2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
22 /* max queue in one round of service */
23 static const int cfq_quantum
= 8;
24 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max
= 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty
= 2;
29 static const int cfq_slice_sync
= HZ
/ 10;
30 static int cfq_slice_async
= HZ
/ 25;
31 static const int cfq_slice_async_rq
= 2;
32 static int cfq_slice_idle
= HZ
/ 125;
33 static int cfq_group_idle
= HZ
/ 125;
34 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
35 static const int cfq_hist_divisor
= 4;
38 * offset from end of service tree
40 #define CFQ_IDLE_DELAY (HZ / 5)
43 * below this threshold, we consider thinktime immediate
45 #define CFQ_MIN_TT (2)
47 #define CFQ_SLICE_SCALE (5)
48 #define CFQ_HW_QUEUE_MIN (5)
49 #define CFQ_SERVICE_SHIFT 12
51 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
61 static struct kmem_cache
*cfq_pool
;
62 static struct kmem_cache
*cfq_ioc_pool
;
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
65 static struct completion
*ioc_gone
;
66 static DEFINE_SPINLOCK(ioc_gone_lock
);
68 static DEFINE_SPINLOCK(cic_index_lock
);
69 static DEFINE_IDA(cic_index_ida
);
71 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
75 #define sample_valid(samples) ((samples) > 80)
76 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
88 unsigned total_weight
;
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
95 * Per process-grouping structure
100 /* various state flags, see below */
102 /* parent cfq_data */
103 struct cfq_data
*cfqd
;
104 /* service_tree member */
105 struct rb_node rb_node
;
106 /* service_tree key */
107 unsigned long rb_key
;
108 /* prio tree member */
109 struct rb_node p_node
;
110 /* prio tree root we belong to, if any */
111 struct rb_root
*p_root
;
112 /* sorted list of pending requests */
113 struct rb_root sort_list
;
114 /* if fifo isn't expired, next request to serve */
115 struct request
*next_rq
;
116 /* requests queued in sort_list */
118 /* currently allocated requests */
120 /* fifo list of requests in sort_list */
121 struct list_head fifo
;
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start
;
125 unsigned int allocated_slice
;
126 unsigned int slice_dispatch
;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start
;
129 unsigned long slice_end
;
132 /* pending metadata requests */
134 /* number of requests that are on the dispatch list or inside driver */
137 /* io prio of this group */
138 unsigned short ioprio
, org_ioprio
;
139 unsigned short ioprio_class
, org_ioprio_class
;
144 sector_t last_request_pos
;
146 struct cfq_rb_root
*service_tree
;
147 struct cfq_queue
*new_cfqq
;
148 struct cfq_group
*cfqg
;
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors
;
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
165 * Second index in the service_trees.
169 SYNC_NOIDLE_WORKLOAD
= 1,
173 /* This is per cgroup per device grouping structure */
175 /* group service_tree member */
176 struct rb_node rb_node
;
178 /* group service_tree key */
181 unsigned int new_weight
;
184 /* number of cfqq currently on this group */
188 * Per group busy queus average. Useful for workload slice calc. We
189 * create the array for each prio class but at run time it is used
190 * only for RT and BE class and slot for IDLE class remains unused.
191 * This is primarily done to avoid confusion and a gcc warning.
193 unsigned int busy_queues_avg
[CFQ_PRIO_NR
];
195 * rr lists of queues with requests. We maintain service trees for
196 * RT and BE classes. These trees are subdivided in subclasses
197 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
198 * class there is no subclassification and all the cfq queues go on
199 * a single tree service_tree_idle.
200 * Counts are embedded in the cfq_rb_root
202 struct cfq_rb_root service_trees
[2][3];
203 struct cfq_rb_root service_tree_idle
;
205 unsigned long saved_workload_slice
;
206 enum wl_type_t saved_workload
;
207 enum wl_prio_t saved_serving_prio
;
208 struct blkio_group blkg
;
209 #ifdef CONFIG_CFQ_GROUP_IOSCHED
210 struct hlist_node cfqd_node
;
213 /* number of requests that are on the dispatch list or inside driver */
218 * Per block device queue structure
221 struct request_queue
*queue
;
222 /* Root service tree for cfq_groups */
223 struct cfq_rb_root grp_service_tree
;
224 struct cfq_group root_group
;
227 * The priority currently being served
229 enum wl_prio_t serving_prio
;
230 enum wl_type_t serving_type
;
231 unsigned long workload_expires
;
232 struct cfq_group
*serving_group
;
235 * Each priority tree is sorted by next_request position. These
236 * trees are used when determining if two or more queues are
237 * interleaving requests (see cfq_close_cooperator).
239 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
241 unsigned int busy_queues
;
242 unsigned int busy_sync_queues
;
248 * queue-depth detection
254 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
258 int hw_tag_est_depth
;
259 unsigned int hw_tag_samples
;
262 * idle window management
264 struct timer_list idle_slice_timer
;
265 struct work_struct unplug_work
;
267 struct cfq_queue
*active_queue
;
268 struct cfq_io_context
*active_cic
;
271 * async queue for each priority case
273 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
274 struct cfq_queue
*async_idle_cfqq
;
276 sector_t last_position
;
279 * tunables, see top of file
281 unsigned int cfq_quantum
;
282 unsigned int cfq_fifo_expire
[2];
283 unsigned int cfq_back_penalty
;
284 unsigned int cfq_back_max
;
285 unsigned int cfq_slice
[2];
286 unsigned int cfq_slice_async_rq
;
287 unsigned int cfq_slice_idle
;
288 unsigned int cfq_group_idle
;
289 unsigned int cfq_latency
;
291 unsigned int cic_index
;
292 struct list_head cic_list
;
295 * Fallback dummy cfqq for extreme OOM conditions
297 struct cfq_queue oom_cfqq
;
299 unsigned long last_delayed_sync
;
301 /* List of cfq groups being managed on this device*/
302 struct hlist_head cfqg_list
;
306 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
308 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
315 if (prio
== IDLE_WORKLOAD
)
316 return &cfqg
->service_tree_idle
;
318 return &cfqg
->service_trees
[prio
][type
];
321 enum cfqq_state_flags
{
322 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
323 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
324 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
325 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
326 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
327 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
328 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
329 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
330 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
331 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
332 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
333 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
334 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
337 #define CFQ_CFQQ_FNS(name) \
338 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
340 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
342 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
344 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
346 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
348 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
352 CFQ_CFQQ_FNS(wait_request
);
353 CFQ_CFQQ_FNS(must_dispatch
);
354 CFQ_CFQQ_FNS(must_alloc_slice
);
355 CFQ_CFQQ_FNS(fifo_expire
);
356 CFQ_CFQQ_FNS(idle_window
);
357 CFQ_CFQQ_FNS(prio_changed
);
358 CFQ_CFQQ_FNS(slice_new
);
361 CFQ_CFQQ_FNS(split_coop
);
363 CFQ_CFQQ_FNS(wait_busy
);
366 #ifdef CONFIG_CFQ_GROUP_IOSCHED
367 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
368 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
369 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
370 blkg_path(&(cfqq)->cfqg->blkg), ##args);
372 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
373 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
374 blkg_path(&(cfqg)->blkg), ##args); \
377 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
378 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
379 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
381 #define cfq_log(cfqd, fmt, args...) \
382 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
384 /* Traverses through cfq group service trees */
385 #define for_each_cfqg_st(cfqg, i, j, st) \
386 for (i = 0; i <= IDLE_WORKLOAD; i++) \
387 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
388 : &cfqg->service_tree_idle; \
389 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
390 (i == IDLE_WORKLOAD && j == 0); \
391 j++, st = i < IDLE_WORKLOAD ? \
392 &cfqg->service_trees[i][j]: NULL) \
395 static inline bool iops_mode(struct cfq_data *cfqd)
398 * If we are not idling on queues and it is a NCQ drive, parallel
399 * execution of requests is on and measuring time is not possible
400 * in most of the cases until and unless we drive shallower queue
401 * depths and that becomes a performance bottleneck. In such cases
402 * switch to start providing fairness in terms of number of IOs.
404 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
410 static inline enum wl_prio_t
cfqq_prio(struct cfq_queue
*cfqq
)
412 if (cfq_class_idle(cfqq
))
413 return IDLE_WORKLOAD
;
414 if (cfq_class_rt(cfqq
))
420 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
422 if (!cfq_cfqq_sync(cfqq
))
423 return ASYNC_WORKLOAD
;
424 if (!cfq_cfqq_idle_window(cfqq
))
425 return SYNC_NOIDLE_WORKLOAD
;
426 return SYNC_WORKLOAD
;
429 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
430 struct cfq_data
*cfqd
,
431 struct cfq_group
*cfqg
)
433 if (wl
== IDLE_WORKLOAD
)
434 return cfqg
->service_tree_idle
.count
;
436 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
437 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
438 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
441 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
442 struct cfq_group
*cfqg
)
444 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
445 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
448 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
449 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
450 struct io_context
*, gfp_t
);
451 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
452 struct io_context
*);
454 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
457 return cic
->cfqq
[is_sync
];
460 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
461 struct cfq_queue
*cfqq
, bool is_sync
)
463 cic
->cfqq
[is_sync
] = cfqq
;
466 #define CIC_DEAD_KEY 1ul
467 #define CIC_DEAD_INDEX_SHIFT 1
469 static inline void *cfqd_dead_key(struct cfq_data
*cfqd
)
471 return (void *)(cfqd
->cic_index
<< CIC_DEAD_INDEX_SHIFT
| CIC_DEAD_KEY
);
474 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_context
*cic
)
476 struct cfq_data
*cfqd
= cic
->key
;
478 if (unlikely((unsigned long) cfqd
& CIC_DEAD_KEY
))
485 * We regard a request as SYNC, if it's either a read or has the SYNC bit
486 * set (in which case it could also be direct WRITE).
488 static inline bool cfq_bio_sync(struct bio
*bio
)
490 return bio_data_dir(bio
) == READ
|| (bio
->bi_rw
& REQ_SYNC
);
494 * scheduler run of queue, if there are requests pending and no one in the
495 * driver that will restart queueing
497 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
499 if (cfqd
->busy_queues
) {
500 cfq_log(cfqd
, "schedule dispatch");
501 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
506 * Scale schedule slice based on io priority. Use the sync time slice only
507 * if a queue is marked sync and has sync io queued. A sync queue with async
508 * io only, should not get full sync slice length.
510 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
513 const int base_slice
= cfqd
->cfq_slice
[sync
];
515 WARN_ON(prio
>= IOPRIO_BE_NR
);
517 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
521 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
523 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
526 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
528 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
530 d
= d
* BLKIO_WEIGHT_DEFAULT
;
531 do_div(d
, cfqg
->weight
);
535 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
537 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
539 min_vdisktime
= vdisktime
;
541 return min_vdisktime
;
544 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
546 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
548 min_vdisktime
= vdisktime
;
550 return min_vdisktime
;
553 static void update_min_vdisktime(struct cfq_rb_root
*st
)
555 struct cfq_group
*cfqg
;
558 cfqg
= rb_entry_cfqg(st
->left
);
559 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
,
565 * get averaged number of queues of RT/BE priority.
566 * average is updated, with a formula that gives more weight to higher numbers,
567 * to quickly follows sudden increases and decrease slowly
570 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
571 struct cfq_group
*cfqg
, bool rt
)
573 unsigned min_q
, max_q
;
574 unsigned mult
= cfq_hist_divisor
- 1;
575 unsigned round
= cfq_hist_divisor
/ 2;
576 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
578 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
579 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
580 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
582 return cfqg
->busy_queues_avg
[rt
];
585 static inline unsigned
586 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
588 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
590 return cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
593 static inline unsigned
594 cfq_scaled_cfqq_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
596 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
597 if (cfqd
->cfq_latency
) {
599 * interested queues (we consider only the ones with the same
600 * priority class in the cfq group)
602 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
604 unsigned sync_slice
= cfqd
->cfq_slice
[1];
605 unsigned expect_latency
= sync_slice
* iq
;
606 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
608 if (expect_latency
> group_slice
) {
609 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
610 /* scale low_slice according to IO priority
611 * and sync vs async */
613 min(slice
, base_low_slice
* slice
/ sync_slice
);
614 /* the adapted slice value is scaled to fit all iqs
615 * into the target latency */
616 slice
= max(slice
* group_slice
/ expect_latency
,
624 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
626 unsigned slice
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
628 cfqq
->slice_start
= jiffies
;
629 cfqq
->slice_end
= jiffies
+ slice
;
630 cfqq
->allocated_slice
= slice
;
631 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
635 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
636 * isn't valid until the first request from the dispatch is activated
637 * and the slice time set.
639 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
641 if (cfq_cfqq_slice_new(cfqq
))
643 if (time_before(jiffies
, cfqq
->slice_end
))
650 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
651 * We choose the request that is closest to the head right now. Distance
652 * behind the head is penalized and only allowed to a certain extent.
654 static struct request
*
655 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
657 sector_t s1
, s2
, d1
= 0, d2
= 0;
658 unsigned long back_max
;
659 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
660 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
661 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
663 if (rq1
== NULL
|| rq1
== rq2
)
668 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
670 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
672 if ((rq1
->cmd_flags
& REQ_META
) && !(rq2
->cmd_flags
& REQ_META
))
674 else if ((rq2
->cmd_flags
& REQ_META
) &&
675 !(rq1
->cmd_flags
& REQ_META
))
678 s1
= blk_rq_pos(rq1
);
679 s2
= blk_rq_pos(rq2
);
682 * by definition, 1KiB is 2 sectors
684 back_max
= cfqd
->cfq_back_max
* 2;
687 * Strict one way elevator _except_ in the case where we allow
688 * short backward seeks which are biased as twice the cost of a
689 * similar forward seek.
693 else if (s1
+ back_max
>= last
)
694 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
696 wrap
|= CFQ_RQ1_WRAP
;
700 else if (s2
+ back_max
>= last
)
701 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
703 wrap
|= CFQ_RQ2_WRAP
;
705 /* Found required data */
708 * By doing switch() on the bit mask "wrap" we avoid having to
709 * check two variables for all permutations: --> faster!
712 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
728 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
731 * Since both rqs are wrapped,
732 * start with the one that's further behind head
733 * (--> only *one* back seek required),
734 * since back seek takes more time than forward.
744 * The below is leftmost cache rbtree addon
746 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
748 /* Service tree is empty */
753 root
->left
= rb_first(&root
->rb
);
756 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
761 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
764 root
->left
= rb_first(&root
->rb
);
767 return rb_entry_cfqg(root
->left
);
772 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
778 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
782 rb_erase_init(n
, &root
->rb
);
787 * would be nice to take fifo expire time into account as well
789 static struct request
*
790 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
791 struct request
*last
)
793 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
794 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
795 struct request
*next
= NULL
, *prev
= NULL
;
797 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
800 prev
= rb_entry_rq(rbprev
);
803 next
= rb_entry_rq(rbnext
);
805 rbnext
= rb_first(&cfqq
->sort_list
);
806 if (rbnext
&& rbnext
!= &last
->rb_node
)
807 next
= rb_entry_rq(rbnext
);
810 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
813 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
814 struct cfq_queue
*cfqq
)
817 * just an approximation, should be ok.
819 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
820 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
824 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
826 return cfqg
->vdisktime
- st
->min_vdisktime
;
830 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
832 struct rb_node
**node
= &st
->rb
.rb_node
;
833 struct rb_node
*parent
= NULL
;
834 struct cfq_group
*__cfqg
;
835 s64 key
= cfqg_key(st
, cfqg
);
838 while (*node
!= NULL
) {
840 __cfqg
= rb_entry_cfqg(parent
);
842 if (key
< cfqg_key(st
, __cfqg
))
843 node
= &parent
->rb_left
;
845 node
= &parent
->rb_right
;
851 st
->left
= &cfqg
->rb_node
;
853 rb_link_node(&cfqg
->rb_node
, parent
, node
);
854 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
858 cfq_update_group_weight(struct cfq_group
*cfqg
)
860 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
861 if (cfqg
->needs_update
) {
862 cfqg
->weight
= cfqg
->new_weight
;
863 cfqg
->needs_update
= false;
868 cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
870 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
872 cfq_update_group_weight(cfqg
);
873 __cfq_group_service_tree_add(st
, cfqg
);
874 st
->total_weight
+= cfqg
->weight
;
878 cfq_group_notify_queue_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
880 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
881 struct cfq_group
*__cfqg
;
885 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
889 * Currently put the group at the end. Later implement something
890 * so that groups get lesser vtime based on their weights, so that
891 * if group does not loose all if it was not continuously backlogged.
893 n
= rb_last(&st
->rb
);
895 __cfqg
= rb_entry_cfqg(n
);
896 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
898 cfqg
->vdisktime
= st
->min_vdisktime
;
899 cfq_group_service_tree_add(st
, cfqg
);
903 cfq_group_service_tree_del(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
905 st
->total_weight
-= cfqg
->weight
;
906 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
907 cfq_rb_erase(&cfqg
->rb_node
, st
);
911 cfq_group_notify_queue_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
913 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
915 BUG_ON(cfqg
->nr_cfqq
< 1);
918 /* If there are other cfq queues under this group, don't delete it */
922 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
923 cfq_group_service_tree_del(st
, cfqg
);
924 cfqg
->saved_workload_slice
= 0;
925 cfq_blkiocg_update_dequeue_stats(&cfqg
->blkg
, 1);
928 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
,
929 unsigned int *unaccounted_time
)
931 unsigned int slice_used
;
934 * Queue got expired before even a single request completed or
935 * got expired immediately after first request completion.
937 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
939 * Also charge the seek time incurred to the group, otherwise
940 * if there are mutiple queues in the group, each can dispatch
941 * a single request on seeky media and cause lots of seek time
942 * and group will never know it.
944 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
947 slice_used
= jiffies
- cfqq
->slice_start
;
948 if (slice_used
> cfqq
->allocated_slice
) {
949 *unaccounted_time
= slice_used
- cfqq
->allocated_slice
;
950 slice_used
= cfqq
->allocated_slice
;
952 if (time_after(cfqq
->slice_start
, cfqq
->dispatch_start
))
953 *unaccounted_time
+= cfqq
->slice_start
-
954 cfqq
->dispatch_start
;
960 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
961 struct cfq_queue
*cfqq
)
963 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
964 unsigned int used_sl
, charge
, unaccounted_sl
= 0;
965 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
966 - cfqg
->service_tree_idle
.count
;
969 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
, &unaccounted_sl
);
972 charge
= cfqq
->slice_dispatch
;
973 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
974 charge
= cfqq
->allocated_slice
;
976 /* Can't update vdisktime while group is on service tree */
977 cfq_group_service_tree_del(st
, cfqg
);
978 cfqg
->vdisktime
+= cfq_scale_slice(charge
, cfqg
);
979 /* If a new weight was requested, update now, off tree */
980 cfq_group_service_tree_add(st
, cfqg
);
982 /* This group is being expired. Save the context */
983 if (time_after(cfqd
->workload_expires
, jiffies
)) {
984 cfqg
->saved_workload_slice
= cfqd
->workload_expires
986 cfqg
->saved_workload
= cfqd
->serving_type
;
987 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
989 cfqg
->saved_workload_slice
= 0;
991 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
993 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "sl_used=%u disp=%u charge=%u iops=%u"
994 " sect=%u", used_sl
, cfqq
->slice_dispatch
, charge
,
995 iops_mode(cfqd
), cfqq
->nr_sectors
);
996 cfq_blkiocg_update_timeslice_used(&cfqg
->blkg
, used_sl
,
998 cfq_blkiocg_set_start_empty_time(&cfqg
->blkg
);
1001 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1002 static inline struct cfq_group
*cfqg_of_blkg(struct blkio_group
*blkg
)
1005 return container_of(blkg
, struct cfq_group
, blkg
);
1009 void cfq_update_blkio_group_weight(void *key
, struct blkio_group
*blkg
,
1010 unsigned int weight
)
1012 struct cfq_group
*cfqg
= cfqg_of_blkg(blkg
);
1013 cfqg
->new_weight
= weight
;
1014 cfqg
->needs_update
= true;
1017 static struct cfq_group
*
1018 cfq_find_alloc_cfqg(struct cfq_data
*cfqd
, struct cgroup
*cgroup
, int create
)
1020 struct blkio_cgroup
*blkcg
= cgroup_to_blkio_cgroup(cgroup
);
1021 struct cfq_group
*cfqg
= NULL
;
1024 struct cfq_rb_root
*st
;
1025 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
1026 unsigned int major
, minor
;
1028 cfqg
= cfqg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
1029 if (cfqg
&& !cfqg
->blkg
.dev
&& bdi
->dev
&& dev_name(bdi
->dev
)) {
1030 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
1031 cfqg
->blkg
.dev
= MKDEV(major
, minor
);
1034 if (cfqg
|| !create
)
1037 cfqg
= kzalloc_node(sizeof(*cfqg
), GFP_ATOMIC
, cfqd
->queue
->node
);
1041 for_each_cfqg_st(cfqg
, i
, j
, st
)
1043 RB_CLEAR_NODE(&cfqg
->rb_node
);
1046 * Take the initial reference that will be released on destroy
1047 * This can be thought of a joint reference by cgroup and
1048 * elevator which will be dropped by either elevator exit
1049 * or cgroup deletion path depending on who is exiting first.
1054 * Add group onto cgroup list. It might happen that bdi->dev is
1055 * not initialized yet. Initialize this new group without major
1056 * and minor info and this info will be filled in once a new thread
1057 * comes for IO. See code above.
1060 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
1061 cfq_blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
, (void *)cfqd
,
1062 MKDEV(major
, minor
));
1064 cfq_blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
, (void *)cfqd
,
1067 cfqg
->weight
= blkcg_get_weight(blkcg
, cfqg
->blkg
.dev
);
1069 /* Add group on cfqd list */
1070 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
1077 * Search for the cfq group current task belongs to. If create = 1, then also
1078 * create the cfq group if it does not exist. request_queue lock must be held.
1080 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1082 struct cgroup
*cgroup
;
1083 struct cfq_group
*cfqg
= NULL
;
1086 cgroup
= task_cgroup(current
, blkio_subsys_id
);
1087 cfqg
= cfq_find_alloc_cfqg(cfqd
, cgroup
, create
);
1088 if (!cfqg
&& create
)
1089 cfqg
= &cfqd
->root_group
;
1094 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1100 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1102 /* Currently, all async queues are mapped to root group */
1103 if (!cfq_cfqq_sync(cfqq
))
1104 cfqg
= &cfqq
->cfqd
->root_group
;
1107 /* cfqq reference on cfqg */
1111 static void cfq_put_cfqg(struct cfq_group
*cfqg
)
1113 struct cfq_rb_root
*st
;
1116 BUG_ON(cfqg
->ref
<= 0);
1120 for_each_cfqg_st(cfqg
, i
, j
, st
)
1121 BUG_ON(!RB_EMPTY_ROOT(&st
->rb
));
1125 static void cfq_destroy_cfqg(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1127 /* Something wrong if we are trying to remove same group twice */
1128 BUG_ON(hlist_unhashed(&cfqg
->cfqd_node
));
1130 hlist_del_init(&cfqg
->cfqd_node
);
1133 * Put the reference taken at the time of creation so that when all
1134 * queues are gone, group can be destroyed.
1139 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
)
1141 struct hlist_node
*pos
, *n
;
1142 struct cfq_group
*cfqg
;
1144 hlist_for_each_entry_safe(cfqg
, pos
, n
, &cfqd
->cfqg_list
, cfqd_node
) {
1146 * If cgroup removal path got to blk_group first and removed
1147 * it from cgroup list, then it will take care of destroying
1150 if (!cfq_blkiocg_del_blkio_group(&cfqg
->blkg
))
1151 cfq_destroy_cfqg(cfqd
, cfqg
);
1156 * Blk cgroup controller notification saying that blkio_group object is being
1157 * delinked as associated cgroup object is going away. That also means that
1158 * no new IO will come in this group. So get rid of this group as soon as
1159 * any pending IO in the group is finished.
1161 * This function is called under rcu_read_lock(). key is the rcu protected
1162 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1165 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1166 * it should not be NULL as even if elevator was exiting, cgroup deltion
1167 * path got to it first.
1169 void cfq_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
1171 unsigned long flags
;
1172 struct cfq_data
*cfqd
= key
;
1174 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1175 cfq_destroy_cfqg(cfqd
, cfqg_of_blkg(blkg
));
1176 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1179 #else /* GROUP_IOSCHED */
1180 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1182 return &cfqd
->root_group
;
1185 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1191 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1195 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
) {}
1196 static inline void cfq_put_cfqg(struct cfq_group
*cfqg
) {}
1198 #endif /* GROUP_IOSCHED */
1201 * The cfqd->service_trees holds all pending cfq_queue's that have
1202 * requests waiting to be processed. It is sorted in the order that
1203 * we will service the queues.
1205 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1208 struct rb_node
**p
, *parent
;
1209 struct cfq_queue
*__cfqq
;
1210 unsigned long rb_key
;
1211 struct cfq_rb_root
*service_tree
;
1214 int group_changed
= 0;
1216 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1218 if (cfq_class_idle(cfqq
)) {
1219 rb_key
= CFQ_IDLE_DELAY
;
1220 parent
= rb_last(&service_tree
->rb
);
1221 if (parent
&& parent
!= &cfqq
->rb_node
) {
1222 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1223 rb_key
+= __cfqq
->rb_key
;
1226 } else if (!add_front
) {
1228 * Get our rb key offset. Subtract any residual slice
1229 * value carried from last service. A negative resid
1230 * count indicates slice overrun, and this should position
1231 * the next service time further away in the tree.
1233 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1234 rb_key
-= cfqq
->slice_resid
;
1235 cfqq
->slice_resid
= 0;
1238 __cfqq
= cfq_rb_first(service_tree
);
1239 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1242 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1245 * same position, nothing more to do
1247 if (rb_key
== cfqq
->rb_key
&&
1248 cfqq
->service_tree
== service_tree
)
1251 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1252 cfqq
->service_tree
= NULL
;
1257 cfqq
->service_tree
= service_tree
;
1258 p
= &service_tree
->rb
.rb_node
;
1263 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1266 * sort by key, that represents service time.
1268 if (time_before(rb_key
, __cfqq
->rb_key
))
1271 n
= &(*p
)->rb_right
;
1279 service_tree
->left
= &cfqq
->rb_node
;
1281 cfqq
->rb_key
= rb_key
;
1282 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1283 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1284 service_tree
->count
++;
1285 if ((add_front
|| !new_cfqq
) && !group_changed
)
1287 cfq_group_notify_queue_add(cfqd
, cfqq
->cfqg
);
1290 static struct cfq_queue
*
1291 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1292 sector_t sector
, struct rb_node
**ret_parent
,
1293 struct rb_node
***rb_link
)
1295 struct rb_node
**p
, *parent
;
1296 struct cfq_queue
*cfqq
= NULL
;
1304 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1307 * Sort strictly based on sector. Smallest to the left,
1308 * largest to the right.
1310 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1311 n
= &(*p
)->rb_right
;
1312 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1320 *ret_parent
= parent
;
1326 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1328 struct rb_node
**p
, *parent
;
1329 struct cfq_queue
*__cfqq
;
1332 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1333 cfqq
->p_root
= NULL
;
1336 if (cfq_class_idle(cfqq
))
1341 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1342 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1343 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1345 rb_link_node(&cfqq
->p_node
, parent
, p
);
1346 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1348 cfqq
->p_root
= NULL
;
1352 * Update cfqq's position in the service tree.
1354 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1357 * Resorting requires the cfqq to be on the RR list already.
1359 if (cfq_cfqq_on_rr(cfqq
)) {
1360 cfq_service_tree_add(cfqd
, cfqq
, 0);
1361 cfq_prio_tree_add(cfqd
, cfqq
);
1366 * add to busy list of queues for service, trying to be fair in ordering
1367 * the pending list according to last request service
1369 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1371 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1372 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1373 cfq_mark_cfqq_on_rr(cfqq
);
1374 cfqd
->busy_queues
++;
1375 if (cfq_cfqq_sync(cfqq
))
1376 cfqd
->busy_sync_queues
++;
1378 cfq_resort_rr_list(cfqd
, cfqq
);
1382 * Called when the cfqq no longer has requests pending, remove it from
1385 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1387 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1388 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1389 cfq_clear_cfqq_on_rr(cfqq
);
1391 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1392 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1393 cfqq
->service_tree
= NULL
;
1396 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1397 cfqq
->p_root
= NULL
;
1400 cfq_group_notify_queue_del(cfqd
, cfqq
->cfqg
);
1401 BUG_ON(!cfqd
->busy_queues
);
1402 cfqd
->busy_queues
--;
1403 if (cfq_cfqq_sync(cfqq
))
1404 cfqd
->busy_sync_queues
--;
1408 * rb tree support functions
1410 static void cfq_del_rq_rb(struct request
*rq
)
1412 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1413 const int sync
= rq_is_sync(rq
);
1415 BUG_ON(!cfqq
->queued
[sync
]);
1416 cfqq
->queued
[sync
]--;
1418 elv_rb_del(&cfqq
->sort_list
, rq
);
1420 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1422 * Queue will be deleted from service tree when we actually
1423 * expire it later. Right now just remove it from prio tree
1427 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1428 cfqq
->p_root
= NULL
;
1433 static void cfq_add_rq_rb(struct request
*rq
)
1435 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1436 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1437 struct request
*__alias
, *prev
;
1439 cfqq
->queued
[rq_is_sync(rq
)]++;
1442 * looks a little odd, but the first insert might return an alias.
1443 * if that happens, put the alias on the dispatch list
1445 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
1446 cfq_dispatch_insert(cfqd
->queue
, __alias
);
1448 if (!cfq_cfqq_on_rr(cfqq
))
1449 cfq_add_cfqq_rr(cfqd
, cfqq
);
1452 * check if this request is a better next-serve candidate
1454 prev
= cfqq
->next_rq
;
1455 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1458 * adjust priority tree position, if ->next_rq changes
1460 if (prev
!= cfqq
->next_rq
)
1461 cfq_prio_tree_add(cfqd
, cfqq
);
1463 BUG_ON(!cfqq
->next_rq
);
1466 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1468 elv_rb_del(&cfqq
->sort_list
, rq
);
1469 cfqq
->queued
[rq_is_sync(rq
)]--;
1470 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1471 rq_data_dir(rq
), rq_is_sync(rq
));
1473 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
1474 &cfqq
->cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
1478 static struct request
*
1479 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1481 struct task_struct
*tsk
= current
;
1482 struct cfq_io_context
*cic
;
1483 struct cfq_queue
*cfqq
;
1485 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1489 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1491 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1493 return elv_rb_find(&cfqq
->sort_list
, sector
);
1499 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1501 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1503 cfqd
->rq_in_driver
++;
1504 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1505 cfqd
->rq_in_driver
);
1507 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1510 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1512 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1514 WARN_ON(!cfqd
->rq_in_driver
);
1515 cfqd
->rq_in_driver
--;
1516 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1517 cfqd
->rq_in_driver
);
1520 static void cfq_remove_request(struct request
*rq
)
1522 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1524 if (cfqq
->next_rq
== rq
)
1525 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1527 list_del_init(&rq
->queuelist
);
1530 cfqq
->cfqd
->rq_queued
--;
1531 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1532 rq_data_dir(rq
), rq_is_sync(rq
));
1533 if (rq
->cmd_flags
& REQ_META
) {
1534 WARN_ON(!cfqq
->meta_pending
);
1535 cfqq
->meta_pending
--;
1539 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1542 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1543 struct request
*__rq
;
1545 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1546 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1548 return ELEVATOR_FRONT_MERGE
;
1551 return ELEVATOR_NO_MERGE
;
1554 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1557 if (type
== ELEVATOR_FRONT_MERGE
) {
1558 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1560 cfq_reposition_rq_rb(cfqq
, req
);
1564 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
1567 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req
))->blkg
,
1568 bio_data_dir(bio
), cfq_bio_sync(bio
));
1572 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1573 struct request
*next
)
1575 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1577 * reposition in fifo if next is older than rq
1579 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1580 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
1581 list_move(&rq
->queuelist
, &next
->queuelist
);
1582 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1585 if (cfqq
->next_rq
== next
)
1587 cfq_remove_request(next
);
1588 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq
))->blkg
,
1589 rq_data_dir(next
), rq_is_sync(next
));
1592 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
1595 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1596 struct cfq_io_context
*cic
;
1597 struct cfq_queue
*cfqq
;
1600 * Disallow merge of a sync bio into an async request.
1602 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
1606 * Lookup the cfqq that this bio will be queued with. Allow
1607 * merge only if rq is queued there.
1609 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
1613 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1614 return cfqq
== RQ_CFQQ(rq
);
1617 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1619 del_timer(&cfqd
->idle_slice_timer
);
1620 cfq_blkiocg_update_idle_time_stats(&cfqq
->cfqg
->blkg
);
1623 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
1624 struct cfq_queue
*cfqq
)
1627 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_prio:%d wl_type:%d",
1628 cfqd
->serving_prio
, cfqd
->serving_type
);
1629 cfq_blkiocg_update_avg_queue_size_stats(&cfqq
->cfqg
->blkg
);
1630 cfqq
->slice_start
= 0;
1631 cfqq
->dispatch_start
= jiffies
;
1632 cfqq
->allocated_slice
= 0;
1633 cfqq
->slice_end
= 0;
1634 cfqq
->slice_dispatch
= 0;
1635 cfqq
->nr_sectors
= 0;
1637 cfq_clear_cfqq_wait_request(cfqq
);
1638 cfq_clear_cfqq_must_dispatch(cfqq
);
1639 cfq_clear_cfqq_must_alloc_slice(cfqq
);
1640 cfq_clear_cfqq_fifo_expire(cfqq
);
1641 cfq_mark_cfqq_slice_new(cfqq
);
1643 cfq_del_timer(cfqd
, cfqq
);
1646 cfqd
->active_queue
= cfqq
;
1650 * current cfqq expired its slice (or was too idle), select new one
1653 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1656 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
1658 if (cfq_cfqq_wait_request(cfqq
))
1659 cfq_del_timer(cfqd
, cfqq
);
1661 cfq_clear_cfqq_wait_request(cfqq
);
1662 cfq_clear_cfqq_wait_busy(cfqq
);
1665 * If this cfqq is shared between multiple processes, check to
1666 * make sure that those processes are still issuing I/Os within
1667 * the mean seek distance. If not, it may be time to break the
1668 * queues apart again.
1670 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
1671 cfq_mark_cfqq_split_coop(cfqq
);
1674 * store what was left of this slice, if the queue idled/timed out
1677 if (cfq_cfqq_slice_new(cfqq
))
1678 cfqq
->slice_resid
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
1680 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
1681 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
1684 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
1686 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
1687 cfq_del_cfqq_rr(cfqd
, cfqq
);
1689 cfq_resort_rr_list(cfqd
, cfqq
);
1691 if (cfqq
== cfqd
->active_queue
)
1692 cfqd
->active_queue
= NULL
;
1694 if (cfqd
->active_cic
) {
1695 put_io_context(cfqd
->active_cic
->ioc
);
1696 cfqd
->active_cic
= NULL
;
1700 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
1702 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1705 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
1709 * Get next queue for service. Unless we have a queue preemption,
1710 * we'll simply select the first cfqq in the service tree.
1712 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
1714 struct cfq_rb_root
*service_tree
=
1715 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
1716 cfqd
->serving_type
);
1718 if (!cfqd
->rq_queued
)
1721 /* There is nothing to dispatch */
1724 if (RB_EMPTY_ROOT(&service_tree
->rb
))
1726 return cfq_rb_first(service_tree
);
1729 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
1731 struct cfq_group
*cfqg
;
1732 struct cfq_queue
*cfqq
;
1734 struct cfq_rb_root
*st
;
1736 if (!cfqd
->rq_queued
)
1739 cfqg
= cfq_get_next_cfqg(cfqd
);
1743 for_each_cfqg_st(cfqg
, i
, j
, st
)
1744 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
1750 * Get and set a new active queue for service.
1752 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
1753 struct cfq_queue
*cfqq
)
1756 cfqq
= cfq_get_next_queue(cfqd
);
1758 __cfq_set_active_queue(cfqd
, cfqq
);
1762 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
1765 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
1766 return blk_rq_pos(rq
) - cfqd
->last_position
;
1768 return cfqd
->last_position
- blk_rq_pos(rq
);
1771 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1774 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
1777 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
1778 struct cfq_queue
*cur_cfqq
)
1780 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
1781 struct rb_node
*parent
, *node
;
1782 struct cfq_queue
*__cfqq
;
1783 sector_t sector
= cfqd
->last_position
;
1785 if (RB_EMPTY_ROOT(root
))
1789 * First, if we find a request starting at the end of the last
1790 * request, choose it.
1792 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1797 * If the exact sector wasn't found, the parent of the NULL leaf
1798 * will contain the closest sector.
1800 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1801 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1804 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1805 node
= rb_next(&__cfqq
->p_node
);
1807 node
= rb_prev(&__cfqq
->p_node
);
1811 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1812 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1820 * cur_cfqq - passed in so that we don't decide that the current queue is
1821 * closely cooperating with itself.
1823 * So, basically we're assuming that that cur_cfqq has dispatched at least
1824 * one request, and that cfqd->last_position reflects a position on the disk
1825 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1828 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1829 struct cfq_queue
*cur_cfqq
)
1831 struct cfq_queue
*cfqq
;
1833 if (cfq_class_idle(cur_cfqq
))
1835 if (!cfq_cfqq_sync(cur_cfqq
))
1837 if (CFQQ_SEEKY(cur_cfqq
))
1841 * Don't search priority tree if it's the only queue in the group.
1843 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
1847 * We should notice if some of the queues are cooperating, eg
1848 * working closely on the same area of the disk. In that case,
1849 * we can group them together and don't waste time idling.
1851 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1855 /* If new queue belongs to different cfq_group, don't choose it */
1856 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
1860 * It only makes sense to merge sync queues.
1862 if (!cfq_cfqq_sync(cfqq
))
1864 if (CFQQ_SEEKY(cfqq
))
1868 * Do not merge queues of different priority classes
1870 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
1877 * Determine whether we should enforce idle window for this queue.
1880 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1882 enum wl_prio_t prio
= cfqq_prio(cfqq
);
1883 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
1885 BUG_ON(!service_tree
);
1886 BUG_ON(!service_tree
->count
);
1888 if (!cfqd
->cfq_slice_idle
)
1891 /* We never do for idle class queues. */
1892 if (prio
== IDLE_WORKLOAD
)
1895 /* We do for queues that were marked with idle window flag. */
1896 if (cfq_cfqq_idle_window(cfqq
) &&
1897 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
1901 * Otherwise, we do only if they are the last ones
1902 * in their service tree.
1904 if (service_tree
->count
== 1 && cfq_cfqq_sync(cfqq
))
1906 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d",
1907 service_tree
->count
);
1911 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1913 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1914 struct cfq_io_context
*cic
;
1915 unsigned long sl
, group_idle
= 0;
1918 * SSD device without seek penalty, disable idling. But only do so
1919 * for devices that support queuing, otherwise we still have a problem
1920 * with sync vs async workloads.
1922 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1925 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1926 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1929 * idle is disabled, either manually or by past process history
1931 if (!cfq_should_idle(cfqd
, cfqq
)) {
1932 /* no queue idling. Check for group idling */
1933 if (cfqd
->cfq_group_idle
)
1934 group_idle
= cfqd
->cfq_group_idle
;
1940 * still active requests from this queue, don't idle
1942 if (cfqq
->dispatched
)
1946 * task has exited, don't wait
1948 cic
= cfqd
->active_cic
;
1949 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1953 * If our average think time is larger than the remaining time
1954 * slice, then don't idle. This avoids overrunning the allotted
1957 if (sample_valid(cic
->ttime_samples
) &&
1958 (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
)) {
1959 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%d",
1964 /* There are other queues in the group, don't do group idle */
1965 if (group_idle
&& cfqq
->cfqg
->nr_cfqq
> 1)
1968 cfq_mark_cfqq_wait_request(cfqq
);
1971 sl
= cfqd
->cfq_group_idle
;
1973 sl
= cfqd
->cfq_slice_idle
;
1975 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1976 cfq_blkiocg_update_set_idle_time_stats(&cfqq
->cfqg
->blkg
);
1977 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu group_idle: %d", sl
,
1978 group_idle
? 1 : 0);
1982 * Move request from internal lists to the request queue dispatch list.
1984 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1986 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1987 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1989 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1991 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
1992 cfq_remove_request(rq
);
1994 (RQ_CFQG(rq
))->dispatched
++;
1995 elv_dispatch_sort(q
, rq
);
1997 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
1998 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
1999 cfq_blkiocg_update_dispatch_stats(&cfqq
->cfqg
->blkg
, blk_rq_bytes(rq
),
2000 rq_data_dir(rq
), rq_is_sync(rq
));
2004 * return expired entry, or NULL to just start from scratch in rbtree
2006 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
2008 struct request
*rq
= NULL
;
2010 if (cfq_cfqq_fifo_expire(cfqq
))
2013 cfq_mark_cfqq_fifo_expire(cfqq
);
2015 if (list_empty(&cfqq
->fifo
))
2018 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
2019 if (time_before(jiffies
, rq_fifo_time(rq
)))
2022 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
2027 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2029 const int base_rq
= cfqd
->cfq_slice_async_rq
;
2031 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
2033 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
2037 * Must be called with the queue_lock held.
2039 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
2041 int process_refs
, io_refs
;
2043 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
2044 process_refs
= cfqq
->ref
- io_refs
;
2045 BUG_ON(process_refs
< 0);
2046 return process_refs
;
2049 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
2051 int process_refs
, new_process_refs
;
2052 struct cfq_queue
*__cfqq
;
2055 * If there are no process references on the new_cfqq, then it is
2056 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2057 * chain may have dropped their last reference (not just their
2058 * last process reference).
2060 if (!cfqq_process_refs(new_cfqq
))
2063 /* Avoid a circular list and skip interim queue merges */
2064 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
2070 process_refs
= cfqq_process_refs(cfqq
);
2071 new_process_refs
= cfqq_process_refs(new_cfqq
);
2073 * If the process for the cfqq has gone away, there is no
2074 * sense in merging the queues.
2076 if (process_refs
== 0 || new_process_refs
== 0)
2080 * Merge in the direction of the lesser amount of work.
2082 if (new_process_refs
>= process_refs
) {
2083 cfqq
->new_cfqq
= new_cfqq
;
2084 new_cfqq
->ref
+= process_refs
;
2086 new_cfqq
->new_cfqq
= cfqq
;
2087 cfqq
->ref
+= new_process_refs
;
2091 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
2092 struct cfq_group
*cfqg
, enum wl_prio_t prio
)
2094 struct cfq_queue
*queue
;
2096 bool key_valid
= false;
2097 unsigned long lowest_key
= 0;
2098 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
2100 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
2101 /* select the one with lowest rb_key */
2102 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
));
2104 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
2105 lowest_key
= queue
->rb_key
;
2114 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
2118 struct cfq_rb_root
*st
;
2119 unsigned group_slice
;
2120 enum wl_prio_t original_prio
= cfqd
->serving_prio
;
2122 /* Choose next priority. RT > BE > IDLE */
2123 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
2124 cfqd
->serving_prio
= RT_WORKLOAD
;
2125 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
2126 cfqd
->serving_prio
= BE_WORKLOAD
;
2128 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2129 cfqd
->workload_expires
= jiffies
+ 1;
2133 if (original_prio
!= cfqd
->serving_prio
)
2137 * For RT and BE, we have to choose also the type
2138 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2141 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2145 * check workload expiration, and that we still have other queues ready
2147 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
2151 /* otherwise select new workload type */
2152 cfqd
->serving_type
=
2153 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
);
2154 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2158 * the workload slice is computed as a fraction of target latency
2159 * proportional to the number of queues in that workload, over
2160 * all the queues in the same priority class
2162 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2164 slice
= group_slice
* count
/
2165 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2166 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2168 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2172 * Async queues are currently system wide. Just taking
2173 * proportion of queues with-in same group will lead to higher
2174 * async ratio system wide as generally root group is going
2175 * to have higher weight. A more accurate thing would be to
2176 * calculate system wide asnc/sync ratio.
2178 tmp
= cfq_target_latency
* cfqg_busy_async_queues(cfqd
, cfqg
);
2179 tmp
= tmp
/cfqd
->busy_queues
;
2180 slice
= min_t(unsigned, slice
, tmp
);
2182 /* async workload slice is scaled down according to
2183 * the sync/async slice ratio. */
2184 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2186 /* sync workload slice is at least 2 * cfq_slice_idle */
2187 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2189 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2190 cfq_log(cfqd
, "workload slice:%d", slice
);
2191 cfqd
->workload_expires
= jiffies
+ slice
;
2194 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2196 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2197 struct cfq_group
*cfqg
;
2199 if (RB_EMPTY_ROOT(&st
->rb
))
2201 cfqg
= cfq_rb_first_group(st
);
2202 update_min_vdisktime(st
);
2206 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2208 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2210 cfqd
->serving_group
= cfqg
;
2212 /* Restore the workload type data */
2213 if (cfqg
->saved_workload_slice
) {
2214 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2215 cfqd
->serving_type
= cfqg
->saved_workload
;
2216 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2218 cfqd
->workload_expires
= jiffies
- 1;
2220 choose_service_tree(cfqd
, cfqg
);
2224 * Select a queue for service. If we have a current active queue,
2225 * check whether to continue servicing it, or retrieve and set a new one.
2227 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2229 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2231 cfqq
= cfqd
->active_queue
;
2235 if (!cfqd
->rq_queued
)
2239 * We were waiting for group to get backlogged. Expire the queue
2241 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2245 * The active queue has run out of time, expire it and select new.
2247 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2249 * If slice had not expired at the completion of last request
2250 * we might not have turned on wait_busy flag. Don't expire
2251 * the queue yet. Allow the group to get backlogged.
2253 * The very fact that we have used the slice, that means we
2254 * have been idling all along on this queue and it should be
2255 * ok to wait for this request to complete.
2257 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2258 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2262 goto check_group_idle
;
2266 * The active queue has requests and isn't expired, allow it to
2269 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2273 * If another queue has a request waiting within our mean seek
2274 * distance, let it run. The expire code will check for close
2275 * cooperators and put the close queue at the front of the service
2276 * tree. If possible, merge the expiring queue with the new cfqq.
2278 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2280 if (!cfqq
->new_cfqq
)
2281 cfq_setup_merge(cfqq
, new_cfqq
);
2286 * No requests pending. If the active queue still has requests in
2287 * flight or is idling for a new request, allow either of these
2288 * conditions to happen (or time out) before selecting a new queue.
2290 if (timer_pending(&cfqd
->idle_slice_timer
)) {
2296 * This is a deep seek queue, but the device is much faster than
2297 * the queue can deliver, don't idle
2299 if (CFQQ_SEEKY(cfqq
) && cfq_cfqq_idle_window(cfqq
) &&
2300 (cfq_cfqq_slice_new(cfqq
) ||
2301 (cfqq
->slice_end
- jiffies
> jiffies
- cfqq
->slice_start
))) {
2302 cfq_clear_cfqq_deep(cfqq
);
2303 cfq_clear_cfqq_idle_window(cfqq
);
2306 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2312 * If group idle is enabled and there are requests dispatched from
2313 * this group, wait for requests to complete.
2316 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1
2317 && cfqq
->cfqg
->dispatched
) {
2323 cfq_slice_expired(cfqd
, 0);
2326 * Current queue expired. Check if we have to switch to a new
2330 cfq_choose_cfqg(cfqd
);
2332 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2337 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2341 while (cfqq
->next_rq
) {
2342 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2346 BUG_ON(!list_empty(&cfqq
->fifo
));
2348 /* By default cfqq is not expired if it is empty. Do it explicitly */
2349 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2354 * Drain our current requests. Used for barriers and when switching
2355 * io schedulers on-the-fly.
2357 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2359 struct cfq_queue
*cfqq
;
2362 /* Expire the timeslice of the current active queue first */
2363 cfq_slice_expired(cfqd
, 0);
2364 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
2365 __cfq_set_active_queue(cfqd
, cfqq
);
2366 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2369 BUG_ON(cfqd
->busy_queues
);
2371 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2375 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
2376 struct cfq_queue
*cfqq
)
2378 /* the queue hasn't finished any request, can't estimate */
2379 if (cfq_cfqq_slice_new(cfqq
))
2381 if (time_after(jiffies
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
,
2388 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2390 unsigned int max_dispatch
;
2393 * Drain async requests before we start sync IO
2395 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
2399 * If this is an async queue and we have sync IO in flight, let it wait
2401 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
2404 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
2405 if (cfq_class_idle(cfqq
))
2409 * Does this cfqq already have too much IO in flight?
2411 if (cfqq
->dispatched
>= max_dispatch
) {
2412 bool promote_sync
= false;
2414 * idle queue must always only have a single IO in flight
2416 if (cfq_class_idle(cfqq
))
2420 * If there is only one sync queue
2421 * we can ignore async queue here and give the sync
2422 * queue no dispatch limit. The reason is a sync queue can
2423 * preempt async queue, limiting the sync queue doesn't make
2424 * sense. This is useful for aiostress test.
2426 if (cfq_cfqq_sync(cfqq
) && cfqd
->busy_sync_queues
== 1)
2427 promote_sync
= true;
2430 * We have other queues, don't allow more IO from this one
2432 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
) &&
2437 * Sole queue user, no limit
2439 if (cfqd
->busy_queues
== 1 || promote_sync
)
2443 * Normally we start throttling cfqq when cfq_quantum/2
2444 * requests have been dispatched. But we can drive
2445 * deeper queue depths at the beginning of slice
2446 * subjected to upper limit of cfq_quantum.
2448 max_dispatch
= cfqd
->cfq_quantum
;
2452 * Async queues must wait a bit before being allowed dispatch.
2453 * We also ramp up the dispatch depth gradually for async IO,
2454 * based on the last sync IO we serviced
2456 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2457 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2460 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2461 if (!depth
&& !cfqq
->dispatched
)
2463 if (depth
< max_dispatch
)
2464 max_dispatch
= depth
;
2468 * If we're below the current max, allow a dispatch
2470 return cfqq
->dispatched
< max_dispatch
;
2474 * Dispatch a request from cfqq, moving them to the request queue
2477 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2481 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2483 if (!cfq_may_dispatch(cfqd
, cfqq
))
2487 * follow expired path, else get first next available
2489 rq
= cfq_check_fifo(cfqq
);
2494 * insert request into driver dispatch list
2496 cfq_dispatch_insert(cfqd
->queue
, rq
);
2498 if (!cfqd
->active_cic
) {
2499 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2501 atomic_long_inc(&cic
->ioc
->refcount
);
2502 cfqd
->active_cic
= cic
;
2509 * Find the cfqq that we need to service and move a request from that to the
2512 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2514 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2515 struct cfq_queue
*cfqq
;
2517 if (!cfqd
->busy_queues
)
2520 if (unlikely(force
))
2521 return cfq_forced_dispatch(cfqd
);
2523 cfqq
= cfq_select_queue(cfqd
);
2528 * Dispatch a request from this cfqq, if it is allowed
2530 if (!cfq_dispatch_request(cfqd
, cfqq
))
2533 cfqq
->slice_dispatch
++;
2534 cfq_clear_cfqq_must_dispatch(cfqq
);
2537 * expire an async queue immediately if it has used up its slice. idle
2538 * queue always expire after 1 dispatch round.
2540 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2541 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2542 cfq_class_idle(cfqq
))) {
2543 cfqq
->slice_end
= jiffies
+ 1;
2544 cfq_slice_expired(cfqd
, 0);
2547 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2552 * task holds one reference to the queue, dropped when task exits. each rq
2553 * in-flight on this queue also holds a reference, dropped when rq is freed.
2555 * Each cfq queue took a reference on the parent group. Drop it now.
2556 * queue lock must be held here.
2558 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2560 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2561 struct cfq_group
*cfqg
;
2563 BUG_ON(cfqq
->ref
<= 0);
2569 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2570 BUG_ON(rb_first(&cfqq
->sort_list
));
2571 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2574 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2575 __cfq_slice_expired(cfqd
, cfqq
, 0);
2576 cfq_schedule_dispatch(cfqd
);
2579 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2580 kmem_cache_free(cfq_pool
, cfqq
);
2585 * Must always be called with the rcu_read_lock() held
2588 __call_for_each_cic(struct io_context
*ioc
,
2589 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2591 struct cfq_io_context
*cic
;
2592 struct hlist_node
*n
;
2594 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
2599 * Call func for each cic attached to this ioc.
2602 call_for_each_cic(struct io_context
*ioc
,
2603 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2606 __call_for_each_cic(ioc
, func
);
2610 static void cfq_cic_free_rcu(struct rcu_head
*head
)
2612 struct cfq_io_context
*cic
;
2614 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
2616 kmem_cache_free(cfq_ioc_pool
, cic
);
2617 elv_ioc_count_dec(cfq_ioc_count
);
2621 * CFQ scheduler is exiting, grab exit lock and check
2622 * the pending io context count. If it hits zero,
2623 * complete ioc_gone and set it back to NULL
2625 spin_lock(&ioc_gone_lock
);
2626 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
2630 spin_unlock(&ioc_gone_lock
);
2634 static void cfq_cic_free(struct cfq_io_context
*cic
)
2636 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
2639 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2641 unsigned long flags
;
2642 unsigned long dead_key
= (unsigned long) cic
->key
;
2644 BUG_ON(!(dead_key
& CIC_DEAD_KEY
));
2646 spin_lock_irqsave(&ioc
->lock
, flags
);
2647 radix_tree_delete(&ioc
->radix_root
, dead_key
>> CIC_DEAD_INDEX_SHIFT
);
2648 hlist_del_rcu(&cic
->cic_list
);
2649 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2655 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2656 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2657 * and ->trim() which is called with the task lock held
2659 static void cfq_free_io_context(struct io_context
*ioc
)
2662 * ioc->refcount is zero here, or we are called from elv_unregister(),
2663 * so no more cic's are allowed to be linked into this ioc. So it
2664 * should be ok to iterate over the known list, we will see all cic's
2665 * since no new ones are added.
2667 __call_for_each_cic(ioc
, cic_free_func
);
2670 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
2672 struct cfq_queue
*__cfqq
, *next
;
2675 * If this queue was scheduled to merge with another queue, be
2676 * sure to drop the reference taken on that queue (and others in
2677 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2679 __cfqq
= cfqq
->new_cfqq
;
2681 if (__cfqq
== cfqq
) {
2682 WARN(1, "cfqq->new_cfqq loop detected\n");
2685 next
= __cfqq
->new_cfqq
;
2686 cfq_put_queue(__cfqq
);
2691 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2693 if (unlikely(cfqq
== cfqd
->active_queue
)) {
2694 __cfq_slice_expired(cfqd
, cfqq
, 0);
2695 cfq_schedule_dispatch(cfqd
);
2698 cfq_put_cooperator(cfqq
);
2700 cfq_put_queue(cfqq
);
2703 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
2704 struct cfq_io_context
*cic
)
2706 struct io_context
*ioc
= cic
->ioc
;
2708 list_del_init(&cic
->queue_list
);
2711 * Make sure dead mark is seen for dead queues
2714 cic
->key
= cfqd_dead_key(cfqd
);
2716 if (ioc
->ioc_data
== cic
)
2717 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
2719 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
2720 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
2721 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
2724 if (cic
->cfqq
[BLK_RW_SYNC
]) {
2725 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
2726 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
2730 static void cfq_exit_single_io_context(struct io_context
*ioc
,
2731 struct cfq_io_context
*cic
)
2733 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2736 struct request_queue
*q
= cfqd
->queue
;
2737 unsigned long flags
;
2739 spin_lock_irqsave(q
->queue_lock
, flags
);
2742 * Ensure we get a fresh copy of the ->key to prevent
2743 * race between exiting task and queue
2745 smp_read_barrier_depends();
2746 if (cic
->key
== cfqd
)
2747 __cfq_exit_single_io_context(cfqd
, cic
);
2749 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2754 * The process that ioc belongs to has exited, we need to clean up
2755 * and put the internal structures we have that belongs to that process.
2757 static void cfq_exit_io_context(struct io_context
*ioc
)
2759 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
2762 static struct cfq_io_context
*
2763 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2765 struct cfq_io_context
*cic
;
2767 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
2770 cic
->last_end_request
= jiffies
;
2771 INIT_LIST_HEAD(&cic
->queue_list
);
2772 INIT_HLIST_NODE(&cic
->cic_list
);
2773 cic
->dtor
= cfq_free_io_context
;
2774 cic
->exit
= cfq_exit_io_context
;
2775 elv_ioc_count_inc(cfq_ioc_count
);
2781 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
2783 struct task_struct
*tsk
= current
;
2786 if (!cfq_cfqq_prio_changed(cfqq
))
2789 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
2790 switch (ioprio_class
) {
2792 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
2793 case IOPRIO_CLASS_NONE
:
2795 * no prio set, inherit CPU scheduling settings
2797 cfqq
->ioprio
= task_nice_ioprio(tsk
);
2798 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
2800 case IOPRIO_CLASS_RT
:
2801 cfqq
->ioprio
= task_ioprio(ioc
);
2802 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
2804 case IOPRIO_CLASS_BE
:
2805 cfqq
->ioprio
= task_ioprio(ioc
);
2806 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2808 case IOPRIO_CLASS_IDLE
:
2809 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
2811 cfq_clear_cfqq_idle_window(cfqq
);
2816 * keep track of original prio settings in case we have to temporarily
2817 * elevate the priority of this queue
2819 cfqq
->org_ioprio
= cfqq
->ioprio
;
2820 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
2821 cfq_clear_cfqq_prio_changed(cfqq
);
2824 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2826 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2827 struct cfq_queue
*cfqq
;
2828 unsigned long flags
;
2830 if (unlikely(!cfqd
))
2833 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2835 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
2837 struct cfq_queue
*new_cfqq
;
2838 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
2841 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
2842 cfq_put_queue(cfqq
);
2846 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
2848 cfq_mark_cfqq_prio_changed(cfqq
);
2850 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2853 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
2855 call_for_each_cic(ioc
, changed_ioprio
);
2856 ioc
->ioprio_changed
= 0;
2859 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2860 pid_t pid
, bool is_sync
)
2862 RB_CLEAR_NODE(&cfqq
->rb_node
);
2863 RB_CLEAR_NODE(&cfqq
->p_node
);
2864 INIT_LIST_HEAD(&cfqq
->fifo
);
2869 cfq_mark_cfqq_prio_changed(cfqq
);
2872 if (!cfq_class_idle(cfqq
))
2873 cfq_mark_cfqq_idle_window(cfqq
);
2874 cfq_mark_cfqq_sync(cfqq
);
2879 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2880 static void changed_cgroup(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2882 struct cfq_queue
*sync_cfqq
= cic_to_cfqq(cic
, 1);
2883 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2884 unsigned long flags
;
2885 struct request_queue
*q
;
2887 if (unlikely(!cfqd
))
2892 spin_lock_irqsave(q
->queue_lock
, flags
);
2896 * Drop reference to sync queue. A new sync queue will be
2897 * assigned in new group upon arrival of a fresh request.
2899 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
2900 cic_set_cfqq(cic
, NULL
, 1);
2901 cfq_put_queue(sync_cfqq
);
2904 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2907 static void cfq_ioc_set_cgroup(struct io_context
*ioc
)
2909 call_for_each_cic(ioc
, changed_cgroup
);
2910 ioc
->cgroup_changed
= 0;
2912 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2914 static struct cfq_queue
*
2915 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
2916 struct io_context
*ioc
, gfp_t gfp_mask
)
2918 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2919 struct cfq_io_context
*cic
;
2920 struct cfq_group
*cfqg
;
2923 cfqg
= cfq_get_cfqg(cfqd
, 1);
2924 cic
= cfq_cic_lookup(cfqd
, ioc
);
2925 /* cic always exists here */
2926 cfqq
= cic_to_cfqq(cic
, is_sync
);
2929 * Always try a new alloc if we fell back to the OOM cfqq
2930 * originally, since it should just be a temporary situation.
2932 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2937 } else if (gfp_mask
& __GFP_WAIT
) {
2938 spin_unlock_irq(cfqd
->queue
->queue_lock
);
2939 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
2940 gfp_mask
| __GFP_ZERO
,
2942 spin_lock_irq(cfqd
->queue
->queue_lock
);
2946 cfqq
= kmem_cache_alloc_node(cfq_pool
,
2947 gfp_mask
| __GFP_ZERO
,
2952 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
2953 cfq_init_prio_data(cfqq
, ioc
);
2954 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
2955 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
2957 cfqq
= &cfqd
->oom_cfqq
;
2961 kmem_cache_free(cfq_pool
, new_cfqq
);
2966 static struct cfq_queue
**
2967 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
2969 switch (ioprio_class
) {
2970 case IOPRIO_CLASS_RT
:
2971 return &cfqd
->async_cfqq
[0][ioprio
];
2972 case IOPRIO_CLASS_BE
:
2973 return &cfqd
->async_cfqq
[1][ioprio
];
2974 case IOPRIO_CLASS_IDLE
:
2975 return &cfqd
->async_idle_cfqq
;
2981 static struct cfq_queue
*
2982 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
2985 const int ioprio
= task_ioprio(ioc
);
2986 const int ioprio_class
= task_ioprio_class(ioc
);
2987 struct cfq_queue
**async_cfqq
= NULL
;
2988 struct cfq_queue
*cfqq
= NULL
;
2991 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
2996 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
2999 * pin the queue now that it's allocated, scheduler exit will prune it
3001 if (!is_sync
&& !(*async_cfqq
)) {
3011 * We drop cfq io contexts lazily, so we may find a dead one.
3014 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
3015 struct cfq_io_context
*cic
)
3017 unsigned long flags
;
3019 WARN_ON(!list_empty(&cic
->queue_list
));
3020 BUG_ON(cic
->key
!= cfqd_dead_key(cfqd
));
3022 spin_lock_irqsave(&ioc
->lock
, flags
);
3024 BUG_ON(ioc
->ioc_data
== cic
);
3026 radix_tree_delete(&ioc
->radix_root
, cfqd
->cic_index
);
3027 hlist_del_rcu(&cic
->cic_list
);
3028 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3033 static struct cfq_io_context
*
3034 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
3036 struct cfq_io_context
*cic
;
3037 unsigned long flags
;
3045 * we maintain a last-hit cache, to avoid browsing over the tree
3047 cic
= rcu_dereference(ioc
->ioc_data
);
3048 if (cic
&& cic
->key
== cfqd
) {
3054 cic
= radix_tree_lookup(&ioc
->radix_root
, cfqd
->cic_index
);
3058 if (unlikely(cic
->key
!= cfqd
)) {
3059 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
3064 spin_lock_irqsave(&ioc
->lock
, flags
);
3065 rcu_assign_pointer(ioc
->ioc_data
, cic
);
3066 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3074 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3075 * the process specific cfq io context when entered from the block layer.
3076 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3078 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
3079 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
3081 unsigned long flags
;
3084 ret
= radix_tree_preload(gfp_mask
);
3089 spin_lock_irqsave(&ioc
->lock
, flags
);
3090 ret
= radix_tree_insert(&ioc
->radix_root
,
3091 cfqd
->cic_index
, cic
);
3093 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
3094 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3096 radix_tree_preload_end();
3099 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3100 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
3101 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3106 printk(KERN_ERR
"cfq: cic link failed!\n");
3112 * Setup general io context and cfq io context. There can be several cfq
3113 * io contexts per general io context, if this process is doing io to more
3114 * than one device managed by cfq.
3116 static struct cfq_io_context
*
3117 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
3119 struct io_context
*ioc
= NULL
;
3120 struct cfq_io_context
*cic
;
3122 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3124 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
3128 cic
= cfq_cic_lookup(cfqd
, ioc
);
3132 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
3136 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
3140 smp_read_barrier_depends();
3141 if (unlikely(ioc
->ioprio_changed
))
3142 cfq_ioc_set_ioprio(ioc
);
3144 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3145 if (unlikely(ioc
->cgroup_changed
))
3146 cfq_ioc_set_cgroup(ioc
);
3152 put_io_context(ioc
);
3157 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
3159 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
3160 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
3162 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
3163 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
3164 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
3168 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3172 sector_t n_sec
= blk_rq_sectors(rq
);
3173 if (cfqq
->last_request_pos
) {
3174 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3175 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3177 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3180 cfqq
->seek_history
<<= 1;
3181 if (blk_queue_nonrot(cfqd
->queue
))
3182 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3184 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3188 * Disable idle window if the process thinks too long or seeks so much that
3192 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3193 struct cfq_io_context
*cic
)
3195 int old_idle
, enable_idle
;
3198 * Don't idle for async or idle io prio class
3200 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3203 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3205 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3206 cfq_mark_cfqq_deep(cfqq
);
3208 if (cfqq
->next_rq
&& (cfqq
->next_rq
->cmd_flags
& REQ_NOIDLE
))
3210 else if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
3211 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3213 else if (sample_valid(cic
->ttime_samples
)) {
3214 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
3220 if (old_idle
!= enable_idle
) {
3221 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3223 cfq_mark_cfqq_idle_window(cfqq
);
3225 cfq_clear_cfqq_idle_window(cfqq
);
3230 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3231 * no or if we aren't sure, a 1 will cause a preempt.
3234 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3237 struct cfq_queue
*cfqq
;
3239 cfqq
= cfqd
->active_queue
;
3243 if (cfq_class_idle(new_cfqq
))
3246 if (cfq_class_idle(cfqq
))
3250 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3252 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3256 * if the new request is sync, but the currently running queue is
3257 * not, let the sync request have priority.
3259 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3262 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3265 if (cfq_slice_used(cfqq
))
3268 /* Allow preemption only if we are idling on sync-noidle tree */
3269 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3270 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3271 new_cfqq
->service_tree
->count
== 2 &&
3272 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3276 * So both queues are sync. Let the new request get disk time if
3277 * it's a metadata request and the current queue is doing regular IO.
3279 if ((rq
->cmd_flags
& REQ_META
) && !cfqq
->meta_pending
)
3283 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3285 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3288 /* An idle queue should not be idle now for some reason */
3289 if (RB_EMPTY_ROOT(&cfqq
->sort_list
) && !cfq_should_idle(cfqd
, cfqq
))
3292 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3296 * if this request is as-good as one we would expect from the
3297 * current cfqq, let it preempt
3299 if (cfq_rq_close(cfqd
, cfqq
, rq
))
3306 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3307 * let it have half of its nominal slice.
3309 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3311 struct cfq_queue
*old_cfqq
= cfqd
->active_queue
;
3313 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3314 cfq_slice_expired(cfqd
, 1);
3317 * workload type is changed, don't save slice, otherwise preempt
3320 if (cfqq_type(old_cfqq
) != cfqq_type(cfqq
))
3321 cfqq
->cfqg
->saved_workload_slice
= 0;
3324 * Put the new queue at the front of the of the current list,
3325 * so we know that it will be selected next.
3327 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3329 cfq_service_tree_add(cfqd
, cfqq
, 1);
3331 cfqq
->slice_end
= 0;
3332 cfq_mark_cfqq_slice_new(cfqq
);
3336 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3337 * something we should do about it
3340 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3343 struct cfq_io_context
*cic
= RQ_CIC(rq
);
3346 if (rq
->cmd_flags
& REQ_META
)
3347 cfqq
->meta_pending
++;
3349 cfq_update_io_thinktime(cfqd
, cic
);
3350 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3351 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3353 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3355 if (cfqq
== cfqd
->active_queue
) {
3357 * Remember that we saw a request from this process, but
3358 * don't start queuing just yet. Otherwise we risk seeing lots
3359 * of tiny requests, because we disrupt the normal plugging
3360 * and merging. If the request is already larger than a single
3361 * page, let it rip immediately. For that case we assume that
3362 * merging is already done. Ditto for a busy system that
3363 * has other work pending, don't risk delaying until the
3364 * idle timer unplug to continue working.
3366 if (cfq_cfqq_wait_request(cfqq
)) {
3367 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3368 cfqd
->busy_queues
> 1) {
3369 cfq_del_timer(cfqd
, cfqq
);
3370 cfq_clear_cfqq_wait_request(cfqq
);
3371 __blk_run_queue(cfqd
->queue
, false);
3373 cfq_blkiocg_update_idle_time_stats(
3375 cfq_mark_cfqq_must_dispatch(cfqq
);
3378 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3380 * not the active queue - expire current slice if it is
3381 * idle and has expired it's mean thinktime or this new queue
3382 * has some old slice time left and is of higher priority or
3383 * this new queue is RT and the current one is BE
3385 cfq_preempt_queue(cfqd
, cfqq
);
3386 __blk_run_queue(cfqd
->queue
, false);
3390 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3392 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3393 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3395 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3396 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
3398 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3399 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3401 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
3402 &cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
3404 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3408 * Update hw_tag based on peak queue depth over 50 samples under
3411 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3413 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3415 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
3416 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
3418 if (cfqd
->hw_tag
== 1)
3421 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3422 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
3426 * If active queue hasn't enough requests and can idle, cfq might not
3427 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3430 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3431 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3432 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
3435 if (cfqd
->hw_tag_samples
++ < 50)
3438 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3444 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3446 struct cfq_io_context
*cic
= cfqd
->active_cic
;
3448 /* If the queue already has requests, don't wait */
3449 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3452 /* If there are other queues in the group, don't wait */
3453 if (cfqq
->cfqg
->nr_cfqq
> 1)
3456 if (cfq_slice_used(cfqq
))
3459 /* if slice left is less than think time, wait busy */
3460 if (cic
&& sample_valid(cic
->ttime_samples
)
3461 && (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
3465 * If think times is less than a jiffy than ttime_mean=0 and above
3466 * will not be true. It might happen that slice has not expired yet
3467 * but will expire soon (4-5 ns) during select_queue(). To cover the
3468 * case where think time is less than a jiffy, mark the queue wait
3469 * busy if only 1 jiffy is left in the slice.
3471 if (cfqq
->slice_end
- jiffies
== 1)
3477 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3479 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3480 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3481 const int sync
= rq_is_sync(rq
);
3485 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d",
3486 !!(rq
->cmd_flags
& REQ_NOIDLE
));
3488 cfq_update_hw_tag(cfqd
);
3490 WARN_ON(!cfqd
->rq_in_driver
);
3491 WARN_ON(!cfqq
->dispatched
);
3492 cfqd
->rq_in_driver
--;
3494 (RQ_CFQG(rq
))->dispatched
--;
3495 cfq_blkiocg_update_completion_stats(&cfqq
->cfqg
->blkg
,
3496 rq_start_time_ns(rq
), rq_io_start_time_ns(rq
),
3497 rq_data_dir(rq
), rq_is_sync(rq
));
3499 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
3502 RQ_CIC(rq
)->last_end_request
= now
;
3503 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3504 cfqd
->last_delayed_sync
= now
;
3508 * If this is the active queue, check if it needs to be expired,
3509 * or if we want to idle in case it has no pending requests.
3511 if (cfqd
->active_queue
== cfqq
) {
3512 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3514 if (cfq_cfqq_slice_new(cfqq
)) {
3515 cfq_set_prio_slice(cfqd
, cfqq
);
3516 cfq_clear_cfqq_slice_new(cfqq
);
3520 * Should we wait for next request to come in before we expire
3523 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3524 unsigned long extend_sl
= cfqd
->cfq_slice_idle
;
3525 if (!cfqd
->cfq_slice_idle
)
3526 extend_sl
= cfqd
->cfq_group_idle
;
3527 cfqq
->slice_end
= jiffies
+ extend_sl
;
3528 cfq_mark_cfqq_wait_busy(cfqq
);
3529 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
3533 * Idling is not enabled on:
3535 * - idle-priority queues
3537 * - queues with still some requests queued
3538 * - when there is a close cooperator
3540 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3541 cfq_slice_expired(cfqd
, 1);
3542 else if (sync
&& cfqq_empty
&&
3543 !cfq_close_cooperator(cfqd
, cfqq
)) {
3544 cfq_arm_slice_timer(cfqd
);
3548 if (!cfqd
->rq_in_driver
)
3549 cfq_schedule_dispatch(cfqd
);
3553 * we temporarily boost lower priority queues if they are holding fs exclusive
3554 * resources. they are boosted to normal prio (CLASS_BE/4)
3556 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
3558 if (has_fs_excl()) {
3560 * boost idle prio on transactions that would lock out other
3561 * users of the filesystem
3563 if (cfq_class_idle(cfqq
))
3564 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3565 if (cfqq
->ioprio
> IOPRIO_NORM
)
3566 cfqq
->ioprio
= IOPRIO_NORM
;
3569 * unboost the queue (if needed)
3571 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
3572 cfqq
->ioprio
= cfqq
->org_ioprio
;
3576 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3578 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3579 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3580 return ELV_MQUEUE_MUST
;
3583 return ELV_MQUEUE_MAY
;
3586 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3588 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3589 struct task_struct
*tsk
= current
;
3590 struct cfq_io_context
*cic
;
3591 struct cfq_queue
*cfqq
;
3594 * don't force setup of a queue from here, as a call to may_queue
3595 * does not necessarily imply that a request actually will be queued.
3596 * so just lookup a possibly existing queue, or return 'may queue'
3599 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3601 return ELV_MQUEUE_MAY
;
3603 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3605 cfq_init_prio_data(cfqq
, cic
->ioc
);
3606 cfq_prio_boost(cfqq
);
3608 return __cfq_may_queue(cfqq
);
3611 return ELV_MQUEUE_MAY
;
3615 * queue lock held here
3617 static void cfq_put_request(struct request
*rq
)
3619 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3622 const int rw
= rq_data_dir(rq
);
3624 BUG_ON(!cfqq
->allocated
[rw
]);
3625 cfqq
->allocated
[rw
]--;
3627 put_io_context(RQ_CIC(rq
)->ioc
);
3629 rq
->elevator_private
[0] = NULL
;
3630 rq
->elevator_private
[1] = NULL
;
3632 /* Put down rq reference on cfqg */
3633 cfq_put_cfqg(RQ_CFQG(rq
));
3634 rq
->elevator_private
[2] = NULL
;
3636 cfq_put_queue(cfqq
);
3640 static struct cfq_queue
*
3641 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
3642 struct cfq_queue
*cfqq
)
3644 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3645 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3646 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3647 cfq_put_queue(cfqq
);
3648 return cic_to_cfqq(cic
, 1);
3652 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3653 * was the last process referring to said cfqq.
3655 static struct cfq_queue
*
3656 split_cfqq(struct cfq_io_context
*cic
, struct cfq_queue
*cfqq
)
3658 if (cfqq_process_refs(cfqq
) == 1) {
3659 cfqq
->pid
= current
->pid
;
3660 cfq_clear_cfqq_coop(cfqq
);
3661 cfq_clear_cfqq_split_coop(cfqq
);
3665 cic_set_cfqq(cic
, NULL
, 1);
3667 cfq_put_cooperator(cfqq
);
3669 cfq_put_queue(cfqq
);
3673 * Allocate cfq data structures associated with this request.
3676 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
3678 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3679 struct cfq_io_context
*cic
;
3680 const int rw
= rq_data_dir(rq
);
3681 const bool is_sync
= rq_is_sync(rq
);
3682 struct cfq_queue
*cfqq
;
3683 unsigned long flags
;
3685 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3687 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
3689 spin_lock_irqsave(q
->queue_lock
, flags
);
3695 cfqq
= cic_to_cfqq(cic
, is_sync
);
3696 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3697 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
3698 cic_set_cfqq(cic
, cfqq
, is_sync
);
3701 * If the queue was seeky for too long, break it apart.
3703 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
3704 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3705 cfqq
= split_cfqq(cic
, cfqq
);
3711 * Check to see if this queue is scheduled to merge with
3712 * another, closely cooperating queue. The merging of
3713 * queues happens here as it must be done in process context.
3714 * The reference on new_cfqq was taken in merge_cfqqs.
3717 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3720 cfqq
->allocated
[rw
]++;
3723 rq
->elevator_private
[0] = cic
;
3724 rq
->elevator_private
[1] = cfqq
;
3725 rq
->elevator_private
[2] = cfq_ref_get_cfqg(cfqq
->cfqg
);
3726 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3731 put_io_context(cic
->ioc
);
3733 cfq_schedule_dispatch(cfqd
);
3734 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3735 cfq_log(cfqd
, "set_request fail");
3739 static void cfq_kick_queue(struct work_struct
*work
)
3741 struct cfq_data
*cfqd
=
3742 container_of(work
, struct cfq_data
, unplug_work
);
3743 struct request_queue
*q
= cfqd
->queue
;
3745 spin_lock_irq(q
->queue_lock
);
3746 __blk_run_queue(cfqd
->queue
, false);
3747 spin_unlock_irq(q
->queue_lock
);
3751 * Timer running if the active_queue is currently idling inside its time slice
3753 static void cfq_idle_slice_timer(unsigned long data
)
3755 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3756 struct cfq_queue
*cfqq
;
3757 unsigned long flags
;
3760 cfq_log(cfqd
, "idle timer fired");
3762 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3764 cfqq
= cfqd
->active_queue
;
3769 * We saw a request before the queue expired, let it through
3771 if (cfq_cfqq_must_dispatch(cfqq
))
3777 if (cfq_slice_used(cfqq
))
3781 * only expire and reinvoke request handler, if there are
3782 * other queues with pending requests
3784 if (!cfqd
->busy_queues
)
3788 * not expired and it has a request pending, let it dispatch
3790 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3794 * Queue depth flag is reset only when the idle didn't succeed
3796 cfq_clear_cfqq_deep(cfqq
);
3799 cfq_slice_expired(cfqd
, timed_out
);
3801 cfq_schedule_dispatch(cfqd
);
3803 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3806 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3808 del_timer_sync(&cfqd
->idle_slice_timer
);
3809 cancel_work_sync(&cfqd
->unplug_work
);
3812 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3816 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3817 if (cfqd
->async_cfqq
[0][i
])
3818 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3819 if (cfqd
->async_cfqq
[1][i
])
3820 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3823 if (cfqd
->async_idle_cfqq
)
3824 cfq_put_queue(cfqd
->async_idle_cfqq
);
3827 static void cfq_cfqd_free(struct rcu_head
*head
)
3829 kfree(container_of(head
, struct cfq_data
, rcu
));
3832 static void cfq_exit_queue(struct elevator_queue
*e
)
3834 struct cfq_data
*cfqd
= e
->elevator_data
;
3835 struct request_queue
*q
= cfqd
->queue
;
3837 cfq_shutdown_timer_wq(cfqd
);
3839 spin_lock_irq(q
->queue_lock
);
3841 if (cfqd
->active_queue
)
3842 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3844 while (!list_empty(&cfqd
->cic_list
)) {
3845 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
3846 struct cfq_io_context
,
3849 __cfq_exit_single_io_context(cfqd
, cic
);
3852 cfq_put_async_queues(cfqd
);
3853 cfq_release_cfq_groups(cfqd
);
3854 cfq_blkiocg_del_blkio_group(&cfqd
->root_group
.blkg
);
3856 spin_unlock_irq(q
->queue_lock
);
3858 cfq_shutdown_timer_wq(cfqd
);
3860 spin_lock(&cic_index_lock
);
3861 ida_remove(&cic_index_ida
, cfqd
->cic_index
);
3862 spin_unlock(&cic_index_lock
);
3864 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3865 call_rcu(&cfqd
->rcu
, cfq_cfqd_free
);
3868 static int cfq_alloc_cic_index(void)
3873 if (!ida_pre_get(&cic_index_ida
, GFP_KERNEL
))
3876 spin_lock(&cic_index_lock
);
3877 error
= ida_get_new(&cic_index_ida
, &index
);
3878 spin_unlock(&cic_index_lock
);
3879 if (error
&& error
!= -EAGAIN
)
3886 static void *cfq_init_queue(struct request_queue
*q
)
3888 struct cfq_data
*cfqd
;
3890 struct cfq_group
*cfqg
;
3891 struct cfq_rb_root
*st
;
3893 i
= cfq_alloc_cic_index();
3897 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
3902 * Don't need take queue_lock in the routine, since we are
3903 * initializing the ioscheduler, and nobody is using cfqd
3905 cfqd
->cic_index
= i
;
3907 /* Init root service tree */
3908 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
3910 /* Init root group */
3911 cfqg
= &cfqd
->root_group
;
3912 for_each_cfqg_st(cfqg
, i
, j
, st
)
3914 RB_CLEAR_NODE(&cfqg
->rb_node
);
3916 /* Give preference to root group over other groups */
3917 cfqg
->weight
= 2*BLKIO_WEIGHT_DEFAULT
;
3919 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3921 * Take a reference to root group which we never drop. This is just
3922 * to make sure that cfq_put_cfqg() does not try to kfree root group
3926 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup
, &cfqg
->blkg
,
3931 * Not strictly needed (since RB_ROOT just clears the node and we
3932 * zeroed cfqd on alloc), but better be safe in case someone decides
3933 * to add magic to the rb code
3935 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
3936 cfqd
->prio_trees
[i
] = RB_ROOT
;
3939 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3940 * Grab a permanent reference to it, so that the normal code flow
3941 * will not attempt to free it.
3943 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
3944 cfqd
->oom_cfqq
.ref
++;
3945 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, &cfqd
->root_group
);
3947 INIT_LIST_HEAD(&cfqd
->cic_list
);
3951 init_timer(&cfqd
->idle_slice_timer
);
3952 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
3953 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
3955 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
3957 cfqd
->cfq_quantum
= cfq_quantum
;
3958 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
3959 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
3960 cfqd
->cfq_back_max
= cfq_back_max
;
3961 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
3962 cfqd
->cfq_slice
[0] = cfq_slice_async
;
3963 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
3964 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
3965 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
3966 cfqd
->cfq_group_idle
= cfq_group_idle
;
3967 cfqd
->cfq_latency
= 1;
3970 * we optimistically start assuming sync ops weren't delayed in last
3971 * second, in order to have larger depth for async operations.
3973 cfqd
->last_delayed_sync
= jiffies
- HZ
;
3977 static void cfq_slab_kill(void)
3980 * Caller already ensured that pending RCU callbacks are completed,
3981 * so we should have no busy allocations at this point.
3984 kmem_cache_destroy(cfq_pool
);
3986 kmem_cache_destroy(cfq_ioc_pool
);
3989 static int __init
cfq_slab_setup(void)
3991 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
3995 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
4006 * sysfs parts below -->
4009 cfq_var_show(unsigned int var
, char *page
)
4011 return sprintf(page
, "%d\n", var
);
4015 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
4017 char *p
= (char *) page
;
4019 *var
= simple_strtoul(p
, &p
, 10);
4023 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4024 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4026 struct cfq_data *cfqd = e->elevator_data; \
4027 unsigned int __data = __VAR; \
4029 __data = jiffies_to_msecs(__data); \
4030 return cfq_var_show(__data, (page)); \
4032 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
4033 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
4034 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
4035 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
4036 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
4037 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
4038 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
4039 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
4040 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
4041 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
4042 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
4043 #undef SHOW_FUNCTION
4045 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4046 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4048 struct cfq_data *cfqd = e->elevator_data; \
4049 unsigned int __data; \
4050 int ret = cfq_var_store(&__data, (page), count); \
4051 if (__data < (MIN)) \
4053 else if (__data > (MAX)) \
4056 *(__PTR) = msecs_to_jiffies(__data); \
4058 *(__PTR) = __data; \
4061 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4062 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4064 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4066 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4067 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4069 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4070 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4071 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4072 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4073 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4075 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4076 #undef STORE_FUNCTION
4078 #define CFQ_ATTR(name) \
4079 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4081 static struct elv_fs_entry cfq_attrs
[] = {
4083 CFQ_ATTR(fifo_expire_sync
),
4084 CFQ_ATTR(fifo_expire_async
),
4085 CFQ_ATTR(back_seek_max
),
4086 CFQ_ATTR(back_seek_penalty
),
4087 CFQ_ATTR(slice_sync
),
4088 CFQ_ATTR(slice_async
),
4089 CFQ_ATTR(slice_async_rq
),
4090 CFQ_ATTR(slice_idle
),
4091 CFQ_ATTR(group_idle
),
4092 CFQ_ATTR(low_latency
),
4096 static struct elevator_type iosched_cfq
= {
4098 .elevator_merge_fn
= cfq_merge
,
4099 .elevator_merged_fn
= cfq_merged_request
,
4100 .elevator_merge_req_fn
= cfq_merged_requests
,
4101 .elevator_allow_merge_fn
= cfq_allow_merge
,
4102 .elevator_bio_merged_fn
= cfq_bio_merged
,
4103 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4104 .elevator_add_req_fn
= cfq_insert_request
,
4105 .elevator_activate_req_fn
= cfq_activate_request
,
4106 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4107 .elevator_completed_req_fn
= cfq_completed_request
,
4108 .elevator_former_req_fn
= elv_rb_former_request
,
4109 .elevator_latter_req_fn
= elv_rb_latter_request
,
4110 .elevator_set_req_fn
= cfq_set_request
,
4111 .elevator_put_req_fn
= cfq_put_request
,
4112 .elevator_may_queue_fn
= cfq_may_queue
,
4113 .elevator_init_fn
= cfq_init_queue
,
4114 .elevator_exit_fn
= cfq_exit_queue
,
4115 .trim
= cfq_free_io_context
,
4117 .elevator_attrs
= cfq_attrs
,
4118 .elevator_name
= "cfq",
4119 .elevator_owner
= THIS_MODULE
,
4122 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4123 static struct blkio_policy_type blkio_policy_cfq
= {
4125 .blkio_unlink_group_fn
= cfq_unlink_blkio_group
,
4126 .blkio_update_group_weight_fn
= cfq_update_blkio_group_weight
,
4128 .plid
= BLKIO_POLICY_PROP
,
4131 static struct blkio_policy_type blkio_policy_cfq
;
4134 static int __init
cfq_init(void)
4137 * could be 0 on HZ < 1000 setups
4139 if (!cfq_slice_async
)
4140 cfq_slice_async
= 1;
4141 if (!cfq_slice_idle
)
4144 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4145 if (!cfq_group_idle
)
4150 if (cfq_slab_setup())
4153 elv_register(&iosched_cfq
);
4154 blkio_policy_register(&blkio_policy_cfq
);
4159 static void __exit
cfq_exit(void)
4161 DECLARE_COMPLETION_ONSTACK(all_gone
);
4162 blkio_policy_unregister(&blkio_policy_cfq
);
4163 elv_unregister(&iosched_cfq
);
4164 ioc_gone
= &all_gone
;
4165 /* ioc_gone's update must be visible before reading ioc_count */
4169 * this also protects us from entering cfq_slab_kill() with
4170 * pending RCU callbacks
4172 if (elv_ioc_count_read(cfq_ioc_count
))
4173 wait_for_completion(&all_gone
);
4174 ida_destroy(&cic_index_ida
);
4178 module_init(cfq_init
);
4179 module_exit(cfq_exit
);
4181 MODULE_AUTHOR("Jens Axboe");
4182 MODULE_LICENSE("GPL");
4183 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");