hwrng: remove Michael as HWRNG maintainer
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / core / sock.c
blob09cb3a74de7f35a976f5b21fbc33a67b3a8224b9
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
10 * Version: $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
12 * Authors: Ross Biro
13 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Alan Cox, <A.Cox@swansea.ac.uk>
17 * Fixes:
18 * Alan Cox : Numerous verify_area() problems
19 * Alan Cox : Connecting on a connecting socket
20 * now returns an error for tcp.
21 * Alan Cox : sock->protocol is set correctly.
22 * and is not sometimes left as 0.
23 * Alan Cox : connect handles icmp errors on a
24 * connect properly. Unfortunately there
25 * is a restart syscall nasty there. I
26 * can't match BSD without hacking the C
27 * library. Ideas urgently sought!
28 * Alan Cox : Disallow bind() to addresses that are
29 * not ours - especially broadcast ones!!
30 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
31 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
32 * instead they leave that for the DESTROY timer.
33 * Alan Cox : Clean up error flag in accept
34 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
35 * was buggy. Put a remove_sock() in the handler
36 * for memory when we hit 0. Also altered the timer
37 * code. The ACK stuff can wait and needs major
38 * TCP layer surgery.
39 * Alan Cox : Fixed TCP ack bug, removed remove sock
40 * and fixed timer/inet_bh race.
41 * Alan Cox : Added zapped flag for TCP
42 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
43 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
45 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 * Rick Sladkey : Relaxed UDP rules for matching packets.
48 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
49 * Pauline Middelink : identd support
50 * Alan Cox : Fixed connect() taking signals I think.
51 * Alan Cox : SO_LINGER supported
52 * Alan Cox : Error reporting fixes
53 * Anonymous : inet_create tidied up (sk->reuse setting)
54 * Alan Cox : inet sockets don't set sk->type!
55 * Alan Cox : Split socket option code
56 * Alan Cox : Callbacks
57 * Alan Cox : Nagle flag for Charles & Johannes stuff
58 * Alex : Removed restriction on inet fioctl
59 * Alan Cox : Splitting INET from NET core
60 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
61 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
62 * Alan Cox : Split IP from generic code
63 * Alan Cox : New kfree_skbmem()
64 * Alan Cox : Make SO_DEBUG superuser only.
65 * Alan Cox : Allow anyone to clear SO_DEBUG
66 * (compatibility fix)
67 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
68 * Alan Cox : Allocator for a socket is settable.
69 * Alan Cox : SO_ERROR includes soft errors.
70 * Alan Cox : Allow NULL arguments on some SO_ opts
71 * Alan Cox : Generic socket allocation to make hooks
72 * easier (suggested by Craig Metz).
73 * Michael Pall : SO_ERROR returns positive errno again
74 * Steve Whitehouse: Added default destructor to free
75 * protocol private data.
76 * Steve Whitehouse: Added various other default routines
77 * common to several socket families.
78 * Chris Evans : Call suser() check last on F_SETOWN
79 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
81 * Andi Kleen : Fix write_space callback
82 * Chris Evans : Security fixes - signedness again
83 * Arnaldo C. Melo : cleanups, use skb_queue_purge
85 * To Fix:
88 * This program is free software; you can redistribute it and/or
89 * modify it under the terms of the GNU General Public License
90 * as published by the Free Software Foundation; either version
91 * 2 of the License, or (at your option) any later version.
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
128 #include <linux/filter.h>
130 #ifdef CONFIG_INET
131 #include <net/tcp.h>
132 #endif
135 * Each address family might have different locking rules, so we have
136 * one slock key per address family:
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
143 * Make lock validator output more readable. (we pre-construct these
144 * strings build-time, so that runtime initialization of socket
145 * locks is fast):
147 static const char *af_family_key_strings[AF_MAX+1] = {
148 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
149 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
150 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
151 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
152 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
153 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
154 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
155 "sk_lock-21" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
156 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
157 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
158 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
159 "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-21" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_MAX"
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
177 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
178 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
179 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
180 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
181 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
182 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
183 "clock-21" , "clock-AF_SNA" , "clock-AF_IRDA" ,
184 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
185 "clock-27" , "clock-28" , "clock-29" ,
186 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
187 "clock-AF_RXRPC" , "clock-AF_MAX"
189 #endif
192 * sk_callback_lock locking rules are per-address-family,
193 * so split the lock classes by using a per-AF key:
195 static struct lock_class_key af_callback_keys[AF_MAX];
197 /* Take into consideration the size of the struct sk_buff overhead in the
198 * determination of these values, since that is non-constant across
199 * platforms. This makes socket queueing behavior and performance
200 * not depend upon such differences.
202 #define _SK_MEM_PACKETS 256
203 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
204 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
207 /* Run time adjustable parameters. */
208 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
213 /* Maximal space eaten by iovec or ancilliary data plus some space */
214 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
216 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
218 struct timeval tv;
220 if (optlen < sizeof(tv))
221 return -EINVAL;
222 if (copy_from_user(&tv, optval, sizeof(tv)))
223 return -EFAULT;
224 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225 return -EDOM;
227 if (tv.tv_sec < 0) {
228 static int warned __read_mostly;
230 *timeo_p = 0;
231 if (warned < 10 && net_ratelimit())
232 warned++;
233 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234 "tries to set negative timeout\n",
235 current->comm, task_pid_nr(current));
236 return 0;
238 *timeo_p = MAX_SCHEDULE_TIMEOUT;
239 if (tv.tv_sec == 0 && tv.tv_usec == 0)
240 return 0;
241 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243 return 0;
246 static void sock_warn_obsolete_bsdism(const char *name)
248 static int warned;
249 static char warncomm[TASK_COMM_LEN];
250 if (strcmp(warncomm, current->comm) && warned < 5) {
251 strcpy(warncomm, current->comm);
252 printk(KERN_WARNING "process `%s' is using obsolete "
253 "%s SO_BSDCOMPAT\n", warncomm, name);
254 warned++;
258 static void sock_disable_timestamp(struct sock *sk)
260 if (sock_flag(sk, SOCK_TIMESTAMP)) {
261 sock_reset_flag(sk, SOCK_TIMESTAMP);
262 net_disable_timestamp();
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
269 int err = 0;
270 int skb_len;
272 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273 number of warnings when compiling with -W --ANK
275 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276 (unsigned)sk->sk_rcvbuf) {
277 err = -ENOMEM;
278 goto out;
281 err = sk_filter(sk, skb);
282 if (err)
283 goto out;
285 if (!sk_rmem_schedule(sk, skb->truesize)) {
286 err = -ENOBUFS;
287 goto out;
290 skb->dev = NULL;
291 skb_set_owner_r(skb, sk);
293 /* Cache the SKB length before we tack it onto the receive
294 * queue. Once it is added it no longer belongs to us and
295 * may be freed by other threads of control pulling packets
296 * from the queue.
298 skb_len = skb->len;
300 skb_queue_tail(&sk->sk_receive_queue, skb);
302 if (!sock_flag(sk, SOCK_DEAD))
303 sk->sk_data_ready(sk, skb_len);
304 out:
305 return err;
307 EXPORT_SYMBOL(sock_queue_rcv_skb);
309 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
311 int rc = NET_RX_SUCCESS;
313 if (sk_filter(sk, skb))
314 goto discard_and_relse;
316 skb->dev = NULL;
318 if (nested)
319 bh_lock_sock_nested(sk);
320 else
321 bh_lock_sock(sk);
322 if (!sock_owned_by_user(sk)) {
324 * trylock + unlock semantics:
326 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
328 rc = sk->sk_backlog_rcv(sk, skb);
330 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
331 } else
332 sk_add_backlog(sk, skb);
333 bh_unlock_sock(sk);
334 out:
335 sock_put(sk);
336 return rc;
337 discard_and_relse:
338 kfree_skb(skb);
339 goto out;
341 EXPORT_SYMBOL(sk_receive_skb);
343 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
345 struct dst_entry *dst = sk->sk_dst_cache;
347 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
348 sk->sk_dst_cache = NULL;
349 dst_release(dst);
350 return NULL;
353 return dst;
355 EXPORT_SYMBOL(__sk_dst_check);
357 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
359 struct dst_entry *dst = sk_dst_get(sk);
361 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
362 sk_dst_reset(sk);
363 dst_release(dst);
364 return NULL;
367 return dst;
369 EXPORT_SYMBOL(sk_dst_check);
371 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
373 int ret = -ENOPROTOOPT;
374 #ifdef CONFIG_NETDEVICES
375 struct net *net = sk->sk_net;
376 char devname[IFNAMSIZ];
377 int index;
379 /* Sorry... */
380 ret = -EPERM;
381 if (!capable(CAP_NET_RAW))
382 goto out;
384 ret = -EINVAL;
385 if (optlen < 0)
386 goto out;
388 /* Bind this socket to a particular device like "eth0",
389 * as specified in the passed interface name. If the
390 * name is "" or the option length is zero the socket
391 * is not bound.
393 if (optlen > IFNAMSIZ - 1)
394 optlen = IFNAMSIZ - 1;
395 memset(devname, 0, sizeof(devname));
397 ret = -EFAULT;
398 if (copy_from_user(devname, optval, optlen))
399 goto out;
401 if (devname[0] == '\0') {
402 index = 0;
403 } else {
404 struct net_device *dev = dev_get_by_name(net, devname);
406 ret = -ENODEV;
407 if (!dev)
408 goto out;
410 index = dev->ifindex;
411 dev_put(dev);
414 lock_sock(sk);
415 sk->sk_bound_dev_if = index;
416 sk_dst_reset(sk);
417 release_sock(sk);
419 ret = 0;
421 out:
422 #endif
424 return ret;
427 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
429 if (valbool)
430 sock_set_flag(sk, bit);
431 else
432 sock_reset_flag(sk, bit);
436 * This is meant for all protocols to use and covers goings on
437 * at the socket level. Everything here is generic.
440 int sock_setsockopt(struct socket *sock, int level, int optname,
441 char __user *optval, int optlen)
443 struct sock *sk=sock->sk;
444 int val;
445 int valbool;
446 struct linger ling;
447 int ret = 0;
450 * Options without arguments
453 #ifdef SO_DONTLINGER /* Compatibility item... */
454 if (optname == SO_DONTLINGER) {
455 lock_sock(sk);
456 sock_reset_flag(sk, SOCK_LINGER);
457 release_sock(sk);
458 return 0;
460 #endif
462 if (optname == SO_BINDTODEVICE)
463 return sock_bindtodevice(sk, optval, optlen);
465 if (optlen < sizeof(int))
466 return -EINVAL;
468 if (get_user(val, (int __user *)optval))
469 return -EFAULT;
471 valbool = val?1:0;
473 lock_sock(sk);
475 switch(optname) {
476 case SO_DEBUG:
477 if (val && !capable(CAP_NET_ADMIN)) {
478 ret = -EACCES;
479 } else
480 sock_valbool_flag(sk, SOCK_DBG, valbool);
481 break;
482 case SO_REUSEADDR:
483 sk->sk_reuse = valbool;
484 break;
485 case SO_TYPE:
486 case SO_ERROR:
487 ret = -ENOPROTOOPT;
488 break;
489 case SO_DONTROUTE:
490 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
491 break;
492 case SO_BROADCAST:
493 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
494 break;
495 case SO_SNDBUF:
496 /* Don't error on this BSD doesn't and if you think
497 about it this is right. Otherwise apps have to
498 play 'guess the biggest size' games. RCVBUF/SNDBUF
499 are treated in BSD as hints */
501 if (val > sysctl_wmem_max)
502 val = sysctl_wmem_max;
503 set_sndbuf:
504 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
505 if ((val * 2) < SOCK_MIN_SNDBUF)
506 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
507 else
508 sk->sk_sndbuf = val * 2;
511 * Wake up sending tasks if we
512 * upped the value.
514 sk->sk_write_space(sk);
515 break;
517 case SO_SNDBUFFORCE:
518 if (!capable(CAP_NET_ADMIN)) {
519 ret = -EPERM;
520 break;
522 goto set_sndbuf;
524 case SO_RCVBUF:
525 /* Don't error on this BSD doesn't and if you think
526 about it this is right. Otherwise apps have to
527 play 'guess the biggest size' games. RCVBUF/SNDBUF
528 are treated in BSD as hints */
530 if (val > sysctl_rmem_max)
531 val = sysctl_rmem_max;
532 set_rcvbuf:
533 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
535 * We double it on the way in to account for
536 * "struct sk_buff" etc. overhead. Applications
537 * assume that the SO_RCVBUF setting they make will
538 * allow that much actual data to be received on that
539 * socket.
541 * Applications are unaware that "struct sk_buff" and
542 * other overheads allocate from the receive buffer
543 * during socket buffer allocation.
545 * And after considering the possible alternatives,
546 * returning the value we actually used in getsockopt
547 * is the most desirable behavior.
549 if ((val * 2) < SOCK_MIN_RCVBUF)
550 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
551 else
552 sk->sk_rcvbuf = val * 2;
553 break;
555 case SO_RCVBUFFORCE:
556 if (!capable(CAP_NET_ADMIN)) {
557 ret = -EPERM;
558 break;
560 goto set_rcvbuf;
562 case SO_KEEPALIVE:
563 #ifdef CONFIG_INET
564 if (sk->sk_protocol == IPPROTO_TCP)
565 tcp_set_keepalive(sk, valbool);
566 #endif
567 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
568 break;
570 case SO_OOBINLINE:
571 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
572 break;
574 case SO_NO_CHECK:
575 sk->sk_no_check = valbool;
576 break;
578 case SO_PRIORITY:
579 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
580 sk->sk_priority = val;
581 else
582 ret = -EPERM;
583 break;
585 case SO_LINGER:
586 if (optlen < sizeof(ling)) {
587 ret = -EINVAL; /* 1003.1g */
588 break;
590 if (copy_from_user(&ling,optval,sizeof(ling))) {
591 ret = -EFAULT;
592 break;
594 if (!ling.l_onoff)
595 sock_reset_flag(sk, SOCK_LINGER);
596 else {
597 #if (BITS_PER_LONG == 32)
598 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
599 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
600 else
601 #endif
602 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
603 sock_set_flag(sk, SOCK_LINGER);
605 break;
607 case SO_BSDCOMPAT:
608 sock_warn_obsolete_bsdism("setsockopt");
609 break;
611 case SO_PASSCRED:
612 if (valbool)
613 set_bit(SOCK_PASSCRED, &sock->flags);
614 else
615 clear_bit(SOCK_PASSCRED, &sock->flags);
616 break;
618 case SO_TIMESTAMP:
619 case SO_TIMESTAMPNS:
620 if (valbool) {
621 if (optname == SO_TIMESTAMP)
622 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623 else
624 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
625 sock_set_flag(sk, SOCK_RCVTSTAMP);
626 sock_enable_timestamp(sk);
627 } else {
628 sock_reset_flag(sk, SOCK_RCVTSTAMP);
629 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
631 break;
633 case SO_RCVLOWAT:
634 if (val < 0)
635 val = INT_MAX;
636 sk->sk_rcvlowat = val ? : 1;
637 break;
639 case SO_RCVTIMEO:
640 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
641 break;
643 case SO_SNDTIMEO:
644 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
645 break;
647 case SO_ATTACH_FILTER:
648 ret = -EINVAL;
649 if (optlen == sizeof(struct sock_fprog)) {
650 struct sock_fprog fprog;
652 ret = -EFAULT;
653 if (copy_from_user(&fprog, optval, sizeof(fprog)))
654 break;
656 ret = sk_attach_filter(&fprog, sk);
658 break;
660 case SO_DETACH_FILTER:
661 ret = sk_detach_filter(sk);
662 break;
664 case SO_PASSSEC:
665 if (valbool)
666 set_bit(SOCK_PASSSEC, &sock->flags);
667 else
668 clear_bit(SOCK_PASSSEC, &sock->flags);
669 break;
670 case SO_MARK:
671 if (!capable(CAP_NET_ADMIN))
672 ret = -EPERM;
673 else {
674 sk->sk_mark = val;
676 break;
678 /* We implement the SO_SNDLOWAT etc to
679 not be settable (1003.1g 5.3) */
680 default:
681 ret = -ENOPROTOOPT;
682 break;
684 release_sock(sk);
685 return ret;
689 int sock_getsockopt(struct socket *sock, int level, int optname,
690 char __user *optval, int __user *optlen)
692 struct sock *sk = sock->sk;
694 union {
695 int val;
696 struct linger ling;
697 struct timeval tm;
698 } v;
700 unsigned int lv = sizeof(int);
701 int len;
703 if (get_user(len, optlen))
704 return -EFAULT;
705 if (len < 0)
706 return -EINVAL;
708 switch(optname) {
709 case SO_DEBUG:
710 v.val = sock_flag(sk, SOCK_DBG);
711 break;
713 case SO_DONTROUTE:
714 v.val = sock_flag(sk, SOCK_LOCALROUTE);
715 break;
717 case SO_BROADCAST:
718 v.val = !!sock_flag(sk, SOCK_BROADCAST);
719 break;
721 case SO_SNDBUF:
722 v.val = sk->sk_sndbuf;
723 break;
725 case SO_RCVBUF:
726 v.val = sk->sk_rcvbuf;
727 break;
729 case SO_REUSEADDR:
730 v.val = sk->sk_reuse;
731 break;
733 case SO_KEEPALIVE:
734 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
735 break;
737 case SO_TYPE:
738 v.val = sk->sk_type;
739 break;
741 case SO_ERROR:
742 v.val = -sock_error(sk);
743 if (v.val==0)
744 v.val = xchg(&sk->sk_err_soft, 0);
745 break;
747 case SO_OOBINLINE:
748 v.val = !!sock_flag(sk, SOCK_URGINLINE);
749 break;
751 case SO_NO_CHECK:
752 v.val = sk->sk_no_check;
753 break;
755 case SO_PRIORITY:
756 v.val = sk->sk_priority;
757 break;
759 case SO_LINGER:
760 lv = sizeof(v.ling);
761 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
762 v.ling.l_linger = sk->sk_lingertime / HZ;
763 break;
765 case SO_BSDCOMPAT:
766 sock_warn_obsolete_bsdism("getsockopt");
767 break;
769 case SO_TIMESTAMP:
770 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
771 !sock_flag(sk, SOCK_RCVTSTAMPNS);
772 break;
774 case SO_TIMESTAMPNS:
775 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
776 break;
778 case SO_RCVTIMEO:
779 lv=sizeof(struct timeval);
780 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
781 v.tm.tv_sec = 0;
782 v.tm.tv_usec = 0;
783 } else {
784 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
785 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
787 break;
789 case SO_SNDTIMEO:
790 lv=sizeof(struct timeval);
791 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
792 v.tm.tv_sec = 0;
793 v.tm.tv_usec = 0;
794 } else {
795 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
796 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
798 break;
800 case SO_RCVLOWAT:
801 v.val = sk->sk_rcvlowat;
802 break;
804 case SO_SNDLOWAT:
805 v.val=1;
806 break;
808 case SO_PASSCRED:
809 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
810 break;
812 case SO_PEERCRED:
813 if (len > sizeof(sk->sk_peercred))
814 len = sizeof(sk->sk_peercred);
815 if (copy_to_user(optval, &sk->sk_peercred, len))
816 return -EFAULT;
817 goto lenout;
819 case SO_PEERNAME:
821 char address[128];
823 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
824 return -ENOTCONN;
825 if (lv < len)
826 return -EINVAL;
827 if (copy_to_user(optval, address, len))
828 return -EFAULT;
829 goto lenout;
832 /* Dubious BSD thing... Probably nobody even uses it, but
833 * the UNIX standard wants it for whatever reason... -DaveM
835 case SO_ACCEPTCONN:
836 v.val = sk->sk_state == TCP_LISTEN;
837 break;
839 case SO_PASSSEC:
840 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
841 break;
843 case SO_PEERSEC:
844 return security_socket_getpeersec_stream(sock, optval, optlen, len);
846 case SO_MARK:
847 v.val = sk->sk_mark;
848 break;
850 default:
851 return -ENOPROTOOPT;
854 if (len > lv)
855 len = lv;
856 if (copy_to_user(optval, &v, len))
857 return -EFAULT;
858 lenout:
859 if (put_user(len, optlen))
860 return -EFAULT;
861 return 0;
865 * Initialize an sk_lock.
867 * (We also register the sk_lock with the lock validator.)
869 static inline void sock_lock_init(struct sock *sk)
871 sock_lock_init_class_and_name(sk,
872 af_family_slock_key_strings[sk->sk_family],
873 af_family_slock_keys + sk->sk_family,
874 af_family_key_strings[sk->sk_family],
875 af_family_keys + sk->sk_family);
878 static void sock_copy(struct sock *nsk, const struct sock *osk)
880 #ifdef CONFIG_SECURITY_NETWORK
881 void *sptr = nsk->sk_security;
882 #endif
884 memcpy(nsk, osk, osk->sk_prot->obj_size);
885 #ifdef CONFIG_SECURITY_NETWORK
886 nsk->sk_security = sptr;
887 security_sk_clone(osk, nsk);
888 #endif
891 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
892 int family)
894 struct sock *sk;
895 struct kmem_cache *slab;
897 slab = prot->slab;
898 if (slab != NULL)
899 sk = kmem_cache_alloc(slab, priority);
900 else
901 sk = kmalloc(prot->obj_size, priority);
903 if (sk != NULL) {
904 if (security_sk_alloc(sk, family, priority))
905 goto out_free;
907 if (!try_module_get(prot->owner))
908 goto out_free_sec;
911 return sk;
913 out_free_sec:
914 security_sk_free(sk);
915 out_free:
916 if (slab != NULL)
917 kmem_cache_free(slab, sk);
918 else
919 kfree(sk);
920 return NULL;
923 static void sk_prot_free(struct proto *prot, struct sock *sk)
925 struct kmem_cache *slab;
926 struct module *owner;
928 owner = prot->owner;
929 slab = prot->slab;
931 security_sk_free(sk);
932 if (slab != NULL)
933 kmem_cache_free(slab, sk);
934 else
935 kfree(sk);
936 module_put(owner);
940 * sk_alloc - All socket objects are allocated here
941 * @net: the applicable net namespace
942 * @family: protocol family
943 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
944 * @prot: struct proto associated with this new sock instance
945 * @zero_it: if we should zero the newly allocated sock
947 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
948 struct proto *prot)
950 struct sock *sk;
952 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
953 if (sk) {
954 sk->sk_family = family;
956 * See comment in struct sock definition to understand
957 * why we need sk_prot_creator -acme
959 sk->sk_prot = sk->sk_prot_creator = prot;
960 sock_lock_init(sk);
961 sk->sk_net = get_net(net);
964 return sk;
967 void sk_free(struct sock *sk)
969 struct sk_filter *filter;
971 if (sk->sk_destruct)
972 sk->sk_destruct(sk);
974 filter = rcu_dereference(sk->sk_filter);
975 if (filter) {
976 sk_filter_uncharge(sk, filter);
977 rcu_assign_pointer(sk->sk_filter, NULL);
980 sock_disable_timestamp(sk);
982 if (atomic_read(&sk->sk_omem_alloc))
983 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
984 __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
986 put_net(sk->sk_net);
987 sk_prot_free(sk->sk_prot_creator, sk);
990 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
992 struct sock *newsk;
994 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
995 if (newsk != NULL) {
996 struct sk_filter *filter;
998 sock_copy(newsk, sk);
1000 /* SANITY */
1001 get_net(newsk->sk_net);
1002 sk_node_init(&newsk->sk_node);
1003 sock_lock_init(newsk);
1004 bh_lock_sock(newsk);
1005 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1007 atomic_set(&newsk->sk_rmem_alloc, 0);
1008 atomic_set(&newsk->sk_wmem_alloc, 0);
1009 atomic_set(&newsk->sk_omem_alloc, 0);
1010 skb_queue_head_init(&newsk->sk_receive_queue);
1011 skb_queue_head_init(&newsk->sk_write_queue);
1012 #ifdef CONFIG_NET_DMA
1013 skb_queue_head_init(&newsk->sk_async_wait_queue);
1014 #endif
1016 rwlock_init(&newsk->sk_dst_lock);
1017 rwlock_init(&newsk->sk_callback_lock);
1018 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1019 af_callback_keys + newsk->sk_family,
1020 af_family_clock_key_strings[newsk->sk_family]);
1022 newsk->sk_dst_cache = NULL;
1023 newsk->sk_wmem_queued = 0;
1024 newsk->sk_forward_alloc = 0;
1025 newsk->sk_send_head = NULL;
1026 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1028 sock_reset_flag(newsk, SOCK_DONE);
1029 skb_queue_head_init(&newsk->sk_error_queue);
1031 filter = newsk->sk_filter;
1032 if (filter != NULL)
1033 sk_filter_charge(newsk, filter);
1035 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1036 /* It is still raw copy of parent, so invalidate
1037 * destructor and make plain sk_free() */
1038 newsk->sk_destruct = NULL;
1039 sk_free(newsk);
1040 newsk = NULL;
1041 goto out;
1044 newsk->sk_err = 0;
1045 newsk->sk_priority = 0;
1046 atomic_set(&newsk->sk_refcnt, 2);
1049 * Increment the counter in the same struct proto as the master
1050 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1051 * is the same as sk->sk_prot->socks, as this field was copied
1052 * with memcpy).
1054 * This _changes_ the previous behaviour, where
1055 * tcp_create_openreq_child always was incrementing the
1056 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1057 * to be taken into account in all callers. -acme
1059 sk_refcnt_debug_inc(newsk);
1060 newsk->sk_socket = NULL;
1061 newsk->sk_sleep = NULL;
1063 if (newsk->sk_prot->sockets_allocated)
1064 atomic_inc(newsk->sk_prot->sockets_allocated);
1066 out:
1067 return newsk;
1070 EXPORT_SYMBOL_GPL(sk_clone);
1072 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1074 __sk_dst_set(sk, dst);
1075 sk->sk_route_caps = dst->dev->features;
1076 if (sk->sk_route_caps & NETIF_F_GSO)
1077 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1078 if (sk_can_gso(sk)) {
1079 if (dst->header_len)
1080 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1081 else
1082 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1085 EXPORT_SYMBOL_GPL(sk_setup_caps);
1087 void __init sk_init(void)
1089 if (num_physpages <= 4096) {
1090 sysctl_wmem_max = 32767;
1091 sysctl_rmem_max = 32767;
1092 sysctl_wmem_default = 32767;
1093 sysctl_rmem_default = 32767;
1094 } else if (num_physpages >= 131072) {
1095 sysctl_wmem_max = 131071;
1096 sysctl_rmem_max = 131071;
1101 * Simple resource managers for sockets.
1106 * Write buffer destructor automatically called from kfree_skb.
1108 void sock_wfree(struct sk_buff *skb)
1110 struct sock *sk = skb->sk;
1112 /* In case it might be waiting for more memory. */
1113 atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1114 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1115 sk->sk_write_space(sk);
1116 sock_put(sk);
1120 * Read buffer destructor automatically called from kfree_skb.
1122 void sock_rfree(struct sk_buff *skb)
1124 struct sock *sk = skb->sk;
1126 skb_truesize_check(skb);
1127 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1128 sk_mem_uncharge(skb->sk, skb->truesize);
1132 int sock_i_uid(struct sock *sk)
1134 int uid;
1136 read_lock(&sk->sk_callback_lock);
1137 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1138 read_unlock(&sk->sk_callback_lock);
1139 return uid;
1142 unsigned long sock_i_ino(struct sock *sk)
1144 unsigned long ino;
1146 read_lock(&sk->sk_callback_lock);
1147 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1148 read_unlock(&sk->sk_callback_lock);
1149 return ino;
1153 * Allocate a skb from the socket's send buffer.
1155 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1156 gfp_t priority)
1158 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1159 struct sk_buff * skb = alloc_skb(size, priority);
1160 if (skb) {
1161 skb_set_owner_w(skb, sk);
1162 return skb;
1165 return NULL;
1169 * Allocate a skb from the socket's receive buffer.
1171 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1172 gfp_t priority)
1174 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1175 struct sk_buff *skb = alloc_skb(size, priority);
1176 if (skb) {
1177 skb_set_owner_r(skb, sk);
1178 return skb;
1181 return NULL;
1185 * Allocate a memory block from the socket's option memory buffer.
1187 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1189 if ((unsigned)size <= sysctl_optmem_max &&
1190 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1191 void *mem;
1192 /* First do the add, to avoid the race if kmalloc
1193 * might sleep.
1195 atomic_add(size, &sk->sk_omem_alloc);
1196 mem = kmalloc(size, priority);
1197 if (mem)
1198 return mem;
1199 atomic_sub(size, &sk->sk_omem_alloc);
1201 return NULL;
1205 * Free an option memory block.
1207 void sock_kfree_s(struct sock *sk, void *mem, int size)
1209 kfree(mem);
1210 atomic_sub(size, &sk->sk_omem_alloc);
1213 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1214 I think, these locks should be removed for datagram sockets.
1216 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1218 DEFINE_WAIT(wait);
1220 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1221 for (;;) {
1222 if (!timeo)
1223 break;
1224 if (signal_pending(current))
1225 break;
1226 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1227 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1228 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1229 break;
1230 if (sk->sk_shutdown & SEND_SHUTDOWN)
1231 break;
1232 if (sk->sk_err)
1233 break;
1234 timeo = schedule_timeout(timeo);
1236 finish_wait(sk->sk_sleep, &wait);
1237 return timeo;
1242 * Generic send/receive buffer handlers
1245 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1246 unsigned long header_len,
1247 unsigned long data_len,
1248 int noblock, int *errcode)
1250 struct sk_buff *skb;
1251 gfp_t gfp_mask;
1252 long timeo;
1253 int err;
1255 gfp_mask = sk->sk_allocation;
1256 if (gfp_mask & __GFP_WAIT)
1257 gfp_mask |= __GFP_REPEAT;
1259 timeo = sock_sndtimeo(sk, noblock);
1260 while (1) {
1261 err = sock_error(sk);
1262 if (err != 0)
1263 goto failure;
1265 err = -EPIPE;
1266 if (sk->sk_shutdown & SEND_SHUTDOWN)
1267 goto failure;
1269 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1270 skb = alloc_skb(header_len, gfp_mask);
1271 if (skb) {
1272 int npages;
1273 int i;
1275 /* No pages, we're done... */
1276 if (!data_len)
1277 break;
1279 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1280 skb->truesize += data_len;
1281 skb_shinfo(skb)->nr_frags = npages;
1282 for (i = 0; i < npages; i++) {
1283 struct page *page;
1284 skb_frag_t *frag;
1286 page = alloc_pages(sk->sk_allocation, 0);
1287 if (!page) {
1288 err = -ENOBUFS;
1289 skb_shinfo(skb)->nr_frags = i;
1290 kfree_skb(skb);
1291 goto failure;
1294 frag = &skb_shinfo(skb)->frags[i];
1295 frag->page = page;
1296 frag->page_offset = 0;
1297 frag->size = (data_len >= PAGE_SIZE ?
1298 PAGE_SIZE :
1299 data_len);
1300 data_len -= PAGE_SIZE;
1303 /* Full success... */
1304 break;
1306 err = -ENOBUFS;
1307 goto failure;
1309 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1310 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1311 err = -EAGAIN;
1312 if (!timeo)
1313 goto failure;
1314 if (signal_pending(current))
1315 goto interrupted;
1316 timeo = sock_wait_for_wmem(sk, timeo);
1319 skb_set_owner_w(skb, sk);
1320 return skb;
1322 interrupted:
1323 err = sock_intr_errno(timeo);
1324 failure:
1325 *errcode = err;
1326 return NULL;
1329 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1330 int noblock, int *errcode)
1332 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1335 static void __lock_sock(struct sock *sk)
1337 DEFINE_WAIT(wait);
1339 for (;;) {
1340 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1341 TASK_UNINTERRUPTIBLE);
1342 spin_unlock_bh(&sk->sk_lock.slock);
1343 schedule();
1344 spin_lock_bh(&sk->sk_lock.slock);
1345 if (!sock_owned_by_user(sk))
1346 break;
1348 finish_wait(&sk->sk_lock.wq, &wait);
1351 static void __release_sock(struct sock *sk)
1353 struct sk_buff *skb = sk->sk_backlog.head;
1355 do {
1356 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1357 bh_unlock_sock(sk);
1359 do {
1360 struct sk_buff *next = skb->next;
1362 skb->next = NULL;
1363 sk->sk_backlog_rcv(sk, skb);
1366 * We are in process context here with softirqs
1367 * disabled, use cond_resched_softirq() to preempt.
1368 * This is safe to do because we've taken the backlog
1369 * queue private:
1371 cond_resched_softirq();
1373 skb = next;
1374 } while (skb != NULL);
1376 bh_lock_sock(sk);
1377 } while ((skb = sk->sk_backlog.head) != NULL);
1381 * sk_wait_data - wait for data to arrive at sk_receive_queue
1382 * @sk: sock to wait on
1383 * @timeo: for how long
1385 * Now socket state including sk->sk_err is changed only under lock,
1386 * hence we may omit checks after joining wait queue.
1387 * We check receive queue before schedule() only as optimization;
1388 * it is very likely that release_sock() added new data.
1390 int sk_wait_data(struct sock *sk, long *timeo)
1392 int rc;
1393 DEFINE_WAIT(wait);
1395 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1396 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1397 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1398 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1399 finish_wait(sk->sk_sleep, &wait);
1400 return rc;
1403 EXPORT_SYMBOL(sk_wait_data);
1406 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1407 * @sk: socket
1408 * @size: memory size to allocate
1409 * @kind: allocation type
1411 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1412 * rmem allocation. This function assumes that protocols which have
1413 * memory_pressure use sk_wmem_queued as write buffer accounting.
1415 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1417 struct proto *prot = sk->sk_prot;
1418 int amt = sk_mem_pages(size);
1419 int allocated;
1421 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1422 allocated = atomic_add_return(amt, prot->memory_allocated);
1424 /* Under limit. */
1425 if (allocated <= prot->sysctl_mem[0]) {
1426 if (prot->memory_pressure && *prot->memory_pressure)
1427 *prot->memory_pressure = 0;
1428 return 1;
1431 /* Under pressure. */
1432 if (allocated > prot->sysctl_mem[1])
1433 if (prot->enter_memory_pressure)
1434 prot->enter_memory_pressure();
1436 /* Over hard limit. */
1437 if (allocated > prot->sysctl_mem[2])
1438 goto suppress_allocation;
1440 /* guarantee minimum buffer size under pressure */
1441 if (kind == SK_MEM_RECV) {
1442 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1443 return 1;
1444 } else { /* SK_MEM_SEND */
1445 if (sk->sk_type == SOCK_STREAM) {
1446 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1447 return 1;
1448 } else if (atomic_read(&sk->sk_wmem_alloc) <
1449 prot->sysctl_wmem[0])
1450 return 1;
1453 if (prot->memory_pressure) {
1454 if (!*prot->memory_pressure ||
1455 prot->sysctl_mem[2] > atomic_read(prot->sockets_allocated) *
1456 sk_mem_pages(sk->sk_wmem_queued +
1457 atomic_read(&sk->sk_rmem_alloc) +
1458 sk->sk_forward_alloc))
1459 return 1;
1462 suppress_allocation:
1464 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1465 sk_stream_moderate_sndbuf(sk);
1467 /* Fail only if socket is _under_ its sndbuf.
1468 * In this case we cannot block, so that we have to fail.
1470 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1471 return 1;
1474 /* Alas. Undo changes. */
1475 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1476 atomic_sub(amt, prot->memory_allocated);
1477 return 0;
1480 EXPORT_SYMBOL(__sk_mem_schedule);
1483 * __sk_reclaim - reclaim memory_allocated
1484 * @sk: socket
1486 void __sk_mem_reclaim(struct sock *sk)
1488 struct proto *prot = sk->sk_prot;
1490 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1491 prot->memory_allocated);
1492 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1494 if (prot->memory_pressure && *prot->memory_pressure &&
1495 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1496 *prot->memory_pressure = 0;
1499 EXPORT_SYMBOL(__sk_mem_reclaim);
1503 * Set of default routines for initialising struct proto_ops when
1504 * the protocol does not support a particular function. In certain
1505 * cases where it makes no sense for a protocol to have a "do nothing"
1506 * function, some default processing is provided.
1509 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1511 return -EOPNOTSUPP;
1514 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1515 int len, int flags)
1517 return -EOPNOTSUPP;
1520 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1522 return -EOPNOTSUPP;
1525 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1527 return -EOPNOTSUPP;
1530 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1531 int *len, int peer)
1533 return -EOPNOTSUPP;
1536 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1538 return 0;
1541 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1543 return -EOPNOTSUPP;
1546 int sock_no_listen(struct socket *sock, int backlog)
1548 return -EOPNOTSUPP;
1551 int sock_no_shutdown(struct socket *sock, int how)
1553 return -EOPNOTSUPP;
1556 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1557 char __user *optval, int optlen)
1559 return -EOPNOTSUPP;
1562 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1563 char __user *optval, int __user *optlen)
1565 return -EOPNOTSUPP;
1568 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1569 size_t len)
1571 return -EOPNOTSUPP;
1574 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1575 size_t len, int flags)
1577 return -EOPNOTSUPP;
1580 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1582 /* Mirror missing mmap method error code */
1583 return -ENODEV;
1586 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1588 ssize_t res;
1589 struct msghdr msg = {.msg_flags = flags};
1590 struct kvec iov;
1591 char *kaddr = kmap(page);
1592 iov.iov_base = kaddr + offset;
1593 iov.iov_len = size;
1594 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1595 kunmap(page);
1596 return res;
1600 * Default Socket Callbacks
1603 static void sock_def_wakeup(struct sock *sk)
1605 read_lock(&sk->sk_callback_lock);
1606 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1607 wake_up_interruptible_all(sk->sk_sleep);
1608 read_unlock(&sk->sk_callback_lock);
1611 static void sock_def_error_report(struct sock *sk)
1613 read_lock(&sk->sk_callback_lock);
1614 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1615 wake_up_interruptible(sk->sk_sleep);
1616 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1617 read_unlock(&sk->sk_callback_lock);
1620 static void sock_def_readable(struct sock *sk, int len)
1622 read_lock(&sk->sk_callback_lock);
1623 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1624 wake_up_interruptible(sk->sk_sleep);
1625 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1626 read_unlock(&sk->sk_callback_lock);
1629 static void sock_def_write_space(struct sock *sk)
1631 read_lock(&sk->sk_callback_lock);
1633 /* Do not wake up a writer until he can make "significant"
1634 * progress. --DaveM
1636 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1637 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1638 wake_up_interruptible(sk->sk_sleep);
1640 /* Should agree with poll, otherwise some programs break */
1641 if (sock_writeable(sk))
1642 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1645 read_unlock(&sk->sk_callback_lock);
1648 static void sock_def_destruct(struct sock *sk)
1650 kfree(sk->sk_protinfo);
1653 void sk_send_sigurg(struct sock *sk)
1655 if (sk->sk_socket && sk->sk_socket->file)
1656 if (send_sigurg(&sk->sk_socket->file->f_owner))
1657 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1660 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1661 unsigned long expires)
1663 if (!mod_timer(timer, expires))
1664 sock_hold(sk);
1667 EXPORT_SYMBOL(sk_reset_timer);
1669 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1671 if (timer_pending(timer) && del_timer(timer))
1672 __sock_put(sk);
1675 EXPORT_SYMBOL(sk_stop_timer);
1677 void sock_init_data(struct socket *sock, struct sock *sk)
1679 skb_queue_head_init(&sk->sk_receive_queue);
1680 skb_queue_head_init(&sk->sk_write_queue);
1681 skb_queue_head_init(&sk->sk_error_queue);
1682 #ifdef CONFIG_NET_DMA
1683 skb_queue_head_init(&sk->sk_async_wait_queue);
1684 #endif
1686 sk->sk_send_head = NULL;
1688 init_timer(&sk->sk_timer);
1690 sk->sk_allocation = GFP_KERNEL;
1691 sk->sk_rcvbuf = sysctl_rmem_default;
1692 sk->sk_sndbuf = sysctl_wmem_default;
1693 sk->sk_state = TCP_CLOSE;
1694 sk->sk_socket = sock;
1696 sock_set_flag(sk, SOCK_ZAPPED);
1698 if (sock) {
1699 sk->sk_type = sock->type;
1700 sk->sk_sleep = &sock->wait;
1701 sock->sk = sk;
1702 } else
1703 sk->sk_sleep = NULL;
1705 rwlock_init(&sk->sk_dst_lock);
1706 rwlock_init(&sk->sk_callback_lock);
1707 lockdep_set_class_and_name(&sk->sk_callback_lock,
1708 af_callback_keys + sk->sk_family,
1709 af_family_clock_key_strings[sk->sk_family]);
1711 sk->sk_state_change = sock_def_wakeup;
1712 sk->sk_data_ready = sock_def_readable;
1713 sk->sk_write_space = sock_def_write_space;
1714 sk->sk_error_report = sock_def_error_report;
1715 sk->sk_destruct = sock_def_destruct;
1717 sk->sk_sndmsg_page = NULL;
1718 sk->sk_sndmsg_off = 0;
1720 sk->sk_peercred.pid = 0;
1721 sk->sk_peercred.uid = -1;
1722 sk->sk_peercred.gid = -1;
1723 sk->sk_write_pending = 0;
1724 sk->sk_rcvlowat = 1;
1725 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1726 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1728 sk->sk_stamp = ktime_set(-1L, -1L);
1730 atomic_set(&sk->sk_refcnt, 1);
1731 atomic_set(&sk->sk_drops, 0);
1734 void lock_sock_nested(struct sock *sk, int subclass)
1736 might_sleep();
1737 spin_lock_bh(&sk->sk_lock.slock);
1738 if (sk->sk_lock.owned)
1739 __lock_sock(sk);
1740 sk->sk_lock.owned = 1;
1741 spin_unlock(&sk->sk_lock.slock);
1743 * The sk_lock has mutex_lock() semantics here:
1745 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1746 local_bh_enable();
1749 EXPORT_SYMBOL(lock_sock_nested);
1751 void release_sock(struct sock *sk)
1754 * The sk_lock has mutex_unlock() semantics:
1756 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1758 spin_lock_bh(&sk->sk_lock.slock);
1759 if (sk->sk_backlog.tail)
1760 __release_sock(sk);
1761 sk->sk_lock.owned = 0;
1762 if (waitqueue_active(&sk->sk_lock.wq))
1763 wake_up(&sk->sk_lock.wq);
1764 spin_unlock_bh(&sk->sk_lock.slock);
1766 EXPORT_SYMBOL(release_sock);
1768 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1770 struct timeval tv;
1771 if (!sock_flag(sk, SOCK_TIMESTAMP))
1772 sock_enable_timestamp(sk);
1773 tv = ktime_to_timeval(sk->sk_stamp);
1774 if (tv.tv_sec == -1)
1775 return -ENOENT;
1776 if (tv.tv_sec == 0) {
1777 sk->sk_stamp = ktime_get_real();
1778 tv = ktime_to_timeval(sk->sk_stamp);
1780 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1782 EXPORT_SYMBOL(sock_get_timestamp);
1784 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1786 struct timespec ts;
1787 if (!sock_flag(sk, SOCK_TIMESTAMP))
1788 sock_enable_timestamp(sk);
1789 ts = ktime_to_timespec(sk->sk_stamp);
1790 if (ts.tv_sec == -1)
1791 return -ENOENT;
1792 if (ts.tv_sec == 0) {
1793 sk->sk_stamp = ktime_get_real();
1794 ts = ktime_to_timespec(sk->sk_stamp);
1796 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1798 EXPORT_SYMBOL(sock_get_timestampns);
1800 void sock_enable_timestamp(struct sock *sk)
1802 if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1803 sock_set_flag(sk, SOCK_TIMESTAMP);
1804 net_enable_timestamp();
1809 * Get a socket option on an socket.
1811 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1812 * asynchronous errors should be reported by getsockopt. We assume
1813 * this means if you specify SO_ERROR (otherwise whats the point of it).
1815 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1816 char __user *optval, int __user *optlen)
1818 struct sock *sk = sock->sk;
1820 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1823 EXPORT_SYMBOL(sock_common_getsockopt);
1825 #ifdef CONFIG_COMPAT
1826 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1827 char __user *optval, int __user *optlen)
1829 struct sock *sk = sock->sk;
1831 if (sk->sk_prot->compat_getsockopt != NULL)
1832 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1833 optval, optlen);
1834 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1836 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1837 #endif
1839 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1840 struct msghdr *msg, size_t size, int flags)
1842 struct sock *sk = sock->sk;
1843 int addr_len = 0;
1844 int err;
1846 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1847 flags & ~MSG_DONTWAIT, &addr_len);
1848 if (err >= 0)
1849 msg->msg_namelen = addr_len;
1850 return err;
1853 EXPORT_SYMBOL(sock_common_recvmsg);
1856 * Set socket options on an inet socket.
1858 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1859 char __user *optval, int optlen)
1861 struct sock *sk = sock->sk;
1863 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1866 EXPORT_SYMBOL(sock_common_setsockopt);
1868 #ifdef CONFIG_COMPAT
1869 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1870 char __user *optval, int optlen)
1872 struct sock *sk = sock->sk;
1874 if (sk->sk_prot->compat_setsockopt != NULL)
1875 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1876 optval, optlen);
1877 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1879 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1880 #endif
1882 void sk_common_release(struct sock *sk)
1884 if (sk->sk_prot->destroy)
1885 sk->sk_prot->destroy(sk);
1888 * Observation: when sock_common_release is called, processes have
1889 * no access to socket. But net still has.
1890 * Step one, detach it from networking:
1892 * A. Remove from hash tables.
1895 sk->sk_prot->unhash(sk);
1898 * In this point socket cannot receive new packets, but it is possible
1899 * that some packets are in flight because some CPU runs receiver and
1900 * did hash table lookup before we unhashed socket. They will achieve
1901 * receive queue and will be purged by socket destructor.
1903 * Also we still have packets pending on receive queue and probably,
1904 * our own packets waiting in device queues. sock_destroy will drain
1905 * receive queue, but transmitted packets will delay socket destruction
1906 * until the last reference will be released.
1909 sock_orphan(sk);
1911 xfrm_sk_free_policy(sk);
1913 sk_refcnt_debug_release(sk);
1914 sock_put(sk);
1917 EXPORT_SYMBOL(sk_common_release);
1919 static DEFINE_RWLOCK(proto_list_lock);
1920 static LIST_HEAD(proto_list);
1922 int proto_register(struct proto *prot, int alloc_slab)
1924 char *request_sock_slab_name = NULL;
1925 char *timewait_sock_slab_name;
1927 if (sock_prot_inuse_init(prot) != 0) {
1928 printk(KERN_CRIT "%s: Can't alloc inuse counters!\n", prot->name);
1929 goto out;
1932 if (alloc_slab) {
1933 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1934 SLAB_HWCACHE_ALIGN, NULL);
1936 if (prot->slab == NULL) {
1937 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1938 prot->name);
1939 goto out_free_inuse;
1942 if (prot->rsk_prot != NULL) {
1943 static const char mask[] = "request_sock_%s";
1945 request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1946 if (request_sock_slab_name == NULL)
1947 goto out_free_sock_slab;
1949 sprintf(request_sock_slab_name, mask, prot->name);
1950 prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1951 prot->rsk_prot->obj_size, 0,
1952 SLAB_HWCACHE_ALIGN, NULL);
1954 if (prot->rsk_prot->slab == NULL) {
1955 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1956 prot->name);
1957 goto out_free_request_sock_slab_name;
1961 if (prot->twsk_prot != NULL) {
1962 static const char mask[] = "tw_sock_%s";
1964 timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1966 if (timewait_sock_slab_name == NULL)
1967 goto out_free_request_sock_slab;
1969 sprintf(timewait_sock_slab_name, mask, prot->name);
1970 prot->twsk_prot->twsk_slab =
1971 kmem_cache_create(timewait_sock_slab_name,
1972 prot->twsk_prot->twsk_obj_size,
1973 0, SLAB_HWCACHE_ALIGN,
1974 NULL);
1975 if (prot->twsk_prot->twsk_slab == NULL)
1976 goto out_free_timewait_sock_slab_name;
1980 write_lock(&proto_list_lock);
1981 list_add(&prot->node, &proto_list);
1982 write_unlock(&proto_list_lock);
1983 return 0;
1985 out_free_timewait_sock_slab_name:
1986 kfree(timewait_sock_slab_name);
1987 out_free_request_sock_slab:
1988 if (prot->rsk_prot && prot->rsk_prot->slab) {
1989 kmem_cache_destroy(prot->rsk_prot->slab);
1990 prot->rsk_prot->slab = NULL;
1992 out_free_request_sock_slab_name:
1993 kfree(request_sock_slab_name);
1994 out_free_sock_slab:
1995 kmem_cache_destroy(prot->slab);
1996 prot->slab = NULL;
1997 out_free_inuse:
1998 sock_prot_inuse_free(prot);
1999 out:
2000 return -ENOBUFS;
2003 EXPORT_SYMBOL(proto_register);
2005 void proto_unregister(struct proto *prot)
2007 write_lock(&proto_list_lock);
2008 list_del(&prot->node);
2009 write_unlock(&proto_list_lock);
2011 sock_prot_inuse_free(prot);
2013 if (prot->slab != NULL) {
2014 kmem_cache_destroy(prot->slab);
2015 prot->slab = NULL;
2018 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2019 const char *name = kmem_cache_name(prot->rsk_prot->slab);
2021 kmem_cache_destroy(prot->rsk_prot->slab);
2022 kfree(name);
2023 prot->rsk_prot->slab = NULL;
2026 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2027 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
2029 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2030 kfree(name);
2031 prot->twsk_prot->twsk_slab = NULL;
2035 EXPORT_SYMBOL(proto_unregister);
2037 #ifdef CONFIG_PROC_FS
2038 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2039 __acquires(proto_list_lock)
2041 read_lock(&proto_list_lock);
2042 return seq_list_start_head(&proto_list, *pos);
2045 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2047 return seq_list_next(v, &proto_list, pos);
2050 static void proto_seq_stop(struct seq_file *seq, void *v)
2051 __releases(proto_list_lock)
2053 read_unlock(&proto_list_lock);
2056 static char proto_method_implemented(const void *method)
2058 return method == NULL ? 'n' : 'y';
2061 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2063 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2064 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2065 proto->name,
2066 proto->obj_size,
2067 proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
2068 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2069 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2070 proto->max_header,
2071 proto->slab == NULL ? "no" : "yes",
2072 module_name(proto->owner),
2073 proto_method_implemented(proto->close),
2074 proto_method_implemented(proto->connect),
2075 proto_method_implemented(proto->disconnect),
2076 proto_method_implemented(proto->accept),
2077 proto_method_implemented(proto->ioctl),
2078 proto_method_implemented(proto->init),
2079 proto_method_implemented(proto->destroy),
2080 proto_method_implemented(proto->shutdown),
2081 proto_method_implemented(proto->setsockopt),
2082 proto_method_implemented(proto->getsockopt),
2083 proto_method_implemented(proto->sendmsg),
2084 proto_method_implemented(proto->recvmsg),
2085 proto_method_implemented(proto->sendpage),
2086 proto_method_implemented(proto->bind),
2087 proto_method_implemented(proto->backlog_rcv),
2088 proto_method_implemented(proto->hash),
2089 proto_method_implemented(proto->unhash),
2090 proto_method_implemented(proto->get_port),
2091 proto_method_implemented(proto->enter_memory_pressure));
2094 static int proto_seq_show(struct seq_file *seq, void *v)
2096 if (v == &proto_list)
2097 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2098 "protocol",
2099 "size",
2100 "sockets",
2101 "memory",
2102 "press",
2103 "maxhdr",
2104 "slab",
2105 "module",
2106 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2107 else
2108 proto_seq_printf(seq, list_entry(v, struct proto, node));
2109 return 0;
2112 static const struct seq_operations proto_seq_ops = {
2113 .start = proto_seq_start,
2114 .next = proto_seq_next,
2115 .stop = proto_seq_stop,
2116 .show = proto_seq_show,
2119 static int proto_seq_open(struct inode *inode, struct file *file)
2121 return seq_open(file, &proto_seq_ops);
2124 static const struct file_operations proto_seq_fops = {
2125 .owner = THIS_MODULE,
2126 .open = proto_seq_open,
2127 .read = seq_read,
2128 .llseek = seq_lseek,
2129 .release = seq_release,
2132 static int __init proto_init(void)
2134 /* register /proc/net/protocols */
2135 return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2138 subsys_initcall(proto_init);
2140 #endif /* PROC_FS */
2142 EXPORT_SYMBOL(sk_alloc);
2143 EXPORT_SYMBOL(sk_free);
2144 EXPORT_SYMBOL(sk_send_sigurg);
2145 EXPORT_SYMBOL(sock_alloc_send_skb);
2146 EXPORT_SYMBOL(sock_init_data);
2147 EXPORT_SYMBOL(sock_kfree_s);
2148 EXPORT_SYMBOL(sock_kmalloc);
2149 EXPORT_SYMBOL(sock_no_accept);
2150 EXPORT_SYMBOL(sock_no_bind);
2151 EXPORT_SYMBOL(sock_no_connect);
2152 EXPORT_SYMBOL(sock_no_getname);
2153 EXPORT_SYMBOL(sock_no_getsockopt);
2154 EXPORT_SYMBOL(sock_no_ioctl);
2155 EXPORT_SYMBOL(sock_no_listen);
2156 EXPORT_SYMBOL(sock_no_mmap);
2157 EXPORT_SYMBOL(sock_no_poll);
2158 EXPORT_SYMBOL(sock_no_recvmsg);
2159 EXPORT_SYMBOL(sock_no_sendmsg);
2160 EXPORT_SYMBOL(sock_no_sendpage);
2161 EXPORT_SYMBOL(sock_no_setsockopt);
2162 EXPORT_SYMBOL(sock_no_shutdown);
2163 EXPORT_SYMBOL(sock_no_socketpair);
2164 EXPORT_SYMBOL(sock_rfree);
2165 EXPORT_SYMBOL(sock_setsockopt);
2166 EXPORT_SYMBOL(sock_wfree);
2167 EXPORT_SYMBOL(sock_wmalloc);
2168 EXPORT_SYMBOL(sock_i_uid);
2169 EXPORT_SYMBOL(sock_i_ino);
2170 EXPORT_SYMBOL(sysctl_optmem_max);