x86: update iomem_resource end based on CPU physical address capabilities
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / vm86_32.c
blob5ffb5622f793aee1446716c137078ee0c865be07
1 /*
2 * Copyright (C) 1994 Linus Torvalds
4 * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5 * stack - Manfred Spraul <manfred@colorfullife.com>
7 * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8 * them correctly. Now the emulation will be in a
9 * consistent state after stackfaults - Kasper Dupont
10 * <kasperd@daimi.au.dk>
12 * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13 * <kasperd@daimi.au.dk>
15 * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16 * caused by Kasper Dupont's changes - Stas Sergeev
18 * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19 * Kasper Dupont <kasperd@daimi.au.dk>
21 * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22 * Kasper Dupont <kasperd@daimi.au.dk>
24 * 9 apr 2002 - Changed stack access macros to jump to a label
25 * instead of returning to userspace. This simplifies
26 * do_int, and is needed by handle_vm6_fault. Kasper
27 * Dupont <kasperd@daimi.au.dk>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/interrupt.h>
34 #include <linux/sched.h>
35 #include <linux/kernel.h>
36 #include <linux/signal.h>
37 #include <linux/string.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/highmem.h>
41 #include <linux/ptrace.h>
42 #include <linux/audit.h>
43 #include <linux/stddef.h>
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <asm/tlbflush.h>
48 #include <asm/irq.h>
49 #include <asm/syscalls.h>
52 * Known problems:
54 * Interrupt handling is not guaranteed:
55 * - a real x86 will disable all interrupts for one instruction
56 * after a "mov ss,xx" to make stack handling atomic even without
57 * the 'lss' instruction. We can't guarantee this in v86 mode,
58 * as the next instruction might result in a page fault or similar.
59 * - a real x86 will have interrupts disabled for one instruction
60 * past the 'sti' that enables them. We don't bother with all the
61 * details yet.
63 * Let's hope these problems do not actually matter for anything.
67 #define KVM86 ((struct kernel_vm86_struct *)regs)
68 #define VMPI KVM86->vm86plus
72 * 8- and 16-bit register defines..
74 #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
75 #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
76 #define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
77 #define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
80 * virtual flags (16 and 32-bit versions)
82 #define VFLAGS (*(unsigned short *)&(current->thread.v86flags))
83 #define VEFLAGS (current->thread.v86flags)
85 #define set_flags(X, new, mask) \
86 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
88 #define SAFE_MASK (0xDD5)
89 #define RETURN_MASK (0xDFF)
91 /* convert kernel_vm86_regs to vm86_regs */
92 static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
93 const struct kernel_vm86_regs *regs)
95 int ret = 0;
98 * kernel_vm86_regs is missing gs, so copy everything up to
99 * (but not including) orig_eax, and then rest including orig_eax.
101 ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax));
102 ret += copy_to_user(&user->orig_eax, &regs->pt.orig_ax,
103 sizeof(struct kernel_vm86_regs) -
104 offsetof(struct kernel_vm86_regs, pt.orig_ax));
106 return ret;
109 /* convert vm86_regs to kernel_vm86_regs */
110 static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
111 const struct vm86_regs __user *user,
112 unsigned extra)
114 int ret = 0;
116 /* copy ax-fs inclusive */
117 ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax));
118 /* copy orig_ax-__gsh+extra */
119 ret += copy_from_user(&regs->pt.orig_ax, &user->orig_eax,
120 sizeof(struct kernel_vm86_regs) -
121 offsetof(struct kernel_vm86_regs, pt.orig_ax) +
122 extra);
123 return ret;
126 struct pt_regs *save_v86_state(struct kernel_vm86_regs *regs)
128 struct tss_struct *tss;
129 struct pt_regs *ret;
130 unsigned long tmp;
133 * This gets called from entry.S with interrupts disabled, but
134 * from process context. Enable interrupts here, before trying
135 * to access user space.
137 local_irq_enable();
139 if (!current->thread.vm86_info) {
140 printk("no vm86_info: BAD\n");
141 do_exit(SIGSEGV);
143 set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | current->thread.v86mask);
144 tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs, regs);
145 tmp += put_user(current->thread.screen_bitmap, &current->thread.vm86_info->screen_bitmap);
146 if (tmp) {
147 printk("vm86: could not access userspace vm86_info\n");
148 do_exit(SIGSEGV);
151 tss = &per_cpu(init_tss, get_cpu());
152 current->thread.sp0 = current->thread.saved_sp0;
153 current->thread.sysenter_cs = __KERNEL_CS;
154 load_sp0(tss, &current->thread);
155 current->thread.saved_sp0 = 0;
156 put_cpu();
158 ret = KVM86->regs32;
160 ret->fs = current->thread.saved_fs;
161 set_user_gs(ret, current->thread.saved_gs);
163 return ret;
166 static void mark_screen_rdonly(struct mm_struct *mm)
168 pgd_t *pgd;
169 pud_t *pud;
170 pmd_t *pmd;
171 pte_t *pte;
172 spinlock_t *ptl;
173 int i;
175 pgd = pgd_offset(mm, 0xA0000);
176 if (pgd_none_or_clear_bad(pgd))
177 goto out;
178 pud = pud_offset(pgd, 0xA0000);
179 if (pud_none_or_clear_bad(pud))
180 goto out;
181 pmd = pmd_offset(pud, 0xA0000);
182 if (pmd_none_or_clear_bad(pmd))
183 goto out;
184 pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
185 for (i = 0; i < 32; i++) {
186 if (pte_present(*pte))
187 set_pte(pte, pte_wrprotect(*pte));
188 pte++;
190 pte_unmap_unlock(pte, ptl);
191 out:
192 flush_tlb();
197 static int do_vm86_irq_handling(int subfunction, int irqnumber);
198 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
200 int sys_vm86old(struct vm86_struct __user *v86, struct pt_regs *regs)
202 struct kernel_vm86_struct info; /* declare this _on top_,
203 * this avoids wasting of stack space.
204 * This remains on the stack until we
205 * return to 32 bit user space.
207 struct task_struct *tsk;
208 int tmp, ret = -EPERM;
210 tsk = current;
211 if (tsk->thread.saved_sp0)
212 goto out;
213 tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
214 offsetof(struct kernel_vm86_struct, vm86plus) -
215 sizeof(info.regs));
216 ret = -EFAULT;
217 if (tmp)
218 goto out;
219 memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
220 info.regs32 = regs;
221 tsk->thread.vm86_info = v86;
222 do_sys_vm86(&info, tsk);
223 ret = 0; /* we never return here */
224 out:
225 return ret;
229 int sys_vm86(unsigned long cmd, unsigned long arg, struct pt_regs *regs)
231 struct kernel_vm86_struct info; /* declare this _on top_,
232 * this avoids wasting of stack space.
233 * This remains on the stack until we
234 * return to 32 bit user space.
236 struct task_struct *tsk;
237 int tmp, ret;
238 struct vm86plus_struct __user *v86;
240 tsk = current;
241 switch (cmd) {
242 case VM86_REQUEST_IRQ:
243 case VM86_FREE_IRQ:
244 case VM86_GET_IRQ_BITS:
245 case VM86_GET_AND_RESET_IRQ:
246 ret = do_vm86_irq_handling(cmd, (int)arg);
247 goto out;
248 case VM86_PLUS_INSTALL_CHECK:
250 * NOTE: on old vm86 stuff this will return the error
251 * from access_ok(), because the subfunction is
252 * interpreted as (invalid) address to vm86_struct.
253 * So the installation check works.
255 ret = 0;
256 goto out;
259 /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
260 ret = -EPERM;
261 if (tsk->thread.saved_sp0)
262 goto out;
263 v86 = (struct vm86plus_struct __user *)arg;
264 tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
265 offsetof(struct kernel_vm86_struct, regs32) -
266 sizeof(info.regs));
267 ret = -EFAULT;
268 if (tmp)
269 goto out;
270 info.regs32 = regs;
271 info.vm86plus.is_vm86pus = 1;
272 tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
273 do_sys_vm86(&info, tsk);
274 ret = 0; /* we never return here */
275 out:
276 return ret;
280 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
282 struct tss_struct *tss;
284 * make sure the vm86() system call doesn't try to do anything silly
286 info->regs.pt.ds = 0;
287 info->regs.pt.es = 0;
288 info->regs.pt.fs = 0;
289 #ifndef CONFIG_X86_32_LAZY_GS
290 info->regs.pt.gs = 0;
291 #endif
294 * The flags register is also special: we cannot trust that the user
295 * has set it up safely, so this makes sure interrupt etc flags are
296 * inherited from protected mode.
298 VEFLAGS = info->regs.pt.flags;
299 info->regs.pt.flags &= SAFE_MASK;
300 info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK;
301 info->regs.pt.flags |= X86_VM_MASK;
303 switch (info->cpu_type) {
304 case CPU_286:
305 tsk->thread.v86mask = 0;
306 break;
307 case CPU_386:
308 tsk->thread.v86mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
309 break;
310 case CPU_486:
311 tsk->thread.v86mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
312 break;
313 default:
314 tsk->thread.v86mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
315 break;
319 * Save old state, set default return value (%ax) to 0 (VM86_SIGNAL)
321 info->regs32->ax = VM86_SIGNAL;
322 tsk->thread.saved_sp0 = tsk->thread.sp0;
323 tsk->thread.saved_fs = info->regs32->fs;
324 tsk->thread.saved_gs = get_user_gs(info->regs32);
326 tss = &per_cpu(init_tss, get_cpu());
327 tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0;
328 if (cpu_has_sep)
329 tsk->thread.sysenter_cs = 0;
330 load_sp0(tss, &tsk->thread);
331 put_cpu();
333 tsk->thread.screen_bitmap = info->screen_bitmap;
334 if (info->flags & VM86_SCREEN_BITMAP)
335 mark_screen_rdonly(tsk->mm);
337 /*call audit_syscall_exit since we do not exit via the normal paths */
338 if (unlikely(current->audit_context))
339 audit_syscall_exit(AUDITSC_RESULT(0), 0);
341 __asm__ __volatile__(
342 "movl %0,%%esp\n\t"
343 "movl %1,%%ebp\n\t"
344 #ifdef CONFIG_X86_32_LAZY_GS
345 "mov %2, %%gs\n\t"
346 #endif
347 "jmp resume_userspace"
348 : /* no outputs */
349 :"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
350 /* we never return here */
353 static inline void return_to_32bit(struct kernel_vm86_regs *regs16, int retval)
355 struct pt_regs *regs32;
357 regs32 = save_v86_state(regs16);
358 regs32->ax = retval;
359 __asm__ __volatile__("movl %0,%%esp\n\t"
360 "movl %1,%%ebp\n\t"
361 "jmp resume_userspace"
362 : : "r" (regs32), "r" (current_thread_info()));
365 static inline void set_IF(struct kernel_vm86_regs *regs)
367 VEFLAGS |= X86_EFLAGS_VIF;
368 if (VEFLAGS & X86_EFLAGS_VIP)
369 return_to_32bit(regs, VM86_STI);
372 static inline void clear_IF(struct kernel_vm86_regs *regs)
374 VEFLAGS &= ~X86_EFLAGS_VIF;
377 static inline void clear_TF(struct kernel_vm86_regs *regs)
379 regs->pt.flags &= ~X86_EFLAGS_TF;
382 static inline void clear_AC(struct kernel_vm86_regs *regs)
384 regs->pt.flags &= ~X86_EFLAGS_AC;
388 * It is correct to call set_IF(regs) from the set_vflags_*
389 * functions. However someone forgot to call clear_IF(regs)
390 * in the opposite case.
391 * After the command sequence CLI PUSHF STI POPF you should
392 * end up with interrupts disabled, but you ended up with
393 * interrupts enabled.
394 * ( I was testing my own changes, but the only bug I
395 * could find was in a function I had not changed. )
396 * [KD]
399 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
401 set_flags(VEFLAGS, flags, current->thread.v86mask);
402 set_flags(regs->pt.flags, flags, SAFE_MASK);
403 if (flags & X86_EFLAGS_IF)
404 set_IF(regs);
405 else
406 clear_IF(regs);
409 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
411 set_flags(VFLAGS, flags, current->thread.v86mask);
412 set_flags(regs->pt.flags, flags, SAFE_MASK);
413 if (flags & X86_EFLAGS_IF)
414 set_IF(regs);
415 else
416 clear_IF(regs);
419 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
421 unsigned long flags = regs->pt.flags & RETURN_MASK;
423 if (VEFLAGS & X86_EFLAGS_VIF)
424 flags |= X86_EFLAGS_IF;
425 flags |= X86_EFLAGS_IOPL;
426 return flags | (VEFLAGS & current->thread.v86mask);
429 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
431 __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
432 :"=r" (nr)
433 :"m" (*bitmap), "r" (nr));
434 return nr;
437 #define val_byte(val, n) (((__u8 *)&val)[n])
439 #define pushb(base, ptr, val, err_label) \
440 do { \
441 __u8 __val = val; \
442 ptr--; \
443 if (put_user(__val, base + ptr) < 0) \
444 goto err_label; \
445 } while (0)
447 #define pushw(base, ptr, val, err_label) \
448 do { \
449 __u16 __val = val; \
450 ptr--; \
451 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
452 goto err_label; \
453 ptr--; \
454 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
455 goto err_label; \
456 } while (0)
458 #define pushl(base, ptr, val, err_label) \
459 do { \
460 __u32 __val = val; \
461 ptr--; \
462 if (put_user(val_byte(__val, 3), base + ptr) < 0) \
463 goto err_label; \
464 ptr--; \
465 if (put_user(val_byte(__val, 2), base + ptr) < 0) \
466 goto err_label; \
467 ptr--; \
468 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
469 goto err_label; \
470 ptr--; \
471 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
472 goto err_label; \
473 } while (0)
475 #define popb(base, ptr, err_label) \
476 ({ \
477 __u8 __res; \
478 if (get_user(__res, base + ptr) < 0) \
479 goto err_label; \
480 ptr++; \
481 __res; \
484 #define popw(base, ptr, err_label) \
485 ({ \
486 __u16 __res; \
487 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
488 goto err_label; \
489 ptr++; \
490 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
491 goto err_label; \
492 ptr++; \
493 __res; \
496 #define popl(base, ptr, err_label) \
497 ({ \
498 __u32 __res; \
499 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
500 goto err_label; \
501 ptr++; \
502 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
503 goto err_label; \
504 ptr++; \
505 if (get_user(val_byte(__res, 2), base + ptr) < 0) \
506 goto err_label; \
507 ptr++; \
508 if (get_user(val_byte(__res, 3), base + ptr) < 0) \
509 goto err_label; \
510 ptr++; \
511 __res; \
514 /* There are so many possible reasons for this function to return
515 * VM86_INTx, so adding another doesn't bother me. We can expect
516 * userspace programs to be able to handle it. (Getting a problem
517 * in userspace is always better than an Oops anyway.) [KD]
519 static void do_int(struct kernel_vm86_regs *regs, int i,
520 unsigned char __user *ssp, unsigned short sp)
522 unsigned long __user *intr_ptr;
523 unsigned long segoffs;
525 if (regs->pt.cs == BIOSSEG)
526 goto cannot_handle;
527 if (is_revectored(i, &KVM86->int_revectored))
528 goto cannot_handle;
529 if (i == 0x21 && is_revectored(AH(regs), &KVM86->int21_revectored))
530 goto cannot_handle;
531 intr_ptr = (unsigned long __user *) (i << 2);
532 if (get_user(segoffs, intr_ptr))
533 goto cannot_handle;
534 if ((segoffs >> 16) == BIOSSEG)
535 goto cannot_handle;
536 pushw(ssp, sp, get_vflags(regs), cannot_handle);
537 pushw(ssp, sp, regs->pt.cs, cannot_handle);
538 pushw(ssp, sp, IP(regs), cannot_handle);
539 regs->pt.cs = segoffs >> 16;
540 SP(regs) -= 6;
541 IP(regs) = segoffs & 0xffff;
542 clear_TF(regs);
543 clear_IF(regs);
544 clear_AC(regs);
545 return;
547 cannot_handle:
548 return_to_32bit(regs, VM86_INTx + (i << 8));
551 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
553 if (VMPI.is_vm86pus) {
554 if ((trapno == 3) || (trapno == 1))
555 return_to_32bit(regs, VM86_TRAP + (trapno << 8));
556 do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
557 return 0;
559 if (trapno != 1)
560 return 1; /* we let this handle by the calling routine */
561 current->thread.trap_no = trapno;
562 current->thread.error_code = error_code;
563 force_sig(SIGTRAP, current);
564 return 0;
567 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
569 unsigned char opcode;
570 unsigned char __user *csp;
571 unsigned char __user *ssp;
572 unsigned short ip, sp, orig_flags;
573 int data32, pref_done;
575 #define CHECK_IF_IN_TRAP \
576 if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
577 newflags |= X86_EFLAGS_TF
578 #define VM86_FAULT_RETURN do { \
579 if (VMPI.force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) \
580 return_to_32bit(regs, VM86_PICRETURN); \
581 if (orig_flags & X86_EFLAGS_TF) \
582 handle_vm86_trap(regs, 0, 1); \
583 return; } while (0)
585 orig_flags = *(unsigned short *)&regs->pt.flags;
587 csp = (unsigned char __user *) (regs->pt.cs << 4);
588 ssp = (unsigned char __user *) (regs->pt.ss << 4);
589 sp = SP(regs);
590 ip = IP(regs);
592 data32 = 0;
593 pref_done = 0;
594 do {
595 switch (opcode = popb(csp, ip, simulate_sigsegv)) {
596 case 0x66: /* 32-bit data */ data32 = 1; break;
597 case 0x67: /* 32-bit address */ break;
598 case 0x2e: /* CS */ break;
599 case 0x3e: /* DS */ break;
600 case 0x26: /* ES */ break;
601 case 0x36: /* SS */ break;
602 case 0x65: /* GS */ break;
603 case 0x64: /* FS */ break;
604 case 0xf2: /* repnz */ break;
605 case 0xf3: /* rep */ break;
606 default: pref_done = 1;
608 } while (!pref_done);
610 switch (opcode) {
612 /* pushf */
613 case 0x9c:
614 if (data32) {
615 pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
616 SP(regs) -= 4;
617 } else {
618 pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
619 SP(regs) -= 2;
621 IP(regs) = ip;
622 VM86_FAULT_RETURN;
624 /* popf */
625 case 0x9d:
627 unsigned long newflags;
628 if (data32) {
629 newflags = popl(ssp, sp, simulate_sigsegv);
630 SP(regs) += 4;
631 } else {
632 newflags = popw(ssp, sp, simulate_sigsegv);
633 SP(regs) += 2;
635 IP(regs) = ip;
636 CHECK_IF_IN_TRAP;
637 if (data32)
638 set_vflags_long(newflags, regs);
639 else
640 set_vflags_short(newflags, regs);
642 VM86_FAULT_RETURN;
645 /* int xx */
646 case 0xcd: {
647 int intno = popb(csp, ip, simulate_sigsegv);
648 IP(regs) = ip;
649 if (VMPI.vm86dbg_active) {
650 if ((1 << (intno & 7)) & VMPI.vm86dbg_intxxtab[intno >> 3])
651 return_to_32bit(regs, VM86_INTx + (intno << 8));
653 do_int(regs, intno, ssp, sp);
654 return;
657 /* iret */
658 case 0xcf:
660 unsigned long newip;
661 unsigned long newcs;
662 unsigned long newflags;
663 if (data32) {
664 newip = popl(ssp, sp, simulate_sigsegv);
665 newcs = popl(ssp, sp, simulate_sigsegv);
666 newflags = popl(ssp, sp, simulate_sigsegv);
667 SP(regs) += 12;
668 } else {
669 newip = popw(ssp, sp, simulate_sigsegv);
670 newcs = popw(ssp, sp, simulate_sigsegv);
671 newflags = popw(ssp, sp, simulate_sigsegv);
672 SP(regs) += 6;
674 IP(regs) = newip;
675 regs->pt.cs = newcs;
676 CHECK_IF_IN_TRAP;
677 if (data32) {
678 set_vflags_long(newflags, regs);
679 } else {
680 set_vflags_short(newflags, regs);
682 VM86_FAULT_RETURN;
685 /* cli */
686 case 0xfa:
687 IP(regs) = ip;
688 clear_IF(regs);
689 VM86_FAULT_RETURN;
691 /* sti */
693 * Damn. This is incorrect: the 'sti' instruction should actually
694 * enable interrupts after the /next/ instruction. Not good.
696 * Probably needs some horsing around with the TF flag. Aiee..
698 case 0xfb:
699 IP(regs) = ip;
700 set_IF(regs);
701 VM86_FAULT_RETURN;
703 default:
704 return_to_32bit(regs, VM86_UNKNOWN);
707 return;
709 simulate_sigsegv:
710 /* FIXME: After a long discussion with Stas we finally
711 * agreed, that this is wrong. Here we should
712 * really send a SIGSEGV to the user program.
713 * But how do we create the correct context? We
714 * are inside a general protection fault handler
715 * and has just returned from a page fault handler.
716 * The correct context for the signal handler
717 * should be a mixture of the two, but how do we
718 * get the information? [KD]
720 return_to_32bit(regs, VM86_UNKNOWN);
723 /* ---------------- vm86 special IRQ passing stuff ----------------- */
725 #define VM86_IRQNAME "vm86irq"
727 static struct vm86_irqs {
728 struct task_struct *tsk;
729 int sig;
730 } vm86_irqs[16];
732 static DEFINE_SPINLOCK(irqbits_lock);
733 static int irqbits;
735 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
736 | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
737 | (1 << SIGUNUSED))
739 static irqreturn_t irq_handler(int intno, void *dev_id)
741 int irq_bit;
742 unsigned long flags;
744 spin_lock_irqsave(&irqbits_lock, flags);
745 irq_bit = 1 << intno;
746 if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
747 goto out;
748 irqbits |= irq_bit;
749 if (vm86_irqs[intno].sig)
750 send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
752 * IRQ will be re-enabled when user asks for the irq (whether
753 * polling or as a result of the signal)
755 disable_irq_nosync(intno);
756 spin_unlock_irqrestore(&irqbits_lock, flags);
757 return IRQ_HANDLED;
759 out:
760 spin_unlock_irqrestore(&irqbits_lock, flags);
761 return IRQ_NONE;
764 static inline void free_vm86_irq(int irqnumber)
766 unsigned long flags;
768 free_irq(irqnumber, NULL);
769 vm86_irqs[irqnumber].tsk = NULL;
771 spin_lock_irqsave(&irqbits_lock, flags);
772 irqbits &= ~(1 << irqnumber);
773 spin_unlock_irqrestore(&irqbits_lock, flags);
776 void release_vm86_irqs(struct task_struct *task)
778 int i;
779 for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
780 if (vm86_irqs[i].tsk == task)
781 free_vm86_irq(i);
784 static inline int get_and_reset_irq(int irqnumber)
786 int bit;
787 unsigned long flags;
788 int ret = 0;
790 if (invalid_vm86_irq(irqnumber)) return 0;
791 if (vm86_irqs[irqnumber].tsk != current) return 0;
792 spin_lock_irqsave(&irqbits_lock, flags);
793 bit = irqbits & (1 << irqnumber);
794 irqbits &= ~bit;
795 if (bit) {
796 enable_irq(irqnumber);
797 ret = 1;
800 spin_unlock_irqrestore(&irqbits_lock, flags);
801 return ret;
805 static int do_vm86_irq_handling(int subfunction, int irqnumber)
807 int ret;
808 switch (subfunction) {
809 case VM86_GET_AND_RESET_IRQ: {
810 return get_and_reset_irq(irqnumber);
812 case VM86_GET_IRQ_BITS: {
813 return irqbits;
815 case VM86_REQUEST_IRQ: {
816 int sig = irqnumber >> 8;
817 int irq = irqnumber & 255;
818 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
819 if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
820 if (invalid_vm86_irq(irq)) return -EPERM;
821 if (vm86_irqs[irq].tsk) return -EPERM;
822 ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
823 if (ret) return ret;
824 vm86_irqs[irq].sig = sig;
825 vm86_irqs[irq].tsk = current;
826 return irq;
828 case VM86_FREE_IRQ: {
829 if (invalid_vm86_irq(irqnumber)) return -EPERM;
830 if (!vm86_irqs[irqnumber].tsk) return 0;
831 if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
832 free_vm86_irq(irqnumber);
833 return 0;
836 return -EINVAL;