2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter <clameter@sgi.com>
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/memcontrol.h>
36 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
39 * Isolate one page from the LRU lists. If successful put it onto
40 * the indicated list with elevated page count.
43 * -EBUSY: page not on LRU list
44 * 0: page removed from LRU list and added to the specified list.
46 int isolate_lru_page(struct page
*page
, struct list_head
*pagelist
)
51 struct zone
*zone
= page_zone(page
);
53 spin_lock_irq(&zone
->lru_lock
);
54 if (PageLRU(page
) && get_page_unless_zero(page
)) {
58 del_page_from_active_list(zone
, page
);
60 del_page_from_inactive_list(zone
, page
);
61 list_add_tail(&page
->lru
, pagelist
);
63 spin_unlock_irq(&zone
->lru_lock
);
69 * migrate_prep() needs to be called before we start compiling a list of pages
70 * to be migrated using isolate_lru_page().
72 int migrate_prep(void)
75 * Clear the LRU lists so pages can be isolated.
76 * Note that pages may be moved off the LRU after we have
77 * drained them. Those pages will fail to migrate like other
78 * pages that may be busy.
85 static inline void move_to_lru(struct page
*page
)
87 if (PageActive(page
)) {
89 * lru_cache_add_active checks that
90 * the PG_active bit is off.
92 ClearPageActive(page
);
93 lru_cache_add_active(page
);
101 * Add isolated pages on the list back to the LRU.
103 * returns the number of pages put back.
105 int putback_lru_pages(struct list_head
*l
)
111 list_for_each_entry_safe(page
, page2
, l
, lru
) {
112 list_del(&page
->lru
);
120 * Restore a potential migration pte to a working pte entry
122 static void remove_migration_pte(struct vm_area_struct
*vma
,
123 struct page
*old
, struct page
*new)
125 struct mm_struct
*mm
= vma
->vm_mm
;
132 unsigned long addr
= page_address_in_vma(new, vma
);
137 pgd
= pgd_offset(mm
, addr
);
138 if (!pgd_present(*pgd
))
141 pud
= pud_offset(pgd
, addr
);
142 if (!pud_present(*pud
))
145 pmd
= pmd_offset(pud
, addr
);
146 if (!pmd_present(*pmd
))
149 ptep
= pte_offset_map(pmd
, addr
);
151 if (!is_swap_pte(*ptep
)) {
156 ptl
= pte_lockptr(mm
, pmd
);
159 if (!is_swap_pte(pte
))
162 entry
= pte_to_swp_entry(pte
);
164 if (!is_migration_entry(entry
) || migration_entry_to_page(entry
) != old
)
168 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge.
169 * Failure is not an option here: we're now expected to remove every
170 * migration pte, and will cause crashes otherwise. Normally this
171 * is not an issue: mem_cgroup_prepare_migration bumped up the old
172 * page_cgroup count for safety, that's now attached to the new page,
173 * so this charge should just be another incrementation of the count,
174 * to keep in balance with rmap.c's mem_cgroup_uncharging. But if
175 * there's been a force_empty, those reference counts may no longer
176 * be reliable, and this charge can actually fail: oh well, we don't
177 * make the situation any worse by proceeding as if it had succeeded.
179 mem_cgroup_charge(new, mm
, GFP_ATOMIC
);
182 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
183 if (is_write_migration_entry(entry
))
184 pte
= pte_mkwrite(pte
);
185 flush_cache_page(vma
, addr
, pte_pfn(pte
));
186 set_pte_at(mm
, addr
, ptep
, pte
);
189 page_add_anon_rmap(new, vma
, addr
);
191 page_add_file_rmap(new);
193 /* No need to invalidate - it was non-present before */
194 update_mmu_cache(vma
, addr
, pte
);
197 pte_unmap_unlock(ptep
, ptl
);
201 * Note that remove_file_migration_ptes will only work on regular mappings,
202 * Nonlinear mappings do not use migration entries.
204 static void remove_file_migration_ptes(struct page
*old
, struct page
*new)
206 struct vm_area_struct
*vma
;
207 struct address_space
*mapping
= page_mapping(new);
208 struct prio_tree_iter iter
;
209 pgoff_t pgoff
= new->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
214 spin_lock(&mapping
->i_mmap_lock
);
216 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
)
217 remove_migration_pte(vma
, old
, new);
219 spin_unlock(&mapping
->i_mmap_lock
);
223 * Must hold mmap_sem lock on at least one of the vmas containing
224 * the page so that the anon_vma cannot vanish.
226 static void remove_anon_migration_ptes(struct page
*old
, struct page
*new)
228 struct anon_vma
*anon_vma
;
229 struct vm_area_struct
*vma
;
230 unsigned long mapping
;
232 mapping
= (unsigned long)new->mapping
;
234 if (!mapping
|| (mapping
& PAGE_MAPPING_ANON
) == 0)
238 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
240 anon_vma
= (struct anon_vma
*) (mapping
- PAGE_MAPPING_ANON
);
241 spin_lock(&anon_vma
->lock
);
243 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
)
244 remove_migration_pte(vma
, old
, new);
246 spin_unlock(&anon_vma
->lock
);
250 * Get rid of all migration entries and replace them by
251 * references to the indicated page.
253 static void remove_migration_ptes(struct page
*old
, struct page
*new)
256 remove_anon_migration_ptes(old
, new);
258 remove_file_migration_ptes(old
, new);
262 * Something used the pte of a page under migration. We need to
263 * get to the page and wait until migration is finished.
264 * When we return from this function the fault will be retried.
266 * This function is called from do_swap_page().
268 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
269 unsigned long address
)
276 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
278 if (!is_swap_pte(pte
))
281 entry
= pte_to_swp_entry(pte
);
282 if (!is_migration_entry(entry
))
285 page
= migration_entry_to_page(entry
);
288 pte_unmap_unlock(ptep
, ptl
);
289 wait_on_page_locked(page
);
293 pte_unmap_unlock(ptep
, ptl
);
297 * Replace the page in the mapping.
299 * The number of remaining references must be:
300 * 1 for anonymous pages without a mapping
301 * 2 for pages with a mapping
302 * 3 for pages with a mapping and PagePrivate set.
304 static int migrate_page_move_mapping(struct address_space
*mapping
,
305 struct page
*newpage
, struct page
*page
)
310 /* Anonymous page without mapping */
311 if (page_count(page
) != 1)
316 write_lock_irq(&mapping
->tree_lock
);
318 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
321 if (page_count(page
) != 2 + !!PagePrivate(page
) ||
322 (struct page
*)radix_tree_deref_slot(pslot
) != page
) {
323 write_unlock_irq(&mapping
->tree_lock
);
328 * Now we know that no one else is looking at the page.
330 get_page(newpage
); /* add cache reference */
332 if (PageSwapCache(page
)) {
333 SetPageSwapCache(newpage
);
334 set_page_private(newpage
, page_private(page
));
338 radix_tree_replace_slot(pslot
, newpage
);
341 * Drop cache reference from old page.
342 * We know this isn't the last reference.
347 * If moved to a different zone then also account
348 * the page for that zone. Other VM counters will be
349 * taken care of when we establish references to the
350 * new page and drop references to the old page.
352 * Note that anonymous pages are accounted for
353 * via NR_FILE_PAGES and NR_ANON_PAGES if they
354 * are mapped to swap space.
356 __dec_zone_page_state(page
, NR_FILE_PAGES
);
357 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
359 write_unlock_irq(&mapping
->tree_lock
);
365 * Copy the page to its new location
367 static void migrate_page_copy(struct page
*newpage
, struct page
*page
)
369 copy_highpage(newpage
, page
);
372 SetPageError(newpage
);
373 if (PageReferenced(page
))
374 SetPageReferenced(newpage
);
375 if (PageUptodate(page
))
376 SetPageUptodate(newpage
);
377 if (PageActive(page
))
378 SetPageActive(newpage
);
379 if (PageChecked(page
))
380 SetPageChecked(newpage
);
381 if (PageMappedToDisk(page
))
382 SetPageMappedToDisk(newpage
);
384 if (PageDirty(page
)) {
385 clear_page_dirty_for_io(page
);
386 set_page_dirty(newpage
);
390 ClearPageSwapCache(page
);
392 ClearPageActive(page
);
393 ClearPagePrivate(page
);
394 set_page_private(page
, 0);
395 page
->mapping
= NULL
;
398 * If any waiters have accumulated on the new page then
401 if (PageWriteback(newpage
))
402 end_page_writeback(newpage
);
405 /************************************************************
406 * Migration functions
407 ***********************************************************/
409 /* Always fail migration. Used for mappings that are not movable */
410 int fail_migrate_page(struct address_space
*mapping
,
411 struct page
*newpage
, struct page
*page
)
415 EXPORT_SYMBOL(fail_migrate_page
);
418 * Common logic to directly migrate a single page suitable for
419 * pages that do not use PagePrivate.
421 * Pages are locked upon entry and exit.
423 int migrate_page(struct address_space
*mapping
,
424 struct page
*newpage
, struct page
*page
)
428 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
430 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
435 migrate_page_copy(newpage
, page
);
438 EXPORT_SYMBOL(migrate_page
);
442 * Migration function for pages with buffers. This function can only be used
443 * if the underlying filesystem guarantees that no other references to "page"
446 int buffer_migrate_page(struct address_space
*mapping
,
447 struct page
*newpage
, struct page
*page
)
449 struct buffer_head
*bh
, *head
;
452 if (!page_has_buffers(page
))
453 return migrate_page(mapping
, newpage
, page
);
455 head
= page_buffers(page
);
457 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
466 bh
= bh
->b_this_page
;
468 } while (bh
!= head
);
470 ClearPagePrivate(page
);
471 set_page_private(newpage
, page_private(page
));
472 set_page_private(page
, 0);
478 set_bh_page(bh
, newpage
, bh_offset(bh
));
479 bh
= bh
->b_this_page
;
481 } while (bh
!= head
);
483 SetPagePrivate(newpage
);
485 migrate_page_copy(newpage
, page
);
491 bh
= bh
->b_this_page
;
493 } while (bh
!= head
);
497 EXPORT_SYMBOL(buffer_migrate_page
);
501 * Writeback a page to clean the dirty state
503 static int writeout(struct address_space
*mapping
, struct page
*page
)
505 struct writeback_control wbc
= {
506 .sync_mode
= WB_SYNC_NONE
,
509 .range_end
= LLONG_MAX
,
515 if (!mapping
->a_ops
->writepage
)
516 /* No write method for the address space */
519 if (!clear_page_dirty_for_io(page
))
520 /* Someone else already triggered a write */
524 * A dirty page may imply that the underlying filesystem has
525 * the page on some queue. So the page must be clean for
526 * migration. Writeout may mean we loose the lock and the
527 * page state is no longer what we checked for earlier.
528 * At this point we know that the migration attempt cannot
531 remove_migration_ptes(page
, page
);
533 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
535 /* I/O Error writing */
538 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
539 /* unlocked. Relock */
546 * Default handling if a filesystem does not provide a migration function.
548 static int fallback_migrate_page(struct address_space
*mapping
,
549 struct page
*newpage
, struct page
*page
)
552 return writeout(mapping
, page
);
555 * Buffers may be managed in a filesystem specific way.
556 * We must have no buffers or drop them.
558 if (PagePrivate(page
) &&
559 !try_to_release_page(page
, GFP_KERNEL
))
562 return migrate_page(mapping
, newpage
, page
);
566 * Move a page to a newly allocated page
567 * The page is locked and all ptes have been successfully removed.
569 * The new page will have replaced the old page if this function
572 static int move_to_new_page(struct page
*newpage
, struct page
*page
)
574 struct address_space
*mapping
;
578 * Block others from accessing the page when we get around to
579 * establishing additional references. We are the only one
580 * holding a reference to the new page at this point.
582 if (TestSetPageLocked(newpage
))
585 /* Prepare mapping for the new page.*/
586 newpage
->index
= page
->index
;
587 newpage
->mapping
= page
->mapping
;
589 mapping
= page_mapping(page
);
591 rc
= migrate_page(mapping
, newpage
, page
);
592 else if (mapping
->a_ops
->migratepage
)
594 * Most pages have a mapping and most filesystems
595 * should provide a migration function. Anonymous
596 * pages are part of swap space which also has its
597 * own migration function. This is the most common
598 * path for page migration.
600 rc
= mapping
->a_ops
->migratepage(mapping
,
603 rc
= fallback_migrate_page(mapping
, newpage
, page
);
606 mem_cgroup_page_migration(page
, newpage
);
607 remove_migration_ptes(page
, newpage
);
609 newpage
->mapping
= NULL
;
611 unlock_page(newpage
);
617 * Obtain the lock on page, remove all ptes and migrate the page
618 * to the newly allocated page in newpage.
620 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
621 struct page
*page
, int force
)
625 struct page
*newpage
= get_new_page(page
, private, &result
);
632 if (page_count(page
) == 1)
633 /* page was freed from under us. So we are done. */
637 if (TestSetPageLocked(page
)) {
643 if (PageWriteback(page
)) {
646 wait_on_page_writeback(page
);
649 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
650 * we cannot notice that anon_vma is freed while we migrates a page.
651 * This rcu_read_lock() delays freeing anon_vma pointer until the end
652 * of migration. File cache pages are no problem because of page_lock()
653 * File Caches may use write_page() or lock_page() in migration, then,
654 * just care Anon page here.
656 if (PageAnon(page
)) {
662 * Corner case handling:
663 * 1. When a new swap-cache page is read into, it is added to the LRU
664 * and treated as swapcache but it has no rmap yet.
665 * Calling try_to_unmap() against a page->mapping==NULL page will
666 * trigger a BUG. So handle it here.
667 * 2. An orphaned page (see truncate_complete_page) might have
668 * fs-private metadata. The page can be picked up due to memory
669 * offlining. Everywhere else except page reclaim, the page is
670 * invisible to the vm, so the page can not be migrated. So try to
671 * free the metadata, so the page can be freed.
673 if (!page
->mapping
) {
674 if (!PageAnon(page
) && PagePrivate(page
)) {
676 * Go direct to try_to_free_buffers() here because
677 * a) that's what try_to_release_page() would do anyway
678 * b) we may be under rcu_read_lock() here, so we can't
679 * use GFP_KERNEL which is what try_to_release_page()
680 * needs to be effective.
682 try_to_free_buffers(page
);
687 charge
= mem_cgroup_prepare_migration(page
);
688 /* Establish migration ptes or remove ptes */
689 try_to_unmap(page
, 1);
691 if (!page_mapped(page
))
692 rc
= move_to_new_page(newpage
, page
);
695 remove_migration_ptes(page
, page
);
697 mem_cgroup_end_migration(page
);
699 mem_cgroup_end_migration(newpage
);
710 * A page that has been migrated has all references
711 * removed and will be freed. A page that has not been
712 * migrated will have kepts its references and be
715 list_del(&page
->lru
);
721 * Move the new page to the LRU. If migration was not successful
722 * then this will free the page.
724 move_to_lru(newpage
);
729 *result
= page_to_nid(newpage
);
737 * The function takes one list of pages to migrate and a function
738 * that determines from the page to be migrated and the private data
739 * the target of the move and allocates the page.
741 * The function returns after 10 attempts or if no pages
742 * are movable anymore because to has become empty
743 * or no retryable pages exist anymore. All pages will be
744 * returned to the LRU or freed.
746 * Return: Number of pages not migrated or error code.
748 int migrate_pages(struct list_head
*from
,
749 new_page_t get_new_page
, unsigned long private)
756 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
760 current
->flags
|= PF_SWAPWRITE
;
762 for(pass
= 0; pass
< 10 && retry
; pass
++) {
765 list_for_each_entry_safe(page
, page2
, from
, lru
) {
768 rc
= unmap_and_move(get_new_page
, private,
780 /* Permanent failure */
789 current
->flags
&= ~PF_SWAPWRITE
;
791 putback_lru_pages(from
);
796 return nr_failed
+ retry
;
801 * Move a list of individual pages
803 struct page_to_node
{
810 static struct page
*new_page_node(struct page
*p
, unsigned long private,
813 struct page_to_node
*pm
= (struct page_to_node
*)private;
815 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
818 if (pm
->node
== MAX_NUMNODES
)
821 *result
= &pm
->status
;
823 return alloc_pages_node(pm
->node
,
824 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
828 * Move a set of pages as indicated in the pm array. The addr
829 * field must be set to the virtual address of the page to be moved
830 * and the node number must contain a valid target node.
832 static int do_move_pages(struct mm_struct
*mm
, struct page_to_node
*pm
,
836 struct page_to_node
*pp
;
839 down_read(&mm
->mmap_sem
);
842 * Build a list of pages to migrate
845 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
846 struct vm_area_struct
*vma
;
850 * A valid page pointer that will not match any of the
851 * pages that will be moved.
853 pp
->page
= ZERO_PAGE(0);
856 vma
= find_vma(mm
, pp
->addr
);
857 if (!vma
|| !vma_migratable(vma
))
860 page
= follow_page(vma
, pp
->addr
, FOLL_GET
);
865 if (PageReserved(page
)) /* Check for zero page */
869 err
= page_to_nid(page
);
873 * Node already in the right place
878 if (page_mapcount(page
) > 1 &&
882 err
= isolate_lru_page(page
, &pagelist
);
885 * Either remove the duplicate refcount from
886 * isolate_lru_page() or drop the page ref if it was
894 if (!list_empty(&pagelist
))
895 err
= migrate_pages(&pagelist
, new_page_node
,
900 up_read(&mm
->mmap_sem
);
905 * Determine the nodes of a list of pages. The addr in the pm array
906 * must have been set to the virtual address of which we want to determine
909 static int do_pages_stat(struct mm_struct
*mm
, struct page_to_node
*pm
)
911 down_read(&mm
->mmap_sem
);
913 for ( ; pm
->node
!= MAX_NUMNODES
; pm
++) {
914 struct vm_area_struct
*vma
;
919 vma
= find_vma(mm
, pm
->addr
);
923 page
= follow_page(vma
, pm
->addr
, 0);
925 /* Use PageReserved to check for zero page */
926 if (!page
|| PageReserved(page
))
929 err
= page_to_nid(page
);
934 up_read(&mm
->mmap_sem
);
939 * Move a list of pages in the address space of the currently executing
942 asmlinkage
long sys_move_pages(pid_t pid
, unsigned long nr_pages
,
943 const void __user
* __user
*pages
,
944 const int __user
*nodes
,
945 int __user
*status
, int flags
)
949 struct task_struct
*task
;
950 nodemask_t task_nodes
;
951 struct mm_struct
*mm
;
952 struct page_to_node
*pm
= NULL
;
955 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
958 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
961 /* Find the mm_struct */
962 read_lock(&tasklist_lock
);
963 task
= pid
? find_task_by_vpid(pid
) : current
;
965 read_unlock(&tasklist_lock
);
968 mm
= get_task_mm(task
);
969 read_unlock(&tasklist_lock
);
975 * Check if this process has the right to modify the specified
976 * process. The right exists if the process has administrative
977 * capabilities, superuser privileges or the same
978 * userid as the target process.
980 if ((current
->euid
!= task
->suid
) && (current
->euid
!= task
->uid
) &&
981 (current
->uid
!= task
->suid
) && (current
->uid
!= task
->uid
) &&
982 !capable(CAP_SYS_NICE
)) {
987 err
= security_task_movememory(task
);
992 task_nodes
= cpuset_mems_allowed(task
);
994 /* Limit nr_pages so that the multiplication may not overflow */
995 if (nr_pages
>= ULONG_MAX
/ sizeof(struct page_to_node
) - 1) {
1000 pm
= vmalloc((nr_pages
+ 1) * sizeof(struct page_to_node
));
1007 * Get parameters from user space and initialize the pm
1008 * array. Return various errors if the user did something wrong.
1010 for (i
= 0; i
< nr_pages
; i
++) {
1011 const void __user
*p
;
1014 if (get_user(p
, pages
+ i
))
1017 pm
[i
].addr
= (unsigned long)p
;
1021 if (get_user(node
, nodes
+ i
))
1025 if (!node_state(node
, N_HIGH_MEMORY
))
1029 if (!node_isset(node
, task_nodes
))
1034 pm
[i
].node
= 0; /* anything to not match MAX_NUMNODES */
1037 pm
[nr_pages
].node
= MAX_NUMNODES
;
1040 err
= do_move_pages(mm
, pm
, flags
& MPOL_MF_MOVE_ALL
);
1042 err
= do_pages_stat(mm
, pm
);
1045 /* Return status information */
1046 for (i
= 0; i
< nr_pages
; i
++)
1047 if (put_user(pm
[i
].status
, status
+ i
))
1059 * Call migration functions in the vma_ops that may prepare
1060 * memory in a vm for migration. migration functions may perform
1061 * the migration for vmas that do not have an underlying page struct.
1063 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1064 const nodemask_t
*from
, unsigned long flags
)
1066 struct vm_area_struct
*vma
;
1069 for(vma
= mm
->mmap
; vma
->vm_next
&& !err
; vma
= vma
->vm_next
) {
1070 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1071 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);