x86, acpi/irq: pci device dev->irq is an isa irq not a gsi
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / hwmon / asc7621.c
blob7f948105d8addb79af23d7ec3e6c89b338cab79d
1 /*
2 * asc7621.c - Part of lm_sensors, Linux kernel modules for hardware monitoring
3 * Copyright (c) 2007, 2010 George Joseph <george.joseph@fairview5.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/slab.h>
23 #include <linux/jiffies.h>
24 #include <linux/i2c.h>
25 #include <linux/hwmon.h>
26 #include <linux/hwmon-sysfs.h>
27 #include <linux/err.h>
28 #include <linux/mutex.h>
30 /* Addresses to scan */
31 static unsigned short normal_i2c[] = {
32 0x2c, 0x2d, 0x2e, I2C_CLIENT_END
35 enum asc7621_type {
36 asc7621,
37 asc7621a
40 #define INTERVAL_HIGH (HZ + HZ / 2)
41 #define INTERVAL_LOW (1 * 60 * HZ)
42 #define PRI_NONE 0
43 #define PRI_LOW 1
44 #define PRI_HIGH 2
45 #define FIRST_CHIP asc7621
46 #define LAST_CHIP asc7621a
48 struct asc7621_chip {
49 char *name;
50 enum asc7621_type chip_type;
51 u8 company_reg;
52 u8 company_id;
53 u8 verstep_reg;
54 u8 verstep_id;
55 unsigned short *addresses;
58 static struct asc7621_chip asc7621_chips[] = {
60 .name = "asc7621",
61 .chip_type = asc7621,
62 .company_reg = 0x3e,
63 .company_id = 0x61,
64 .verstep_reg = 0x3f,
65 .verstep_id = 0x6c,
66 .addresses = normal_i2c,
69 .name = "asc7621a",
70 .chip_type = asc7621a,
71 .company_reg = 0x3e,
72 .company_id = 0x61,
73 .verstep_reg = 0x3f,
74 .verstep_id = 0x6d,
75 .addresses = normal_i2c,
80 * Defines the highest register to be used, not the count.
81 * The actual count will probably be smaller because of gaps
82 * in the implementation (unused register locations).
83 * This define will safely set the array size of both the parameter
84 * and data arrays.
85 * This comes from the data sheet register description table.
87 #define LAST_REGISTER 0xff
89 struct asc7621_data {
90 struct i2c_client client;
91 struct device *class_dev;
92 struct mutex update_lock;
93 int valid; /* !=0 if following fields are valid */
94 unsigned long last_high_reading; /* In jiffies */
95 unsigned long last_low_reading; /* In jiffies */
97 * Registers we care about occupy the corresponding index
98 * in the array. Registers we don't care about are left
99 * at 0.
101 u8 reg[LAST_REGISTER + 1];
105 * Macro to get the parent asc7621_param structure
106 * from a sensor_device_attribute passed into the
107 * show/store functions.
109 #define to_asc7621_param(_sda) \
110 container_of(_sda, struct asc7621_param, sda)
113 * Each parameter to be retrieved needs an asc7621_param structure
114 * allocated. It contains the sensor_device_attribute structure
115 * and the control info needed to retrieve the value from the register map.
117 struct asc7621_param {
118 struct sensor_device_attribute sda;
119 u8 priority;
120 u8 msb[3];
121 u8 lsb[3];
122 u8 mask[3];
123 u8 shift[3];
127 * This is the map that ultimately indicates whether we'll be
128 * retrieving a register value or not, and at what frequency.
130 static u8 asc7621_register_priorities[255];
132 static struct asc7621_data *asc7621_update_device(struct device *dev);
134 static inline u8 read_byte(struct i2c_client *client, u8 reg)
136 int res = i2c_smbus_read_byte_data(client, reg);
137 if (res < 0) {
138 dev_err(&client->dev,
139 "Unable to read from register 0x%02x.\n", reg);
140 return 0;
142 return res & 0xff;
145 static inline int write_byte(struct i2c_client *client, u8 reg, u8 data)
147 int res = i2c_smbus_write_byte_data(client, reg, data);
148 if (res < 0) {
149 dev_err(&client->dev,
150 "Unable to write value 0x%02x to register 0x%02x.\n",
151 data, reg);
153 return res;
157 * Data Handlers
158 * Each function handles the formatting, storage
159 * and retrieval of like parameters.
162 #define SETUP_SHOW_data_param(d, a) \
163 struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
164 struct asc7621_data *data = asc7621_update_device(d); \
165 struct asc7621_param *param = to_asc7621_param(sda)
167 #define SETUP_STORE_data_param(d, a) \
168 struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
169 struct i2c_client *client = to_i2c_client(d); \
170 struct asc7621_data *data = i2c_get_clientdata(client); \
171 struct asc7621_param *param = to_asc7621_param(sda)
174 * u8 is just what it sounds like...an unsigned byte with no
175 * special formatting.
177 static ssize_t show_u8(struct device *dev, struct device_attribute *attr,
178 char *buf)
180 SETUP_SHOW_data_param(dev, attr);
182 return sprintf(buf, "%u\n", data->reg[param->msb[0]]);
185 static ssize_t store_u8(struct device *dev, struct device_attribute *attr,
186 const char *buf, size_t count)
188 SETUP_STORE_data_param(dev, attr);
189 long reqval;
191 if (strict_strtol(buf, 10, &reqval))
192 return -EINVAL;
194 reqval = SENSORS_LIMIT(reqval, 0, 255);
196 mutex_lock(&data->update_lock);
197 data->reg[param->msb[0]] = reqval;
198 write_byte(client, param->msb[0], reqval);
199 mutex_unlock(&data->update_lock);
200 return count;
204 * Many of the config values occupy only a few bits of a register.
206 static ssize_t show_bitmask(struct device *dev,
207 struct device_attribute *attr, char *buf)
209 SETUP_SHOW_data_param(dev, attr);
211 return sprintf(buf, "%u\n",
212 (data->reg[param->msb[0]] >> param->
213 shift[0]) & param->mask[0]);
216 static ssize_t store_bitmask(struct device *dev,
217 struct device_attribute *attr,
218 const char *buf, size_t count)
220 SETUP_STORE_data_param(dev, attr);
221 long reqval;
222 u8 currval;
224 if (strict_strtol(buf, 10, &reqval))
225 return -EINVAL;
227 reqval = SENSORS_LIMIT(reqval, 0, param->mask[0]);
229 reqval = (reqval & param->mask[0]) << param->shift[0];
231 mutex_lock(&data->update_lock);
232 currval = read_byte(client, param->msb[0]);
233 reqval |= (currval & ~(param->mask[0] << param->shift[0]));
234 data->reg[param->msb[0]] = reqval;
235 write_byte(client, param->msb[0], reqval);
236 mutex_unlock(&data->update_lock);
237 return count;
241 * 16 bit fan rpm values
242 * reported by the device as the number of 11.111us periods (90khz)
243 * between full fan rotations. Therefore...
244 * RPM = (90000 * 60) / register value
246 static ssize_t show_fan16(struct device *dev,
247 struct device_attribute *attr, char *buf)
249 SETUP_SHOW_data_param(dev, attr);
250 u16 regval;
252 mutex_lock(&data->update_lock);
253 regval = (data->reg[param->msb[0]] << 8) | data->reg[param->lsb[0]];
254 mutex_unlock(&data->update_lock);
256 return sprintf(buf, "%u\n",
257 (regval == 0 ? -1 : (regval) ==
258 0xffff ? 0 : 5400000 / regval));
261 static ssize_t store_fan16(struct device *dev,
262 struct device_attribute *attr, const char *buf,
263 size_t count)
265 SETUP_STORE_data_param(dev, attr);
266 long reqval;
268 if (strict_strtol(buf, 10, &reqval))
269 return -EINVAL;
271 reqval =
272 (SENSORS_LIMIT((reqval) <= 0 ? 0 : 5400000 / (reqval), 0, 65534));
274 mutex_lock(&data->update_lock);
275 data->reg[param->msb[0]] = (reqval >> 8) & 0xff;
276 data->reg[param->lsb[0]] = reqval & 0xff;
277 write_byte(client, param->msb[0], data->reg[param->msb[0]]);
278 write_byte(client, param->lsb[0], data->reg[param->lsb[0]]);
279 mutex_unlock(&data->update_lock);
281 return count;
285 * Voltages are scaled in the device so that the nominal voltage
286 * is 3/4ths of the 0-255 range (i.e. 192).
287 * If all voltages are 'normal' then all voltage registers will
288 * read 0xC0. This doesn't help us if we don't have a point of refernce.
289 * The data sheet however provides us with the full scale value for each
290 * which is stored in in_scaling. The sda->index parameter value provides
291 * the index into in_scaling.
293 * NOTE: The chip expects the first 2 inputs be 2.5 and 2.25 volts
294 * respectively. That doesn't mean that's what the motherboard provides. :)
297 static int asc7621_in_scaling[] = {
298 3320, 3000, 4380, 6640, 16000
301 static ssize_t show_in10(struct device *dev, struct device_attribute *attr,
302 char *buf)
304 SETUP_SHOW_data_param(dev, attr);
305 u16 regval;
306 u8 nr = sda->index;
308 mutex_lock(&data->update_lock);
309 regval = (data->reg[param->msb[0]] * asc7621_in_scaling[nr]) / 256;
311 /* The LSB value is a 2-bit scaling of the MSB's LSbit value.
312 * I.E. If the maximim voltage for this input is 6640 millivolts then
313 * a MSB register value of 0 = 0mv and 255 = 6640mv.
314 * A 1 step change therefore represents 25.9mv (6640 / 256).
315 * The extra 2-bits therefore represent increments of 6.48mv.
317 regval += ((asc7621_in_scaling[nr] / 256) / 4) *
318 (data->reg[param->lsb[0]] >> 6);
320 mutex_unlock(&data->update_lock);
322 return sprintf(buf, "%u\n", regval);
325 /* 8 bit voltage values (the mins and maxs) */
326 static ssize_t show_in8(struct device *dev, struct device_attribute *attr,
327 char *buf)
329 SETUP_SHOW_data_param(dev, attr);
330 u8 nr = sda->index;
332 return sprintf(buf, "%u\n",
333 ((data->reg[param->msb[0]] *
334 asc7621_in_scaling[nr]) / 256));
337 static ssize_t store_in8(struct device *dev, struct device_attribute *attr,
338 const char *buf, size_t count)
340 SETUP_STORE_data_param(dev, attr);
341 long reqval;
342 u8 nr = sda->index;
344 if (strict_strtol(buf, 10, &reqval))
345 return -EINVAL;
347 reqval = SENSORS_LIMIT(reqval, 0, asc7621_in_scaling[nr]);
349 reqval = (reqval * 255 + 128) / asc7621_in_scaling[nr];
351 mutex_lock(&data->update_lock);
352 data->reg[param->msb[0]] = reqval;
353 write_byte(client, param->msb[0], reqval);
354 mutex_unlock(&data->update_lock);
356 return count;
359 static ssize_t show_temp8(struct device *dev,
360 struct device_attribute *attr, char *buf)
362 SETUP_SHOW_data_param(dev, attr);
364 return sprintf(buf, "%d\n", ((s8) data->reg[param->msb[0]]) * 1000);
367 static ssize_t store_temp8(struct device *dev,
368 struct device_attribute *attr, const char *buf,
369 size_t count)
371 SETUP_STORE_data_param(dev, attr);
372 long reqval;
373 s8 temp;
375 if (strict_strtol(buf, 10, &reqval))
376 return -EINVAL;
378 reqval = SENSORS_LIMIT(reqval, -127000, 127000);
380 temp = reqval / 1000;
382 mutex_lock(&data->update_lock);
383 data->reg[param->msb[0]] = temp;
384 write_byte(client, param->msb[0], temp);
385 mutex_unlock(&data->update_lock);
386 return count;
390 * Temperatures that occupy 2 bytes always have the whole
391 * number of degrees in the MSB with some part of the LSB
392 * indicating fractional degrees.
395 /* mmmmmmmm.llxxxxxx */
396 static ssize_t show_temp10(struct device *dev,
397 struct device_attribute *attr, char *buf)
399 SETUP_SHOW_data_param(dev, attr);
400 u8 msb, lsb;
401 int temp;
403 mutex_lock(&data->update_lock);
404 msb = data->reg[param->msb[0]];
405 lsb = (data->reg[param->lsb[0]] >> 6) & 0x03;
406 temp = (((s8) msb) * 1000) + (lsb * 250);
407 mutex_unlock(&data->update_lock);
409 return sprintf(buf, "%d\n", temp);
412 /* mmmmmm.ll */
413 static ssize_t show_temp62(struct device *dev,
414 struct device_attribute *attr, char *buf)
416 SETUP_SHOW_data_param(dev, attr);
417 u8 regval = data->reg[param->msb[0]];
418 int temp = ((s8) (regval & 0xfc) * 1000) + ((regval & 0x03) * 250);
420 return sprintf(buf, "%d\n", temp);
423 static ssize_t store_temp62(struct device *dev,
424 struct device_attribute *attr, const char *buf,
425 size_t count)
427 SETUP_STORE_data_param(dev, attr);
428 long reqval, i, f;
429 s8 temp;
431 if (strict_strtol(buf, 10, &reqval))
432 return -EINVAL;
434 reqval = SENSORS_LIMIT(reqval, -32000, 31750);
435 i = reqval / 1000;
436 f = reqval - (i * 1000);
437 temp = i << 2;
438 temp |= f / 250;
440 mutex_lock(&data->update_lock);
441 data->reg[param->msb[0]] = temp;
442 write_byte(client, param->msb[0], temp);
443 mutex_unlock(&data->update_lock);
444 return count;
448 * The aSC7621 doesn't provide an "auto_point2". Instead, you
449 * specify the auto_point1 and a range. To keep with the sysfs
450 * hwmon specs, we synthesize the auto_point_2 from them.
453 static u32 asc7621_range_map[] = {
454 2000, 2500, 3330, 4000, 5000, 6670, 8000, 10000,
455 13330, 16000, 20000, 26670, 32000, 40000, 53330, 80000,
458 static ssize_t show_ap2_temp(struct device *dev,
459 struct device_attribute *attr, char *buf)
461 SETUP_SHOW_data_param(dev, attr);
462 long auto_point1;
463 u8 regval;
464 int temp;
466 mutex_lock(&data->update_lock);
467 auto_point1 = ((s8) data->reg[param->msb[1]]) * 1000;
468 regval =
469 ((data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]);
470 temp = auto_point1 + asc7621_range_map[SENSORS_LIMIT(regval, 0, 15)];
471 mutex_unlock(&data->update_lock);
473 return sprintf(buf, "%d\n", temp);
477 static ssize_t store_ap2_temp(struct device *dev,
478 struct device_attribute *attr,
479 const char *buf, size_t count)
481 SETUP_STORE_data_param(dev, attr);
482 long reqval, auto_point1;
483 int i;
484 u8 currval, newval = 0;
486 if (strict_strtol(buf, 10, &reqval))
487 return -EINVAL;
489 mutex_lock(&data->update_lock);
490 auto_point1 = data->reg[param->msb[1]] * 1000;
491 reqval = SENSORS_LIMIT(reqval, auto_point1 + 2000, auto_point1 + 80000);
493 for (i = ARRAY_SIZE(asc7621_range_map) - 1; i >= 0; i--) {
494 if (reqval >= auto_point1 + asc7621_range_map[i]) {
495 newval = i;
496 break;
500 newval = (newval & param->mask[0]) << param->shift[0];
501 currval = read_byte(client, param->msb[0]);
502 newval |= (currval & ~(param->mask[0] << param->shift[0]));
503 data->reg[param->msb[0]] = newval;
504 write_byte(client, param->msb[0], newval);
505 mutex_unlock(&data->update_lock);
506 return count;
509 static ssize_t show_pwm_ac(struct device *dev,
510 struct device_attribute *attr, char *buf)
512 SETUP_SHOW_data_param(dev, attr);
513 u8 config, altbit, regval;
514 u8 map[] = {
515 0x01, 0x02, 0x04, 0x1f, 0x00, 0x06, 0x07, 0x10,
516 0x08, 0x0f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f
519 mutex_lock(&data->update_lock);
520 config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
521 altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
522 regval = config | (altbit << 3);
523 mutex_unlock(&data->update_lock);
525 return sprintf(buf, "%u\n", map[SENSORS_LIMIT(regval, 0, 15)]);
528 static ssize_t store_pwm_ac(struct device *dev,
529 struct device_attribute *attr,
530 const char *buf, size_t count)
532 SETUP_STORE_data_param(dev, attr);
533 unsigned long reqval;
534 u8 currval, config, altbit, newval;
535 u16 map[] = {
536 0x04, 0x00, 0x01, 0xff, 0x02, 0xff, 0x05, 0x06,
537 0x08, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f,
538 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
539 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03,
542 if (strict_strtoul(buf, 10, &reqval))
543 return -EINVAL;
545 if (reqval > 31)
546 return -EINVAL;
548 reqval = map[reqval];
549 if (reqval == 0xff)
550 return -EINVAL;
552 config = reqval & 0x07;
553 altbit = (reqval >> 3) & 0x01;
555 config = (config & param->mask[0]) << param->shift[0];
556 altbit = (altbit & param->mask[1]) << param->shift[1];
558 mutex_lock(&data->update_lock);
559 currval = read_byte(client, param->msb[0]);
560 newval = config | (currval & ~(param->mask[0] << param->shift[0]));
561 newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
562 data->reg[param->msb[0]] = newval;
563 write_byte(client, param->msb[0], newval);
564 mutex_unlock(&data->update_lock);
565 return count;
568 static ssize_t show_pwm_enable(struct device *dev,
569 struct device_attribute *attr, char *buf)
571 SETUP_SHOW_data_param(dev, attr);
572 u8 config, altbit, minoff, val, newval;
574 mutex_lock(&data->update_lock);
575 config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
576 altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
577 minoff = (data->reg[param->msb[2]] >> param->shift[2]) & param->mask[2];
578 mutex_unlock(&data->update_lock);
580 val = config | (altbit << 3);
581 newval = 0;
583 if (val == 3 || val >= 10)
584 newval = 255;
585 else if (val == 4)
586 newval = 0;
587 else if (val == 7)
588 newval = 1;
589 else if (minoff == 1)
590 newval = 2;
591 else
592 newval = 3;
594 return sprintf(buf, "%u\n", newval);
597 static ssize_t store_pwm_enable(struct device *dev,
598 struct device_attribute *attr,
599 const char *buf, size_t count)
601 SETUP_STORE_data_param(dev, attr);
602 long reqval;
603 u8 currval, config, altbit, newval, minoff = 255;
605 if (strict_strtol(buf, 10, &reqval))
606 return -EINVAL;
608 switch (reqval) {
609 case 0:
610 newval = 0x04;
611 break;
612 case 1:
613 newval = 0x07;
614 break;
615 case 2:
616 newval = 0x00;
617 minoff = 1;
618 break;
619 case 3:
620 newval = 0x00;
621 minoff = 0;
622 break;
623 case 255:
624 newval = 0x03;
625 break;
626 default:
627 return -EINVAL;
630 config = newval & 0x07;
631 altbit = (newval >> 3) & 0x01;
633 mutex_lock(&data->update_lock);
634 config = (config & param->mask[0]) << param->shift[0];
635 altbit = (altbit & param->mask[1]) << param->shift[1];
636 currval = read_byte(client, param->msb[0]);
637 newval = config | (currval & ~(param->mask[0] << param->shift[0]));
638 newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
639 data->reg[param->msb[0]] = newval;
640 write_byte(client, param->msb[0], newval);
641 if (minoff < 255) {
642 minoff = (minoff & param->mask[2]) << param->shift[2];
643 currval = read_byte(client, param->msb[2]);
644 newval =
645 minoff | (currval & ~(param->mask[2] << param->shift[2]));
646 data->reg[param->msb[2]] = newval;
647 write_byte(client, param->msb[2], newval);
649 mutex_unlock(&data->update_lock);
650 return count;
653 static u32 asc7621_pwm_freq_map[] = {
654 10, 15, 23, 30, 38, 47, 62, 94,
655 23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000
658 static ssize_t show_pwm_freq(struct device *dev,
659 struct device_attribute *attr, char *buf)
661 SETUP_SHOW_data_param(dev, attr);
662 u8 regval =
663 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
665 regval = SENSORS_LIMIT(regval, 0, 15);
667 return sprintf(buf, "%u\n", asc7621_pwm_freq_map[regval]);
670 static ssize_t store_pwm_freq(struct device *dev,
671 struct device_attribute *attr,
672 const char *buf, size_t count)
674 SETUP_STORE_data_param(dev, attr);
675 unsigned long reqval;
676 u8 currval, newval = 255;
677 int i;
679 if (strict_strtoul(buf, 10, &reqval))
680 return -EINVAL;
682 for (i = 0; i < ARRAY_SIZE(asc7621_pwm_freq_map); i++) {
683 if (reqval == asc7621_pwm_freq_map[i]) {
684 newval = i;
685 break;
688 if (newval == 255)
689 return -EINVAL;
691 newval = (newval & param->mask[0]) << param->shift[0];
693 mutex_lock(&data->update_lock);
694 currval = read_byte(client, param->msb[0]);
695 newval |= (currval & ~(param->mask[0] << param->shift[0]));
696 data->reg[param->msb[0]] = newval;
697 write_byte(client, param->msb[0], newval);
698 mutex_unlock(&data->update_lock);
699 return count;
702 static u32 asc7621_pwm_auto_spinup_map[] = {
703 0, 100, 250, 400, 700, 1000, 2000, 4000
706 static ssize_t show_pwm_ast(struct device *dev,
707 struct device_attribute *attr, char *buf)
709 SETUP_SHOW_data_param(dev, attr);
710 u8 regval =
711 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
713 regval = SENSORS_LIMIT(regval, 0, 7);
715 return sprintf(buf, "%u\n", asc7621_pwm_auto_spinup_map[regval]);
719 static ssize_t store_pwm_ast(struct device *dev,
720 struct device_attribute *attr,
721 const char *buf, size_t count)
723 SETUP_STORE_data_param(dev, attr);
724 long reqval;
725 u8 currval, newval = 255;
726 u32 i;
728 if (strict_strtol(buf, 10, &reqval))
729 return -EINVAL;
731 for (i = 0; i < ARRAY_SIZE(asc7621_pwm_auto_spinup_map); i++) {
732 if (reqval == asc7621_pwm_auto_spinup_map[i]) {
733 newval = i;
734 break;
737 if (newval == 255)
738 return -EINVAL;
740 newval = (newval & param->mask[0]) << param->shift[0];
742 mutex_lock(&data->update_lock);
743 currval = read_byte(client, param->msb[0]);
744 newval |= (currval & ~(param->mask[0] << param->shift[0]));
745 data->reg[param->msb[0]] = newval;
746 write_byte(client, param->msb[0], newval);
747 mutex_unlock(&data->update_lock);
748 return count;
751 static u32 asc7621_temp_smoothing_time_map[] = {
752 35000, 17600, 11800, 7000, 4400, 3000, 1600, 800
755 static ssize_t show_temp_st(struct device *dev,
756 struct device_attribute *attr, char *buf)
758 SETUP_SHOW_data_param(dev, attr);
759 u8 regval =
760 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
761 regval = SENSORS_LIMIT(regval, 0, 7);
763 return sprintf(buf, "%u\n", asc7621_temp_smoothing_time_map[regval]);
766 static ssize_t store_temp_st(struct device *dev,
767 struct device_attribute *attr,
768 const char *buf, size_t count)
770 SETUP_STORE_data_param(dev, attr);
771 long reqval;
772 u8 currval, newval = 255;
773 u32 i;
775 if (strict_strtol(buf, 10, &reqval))
776 return -EINVAL;
778 for (i = 0; i < ARRAY_SIZE(asc7621_temp_smoothing_time_map); i++) {
779 if (reqval == asc7621_temp_smoothing_time_map[i]) {
780 newval = i;
781 break;
785 if (newval == 255)
786 return -EINVAL;
788 newval = (newval & param->mask[0]) << param->shift[0];
790 mutex_lock(&data->update_lock);
791 currval = read_byte(client, param->msb[0]);
792 newval |= (currval & ~(param->mask[0] << param->shift[0]));
793 data->reg[param->msb[0]] = newval;
794 write_byte(client, param->msb[0], newval);
795 mutex_unlock(&data->update_lock);
796 return count;
800 * End of data handlers
802 * These defines do nothing more than make the table easier
803 * to read when wrapped at column 80.
807 * Creates a variable length array inititalizer.
808 * VAA(1,3,5,7) would produce {1,3,5,7}
810 #define VAA(args...) {args}
812 #define PREAD(name, n, pri, rm, rl, m, s, r) \
813 {.sda = SENSOR_ATTR(name, S_IRUGO, show_##r, NULL, n), \
814 .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
815 .shift[0] = s,}
817 #define PWRITE(name, n, pri, rm, rl, m, s, r) \
818 {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
819 .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
820 .shift[0] = s,}
823 * PWRITEM assumes that the initializers for the .msb, .lsb, .mask and .shift
824 * were created using the VAA macro.
826 #define PWRITEM(name, n, pri, rm, rl, m, s, r) \
827 {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
828 .priority = pri, .msb = rm, .lsb = rl, .mask = m, .shift = s,}
830 static struct asc7621_param asc7621_params[] = {
831 PREAD(in0_input, 0, PRI_HIGH, 0x20, 0x13, 0, 0, in10),
832 PREAD(in1_input, 1, PRI_HIGH, 0x21, 0x18, 0, 0, in10),
833 PREAD(in2_input, 2, PRI_HIGH, 0x22, 0x11, 0, 0, in10),
834 PREAD(in3_input, 3, PRI_HIGH, 0x23, 0x12, 0, 0, in10),
835 PREAD(in4_input, 4, PRI_HIGH, 0x24, 0x14, 0, 0, in10),
837 PWRITE(in0_min, 0, PRI_LOW, 0x44, 0, 0, 0, in8),
838 PWRITE(in1_min, 1, PRI_LOW, 0x46, 0, 0, 0, in8),
839 PWRITE(in2_min, 2, PRI_LOW, 0x48, 0, 0, 0, in8),
840 PWRITE(in3_min, 3, PRI_LOW, 0x4a, 0, 0, 0, in8),
841 PWRITE(in4_min, 4, PRI_LOW, 0x4c, 0, 0, 0, in8),
843 PWRITE(in0_max, 0, PRI_LOW, 0x45, 0, 0, 0, in8),
844 PWRITE(in1_max, 1, PRI_LOW, 0x47, 0, 0, 0, in8),
845 PWRITE(in2_max, 2, PRI_LOW, 0x49, 0, 0, 0, in8),
846 PWRITE(in3_max, 3, PRI_LOW, 0x4b, 0, 0, 0, in8),
847 PWRITE(in4_max, 4, PRI_LOW, 0x4d, 0, 0, 0, in8),
849 PREAD(in0_alarm, 0, PRI_LOW, 0x41, 0, 0x01, 0, bitmask),
850 PREAD(in1_alarm, 1, PRI_LOW, 0x41, 0, 0x01, 1, bitmask),
851 PREAD(in2_alarm, 2, PRI_LOW, 0x41, 0, 0x01, 2, bitmask),
852 PREAD(in3_alarm, 3, PRI_LOW, 0x41, 0, 0x01, 3, bitmask),
853 PREAD(in4_alarm, 4, PRI_LOW, 0x42, 0, 0x01, 0, bitmask),
855 PREAD(fan1_input, 0, PRI_HIGH, 0x29, 0x28, 0, 0, fan16),
856 PREAD(fan2_input, 1, PRI_HIGH, 0x2b, 0x2a, 0, 0, fan16),
857 PREAD(fan3_input, 2, PRI_HIGH, 0x2d, 0x2c, 0, 0, fan16),
858 PREAD(fan4_input, 3, PRI_HIGH, 0x2f, 0x2e, 0, 0, fan16),
860 PWRITE(fan1_min, 0, PRI_LOW, 0x55, 0x54, 0, 0, fan16),
861 PWRITE(fan2_min, 1, PRI_LOW, 0x57, 0x56, 0, 0, fan16),
862 PWRITE(fan3_min, 2, PRI_LOW, 0x59, 0x58, 0, 0, fan16),
863 PWRITE(fan4_min, 3, PRI_LOW, 0x5b, 0x5a, 0, 0, fan16),
865 PREAD(fan1_alarm, 0, PRI_LOW, 0x42, 0, 0x01, 0, bitmask),
866 PREAD(fan2_alarm, 1, PRI_LOW, 0x42, 0, 0x01, 1, bitmask),
867 PREAD(fan3_alarm, 2, PRI_LOW, 0x42, 0, 0x01, 2, bitmask),
868 PREAD(fan4_alarm, 3, PRI_LOW, 0x42, 0, 0x01, 3, bitmask),
870 PREAD(temp1_input, 0, PRI_HIGH, 0x25, 0x10, 0, 0, temp10),
871 PREAD(temp2_input, 1, PRI_HIGH, 0x26, 0x15, 0, 0, temp10),
872 PREAD(temp3_input, 2, PRI_HIGH, 0x27, 0x16, 0, 0, temp10),
873 PREAD(temp4_input, 3, PRI_HIGH, 0x33, 0x17, 0, 0, temp10),
874 PREAD(temp5_input, 4, PRI_HIGH, 0xf7, 0xf6, 0, 0, temp10),
875 PREAD(temp6_input, 5, PRI_HIGH, 0xf9, 0xf8, 0, 0, temp10),
876 PREAD(temp7_input, 6, PRI_HIGH, 0xfb, 0xfa, 0, 0, temp10),
877 PREAD(temp8_input, 7, PRI_HIGH, 0xfd, 0xfc, 0, 0, temp10),
879 PWRITE(temp1_min, 0, PRI_LOW, 0x4e, 0, 0, 0, temp8),
880 PWRITE(temp2_min, 1, PRI_LOW, 0x50, 0, 0, 0, temp8),
881 PWRITE(temp3_min, 2, PRI_LOW, 0x52, 0, 0, 0, temp8),
882 PWRITE(temp4_min, 3, PRI_LOW, 0x34, 0, 0, 0, temp8),
884 PWRITE(temp1_max, 0, PRI_LOW, 0x4f, 0, 0, 0, temp8),
885 PWRITE(temp2_max, 1, PRI_LOW, 0x51, 0, 0, 0, temp8),
886 PWRITE(temp3_max, 2, PRI_LOW, 0x53, 0, 0, 0, temp8),
887 PWRITE(temp4_max, 3, PRI_LOW, 0x35, 0, 0, 0, temp8),
889 PREAD(temp1_alarm, 0, PRI_LOW, 0x41, 0, 0x01, 4, bitmask),
890 PREAD(temp2_alarm, 1, PRI_LOW, 0x41, 0, 0x01, 5, bitmask),
891 PREAD(temp3_alarm, 2, PRI_LOW, 0x41, 0, 0x01, 6, bitmask),
892 PREAD(temp4_alarm, 3, PRI_LOW, 0x43, 0, 0x01, 0, bitmask),
894 PWRITE(temp1_source, 0, PRI_LOW, 0x02, 0, 0x07, 4, bitmask),
895 PWRITE(temp2_source, 1, PRI_LOW, 0x02, 0, 0x07, 0, bitmask),
896 PWRITE(temp3_source, 2, PRI_LOW, 0x03, 0, 0x07, 4, bitmask),
897 PWRITE(temp4_source, 3, PRI_LOW, 0x03, 0, 0x07, 0, bitmask),
899 PWRITE(temp1_smoothing_enable, 0, PRI_LOW, 0x62, 0, 0x01, 3, bitmask),
900 PWRITE(temp2_smoothing_enable, 1, PRI_LOW, 0x63, 0, 0x01, 7, bitmask),
901 PWRITE(temp3_smoothing_enable, 2, PRI_LOW, 0x64, 0, 0x01, 3, bitmask),
902 PWRITE(temp4_smoothing_enable, 3, PRI_LOW, 0x3c, 0, 0x01, 3, bitmask),
904 PWRITE(temp1_smoothing_time, 0, PRI_LOW, 0x62, 0, 0x07, 0, temp_st),
905 PWRITE(temp2_smoothing_time, 1, PRI_LOW, 0x63, 0, 0x07, 4, temp_st),
906 PWRITE(temp3_smoothing_time, 2, PRI_LOW, 0x63, 0, 0x07, 0, temp_st),
907 PWRITE(temp4_smoothing_time, 3, PRI_LOW, 0x3c, 0, 0x07, 0, temp_st),
909 PWRITE(temp1_auto_point1_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
910 bitmask),
911 PWRITE(temp2_auto_point1_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
912 bitmask),
913 PWRITE(temp3_auto_point1_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
914 bitmask),
915 PWRITE(temp4_auto_point1_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
916 bitmask),
918 PREAD(temp1_auto_point2_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
919 bitmask),
920 PREAD(temp2_auto_point2_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
921 bitmask),
922 PREAD(temp3_auto_point2_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
923 bitmask),
924 PREAD(temp4_auto_point2_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
925 bitmask),
927 PWRITE(temp1_auto_point1_temp, 0, PRI_LOW, 0x67, 0, 0, 0, temp8),
928 PWRITE(temp2_auto_point1_temp, 1, PRI_LOW, 0x68, 0, 0, 0, temp8),
929 PWRITE(temp3_auto_point1_temp, 2, PRI_LOW, 0x69, 0, 0, 0, temp8),
930 PWRITE(temp4_auto_point1_temp, 3, PRI_LOW, 0x3b, 0, 0, 0, temp8),
932 PWRITEM(temp1_auto_point2_temp, 0, PRI_LOW, VAA(0x5f, 0x67), VAA(0),
933 VAA(0x0f), VAA(4), ap2_temp),
934 PWRITEM(temp2_auto_point2_temp, 1, PRI_LOW, VAA(0x60, 0x68), VAA(0),
935 VAA(0x0f), VAA(4), ap2_temp),
936 PWRITEM(temp3_auto_point2_temp, 2, PRI_LOW, VAA(0x61, 0x69), VAA(0),
937 VAA(0x0f), VAA(4), ap2_temp),
938 PWRITEM(temp4_auto_point2_temp, 3, PRI_LOW, VAA(0x3c, 0x3b), VAA(0),
939 VAA(0x0f), VAA(4), ap2_temp),
941 PWRITE(temp1_crit, 0, PRI_LOW, 0x6a, 0, 0, 0, temp8),
942 PWRITE(temp2_crit, 1, PRI_LOW, 0x6b, 0, 0, 0, temp8),
943 PWRITE(temp3_crit, 2, PRI_LOW, 0x6c, 0, 0, 0, temp8),
944 PWRITE(temp4_crit, 3, PRI_LOW, 0x3d, 0, 0, 0, temp8),
946 PWRITE(temp5_enable, 4, PRI_LOW, 0x0e, 0, 0x01, 0, bitmask),
947 PWRITE(temp6_enable, 5, PRI_LOW, 0x0e, 0, 0x01, 1, bitmask),
948 PWRITE(temp7_enable, 6, PRI_LOW, 0x0e, 0, 0x01, 2, bitmask),
949 PWRITE(temp8_enable, 7, PRI_LOW, 0x0e, 0, 0x01, 3, bitmask),
951 PWRITE(remote1_offset, 0, PRI_LOW, 0x1c, 0, 0, 0, temp62),
952 PWRITE(remote2_offset, 1, PRI_LOW, 0x1d, 0, 0, 0, temp62),
954 PWRITE(pwm1, 0, PRI_HIGH, 0x30, 0, 0, 0, u8),
955 PWRITE(pwm2, 1, PRI_HIGH, 0x31, 0, 0, 0, u8),
956 PWRITE(pwm3, 2, PRI_HIGH, 0x32, 0, 0, 0, u8),
958 PWRITE(pwm1_invert, 0, PRI_LOW, 0x5c, 0, 0x01, 4, bitmask),
959 PWRITE(pwm2_invert, 1, PRI_LOW, 0x5d, 0, 0x01, 4, bitmask),
960 PWRITE(pwm3_invert, 2, PRI_LOW, 0x5e, 0, 0x01, 4, bitmask),
962 PWRITEM(pwm1_enable, 0, PRI_LOW, VAA(0x5c, 0x5c, 0x62), VAA(0, 0, 0),
963 VAA(0x07, 0x01, 0x01), VAA(5, 3, 5), pwm_enable),
964 PWRITEM(pwm2_enable, 1, PRI_LOW, VAA(0x5d, 0x5d, 0x62), VAA(0, 0, 0),
965 VAA(0x07, 0x01, 0x01), VAA(5, 3, 6), pwm_enable),
966 PWRITEM(pwm3_enable, 2, PRI_LOW, VAA(0x5e, 0x5e, 0x62), VAA(0, 0, 0),
967 VAA(0x07, 0x01, 0x01), VAA(5, 3, 7), pwm_enable),
969 PWRITEM(pwm1_auto_channels, 0, PRI_LOW, VAA(0x5c, 0x5c), VAA(0, 0),
970 VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
971 PWRITEM(pwm2_auto_channels, 1, PRI_LOW, VAA(0x5d, 0x5d), VAA(0, 0),
972 VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
973 PWRITEM(pwm3_auto_channels, 2, PRI_LOW, VAA(0x5e, 0x5e), VAA(0, 0),
974 VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
976 PWRITE(pwm1_auto_point1_pwm, 0, PRI_LOW, 0x64, 0, 0, 0, u8),
977 PWRITE(pwm2_auto_point1_pwm, 1, PRI_LOW, 0x65, 0, 0, 0, u8),
978 PWRITE(pwm3_auto_point1_pwm, 2, PRI_LOW, 0x66, 0, 0, 0, u8),
980 PWRITE(pwm1_auto_point2_pwm, 0, PRI_LOW, 0x38, 0, 0, 0, u8),
981 PWRITE(pwm2_auto_point2_pwm, 1, PRI_LOW, 0x39, 0, 0, 0, u8),
982 PWRITE(pwm3_auto_point2_pwm, 2, PRI_LOW, 0x3a, 0, 0, 0, u8),
984 PWRITE(pwm1_freq, 0, PRI_LOW, 0x5f, 0, 0x0f, 0, pwm_freq),
985 PWRITE(pwm2_freq, 1, PRI_LOW, 0x60, 0, 0x0f, 0, pwm_freq),
986 PWRITE(pwm3_freq, 2, PRI_LOW, 0x61, 0, 0x0f, 0, pwm_freq),
988 PREAD(pwm1_auto_zone_assigned, 0, PRI_LOW, 0, 0, 0x03, 2, bitmask),
989 PREAD(pwm2_auto_zone_assigned, 1, PRI_LOW, 0, 0, 0x03, 4, bitmask),
990 PREAD(pwm3_auto_zone_assigned, 2, PRI_LOW, 0, 0, 0x03, 6, bitmask),
992 PWRITE(pwm1_auto_spinup_time, 0, PRI_LOW, 0x5c, 0, 0x07, 0, pwm_ast),
993 PWRITE(pwm2_auto_spinup_time, 1, PRI_LOW, 0x5d, 0, 0x07, 0, pwm_ast),
994 PWRITE(pwm3_auto_spinup_time, 2, PRI_LOW, 0x5e, 0, 0x07, 0, pwm_ast),
996 PWRITE(peci_enable, 0, PRI_LOW, 0x40, 0, 0x01, 4, bitmask),
997 PWRITE(peci_avg, 0, PRI_LOW, 0x36, 0, 0x07, 0, bitmask),
998 PWRITE(peci_domain, 0, PRI_LOW, 0x36, 0, 0x01, 3, bitmask),
999 PWRITE(peci_legacy, 0, PRI_LOW, 0x36, 0, 0x01, 4, bitmask),
1000 PWRITE(peci_diode, 0, PRI_LOW, 0x0e, 0, 0x07, 4, bitmask),
1001 PWRITE(peci_4domain, 0, PRI_LOW, 0x0e, 0, 0x01, 4, bitmask),
1005 static struct asc7621_data *asc7621_update_device(struct device *dev)
1007 struct i2c_client *client = to_i2c_client(dev);
1008 struct asc7621_data *data = i2c_get_clientdata(client);
1009 int i;
1012 * The asc7621 chips guarantee consistent reads of multi-byte values
1013 * regardless of the order of the reads. No special logic is needed
1014 * so we can just read the registers in whatever order they appear
1015 * in the asc7621_params array.
1018 mutex_lock(&data->update_lock);
1020 /* Read all the high priority registers */
1022 if (!data->valid ||
1023 time_after(jiffies, data->last_high_reading + INTERVAL_HIGH)) {
1025 for (i = 0; i < ARRAY_SIZE(asc7621_register_priorities); i++) {
1026 if (asc7621_register_priorities[i] == PRI_HIGH) {
1027 data->reg[i] =
1028 i2c_smbus_read_byte_data(client, i) & 0xff;
1031 data->last_high_reading = jiffies;
1032 }; /* last_reading */
1034 /* Read all the low priority registers. */
1036 if (!data->valid ||
1037 time_after(jiffies, data->last_low_reading + INTERVAL_LOW)) {
1039 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1040 if (asc7621_register_priorities[i] == PRI_LOW) {
1041 data->reg[i] =
1042 i2c_smbus_read_byte_data(client, i) & 0xff;
1045 data->last_low_reading = jiffies;
1046 }; /* last_reading */
1048 data->valid = 1;
1050 mutex_unlock(&data->update_lock);
1052 return data;
1056 * Standard detection and initialization below
1058 * Helper function that checks if an address is valid
1059 * for a particular chip.
1062 static inline int valid_address_for_chip(int chip_type, int address)
1064 int i;
1066 for (i = 0; asc7621_chips[chip_type].addresses[i] != I2C_CLIENT_END;
1067 i++) {
1068 if (asc7621_chips[chip_type].addresses[i] == address)
1069 return 1;
1071 return 0;
1074 static void asc7621_init_client(struct i2c_client *client)
1076 int value;
1078 /* Warn if part was not "READY" */
1080 value = read_byte(client, 0x40);
1082 if (value & 0x02) {
1083 dev_err(&client->dev,
1084 "Client (%d,0x%02x) config is locked.\n",
1085 i2c_adapter_id(client->adapter), client->addr);
1087 if (!(value & 0x04)) {
1088 dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n",
1089 i2c_adapter_id(client->adapter), client->addr);
1093 * Start monitoring
1095 * Try to clear LOCK, Set START, save everything else
1097 value = (value & ~0x02) | 0x01;
1098 write_byte(client, 0x40, value & 0xff);
1102 static int
1103 asc7621_probe(struct i2c_client *client, const struct i2c_device_id *id)
1105 struct asc7621_data *data;
1106 int i, err;
1108 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1109 return -EIO;
1111 data = kzalloc(sizeof(struct asc7621_data), GFP_KERNEL);
1112 if (data == NULL)
1113 return -ENOMEM;
1115 i2c_set_clientdata(client, data);
1116 data->valid = 0;
1117 mutex_init(&data->update_lock);
1119 /* Initialize the asc7621 chip */
1120 asc7621_init_client(client);
1122 /* Create the sysfs entries */
1123 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1124 err =
1125 device_create_file(&client->dev,
1126 &(asc7621_params[i].sda.dev_attr));
1127 if (err)
1128 goto exit_remove;
1131 data->class_dev = hwmon_device_register(&client->dev);
1132 if (IS_ERR(data->class_dev)) {
1133 err = PTR_ERR(data->class_dev);
1134 goto exit_remove;
1137 return 0;
1139 exit_remove:
1140 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1141 device_remove_file(&client->dev,
1142 &(asc7621_params[i].sda.dev_attr));
1145 i2c_set_clientdata(client, NULL);
1146 kfree(data);
1147 return err;
1150 static int asc7621_detect(struct i2c_client *client,
1151 struct i2c_board_info *info)
1153 struct i2c_adapter *adapter = client->adapter;
1154 int company, verstep, chip_index;
1155 struct device *dev;
1157 dev = &client->dev;
1159 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1160 return -ENODEV;
1162 for (chip_index = FIRST_CHIP; chip_index <= LAST_CHIP; chip_index++) {
1164 if (!valid_address_for_chip(chip_index, client->addr))
1165 continue;
1167 company = read_byte(client,
1168 asc7621_chips[chip_index].company_reg);
1169 verstep = read_byte(client,
1170 asc7621_chips[chip_index].verstep_reg);
1172 if (company == asc7621_chips[chip_index].company_id &&
1173 verstep == asc7621_chips[chip_index].verstep_id) {
1174 strlcpy(client->name, asc7621_chips[chip_index].name,
1175 I2C_NAME_SIZE);
1176 strlcpy(info->type, asc7621_chips[chip_index].name,
1177 I2C_NAME_SIZE);
1179 dev_info(&adapter->dev, "Matched %s\n",
1180 asc7621_chips[chip_index].name);
1181 return 0;
1185 return -ENODEV;
1188 static int asc7621_remove(struct i2c_client *client)
1190 struct asc7621_data *data = i2c_get_clientdata(client);
1191 int i;
1193 hwmon_device_unregister(data->class_dev);
1195 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1196 device_remove_file(&client->dev,
1197 &(asc7621_params[i].sda.dev_attr));
1200 i2c_set_clientdata(client, NULL);
1201 kfree(data);
1202 return 0;
1205 static const struct i2c_device_id asc7621_id[] = {
1206 {"asc7621", asc7621},
1207 {"asc7621a", asc7621a},
1211 MODULE_DEVICE_TABLE(i2c, asc7621_id);
1213 static struct i2c_driver asc7621_driver = {
1214 .class = I2C_CLASS_HWMON,
1215 .driver = {
1216 .name = "asc7621",
1218 .probe = asc7621_probe,
1219 .remove = asc7621_remove,
1220 .id_table = asc7621_id,
1221 .detect = asc7621_detect,
1222 .address_list = normal_i2c,
1225 static int __init sm_asc7621_init(void)
1227 int i, j;
1229 * Collect all the registers needed into a single array.
1230 * This way, if a register isn't actually used for anything,
1231 * we don't retrieve it.
1234 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1235 for (j = 0; j < ARRAY_SIZE(asc7621_params[i].msb); j++)
1236 asc7621_register_priorities[asc7621_params[i].msb[j]] =
1237 asc7621_params[i].priority;
1238 for (j = 0; j < ARRAY_SIZE(asc7621_params[i].lsb); j++)
1239 asc7621_register_priorities[asc7621_params[i].lsb[j]] =
1240 asc7621_params[i].priority;
1242 return i2c_add_driver(&asc7621_driver);
1245 static void __exit sm_asc7621_exit(void)
1247 i2c_del_driver(&asc7621_driver);
1250 MODULE_LICENSE("GPL");
1251 MODULE_AUTHOR("George Joseph");
1252 MODULE_DESCRIPTION("Andigilog aSC7621 and aSC7621a driver");
1254 module_init(sm_asc7621_init);
1255 module_exit(sm_asc7621_exit);