS);
6409 set_page_extent_mapped(page);
6412 * we can't set the delalloc bits if there are pending ordered
6413 * extents. Drop our locks and wait for them to finish
6415 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6416 if (ordered) {
6417 unlock_extent_cached(io_tree, page_start, page_end,
6418 &cached_state, GFP_NOFS);
6419 unlock_page(page);
6420 btrfs_start_ordered_extent(inode, ordered, 1);
6421 btrfs_put_ordered_extent(ordered);
6422 goto again;
6426 * XXX - page_mkwrite gets called every time the page is dirtied, even
6427 * if it was already dirty, so for space accounting reasons we need to
6428 * clear any delalloc bits for the range we are fixing to save. There
6429 * is probably a better way to do this, but for now keep consistent with
6430 * prepare_pages in the normal write path.
6432 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6433 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6434 0, 0, &cached_state, GFP_NOFS);
6436 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6437 &cached_state);
6438 if (ret) {
6439 unlock_extent_cached(io_tree, page_start, page_end,
6440 &cached_state, GFP_NOFS);
6441 ret = VM_FAULT_SIGBUS;
6442 goto out_unlock;
6444 ret = 0;
6446 /* page is wholly or partially inside EOF */
6447 if (page_start + PAGE_CACHE_SIZE > size)
6448 zero_start = size & ~PAGE_CACHE_MASK;
6449 else
6450 zero_start = PAGE_CACHE_SIZE;
6452 if (zero_start != PAGE_CACHE_SIZE) {
6453 kaddr = kmap(page);
6454 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6455 flush_dcache_page(page);
6456 kunmap(page);
6458 ClearPageChecked(page);
6459 set_page_dirty(page);
6460 SetPageUptodate(page);
6462 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6463 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6465 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6467 out_unlock:
6468 if (!ret)
6469 return VM_FAULT_LOCKED;
6470 unlock_page(page);
6471 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6472 out:
6473 return ret;
6476 static void btrfs_truncate(struct inode *inode)
6478 struct btrfs_root *root = BTRFS_I(inode)->root;
6479 int ret;
6480 struct btrfs_trans_handle *trans;
6481 unsigned long nr;
6482 u64 mask = root->sectorsize - 1;
6484 if (!S_ISREG(inode->i_mode)) {
6485 WARN_ON(1);
6486 return;
6489 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6490 if (ret)
6491 return;
6493 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6494 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6496 trans = btrfs_start_transaction(root, 0);
6497 BUG_ON(IS_ERR(trans));
6498 btrfs_set_trans_block_group(trans, inode);
6499 trans->block_rsv = root->orphan_block_rsv;
6502 * setattr is responsible for setting the ordered_data_close flag,
6503 * but that is only tested during the last file release. That
6504 * could happen well after the next commit, leaving a great big
6505 * window where new writes may get lost if someone chooses to write
6506 * to this file after truncating to zero
6508 * The inode doesn't have any dirty data here, and so if we commit
6509 * this is a noop. If someone immediately starts writing to the inode
6510 * it is very likely we'll catch some of their writes in this
6511 * transaction, and the commit will find this file on the ordered
6512 * data list with good things to send down.
6514 * This is a best effort solution, there is still a window where
6515 * using truncate to replace the contents of the file will
6516 * end up with a zero length file after a crash.
6518 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6519 btrfs_add_ordered_operation(trans, root, inode);
6521 while (1) {
6522 if (!trans) {
6523 trans = btrfs_start_transaction(root, 0);
6524 BUG_ON(IS_ERR(trans));
6525 btrfs_set_trans_block_group(trans, inode);
6526 trans->block_rsv = root->orphan_block_rsv;
6529 ret = btrfs_block_rsv_check(trans, root,
6530 root->orphan_block_rsv, 0, 5);
6531 if (ret) {
6532 BUG_ON(ret != -EAGAIN);
6533 ret = btrfs_commit_transaction(trans, root);
6534 BUG_ON(ret);
6535 trans = NULL;
6536 continue;
6539 ret = btrfs_truncate_inode_items(trans, root, inode,
6540 inode->i_size,
6541 BTRFS_EXTENT_DATA_KEY);
6542 if (ret != -EAGAIN)
6543 break;
6545 ret = btrfs_update_inode(trans, root, inode);
6546 BUG_ON(ret);
6548 nr = trans->blocks_used;
6549 btrfs_end_transaction(trans, root);
6550 trans = NULL;
6551 btrfs_btree_balance_dirty(root, nr);
6554 if (ret == 0 && inode->i_nlink > 0) {
6555 ret = btrfs_orphan_del(trans, inode);
6556 BUG_ON(ret);
6559 ret = btrfs_update_inode(trans, root, inode);
6560 BUG_ON(ret);
6562 nr = trans->blocks_used;
6563 ret = btrfs_end_transaction_throttle(trans, root);
6564 BUG_ON(ret);
6565 btrfs_btree_balance_dirty(root, nr);
6569 * create a new subvolume directory/inode (helper for the ioctl).
6571 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6572 struct btrfs_root *new_root,
6573 u64 new_dirid, u64 alloc_hint)
6575 struct inode *inode;
6576 int err;
6577 u64 index = 0;
6579 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6580 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6581 if (IS_ERR(inode))
6582 return PTR_ERR(inode);
6583 inode->i_op = &btrfs_dir_inode_operations;
6584 inode->i_fop = &btrfs_dir_file_operations;
6586 inode->i_nlink = 1;
6587 btrfs_i_size_write(inode, 0);
6589 err = btrfs_update_inode(trans, new_root, inode);
6590 BUG_ON(err);
6592 iput(inode);
6593 return 0;
6596 /* helper function for file defrag and space balancing. This
6597 * forces readahead on a given range of bytes in an inode
6599 unsigned long btrfs_force_ra(struct address_space *mapping,
6600 struct file_ra_state *ra, struct file *file,
6601 pgoff_t offset, pgoff_t last_index)
6603 pgoff_t req_size = last_index - offset + 1;
6605 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6606 return offset + req_size;
6609 struct inode *btrfs_alloc_inode(struct super_block *sb)
6611 struct btrfs_inode *ei;
6612 struct inode *inode;
6614 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6615 if (!ei)
6616 return NULL;
6618 ei->root = NULL;
6619 ei->space_info = NULL;
6620 ei->generation = 0;
6621 ei->sequence = 0;
6622 ei->last_trans = 0;
6623 ei->last_sub_trans = 0;
6624 ei->logged_trans = 0;
6625 ei->delalloc_bytes = 0;
6626 ei->reserved_bytes = 0;
6627 ei->disk_i_size = 0;
6628 ei->flags = 0;
6629 ei->index_cnt = (u64)-1;
6630 ei->last_unlink_trans = 0;
6632 spin_lock_init(&ei->accounting_lock);
6633 atomic_set(&ei->outstanding_extents, 0);
6634 ei->reserved_extents = 0;
6636 ei->ordered_data_close = 0;
6637 ei->orphan_meta_reserved = 0;
6638 ei->dummy_inode = 0;
6639 ei->force_compress = BTRFS_COMPRESS_NONE;
6641 inode = &ei->vfs_inode;
6642 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6643 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6644 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6645 mutex_init(&ei->log_mutex);
6646 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6647 INIT_LIST_HEAD(&ei->i_orphan);
6648 INIT_LIST_HEAD(&ei->delalloc_inodes);
6649 INIT_LIST_HEAD(&ei->ordered_operations);
6650 RB_CLEAR_NODE(&ei->rb_node);
6652 return inode;
6655 static void btrfs_i_callback(struct rcu_head *head)
6657 struct inode *inode = container_of(head, struct inode, i_rcu);
6658 INIT_LIST_HEAD(&inode->i_dentry);
6659 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6662 void btrfs_destroy_inode(struct inode *inode)
6664 struct btrfs_ordered_extent *ordered;
6665 struct btrfs_root *root = BTRFS_I(inode)->root;
6667 WARN_ON(!list_empty(&inode->i_dentry));
6668 WARN_ON(inode->i_data.nrpages);
6669 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6670 WARN_ON(BTRFS_I(inode)->reserved_extents);
6673 * This can happen where we create an inode, but somebody else also
6674 * created the same inode and we need to destroy the one we already
6675 * created.
6677 if (!root)
6678 goto free;
6681 * Make sure we're properly removed from the ordered operation
6682 * lists.
6684 smp_mb();
6685 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6686 spin_lock(&root->fs_info->ordered_extent_lock);
6687 list_del_init(&BTRFS_I(inode)->ordered_operations);
6688 spin_unlock(&root->fs_info->ordered_extent_lock);
6691 if (root == root->fs_info->tree_root) {
6692 struct btrfs_block_group_cache *block_group;
6694 block_group = btrfs_lookup_block_group(root->fs_info,
6695 BTRFS_I(inode)->block_group);
6696 if (block_group && block_group->inode == inode) {
6697 spin_lock(&block_group->lock);
6698 block_group->inode = NULL;
6699 spin_unlock(&block_group->lock);
6700 btrfs_put_block_group(block_group);
6701 } else if (block_group) {
6702 btrfs_put_block_group(block_group);
6706 spin_lock(&root->orphan_lock);
6707 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6708 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6709 inode->i_ino);
6710 list_del_init(&BTRFS_I(inode)->i_orphan);
6712 spin_unlock(&root->orphan_lock);
6714 while (1) {
6715 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6716 if (!ordered)
6717 break;
6718 else {
6719 printk(KERN_ERR "btrfs found ordered "
6720 "extent %llu %llu on inode cleanup\n",
6721 (unsigned long long)ordered->file_offset,
6722 (unsigned long long)ordered->len);
6723 btrfs_remove_ordered_extent(inode, ordered);
6724 btrfs_put_ordered_extent(ordered);
6725 btrfs_put_ordered_extent(ordered);
6728 inode_tree_del(inode);
6729 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6730 free:
6731 call_rcu(&inode->i_rcu, btrfs_i_callback);
6734 int btrfs_drop_inode(struct inode *inode)
6736 struct btrfs_root *root = BTRFS_I(inode)->root;
6738 if (btrfs_root_refs(&root->root_item) == 0 &&
6739 root != root->fs_info->tree_root)
6740 return 1;
6741 else
6742 return generic_drop_inode(inode);
6745 static void init_once(void *foo)
6747 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6749 inode_init_once(&ei->vfs_inode);
6752 void btrfs_destroy_cachep(void)
6754 if (btrfs_inode_cachep)
6755 kmem_cache_destroy(btrfs_inode_cachep);
6756 if (btrfs_trans_handle_cachep)
6757 kmem_cache_destroy(btrfs_trans_handle_cachep);
6758 if (btrfs_transaction_cachep)
6759 kmem_cache_destroy(btrfs_transaction_cachep);
6760 if (btrfs_path_cachep)
6761 kmem_cache_destroy(btrfs_path_cachep);
6764 int btrfs_init_cachep(void)
6766 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6767 sizeof(struct btrfs_inode), 0,
6768 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6769 if (!btrfs_inode_cachep)
6770 goto fail;
6772 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6773 sizeof(struct btrfs_trans_handle), 0,
6774 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6775 if (!btrfs_trans_handle_cachep)
6776 goto fail;
6778 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6779 sizeof(struct btrfs_transaction), 0,
6780 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6781 if (!btrfs_transaction_cachep)
6782 goto fail;
6784 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6785 sizeof(struct btrfs_path), 0,
6786 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6787 if (!btrfs_path_cachep)
6788 goto fail;
6790 return 0;
6791 fail:
6792 btrfs_destroy_cachep();
6793 return -ENOMEM;
6796 static int btrfs_getattr(struct vfsmount *mnt,
6797 struct dentry *dentry, struct kstat *stat)
6799 struct inode *inode = dentry->d_inode;
6800 generic_fillattr(inode, stat);
6801 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6802 stat->blksize = PAGE_CACHE_SIZE;
6803 stat->blocks = (inode_get_bytes(inode) +
6804 BTRFS_I(inode)->delalloc_bytes) >> 9;
6805 return 0;
6808 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6809 struct inode *new_dir, struct dentry *new_dentry)
6811 struct btrfs_trans_handle *trans;
6812 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6813 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6814 struct inode *new_inode = new_dentry->d_inode;
6815 struct inode *old_inode = old_dentry->d_inode;
6816 struct timespec ctime = CURRENT_TIME;
6817 u64 index = 0;
6818 u64 root_objectid;
6819 int ret;
6821 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6822 return -EPERM;
6824 /* we only allow rename subvolume link between subvolumes */
6825 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6826 return -EXDEV;
6828 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6829 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6830 return -ENOTEMPTY;
6832 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6833 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6834 return -ENOTEMPTY;
6836 * we're using rename to replace one file with another.
6837 * and the replacement file is large. Start IO on it now so
6838 * we don't add too much work to the end of the transaction
6840 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6841 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6842 filemap_flush(old_inode->i_mapping);
6844 /* close the racy window with snapshot create/destroy ioctl */
6845 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6846 down_read(&root->fs_info->subvol_sem);
6848 * We want to reserve the absolute worst case amount of items. So if
6849 * both inodes are subvols and we need to unlink them then that would
6850 * require 4 item modifications, but if they are both normal inodes it
6851 * would require 5 item modifications, so we'll assume their normal
6852 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6853 * should cover the worst case number of items we'll modify.
6855 trans = btrfs_start_transaction(root, 20);
6856 if (IS_ERR(trans))
6857 return PTR_ERR(trans);
6859 btrfs_set_trans_block_group(trans, new_dir);
6861 if (dest != root)
6862 btrfs_record_root_in_trans(trans, dest);
6864 ret = btrfs_set_inode_index(new_dir, &index);
6865 if (ret)
6866 goto out_fail;
6868 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6869 /* force full log commit if subvolume involved. */
6870 root->fs_info->last_trans_log_full_commit = trans->transid;
6871 } else {
6872 ret = btrfs_insert_inode_ref(trans, dest,
6873 new_dentry->d_name.name,
6874 new_dentry->d_name.len,
6875 old_inode->i_ino,
6876 new_dir->i_ino, index);
6877 if (ret)
6878 goto out_fail;
6880 * this is an ugly little race, but the rename is required
6881 * to make sure that if we crash, the inode is either at the
6882 * old name or the new one. pinning the log transaction lets
6883 * us make sure we don't allow a log commit to come in after
6884 * we unlink the name but before we add the new name back in.
6886 btrfs_pin_log_trans(root);
6889 * make sure the inode gets flushed if it is replacing
6890 * something.
6892 if (new_inode && new_inode->i_size &&
6893 old_inode && S_ISREG(old_inode->i_mode)) {
6894 btrfs_add_ordered_operation(trans, root, old_inode);
6897 old_dir->i_ctime = old_dir->i_mtime = ctime;
6898 new_dir->i_ctime = new_dir->i_mtime = ctime;
6899 old_inode->i_ctime = ctime;
6901 if (old_dentry->d_parent != new_dentry->d_parent)
6902 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6904 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6905 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6906 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6907 old_dentry->d_name.name,
6908 old_dentry->d_name.len);
6909 } else {
6910 btrfs_inc_nlink(old_dentry->d_inode);
6911 ret = btrfs_unlink_inode(trans, root, old_dir,
6912 old_dentry->d_inode,
6913 old_dentry->d_name.name,
6914 old_dentry->d_name.len);
6916 BUG_ON(ret);
6918 if (new_inode) {
6919 new_inode->i_ctime = CURRENT_TIME;
6920 if (unlikely(new_inode->i_ino ==
6921 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6922 root_objectid = BTRFS_I(new_inode)->location.objectid;
6923 ret = btrfs_unlink_subvol(trans, dest, new_dir,
6924 root_objectid,
6925 new_dentry->d_name.name,
6926 new_dentry->d_name.len);
6927 BUG_ON(new_inode->i_nlink == 0);
6928 } else {
6929 ret = btrfs_unlink_inode(trans, dest, new_dir,
6930 new_dentry->d_inode,
6931 new_dentry->d_name.name,
6932 new_dentry->d_name.len);
6934 BUG_ON(ret);
6935 if (new_inode->i_nlink == 0) {
6936 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6937 BUG_ON(ret);
6941 ret = btrfs_add_link(trans, new_dir, old_inode,
6942 new_dentry->d_name.name,
6943 new_dentry->d_name.len, 0, index);
6944 BUG_ON(ret);
6946 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6947 struct dentry *parent = dget_parent(new_dentry);
6948 btrfs_log_new_name(trans, old_inode, old_dir, parent);
6949 dput(parent);
6950 btrfs_end_log_trans(root);
6952 out_fail:
6953 btrfs_end_transaction_throttle(trans, root);
6955 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6956 up_read(&root->fs_info->subvol_sem);
6958 return ret;
6962 * some fairly slow code that needs optimization. This walks the list
6963 * of all the inodes with pending delalloc and forces them to disk.
6965 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6967 struct list_head *head = &root->fs_info->delalloc_inodes;
6968 struct btrfs_inode *binode;
6969 struct inode *inode;
6971 if (root->fs_info->sb->s_flags & MS_RDONLY)
6972 return -EROFS;
6974 spin_lock(&root->fs_info->delalloc_lock);
6975 while (!list_empty(head)) {
6976 binode = list_entry(head->next, struct btrfs_inode,
6977 delalloc_inodes);
6978 inode = igrab(&binode->vfs_inode);
6979 if (!inode)
6980 list_del_init(&binode->delalloc_inodes);
6981 spin_unlock(&root->fs_info->delalloc_lock);
6982 if (inode) {
6983 filemap_flush(inode->i_mapping);
6984 if (delay_iput)
6985 btrfs_add_delayed_iput(inode);
6986 else
6987 iput(inode);
6989 cond_resched();
6990 spin_lock(&root->fs_info->delalloc_lock);
6992 spin_unlock(&root->fs_info->delalloc_lock);
6994 /* the filemap_flush will queue IO into the worker threads, but
6995 * we have to make sure the IO is actually started and that
6996 * ordered extents get created before we return
6998 atomic_inc(&root->fs_info->async_submit_draining);
6999 while (atomic_read(&root->fs_info->nr_async_submits) ||
7000 atomic_read(&root->fs_info->async_delalloc_pages)) {
7001 wait_event(root->fs_info->async_submit_wait,
7002 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7003 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7005 atomic_dec(&root->fs_info->async_submit_draining);
7006 return 0;
7009 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7010 int sync)
7012 struct btrfs_inode *binode;
7013 struct inode *inode = NULL;
7015 spin_lock(&root->fs_info->delalloc_lock);
7016 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7017 binode = list_entry(root->fs_info->delalloc_inodes.next,
7018 struct btrfs_inode, delalloc_inodes);
7019 inode = igrab(&binode->vfs_inode);
7020 if (inode) {
7021 list_move_tail(&binode->delalloc_inodes,
7022 &root->fs_info->delalloc_inodes);
7023 break;
7026 list_del_init(&binode->delalloc_inodes);
7027 cond_resched_lock(&root->fs_info->delalloc_lock);
7029 spin_unlock(&root->fs_info->delalloc_lock);
7031 if (inode) {
7032 if (sync) {
7033 filemap_write_and_wait(inode->i_mapping);
7035 * We have to do this because compression doesn't
7036 * actually set PG_writeback until it submits the pages
7037 * for IO, which happens in an async thread, so we could
7038 * race and not actually wait for any writeback pages
7039 * because they've not been submitted yet. Technically
7040 * this could still be the case for the ordered stuff
7041 * since the async thread may not have started to do its
7042 * work yet. If this becomes the case then we need to
7043 * figure out a way to make sure that in writepage we
7044 * wait for any async pages to be submitted before
7045 * returning so that fdatawait does what its supposed to
7046 * do.
7048 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7049 } else {
7050 filemap_flush(inode->i_mapping);
7052 if (delay_iput)
7053 btrfs_add_delayed_iput(inode);
7054 else
7055 iput(inode);
7056 return 1;
7058 return 0;
7061 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7062 const char *symname)
7064 struct btrfs_trans_handle *trans;
7065 struct btrfs_root *root = BTRFS_I(dir)->root;
7066 struct btrfs_path *path;
7067 struct btrfs_key key;
7068 struct inode *inode = NULL;
7069 int err;
7070 int drop_inode = 0;
7071 u64 objectid;
7072 u64 index = 0 ;
7073 int name_len;
7074 int datasize;
7075 unsigned long ptr;
7076 struct btrfs_file_extent_item *ei;
7077 struct extent_buffer *leaf;
7078 unsigned long nr = 0;
7080 name_len = strlen(symname) + 1;
7081 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7082 return -ENAMETOOLONG;
7084 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7085 if (err)
7086 return err;
7088 * 2 items for inode item and ref
7089 * 2 items for dir items
7090 * 1 item for xattr if selinux is on
7092 trans = btrfs_start_transaction(root, 5);
7093 if (IS_ERR(trans))
7094 return PTR_ERR(trans);
7096 btrfs_set_trans_block_group(trans, dir);
7098 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7099 dentry->d_name.len, dir->i_ino, objectid,
7100 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7101 &index);
7102 err = PTR_ERR(inode);
7103 if (IS_ERR(inode))
7104 goto out_unlock;
7106 err = btrfs_init_inode_security(trans, inode, dir);
7107 if (err) {
7108 drop_inode = 1;
7109 goto out_unlock;
7112 btrfs_set_trans_block_group(trans, inode);
7113 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7114 if (err)
7115 drop_inode = 1;
7116 else {
7117 inode->i_mapping->a_ops = &btrfs_aops;
7118 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7119 inode->i_fop = &btrfs_file_operations;
7120 inode->i_op = &btrfs_file_inode_operations;
7121 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7123 btrfs_update_inode_block_group(trans, inode);
7124 btrfs_update_inode_block_group(trans, dir);
7125 if (drop_inode)
7126 goto out_unlock;
7128 path = btrfs_alloc_path();
7129 BUG_ON(!path);
7130 key.objectid = inode->i_ino;
7131 key.offset = 0;
7132 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7133 datasize = btrfs_file_extent_calc_inline_size(name_len);
7134 err = btrfs_insert_empty_item(trans, root, path, &key,
7135 datasize);
7136 if (err) {
7137 drop_inode = 1;
7138 goto out_unlock;
7140 leaf = path->nodes[0];
7141 ei = btrfs_item_ptr(leaf, path->slots[0],
7142 struct btrfs_file_extent_item);
7143 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7144 btrfs_set_file_extent_type(leaf, ei,
7145 BTRFS_FILE_EXTENT_INLINE);
7146 btrfs_set_file_extent_encryption(leaf, ei, 0);
7147 btrfs_set_file_extent_compression(leaf, ei, 0);
7148 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7149 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7151 ptr = btrfs_file_extent_inline_start(ei);
7152 write_extent_buffer(leaf, symname, ptr, name_len);
7153 btrfs_mark_buffer_dirty(leaf);
7154 btrfs_free_path(path);
7156 inode->i_op = &btrfs_symlink_inode_operations;
7157 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7158 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7159 inode_set_bytes(inode, name_len);
7160 btrfs_i_size_write(inode, name_len - 1);
7161 err = btrfs_update_inode(trans, root, inode);
7162 if (err)
7163 drop_inode = 1;
7165 out_unlock:
7166 nr = trans->blocks_used;
7167 btrfs_end_transaction_throttle(trans, root);
7168 if (drop_inode) {
7169 inode_dec_link_count(inode);
7170 iput(inode);
7172 btrfs_btree_balance_dirty(root, nr);
7173 return err;
7176 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7177 u64 start, u64 num_bytes, u64 min_size,
7178 loff_t actual_len, u64 *alloc_hint,
7179 struct btrfs_trans_handle *trans)
7181 struct btrfs_root *root = BTRFS_I(inode)->root;
7182 struct btrfs_key ins;
7183 u64 cur_offset = start;
7184 u64 i_size;
7185 int ret = 0;
7186 bool own_trans = true;
7188 if (trans)
7189 own_trans = false;
7190 while (num_bytes > 0) {
7191 if (own_trans) {
7192 trans = btrfs_start_transaction(root, 3);
7193 if (IS_ERR(trans)) {
7194 ret = PTR_ERR(trans);
7195 break;
7199 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7200 0, *alloc_hint, (u64)-1, &ins, 1);
7201 if (ret) {
7202 if (own_trans)
7203 btrfs_end_transaction(trans, root);
7204 break;
7207 ret = insert_reserved_file_extent(trans, inode,
7208 cur_offset, ins.objectid,
7209 ins.offset, ins.offset,
7210 ins.offset, 0, 0, 0,
7211 BTRFS_FILE_EXTENT_PREALLOC);
7212 BUG_ON(ret);
7213 btrfs_drop_extent_cache(inode, cur_offset,
7214 cur_offset + ins.offset -1, 0);
7216 num_bytes -= ins.offset;
7217 cur_offset += ins.offset;
7218 *alloc_hint = ins.objectid + ins.offset;
7220 inode->i_ctime = CURRENT_TIME;
7221 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7222 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7223 (actual_len > inode->i_size) &&
7224 (cur_offset > inode->i_size)) {
7225 if (cur_offset > actual_len)
7226 i_size = actual_len;
7227 else
7228 i_size = cur_offset;
7229 i_size_write(inode, i_size);
7230 btrfs_ordered_update_i_size(inode, i_size, NULL);
7233 ret = btrfs_update_inode(trans, root, inode);
7234 BUG_ON(ret);
7236 if (own_trans)
7237 btrfs_end_transaction(trans, root);
7239 return ret;
7242 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7243 u64 start, u64 num_bytes, u64 min_size,
7244 loff_t actual_len, u64 *alloc_hint)
7246 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7247 min_size, actual_len, alloc_hint,
7248 NULL);
7251 int btrfs_prealloc_file_range_trans(struct inode *inode,
7252 struct btrfs_trans_handle *trans, int mode,
7253 u64 start, u64 num_bytes, u64 min_size,
7254 loff_t actual_len, u64 *alloc_hint)
7256 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7257 min_size, actual_len, alloc_hint, trans);
7260 static int btrfs_set_page_dirty(struct page *page)
7262 return __set_page_dirty_nobuffers(page);
7265 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7267 struct btrfs_root *root = BTRFS_I(inode)->root;
7269 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7270 return -EROFS;
7271 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7272 return -EACCES;
7273 return generic_permission(inode, mask, flags, btrfs_check_acl);
7276 static const struct inode_operations btrfs_dir_inode_operations = {
7277 .getattr = btrfs_getattr,
7278 .lookup = btrfs_lookup,
7279 .create = btrfs_create,
7280 .unlink = btrfs_unlink,
7281 .link = btrfs_link,
7282 .mkdir = btrfs_mkdir,
7283 .rmdir = btrfs_rmdir,
7284 .rename = btrfs_rename,
7285 .symlink = btrfs_symlink,
7286 .setattr = btrfs_setattr,
7287 .mknod = btrfs_mknod,
7288 .setxattr = btrfs_setxattr,
7289 .getxattr = btrfs_getxattr,
7290 .listxattr = btrfs_listxattr,
7291 .removexattr = btrfs_removexattr,
7292 .permission = btrfs_permission,
7294 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7295 .lookup = btrfs_lookup,
7296 .permission = btrfs_permission,
7299 static const struct file_operations btrfs_dir_file_operations = {
7300 .llseek = generic_file_llseek,
7301 .read = generic_read_dir,
7302 .readdir = btrfs_real_readdir,
7303 .unlocked_ioctl = btrfs_ioctl,
7304 #ifdef CONFIG_COMPAT
7305 .compat_ioctl = btrfs_ioctl,
7306 #endif
7307 .release = btrfs_release_file,
7308 .fsync = btrfs_sync_file,
7311 static struct extent_io_ops btrfs_extent_io_ops = {
7312 .fill_delalloc = run_delalloc_range,
7313 .submit_bio_hook = btrfs_submit_bio_hook,
7314 .merge_bio_hook = btrfs_merge_bio_hook,
7315 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7316 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7317 .writepage_start_hook = btrfs_writepage_start_hook,
7318 .readpage_io_failed_hook = btrfs_io_failed_hook,
7319 .set_bit_hook = btrfs_set_bit_hook,
7320 .clear_bit_hook = btrfs_clear_bit_hook,
7321 .merge_extent_hook = btrfs_merge_extent_hook,
7322 .split_extent_hook = btrfs_split_extent_hook,
7326 * btrfs doesn't support the bmap operation because swapfiles
7327 * use bmap to make a mapping of extents in the file. They assume
7328 * these extents won't change over the life of the file and they
7329 * use the bmap result to do IO directly to the drive.
7331 * the btrfs bmap call would return logical addresses that aren't
7332 * suitable for IO and they also will change frequently as COW
7333 * operations happen. So, swapfile + btrfs == corruption.
7335 * For now we're avoiding this by dropping bmap.
7337 static const struct address_space_operations btrfs_aops = {
7338 .readpage = btrfs_readpage,
7339 .writepage = btrfs_writepage,
7340 .writepages = btrfs_writepages,
7341 .readpages = btrfs_readpages,
7342 .sync_page = block_sync_page,
7343 .direct_IO = btrfs_direct_IO,
7344 .invalidatepage = btrfs_invalidatepage,
7345 .releasepage = btrfs_releasepage,
7346 .set_page_dirty = btrfs_set_page_dirty,
7347 .error_remove_page = generic_error_remove_page,
7350 static const struct address_space_operations btrfs_symlink_aops = {
7351 .readpage = btrfs_readpage,
7352 .writepage = btrfs_writepage,
7353 .invalidatepage = btrfs_invalidatepage,
7354 .releasepage = btrfs_releasepage,
7357 static const struct inode_operations btrfs_file_inode_operations = {
7358 .truncate = btrfs_truncate,
7359 .getattr = btrfs_getattr,
7360 .setattr = btrfs_setattr,
7361 .setxattr = btrfs_setxattr,
7362 .getxattr = btrfs_getxattr,
7363 .listxattr = btrfs_listxattr,
7364 .removexattr = btrfs_removexattr,
7365 .permission = btrfs_permission,
7366 .fiemap = btrfs_fiemap,
7368 static const struct inode_operations btrfs_special_inode_operations = {
7369 .getattr = btrfs_getattr,
7370 .setattr = btrfs_setattr,
7371 .permission = btrfs_permission,
7372 .setxattr = btrfs_setxattr,
7373 .getxattr = btrfs_getxattr,
7374 .listxattr = btrfs_listxattr,
7375 .removexattr = btrfs_removexattr,
7377 static const struct inode_operations btrfs_symlink_inode_operations = {
7378 .readlink = generic_readlink,
7379 .follow_link = page_follow_link_light,
7380 .put_link = page_put_link,
7381 .getattr = btrfs_getattr,
7382 .permission = btrfs_permission,
7383 .setxattr = btrfs_setxattr,
7384 .getxattr = btrfs_getxattr,
7385 .listxattr = btrfs_listxattr,
7386 .removexattr = btrfs_removexattr,
7389 const struct dentry_operations btrfs_dentry_operations = {
7390 .d_delete = btrfs_dentry_delete,