USB: pl2303: New vendor and product id
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
bloba4a38016d1fb6b05b4a568388a64f675962a142e
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
123 static inline int rt_policy(int policy)
125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 return 1;
127 return 0;
130 static inline int task_has_rt_policy(struct task_struct *p)
132 return rt_policy(p->policy);
136 * This is the priority-queue data structure of the RT scheduling class:
138 struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
143 struct rt_bandwidth {
144 /* nests inside the rq lock: */
145 raw_spinlock_t rt_runtime_lock;
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
151 static struct rt_bandwidth def_rt_bandwidth;
153 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167 if (!overrun)
168 break;
170 idle = do_sched_rt_period_timer(rt_b, overrun);
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176 static
177 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
189 static inline int rt_bandwidth_enabled(void)
191 return sysctl_sched_rt_runtime >= 0;
194 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196 ktime_t now;
198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 return;
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
204 raw_spin_lock(&rt_b->rt_runtime_lock);
205 for (;;) {
206 unsigned long delta;
207 ktime_t soft, hard;
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219 HRTIMER_MODE_ABS_PINNED, 0);
221 raw_spin_unlock(&rt_b->rt_runtime_lock);
224 #ifdef CONFIG_RT_GROUP_SCHED
225 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227 hrtimer_cancel(&rt_b->rt_period_timer);
229 #endif
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
235 static DEFINE_MUTEX(sched_domains_mutex);
237 #ifdef CONFIG_CGROUP_SCHED
239 #include <linux/cgroup.h>
241 struct cfs_rq;
243 static LIST_HEAD(task_groups);
245 /* task group related information */
246 struct task_group {
247 struct cgroup_subsys_state css;
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
255 #endif
257 #ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
261 struct rt_bandwidth rt_bandwidth;
262 #endif
264 struct rcu_head rcu;
265 struct list_head list;
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
272 #define root_task_group init_task_group
274 /* task_group_lock serializes add/remove of task groups and also changes to
275 * a task group's cpu shares.
277 static DEFINE_SPINLOCK(task_group_lock);
279 #ifdef CONFIG_FAIR_GROUP_SCHED
281 #ifdef CONFIG_SMP
282 static int root_task_group_empty(void)
284 return list_empty(&root_task_group.children);
286 #endif
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
298 #define MIN_SHARES 2
299 #define MAX_SHARES (1UL << 18)
301 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302 #endif
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
307 struct task_group init_task_group;
309 /* return group to which a task belongs */
310 static inline struct task_group *task_group(struct task_struct *p)
312 struct task_group *tg;
314 #ifdef CONFIG_CGROUP_SCHED
315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
316 struct task_group, css);
317 #else
318 tg = &init_task_group;
319 #endif
320 return tg;
323 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
324 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
327 * Strictly speaking this rcu_read_lock() is not needed since the
328 * task_group is tied to the cgroup, which in turn can never go away
329 * as long as there are tasks attached to it.
331 * However since task_group() uses task_subsys_state() which is an
332 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
334 rcu_read_lock();
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
337 p->se.parent = task_group(p)->se[cpu];
338 #endif
340 #ifdef CONFIG_RT_GROUP_SCHED
341 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
342 p->rt.parent = task_group(p)->rt_se[cpu];
343 #endif
344 rcu_read_unlock();
347 #else
349 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
350 static inline struct task_group *task_group(struct task_struct *p)
352 return NULL;
355 #endif /* CONFIG_CGROUP_SCHED */
357 /* CFS-related fields in a runqueue */
358 struct cfs_rq {
359 struct load_weight load;
360 unsigned long nr_running;
362 u64 exec_clock;
363 u64 min_vruntime;
365 struct rb_root tasks_timeline;
366 struct rb_node *rb_leftmost;
368 struct list_head tasks;
369 struct list_head *balance_iterator;
372 * 'curr' points to currently running entity on this cfs_rq.
373 * It is set to NULL otherwise (i.e when none are currently running).
375 struct sched_entity *curr, *next, *last;
377 unsigned int nr_spread_over;
379 #ifdef CONFIG_FAIR_GROUP_SCHED
380 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
390 struct list_head leaf_cfs_rq_list;
391 struct task_group *tg; /* group that "owns" this runqueue */
393 #ifdef CONFIG_SMP
395 * the part of load.weight contributed by tasks
397 unsigned long task_weight;
400 * h_load = weight * f(tg)
402 * Where f(tg) is the recursive weight fraction assigned to
403 * this group.
405 unsigned long h_load;
408 * this cpu's part of tg->shares
410 unsigned long shares;
413 * load.weight at the time we set shares
415 unsigned long rq_weight;
416 #endif
417 #endif
420 /* Real-Time classes' related field in a runqueue: */
421 struct rt_rq {
422 struct rt_prio_array active;
423 unsigned long rt_nr_running;
424 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
425 struct {
426 int curr; /* highest queued rt task prio */
427 #ifdef CONFIG_SMP
428 int next; /* next highest */
429 #endif
430 } highest_prio;
431 #endif
432 #ifdef CONFIG_SMP
433 unsigned long rt_nr_migratory;
434 unsigned long rt_nr_total;
435 int overloaded;
436 struct plist_head pushable_tasks;
437 #endif
438 int rt_throttled;
439 u64 rt_time;
440 u64 rt_runtime;
441 /* Nests inside the rq lock: */
442 raw_spinlock_t rt_runtime_lock;
444 #ifdef CONFIG_RT_GROUP_SCHED
445 unsigned long rt_nr_boosted;
447 struct rq *rq;
448 struct list_head leaf_rt_rq_list;
449 struct task_group *tg;
450 #endif
453 #ifdef CONFIG_SMP
456 * We add the notion of a root-domain which will be used to define per-domain
457 * variables. Each exclusive cpuset essentially defines an island domain by
458 * fully partitioning the member cpus from any other cpuset. Whenever a new
459 * exclusive cpuset is created, we also create and attach a new root-domain
460 * object.
463 struct root_domain {
464 atomic_t refcount;
465 cpumask_var_t span;
466 cpumask_var_t online;
469 * The "RT overload" flag: it gets set if a CPU has more than
470 * one runnable RT task.
472 cpumask_var_t rto_mask;
473 atomic_t rto_count;
474 #ifdef CONFIG_SMP
475 struct cpupri cpupri;
476 #endif
480 * By default the system creates a single root-domain with all cpus as
481 * members (mimicking the global state we have today).
483 static struct root_domain def_root_domain;
485 #endif
488 * This is the main, per-CPU runqueue data structure.
490 * Locking rule: those places that want to lock multiple runqueues
491 * (such as the load balancing or the thread migration code), lock
492 * acquire operations must be ordered by ascending &runqueue.
494 struct rq {
495 /* runqueue lock: */
496 raw_spinlock_t lock;
499 * nr_running and cpu_load should be in the same cacheline because
500 * remote CPUs use both these fields when doing load calculation.
502 unsigned long nr_running;
503 #define CPU_LOAD_IDX_MAX 5
504 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
505 #ifdef CONFIG_NO_HZ
506 unsigned char in_nohz_recently;
507 #endif
508 /* capture load from *all* tasks on this cpu: */
509 struct load_weight load;
510 unsigned long nr_load_updates;
511 u64 nr_switches;
513 struct cfs_rq cfs;
514 struct rt_rq rt;
516 #ifdef CONFIG_FAIR_GROUP_SCHED
517 /* list of leaf cfs_rq on this cpu: */
518 struct list_head leaf_cfs_rq_list;
519 #endif
520 #ifdef CONFIG_RT_GROUP_SCHED
521 struct list_head leaf_rt_rq_list;
522 #endif
525 * This is part of a global counter where only the total sum
526 * over all CPUs matters. A task can increase this counter on
527 * one CPU and if it got migrated afterwards it may decrease
528 * it on another CPU. Always updated under the runqueue lock:
530 unsigned long nr_uninterruptible;
532 struct task_struct *curr, *idle;
533 unsigned long next_balance;
534 struct mm_struct *prev_mm;
536 u64 clock;
538 atomic_t nr_iowait;
540 #ifdef CONFIG_SMP
541 struct root_domain *rd;
542 struct sched_domain *sd;
544 unsigned char idle_at_tick;
545 /* For active balancing */
546 int post_schedule;
547 int active_balance;
548 int push_cpu;
549 /* cpu of this runqueue: */
550 int cpu;
551 int online;
553 unsigned long avg_load_per_task;
555 struct task_struct *migration_thread;
556 struct list_head migration_queue;
558 u64 rt_avg;
559 u64 age_stamp;
560 u64 idle_stamp;
561 u64 avg_idle;
562 #endif
564 /* calc_load related fields */
565 unsigned long calc_load_update;
566 long calc_load_active;
568 #ifdef CONFIG_SCHED_HRTICK
569 #ifdef CONFIG_SMP
570 int hrtick_csd_pending;
571 struct call_single_data hrtick_csd;
572 #endif
573 struct hrtimer hrtick_timer;
574 #endif
576 #ifdef CONFIG_SCHEDSTATS
577 /* latency stats */
578 struct sched_info rq_sched_info;
579 unsigned long long rq_cpu_time;
580 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
582 /* sys_sched_yield() stats */
583 unsigned int yld_count;
585 /* schedule() stats */
586 unsigned int sched_switch;
587 unsigned int sched_count;
588 unsigned int sched_goidle;
590 /* try_to_wake_up() stats */
591 unsigned int ttwu_count;
592 unsigned int ttwu_local;
594 /* BKL stats */
595 unsigned int bkl_count;
596 #endif
599 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
601 static inline
602 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
604 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
607 static inline int cpu_of(struct rq *rq)
609 #ifdef CONFIG_SMP
610 return rq->cpu;
611 #else
612 return 0;
613 #endif
616 #define rcu_dereference_check_sched_domain(p) \
617 rcu_dereference_check((p), \
618 rcu_read_lock_sched_held() || \
619 lockdep_is_held(&sched_domains_mutex))
622 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
623 * See detach_destroy_domains: synchronize_sched for details.
625 * The domain tree of any CPU may only be accessed from within
626 * preempt-disabled sections.
628 #define for_each_domain(cpu, __sd) \
629 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
631 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
632 #define this_rq() (&__get_cpu_var(runqueues))
633 #define task_rq(p) cpu_rq(task_cpu(p))
634 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
635 #define raw_rq() (&__raw_get_cpu_var(runqueues))
637 inline void update_rq_clock(struct rq *rq)
639 rq->clock = sched_clock_cpu(cpu_of(rq));
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
645 #ifdef CONFIG_SCHED_DEBUG
646 # define const_debug __read_mostly
647 #else
648 # define const_debug static const
649 #endif
652 * runqueue_is_locked
653 * @cpu: the processor in question.
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
659 int runqueue_is_locked(int cpu)
661 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
665 * Debugging: various feature bits
668 #define SCHED_FEAT(name, enabled) \
669 __SCHED_FEAT_##name ,
671 enum {
672 #include "sched_features.h"
675 #undef SCHED_FEAT
677 #define SCHED_FEAT(name, enabled) \
678 (1UL << __SCHED_FEAT_##name) * enabled |
680 const_debug unsigned int sysctl_sched_features =
681 #include "sched_features.h"
684 #undef SCHED_FEAT
686 #ifdef CONFIG_SCHED_DEBUG
687 #define SCHED_FEAT(name, enabled) \
688 #name ,
690 static __read_mostly char *sched_feat_names[] = {
691 #include "sched_features.h"
692 NULL
695 #undef SCHED_FEAT
697 static int sched_feat_show(struct seq_file *m, void *v)
699 int i;
701 for (i = 0; sched_feat_names[i]; i++) {
702 if (!(sysctl_sched_features & (1UL << i)))
703 seq_puts(m, "NO_");
704 seq_printf(m, "%s ", sched_feat_names[i]);
706 seq_puts(m, "\n");
708 return 0;
711 static ssize_t
712 sched_feat_write(struct file *filp, const char __user *ubuf,
713 size_t cnt, loff_t *ppos)
715 char buf[64];
716 char *cmp = buf;
717 int neg = 0;
718 int i;
720 if (cnt > 63)
721 cnt = 63;
723 if (copy_from_user(&buf, ubuf, cnt))
724 return -EFAULT;
726 buf[cnt] = 0;
728 if (strncmp(buf, "NO_", 3) == 0) {
729 neg = 1;
730 cmp += 3;
733 for (i = 0; sched_feat_names[i]; i++) {
734 int len = strlen(sched_feat_names[i]);
736 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
737 if (neg)
738 sysctl_sched_features &= ~(1UL << i);
739 else
740 sysctl_sched_features |= (1UL << i);
741 break;
745 if (!sched_feat_names[i])
746 return -EINVAL;
748 *ppos += cnt;
750 return cnt;
753 static int sched_feat_open(struct inode *inode, struct file *filp)
755 return single_open(filp, sched_feat_show, NULL);
758 static const struct file_operations sched_feat_fops = {
759 .open = sched_feat_open,
760 .write = sched_feat_write,
761 .read = seq_read,
762 .llseek = seq_lseek,
763 .release = single_release,
766 static __init int sched_init_debug(void)
768 debugfs_create_file("sched_features", 0644, NULL, NULL,
769 &sched_feat_fops);
771 return 0;
773 late_initcall(sched_init_debug);
775 #endif
777 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
783 const_debug unsigned int sysctl_sched_nr_migrate = 32;
786 * ratelimit for updating the group shares.
787 * default: 0.25ms
789 unsigned int sysctl_sched_shares_ratelimit = 250000;
790 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
793 * Inject some fuzzyness into changing the per-cpu group shares
794 * this avoids remote rq-locks at the expense of fairness.
795 * default: 4
797 unsigned int sysctl_sched_shares_thresh = 4;
800 * period over which we average the RT time consumption, measured
801 * in ms.
803 * default: 1s
805 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
808 * period over which we measure -rt task cpu usage in us.
809 * default: 1s
811 unsigned int sysctl_sched_rt_period = 1000000;
813 static __read_mostly int scheduler_running;
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
819 int sysctl_sched_rt_runtime = 950000;
821 static inline u64 global_rt_period(void)
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
826 static inline u64 global_rt_runtime(void)
828 if (sysctl_sched_rt_runtime < 0)
829 return RUNTIME_INF;
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
834 #ifndef prepare_arch_switch
835 # define prepare_arch_switch(next) do { } while (0)
836 #endif
837 #ifndef finish_arch_switch
838 # define finish_arch_switch(prev) do { } while (0)
839 #endif
841 static inline int task_current(struct rq *rq, struct task_struct *p)
843 return rq->curr == p;
846 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
847 static inline int task_running(struct rq *rq, struct task_struct *p)
849 return task_current(rq, p);
852 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
856 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
858 #ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861 #endif
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
869 raw_spin_unlock_irq(&rq->lock);
872 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
873 static inline int task_running(struct rq *rq, struct task_struct *p)
875 #ifdef CONFIG_SMP
876 return p->oncpu;
877 #else
878 return task_current(rq, p);
879 #endif
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
884 #ifdef CONFIG_SMP
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
890 next->oncpu = 1;
891 #endif
892 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893 raw_spin_unlock_irq(&rq->lock);
894 #else
895 raw_spin_unlock(&rq->lock);
896 #endif
899 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
901 #ifdef CONFIG_SMP
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
907 smp_wmb();
908 prev->oncpu = 0;
909 #endif
910 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
912 #endif
914 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
917 * Check whether the task is waking, we use this to synchronize against
918 * ttwu() so that task_cpu() reports a stable number.
920 * We need to make an exception for PF_STARTING tasks because the fork
921 * path might require task_rq_lock() to work, eg. it can call
922 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
924 static inline int task_is_waking(struct task_struct *p)
926 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
930 * __task_rq_lock - lock the runqueue a given task resides on.
931 * Must be called interrupts disabled.
933 static inline struct rq *__task_rq_lock(struct task_struct *p)
934 __acquires(rq->lock)
936 struct rq *rq;
938 for (;;) {
939 while (task_is_waking(p))
940 cpu_relax();
941 rq = task_rq(p);
942 raw_spin_lock(&rq->lock);
943 if (likely(rq == task_rq(p) && !task_is_waking(p)))
944 return rq;
945 raw_spin_unlock(&rq->lock);
950 * task_rq_lock - lock the runqueue a given task resides on and disable
951 * interrupts. Note the ordering: we can safely lookup the task_rq without
952 * explicitly disabling preemption.
954 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
955 __acquires(rq->lock)
957 struct rq *rq;
959 for (;;) {
960 while (task_is_waking(p))
961 cpu_relax();
962 local_irq_save(*flags);
963 rq = task_rq(p);
964 raw_spin_lock(&rq->lock);
965 if (likely(rq == task_rq(p) && !task_is_waking(p)))
966 return rq;
967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
971 void task_rq_unlock_wait(struct task_struct *p)
973 struct rq *rq = task_rq(p);
975 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
976 raw_spin_unlock_wait(&rq->lock);
979 static void __task_rq_unlock(struct rq *rq)
980 __releases(rq->lock)
982 raw_spin_unlock(&rq->lock);
985 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
986 __releases(rq->lock)
988 raw_spin_unlock_irqrestore(&rq->lock, *flags);
992 * this_rq_lock - lock this runqueue and disable interrupts.
994 static struct rq *this_rq_lock(void)
995 __acquires(rq->lock)
997 struct rq *rq;
999 local_irq_disable();
1000 rq = this_rq();
1001 raw_spin_lock(&rq->lock);
1003 return rq;
1006 #ifdef CONFIG_SCHED_HRTICK
1008 * Use HR-timers to deliver accurate preemption points.
1010 * Its all a bit involved since we cannot program an hrt while holding the
1011 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012 * reschedule event.
1014 * When we get rescheduled we reprogram the hrtick_timer outside of the
1015 * rq->lock.
1019 * Use hrtick when:
1020 * - enabled by features
1021 * - hrtimer is actually high res
1023 static inline int hrtick_enabled(struct rq *rq)
1025 if (!sched_feat(HRTICK))
1026 return 0;
1027 if (!cpu_active(cpu_of(rq)))
1028 return 0;
1029 return hrtimer_is_hres_active(&rq->hrtick_timer);
1032 static void hrtick_clear(struct rq *rq)
1034 if (hrtimer_active(&rq->hrtick_timer))
1035 hrtimer_cancel(&rq->hrtick_timer);
1039 * High-resolution timer tick.
1040 * Runs from hardirq context with interrupts disabled.
1042 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1044 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1046 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1048 raw_spin_lock(&rq->lock);
1049 update_rq_clock(rq);
1050 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1051 raw_spin_unlock(&rq->lock);
1053 return HRTIMER_NORESTART;
1056 #ifdef CONFIG_SMP
1058 * called from hardirq (IPI) context
1060 static void __hrtick_start(void *arg)
1062 struct rq *rq = arg;
1064 raw_spin_lock(&rq->lock);
1065 hrtimer_restart(&rq->hrtick_timer);
1066 rq->hrtick_csd_pending = 0;
1067 raw_spin_unlock(&rq->lock);
1071 * Called to set the hrtick timer state.
1073 * called with rq->lock held and irqs disabled
1075 static void hrtick_start(struct rq *rq, u64 delay)
1077 struct hrtimer *timer = &rq->hrtick_timer;
1078 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1080 hrtimer_set_expires(timer, time);
1082 if (rq == this_rq()) {
1083 hrtimer_restart(timer);
1084 } else if (!rq->hrtick_csd_pending) {
1085 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1086 rq->hrtick_csd_pending = 1;
1090 static int
1091 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1093 int cpu = (int)(long)hcpu;
1095 switch (action) {
1096 case CPU_UP_CANCELED:
1097 case CPU_UP_CANCELED_FROZEN:
1098 case CPU_DOWN_PREPARE:
1099 case CPU_DOWN_PREPARE_FROZEN:
1100 case CPU_DEAD:
1101 case CPU_DEAD_FROZEN:
1102 hrtick_clear(cpu_rq(cpu));
1103 return NOTIFY_OK;
1106 return NOTIFY_DONE;
1109 static __init void init_hrtick(void)
1111 hotcpu_notifier(hotplug_hrtick, 0);
1113 #else
1115 * Called to set the hrtick timer state.
1117 * called with rq->lock held and irqs disabled
1119 static void hrtick_start(struct rq *rq, u64 delay)
1121 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1122 HRTIMER_MODE_REL_PINNED, 0);
1125 static inline void init_hrtick(void)
1128 #endif /* CONFIG_SMP */
1130 static void init_rq_hrtick(struct rq *rq)
1132 #ifdef CONFIG_SMP
1133 rq->hrtick_csd_pending = 0;
1135 rq->hrtick_csd.flags = 0;
1136 rq->hrtick_csd.func = __hrtick_start;
1137 rq->hrtick_csd.info = rq;
1138 #endif
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick;
1143 #else /* CONFIG_SCHED_HRTICK */
1144 static inline void hrtick_clear(struct rq *rq)
1148 static inline void init_rq_hrtick(struct rq *rq)
1152 static inline void init_hrtick(void)
1155 #endif /* CONFIG_SCHED_HRTICK */
1158 * resched_task - mark a task 'to be rescheduled now'.
1160 * On UP this means the setting of the need_resched flag, on SMP it
1161 * might also involve a cross-CPU call to trigger the scheduler on
1162 * the target CPU.
1164 #ifdef CONFIG_SMP
1166 #ifndef tsk_is_polling
1167 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1168 #endif
1170 static void resched_task(struct task_struct *p)
1172 int cpu;
1174 assert_raw_spin_locked(&task_rq(p)->lock);
1176 if (test_tsk_need_resched(p))
1177 return;
1179 set_tsk_need_resched(p);
1181 cpu = task_cpu(p);
1182 if (cpu == smp_processor_id())
1183 return;
1185 /* NEED_RESCHED must be visible before we test polling */
1186 smp_mb();
1187 if (!tsk_is_polling(p))
1188 smp_send_reschedule(cpu);
1191 static void resched_cpu(int cpu)
1193 struct rq *rq = cpu_rq(cpu);
1194 unsigned long flags;
1196 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1197 return;
1198 resched_task(cpu_curr(cpu));
1199 raw_spin_unlock_irqrestore(&rq->lock, flags);
1202 #ifdef CONFIG_NO_HZ
1204 * When add_timer_on() enqueues a timer into the timer wheel of an
1205 * idle CPU then this timer might expire before the next timer event
1206 * which is scheduled to wake up that CPU. In case of a completely
1207 * idle system the next event might even be infinite time into the
1208 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1209 * leaves the inner idle loop so the newly added timer is taken into
1210 * account when the CPU goes back to idle and evaluates the timer
1211 * wheel for the next timer event.
1213 void wake_up_idle_cpu(int cpu)
1215 struct rq *rq = cpu_rq(cpu);
1217 if (cpu == smp_processor_id())
1218 return;
1221 * This is safe, as this function is called with the timer
1222 * wheel base lock of (cpu) held. When the CPU is on the way
1223 * to idle and has not yet set rq->curr to idle then it will
1224 * be serialized on the timer wheel base lock and take the new
1225 * timer into account automatically.
1227 if (rq->curr != rq->idle)
1228 return;
1231 * We can set TIF_RESCHED on the idle task of the other CPU
1232 * lockless. The worst case is that the other CPU runs the
1233 * idle task through an additional NOOP schedule()
1235 set_tsk_need_resched(rq->idle);
1237 /* NEED_RESCHED must be visible before we test polling */
1238 smp_mb();
1239 if (!tsk_is_polling(rq->idle))
1240 smp_send_reschedule(cpu);
1242 #endif /* CONFIG_NO_HZ */
1244 static u64 sched_avg_period(void)
1246 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1249 static void sched_avg_update(struct rq *rq)
1251 s64 period = sched_avg_period();
1253 while ((s64)(rq->clock - rq->age_stamp) > period) {
1255 * Inline assembly required to prevent the compiler
1256 * optimising this loop into a divmod call.
1257 * See __iter_div_u64_rem() for another example of this.
1259 asm("" : "+rm" (rq->age_stamp));
1260 rq->age_stamp += period;
1261 rq->rt_avg /= 2;
1265 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1267 rq->rt_avg += rt_delta;
1268 sched_avg_update(rq);
1271 #else /* !CONFIG_SMP */
1272 static void resched_task(struct task_struct *p)
1274 assert_raw_spin_locked(&task_rq(p)->lock);
1275 set_tsk_need_resched(p);
1278 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281 #endif /* CONFIG_SMP */
1283 #if BITS_PER_LONG == 32
1284 # define WMULT_CONST (~0UL)
1285 #else
1286 # define WMULT_CONST (1UL << 32)
1287 #endif
1289 #define WMULT_SHIFT 32
1292 * Shift right and round:
1294 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1297 * delta *= weight / lw
1299 static unsigned long
1300 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1301 struct load_weight *lw)
1303 u64 tmp;
1305 if (!lw->inv_weight) {
1306 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1307 lw->inv_weight = 1;
1308 else
1309 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1310 / (lw->weight+1);
1313 tmp = (u64)delta_exec * weight;
1315 * Check whether we'd overflow the 64-bit multiplication:
1317 if (unlikely(tmp > WMULT_CONST))
1318 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1319 WMULT_SHIFT/2);
1320 else
1321 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1323 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1326 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1328 lw->weight += inc;
1329 lw->inv_weight = 0;
1332 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1334 lw->weight -= dec;
1335 lw->inv_weight = 0;
1339 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1340 * of tasks with abnormal "nice" values across CPUs the contribution that
1341 * each task makes to its run queue's load is weighted according to its
1342 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1343 * scaled version of the new time slice allocation that they receive on time
1344 * slice expiry etc.
1347 #define WEIGHT_IDLEPRIO 3
1348 #define WMULT_IDLEPRIO 1431655765
1351 * Nice levels are multiplicative, with a gentle 10% change for every
1352 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1353 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1354 * that remained on nice 0.
1356 * The "10% effect" is relative and cumulative: from _any_ nice level,
1357 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1358 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1359 * If a task goes up by ~10% and another task goes down by ~10% then
1360 * the relative distance between them is ~25%.)
1362 static const int prio_to_weight[40] = {
1363 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1364 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1365 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1366 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1367 /* 0 */ 1024, 820, 655, 526, 423,
1368 /* 5 */ 335, 272, 215, 172, 137,
1369 /* 10 */ 110, 87, 70, 56, 45,
1370 /* 15 */ 36, 29, 23, 18, 15,
1374 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1376 * In cases where the weight does not change often, we can use the
1377 * precalculated inverse to speed up arithmetics by turning divisions
1378 * into multiplications:
1380 static const u32 prio_to_wmult[40] = {
1381 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1382 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1383 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1384 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1385 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1386 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1387 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1388 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1391 /* Time spent by the tasks of the cpu accounting group executing in ... */
1392 enum cpuacct_stat_index {
1393 CPUACCT_STAT_USER, /* ... user mode */
1394 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1396 CPUACCT_STAT_NSTATS,
1399 #ifdef CONFIG_CGROUP_CPUACCT
1400 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1401 static void cpuacct_update_stats(struct task_struct *tsk,
1402 enum cpuacct_stat_index idx, cputime_t val);
1403 #else
1404 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1405 static inline void cpuacct_update_stats(struct task_struct *tsk,
1406 enum cpuacct_stat_index idx, cputime_t val) {}
1407 #endif
1409 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1411 update_load_add(&rq->load, load);
1414 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1416 update_load_sub(&rq->load, load);
1419 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1420 typedef int (*tg_visitor)(struct task_group *, void *);
1423 * Iterate the full tree, calling @down when first entering a node and @up when
1424 * leaving it for the final time.
1426 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1428 struct task_group *parent, *child;
1429 int ret;
1431 rcu_read_lock();
1432 parent = &root_task_group;
1433 down:
1434 ret = (*down)(parent, data);
1435 if (ret)
1436 goto out_unlock;
1437 list_for_each_entry_rcu(child, &parent->children, siblings) {
1438 parent = child;
1439 goto down;
1442 continue;
1444 ret = (*up)(parent, data);
1445 if (ret)
1446 goto out_unlock;
1448 child = parent;
1449 parent = parent->parent;
1450 if (parent)
1451 goto up;
1452 out_unlock:
1453 rcu_read_unlock();
1455 return ret;
1458 static int tg_nop(struct task_group *tg, void *data)
1460 return 0;
1462 #endif
1464 #ifdef CONFIG_SMP
1465 /* Used instead of source_load when we know the type == 0 */
1466 static unsigned long weighted_cpuload(const int cpu)
1468 return cpu_rq(cpu)->load.weight;
1472 * Return a low guess at the load of a migration-source cpu weighted
1473 * according to the scheduling class and "nice" value.
1475 * We want to under-estimate the load of migration sources, to
1476 * balance conservatively.
1478 static unsigned long source_load(int cpu, int type)
1480 struct rq *rq = cpu_rq(cpu);
1481 unsigned long total = weighted_cpuload(cpu);
1483 if (type == 0 || !sched_feat(LB_BIAS))
1484 return total;
1486 return min(rq->cpu_load[type-1], total);
1490 * Return a high guess at the load of a migration-target cpu weighted
1491 * according to the scheduling class and "nice" value.
1493 static unsigned long target_load(int cpu, int type)
1495 struct rq *rq = cpu_rq(cpu);
1496 unsigned long total = weighted_cpuload(cpu);
1498 if (type == 0 || !sched_feat(LB_BIAS))
1499 return total;
1501 return max(rq->cpu_load[type-1], total);
1504 static struct sched_group *group_of(int cpu)
1506 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1508 if (!sd)
1509 return NULL;
1511 return sd->groups;
1514 static unsigned long power_of(int cpu)
1516 struct sched_group *group = group_of(cpu);
1518 if (!group)
1519 return SCHED_LOAD_SCALE;
1521 return group->cpu_power;
1524 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1526 static unsigned long cpu_avg_load_per_task(int cpu)
1528 struct rq *rq = cpu_rq(cpu);
1529 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1531 if (nr_running)
1532 rq->avg_load_per_task = rq->load.weight / nr_running;
1533 else
1534 rq->avg_load_per_task = 0;
1536 return rq->avg_load_per_task;
1539 #ifdef CONFIG_FAIR_GROUP_SCHED
1541 static __read_mostly unsigned long __percpu *update_shares_data;
1543 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1546 * Calculate and set the cpu's group shares.
1548 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1549 unsigned long sd_shares,
1550 unsigned long sd_rq_weight,
1551 unsigned long *usd_rq_weight)
1553 unsigned long shares, rq_weight;
1554 int boost = 0;
1556 rq_weight = usd_rq_weight[cpu];
1557 if (!rq_weight) {
1558 boost = 1;
1559 rq_weight = NICE_0_LOAD;
1563 * \Sum_j shares_j * rq_weight_i
1564 * shares_i = -----------------------------
1565 * \Sum_j rq_weight_j
1567 shares = (sd_shares * rq_weight) / sd_rq_weight;
1568 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1570 if (abs(shares - tg->se[cpu]->load.weight) >
1571 sysctl_sched_shares_thresh) {
1572 struct rq *rq = cpu_rq(cpu);
1573 unsigned long flags;
1575 raw_spin_lock_irqsave(&rq->lock, flags);
1576 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1577 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1578 __set_se_shares(tg->se[cpu], shares);
1579 raw_spin_unlock_irqrestore(&rq->lock, flags);
1584 * Re-compute the task group their per cpu shares over the given domain.
1585 * This needs to be done in a bottom-up fashion because the rq weight of a
1586 * parent group depends on the shares of its child groups.
1588 static int tg_shares_up(struct task_group *tg, void *data)
1590 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1591 unsigned long *usd_rq_weight;
1592 struct sched_domain *sd = data;
1593 unsigned long flags;
1594 int i;
1596 if (!tg->se[0])
1597 return 0;
1599 local_irq_save(flags);
1600 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1602 for_each_cpu(i, sched_domain_span(sd)) {
1603 weight = tg->cfs_rq[i]->load.weight;
1604 usd_rq_weight[i] = weight;
1606 rq_weight += weight;
1608 * If there are currently no tasks on the cpu pretend there
1609 * is one of average load so that when a new task gets to
1610 * run here it will not get delayed by group starvation.
1612 if (!weight)
1613 weight = NICE_0_LOAD;
1615 sum_weight += weight;
1616 shares += tg->cfs_rq[i]->shares;
1619 if (!rq_weight)
1620 rq_weight = sum_weight;
1622 if ((!shares && rq_weight) || shares > tg->shares)
1623 shares = tg->shares;
1625 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1626 shares = tg->shares;
1628 for_each_cpu(i, sched_domain_span(sd))
1629 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1631 local_irq_restore(flags);
1633 return 0;
1637 * Compute the cpu's hierarchical load factor for each task group.
1638 * This needs to be done in a top-down fashion because the load of a child
1639 * group is a fraction of its parents load.
1641 static int tg_load_down(struct task_group *tg, void *data)
1643 unsigned long load;
1644 long cpu = (long)data;
1646 if (!tg->parent) {
1647 load = cpu_rq(cpu)->load.weight;
1648 } else {
1649 load = tg->parent->cfs_rq[cpu]->h_load;
1650 load *= tg->cfs_rq[cpu]->shares;
1651 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1654 tg->cfs_rq[cpu]->h_load = load;
1656 return 0;
1659 static void update_shares(struct sched_domain *sd)
1661 s64 elapsed;
1662 u64 now;
1664 if (root_task_group_empty())
1665 return;
1667 now = cpu_clock(raw_smp_processor_id());
1668 elapsed = now - sd->last_update;
1670 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1671 sd->last_update = now;
1672 walk_tg_tree(tg_nop, tg_shares_up, sd);
1676 static void update_h_load(long cpu)
1678 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1681 #else
1683 static inline void update_shares(struct sched_domain *sd)
1687 #endif
1689 #ifdef CONFIG_PREEMPT
1691 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1694 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1695 * way at the expense of forcing extra atomic operations in all
1696 * invocations. This assures that the double_lock is acquired using the
1697 * same underlying policy as the spinlock_t on this architecture, which
1698 * reduces latency compared to the unfair variant below. However, it
1699 * also adds more overhead and therefore may reduce throughput.
1701 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1702 __releases(this_rq->lock)
1703 __acquires(busiest->lock)
1704 __acquires(this_rq->lock)
1706 raw_spin_unlock(&this_rq->lock);
1707 double_rq_lock(this_rq, busiest);
1709 return 1;
1712 #else
1714 * Unfair double_lock_balance: Optimizes throughput at the expense of
1715 * latency by eliminating extra atomic operations when the locks are
1716 * already in proper order on entry. This favors lower cpu-ids and will
1717 * grant the double lock to lower cpus over higher ids under contention,
1718 * regardless of entry order into the function.
1720 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1721 __releases(this_rq->lock)
1722 __acquires(busiest->lock)
1723 __acquires(this_rq->lock)
1725 int ret = 0;
1727 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1728 if (busiest < this_rq) {
1729 raw_spin_unlock(&this_rq->lock);
1730 raw_spin_lock(&busiest->lock);
1731 raw_spin_lock_nested(&this_rq->lock,
1732 SINGLE_DEPTH_NESTING);
1733 ret = 1;
1734 } else
1735 raw_spin_lock_nested(&busiest->lock,
1736 SINGLE_DEPTH_NESTING);
1738 return ret;
1741 #endif /* CONFIG_PREEMPT */
1744 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1746 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1748 if (unlikely(!irqs_disabled())) {
1749 /* printk() doesn't work good under rq->lock */
1750 raw_spin_unlock(&this_rq->lock);
1751 BUG_ON(1);
1754 return _double_lock_balance(this_rq, busiest);
1757 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1758 __releases(busiest->lock)
1760 raw_spin_unlock(&busiest->lock);
1761 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1765 * double_rq_lock - safely lock two runqueues
1767 * Note this does not disable interrupts like task_rq_lock,
1768 * you need to do so manually before calling.
1770 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1771 __acquires(rq1->lock)
1772 __acquires(rq2->lock)
1774 BUG_ON(!irqs_disabled());
1775 if (rq1 == rq2) {
1776 raw_spin_lock(&rq1->lock);
1777 __acquire(rq2->lock); /* Fake it out ;) */
1778 } else {
1779 if (rq1 < rq2) {
1780 raw_spin_lock(&rq1->lock);
1781 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1782 } else {
1783 raw_spin_lock(&rq2->lock);
1784 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1787 update_rq_clock(rq1);
1788 update_rq_clock(rq2);
1792 * double_rq_unlock - safely unlock two runqueues
1794 * Note this does not restore interrupts like task_rq_unlock,
1795 * you need to do so manually after calling.
1797 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1798 __releases(rq1->lock)
1799 __releases(rq2->lock)
1801 raw_spin_unlock(&rq1->lock);
1802 if (rq1 != rq2)
1803 raw_spin_unlock(&rq2->lock);
1804 else
1805 __release(rq2->lock);
1808 #endif
1810 #ifdef CONFIG_FAIR_GROUP_SCHED
1811 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1813 #ifdef CONFIG_SMP
1814 cfs_rq->shares = shares;
1815 #endif
1817 #endif
1819 static void calc_load_account_active(struct rq *this_rq);
1820 static void update_sysctl(void);
1821 static int get_update_sysctl_factor(void);
1823 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1825 set_task_rq(p, cpu);
1826 #ifdef CONFIG_SMP
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1832 smp_wmb();
1833 task_thread_info(p)->cpu = cpu;
1834 #endif
1837 static const struct sched_class rt_sched_class;
1839 #define sched_class_highest (&rt_sched_class)
1840 #define for_each_class(class) \
1841 for (class = sched_class_highest; class; class = class->next)
1843 #include "sched_stats.h"
1845 static void inc_nr_running(struct rq *rq)
1847 rq->nr_running++;
1850 static void dec_nr_running(struct rq *rq)
1852 rq->nr_running--;
1855 static void set_load_weight(struct task_struct *p)
1857 if (task_has_rt_policy(p)) {
1858 p->se.load.weight = prio_to_weight[0] * 2;
1859 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1860 return;
1864 * SCHED_IDLE tasks get minimal weight:
1866 if (p->policy == SCHED_IDLE) {
1867 p->se.load.weight = WEIGHT_IDLEPRIO;
1868 p->se.load.inv_weight = WMULT_IDLEPRIO;
1869 return;
1872 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1873 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1876 static void update_avg(u64 *avg, u64 sample)
1878 s64 diff = sample - *avg;
1879 *avg += diff >> 3;
1882 static void
1883 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1885 if (wakeup)
1886 p->se.start_runtime = p->se.sum_exec_runtime;
1888 sched_info_queued(p);
1889 p->sched_class->enqueue_task(rq, p, wakeup, head);
1890 p->se.on_rq = 1;
1893 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1895 if (sleep) {
1896 if (p->se.last_wakeup) {
1897 update_avg(&p->se.avg_overlap,
1898 p->se.sum_exec_runtime - p->se.last_wakeup);
1899 p->se.last_wakeup = 0;
1900 } else {
1901 update_avg(&p->se.avg_wakeup,
1902 sysctl_sched_wakeup_granularity);
1906 sched_info_dequeued(p);
1907 p->sched_class->dequeue_task(rq, p, sleep);
1908 p->se.on_rq = 0;
1912 * activate_task - move a task to the runqueue.
1914 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1916 if (task_contributes_to_load(p))
1917 rq->nr_uninterruptible--;
1919 enqueue_task(rq, p, wakeup, false);
1920 inc_nr_running(rq);
1924 * deactivate_task - remove a task from the runqueue.
1926 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1928 if (task_contributes_to_load(p))
1929 rq->nr_uninterruptible++;
1931 dequeue_task(rq, p, sleep);
1932 dec_nr_running(rq);
1935 #include "sched_idletask.c"
1936 #include "sched_fair.c"
1937 #include "sched_rt.c"
1938 #ifdef CONFIG_SCHED_DEBUG
1939 # include "sched_debug.c"
1940 #endif
1943 * __normal_prio - return the priority that is based on the static prio
1945 static inline int __normal_prio(struct task_struct *p)
1947 return p->static_prio;
1951 * Calculate the expected normal priority: i.e. priority
1952 * without taking RT-inheritance into account. Might be
1953 * boosted by interactivity modifiers. Changes upon fork,
1954 * setprio syscalls, and whenever the interactivity
1955 * estimator recalculates.
1957 static inline int normal_prio(struct task_struct *p)
1959 int prio;
1961 if (task_has_rt_policy(p))
1962 prio = MAX_RT_PRIO-1 - p->rt_priority;
1963 else
1964 prio = __normal_prio(p);
1965 return prio;
1969 * Calculate the current priority, i.e. the priority
1970 * taken into account by the scheduler. This value might
1971 * be boosted by RT tasks, or might be boosted by
1972 * interactivity modifiers. Will be RT if the task got
1973 * RT-boosted. If not then it returns p->normal_prio.
1975 static int effective_prio(struct task_struct *p)
1977 p->normal_prio = normal_prio(p);
1979 * If we are RT tasks or we were boosted to RT priority,
1980 * keep the priority unchanged. Otherwise, update priority
1981 * to the normal priority:
1983 if (!rt_prio(p->prio))
1984 return p->normal_prio;
1985 return p->prio;
1989 * task_curr - is this task currently executing on a CPU?
1990 * @p: the task in question.
1992 inline int task_curr(const struct task_struct *p)
1994 return cpu_curr(task_cpu(p)) == p;
1997 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1998 const struct sched_class *prev_class,
1999 int oldprio, int running)
2001 if (prev_class != p->sched_class) {
2002 if (prev_class->switched_from)
2003 prev_class->switched_from(rq, p, running);
2004 p->sched_class->switched_to(rq, p, running);
2005 } else
2006 p->sched_class->prio_changed(rq, p, oldprio, running);
2009 #ifdef CONFIG_SMP
2011 * Is this task likely cache-hot:
2013 static int
2014 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2016 s64 delta;
2018 if (p->sched_class != &fair_sched_class)
2019 return 0;
2022 * Buddy candidates are cache hot:
2024 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2025 (&p->se == cfs_rq_of(&p->se)->next ||
2026 &p->se == cfs_rq_of(&p->se)->last))
2027 return 1;
2029 if (sysctl_sched_migration_cost == -1)
2030 return 1;
2031 if (sysctl_sched_migration_cost == 0)
2032 return 0;
2034 delta = now - p->se.exec_start;
2036 return delta < (s64)sysctl_sched_migration_cost;
2039 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2041 #ifdef CONFIG_SCHED_DEBUG
2043 * We should never call set_task_cpu() on a blocked task,
2044 * ttwu() will sort out the placement.
2046 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2047 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2048 #endif
2050 trace_sched_migrate_task(p, new_cpu);
2052 if (task_cpu(p) != new_cpu) {
2053 p->se.nr_migrations++;
2054 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2057 __set_task_cpu(p, new_cpu);
2060 struct migration_req {
2061 struct list_head list;
2063 struct task_struct *task;
2064 int dest_cpu;
2066 struct completion done;
2070 * The task's runqueue lock must be held.
2071 * Returns true if you have to wait for migration thread.
2073 static int
2074 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2076 struct rq *rq = task_rq(p);
2079 * If the task is not on a runqueue (and not running), then
2080 * the next wake-up will properly place the task.
2082 if (!p->se.on_rq && !task_running(rq, p))
2083 return 0;
2085 init_completion(&req->done);
2086 req->task = p;
2087 req->dest_cpu = dest_cpu;
2088 list_add(&req->list, &rq->migration_queue);
2090 return 1;
2094 * wait_task_context_switch - wait for a thread to complete at least one
2095 * context switch.
2097 * @p must not be current.
2099 void wait_task_context_switch(struct task_struct *p)
2101 unsigned long nvcsw, nivcsw, flags;
2102 int running;
2103 struct rq *rq;
2105 nvcsw = p->nvcsw;
2106 nivcsw = p->nivcsw;
2107 for (;;) {
2109 * The runqueue is assigned before the actual context
2110 * switch. We need to take the runqueue lock.
2112 * We could check initially without the lock but it is
2113 * very likely that we need to take the lock in every
2114 * iteration.
2116 rq = task_rq_lock(p, &flags);
2117 running = task_running(rq, p);
2118 task_rq_unlock(rq, &flags);
2120 if (likely(!running))
2121 break;
2123 * The switch count is incremented before the actual
2124 * context switch. We thus wait for two switches to be
2125 * sure at least one completed.
2127 if ((p->nvcsw - nvcsw) > 1)
2128 break;
2129 if ((p->nivcsw - nivcsw) > 1)
2130 break;
2132 cpu_relax();
2137 * wait_task_inactive - wait for a thread to unschedule.
2139 * If @match_state is nonzero, it's the @p->state value just checked and
2140 * not expected to change. If it changes, i.e. @p might have woken up,
2141 * then return zero. When we succeed in waiting for @p to be off its CPU,
2142 * we return a positive number (its total switch count). If a second call
2143 * a short while later returns the same number, the caller can be sure that
2144 * @p has remained unscheduled the whole time.
2146 * The caller must ensure that the task *will* unschedule sometime soon,
2147 * else this function might spin for a *long* time. This function can't
2148 * be called with interrupts off, or it may introduce deadlock with
2149 * smp_call_function() if an IPI is sent by the same process we are
2150 * waiting to become inactive.
2152 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2154 unsigned long flags;
2155 int running, on_rq;
2156 unsigned long ncsw;
2157 struct rq *rq;
2159 for (;;) {
2161 * We do the initial early heuristics without holding
2162 * any task-queue locks at all. We'll only try to get
2163 * the runqueue lock when things look like they will
2164 * work out!
2166 rq = task_rq(p);
2169 * If the task is actively running on another CPU
2170 * still, just relax and busy-wait without holding
2171 * any locks.
2173 * NOTE! Since we don't hold any locks, it's not
2174 * even sure that "rq" stays as the right runqueue!
2175 * But we don't care, since "task_running()" will
2176 * return false if the runqueue has changed and p
2177 * is actually now running somewhere else!
2179 while (task_running(rq, p)) {
2180 if (match_state && unlikely(p->state != match_state))
2181 return 0;
2182 cpu_relax();
2186 * Ok, time to look more closely! We need the rq
2187 * lock now, to be *sure*. If we're wrong, we'll
2188 * just go back and repeat.
2190 rq = task_rq_lock(p, &flags);
2191 trace_sched_wait_task(rq, p);
2192 running = task_running(rq, p);
2193 on_rq = p->se.on_rq;
2194 ncsw = 0;
2195 if (!match_state || p->state == match_state)
2196 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2197 task_rq_unlock(rq, &flags);
2200 * If it changed from the expected state, bail out now.
2202 if (unlikely(!ncsw))
2203 break;
2206 * Was it really running after all now that we
2207 * checked with the proper locks actually held?
2209 * Oops. Go back and try again..
2211 if (unlikely(running)) {
2212 cpu_relax();
2213 continue;
2217 * It's not enough that it's not actively running,
2218 * it must be off the runqueue _entirely_, and not
2219 * preempted!
2221 * So if it was still runnable (but just not actively
2222 * running right now), it's preempted, and we should
2223 * yield - it could be a while.
2225 if (unlikely(on_rq)) {
2226 schedule_timeout_uninterruptible(1);
2227 continue;
2231 * Ahh, all good. It wasn't running, and it wasn't
2232 * runnable, which means that it will never become
2233 * running in the future either. We're all done!
2235 break;
2238 return ncsw;
2241 /***
2242 * kick_process - kick a running thread to enter/exit the kernel
2243 * @p: the to-be-kicked thread
2245 * Cause a process which is running on another CPU to enter
2246 * kernel-mode, without any delay. (to get signals handled.)
2248 * NOTE: this function doesnt have to take the runqueue lock,
2249 * because all it wants to ensure is that the remote task enters
2250 * the kernel. If the IPI races and the task has been migrated
2251 * to another CPU then no harm is done and the purpose has been
2252 * achieved as well.
2254 void kick_process(struct task_struct *p)
2256 int cpu;
2258 preempt_disable();
2259 cpu = task_cpu(p);
2260 if ((cpu != smp_processor_id()) && task_curr(p))
2261 smp_send_reschedule(cpu);
2262 preempt_enable();
2264 EXPORT_SYMBOL_GPL(kick_process);
2265 #endif /* CONFIG_SMP */
2268 * task_oncpu_function_call - call a function on the cpu on which a task runs
2269 * @p: the task to evaluate
2270 * @func: the function to be called
2271 * @info: the function call argument
2273 * Calls the function @func when the task is currently running. This might
2274 * be on the current CPU, which just calls the function directly
2276 void task_oncpu_function_call(struct task_struct *p,
2277 void (*func) (void *info), void *info)
2279 int cpu;
2281 preempt_disable();
2282 cpu = task_cpu(p);
2283 if (task_curr(p))
2284 smp_call_function_single(cpu, func, info, 1);
2285 preempt_enable();
2288 #ifdef CONFIG_SMP
2289 static int select_fallback_rq(int cpu, struct task_struct *p)
2291 int dest_cpu;
2292 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2294 /* Look for allowed, online CPU in same node. */
2295 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2296 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2297 return dest_cpu;
2299 /* Any allowed, online CPU? */
2300 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2301 if (dest_cpu < nr_cpu_ids)
2302 return dest_cpu;
2304 /* No more Mr. Nice Guy. */
2305 if (dest_cpu >= nr_cpu_ids) {
2306 rcu_read_lock();
2307 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2308 rcu_read_unlock();
2309 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2312 * Don't tell them about moving exiting tasks or
2313 * kernel threads (both mm NULL), since they never
2314 * leave kernel.
2316 if (p->mm && printk_ratelimit()) {
2317 printk(KERN_INFO "process %d (%s) no "
2318 "longer affine to cpu%d\n",
2319 task_pid_nr(p), p->comm, cpu);
2323 return dest_cpu;
2327 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2328 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2329 * by:
2331 * exec: is unstable, retry loop
2332 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2334 static inline
2335 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2337 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2340 * In order not to call set_task_cpu() on a blocking task we need
2341 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2342 * cpu.
2344 * Since this is common to all placement strategies, this lives here.
2346 * [ this allows ->select_task() to simply return task_cpu(p) and
2347 * not worry about this generic constraint ]
2349 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2350 !cpu_online(cpu)))
2351 cpu = select_fallback_rq(task_cpu(p), p);
2353 return cpu;
2355 #endif
2357 /***
2358 * try_to_wake_up - wake up a thread
2359 * @p: the to-be-woken-up thread
2360 * @state: the mask of task states that can be woken
2361 * @sync: do a synchronous wakeup?
2363 * Put it on the run-queue if it's not already there. The "current"
2364 * thread is always on the run-queue (except when the actual
2365 * re-schedule is in progress), and as such you're allowed to do
2366 * the simpler "current->state = TASK_RUNNING" to mark yourself
2367 * runnable without the overhead of this.
2369 * returns failure only if the task is already active.
2371 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2372 int wake_flags)
2374 int cpu, orig_cpu, this_cpu, success = 0;
2375 unsigned long flags;
2376 struct rq *rq;
2378 if (!sched_feat(SYNC_WAKEUPS))
2379 wake_flags &= ~WF_SYNC;
2381 this_cpu = get_cpu();
2383 smp_wmb();
2384 rq = task_rq_lock(p, &flags);
2385 update_rq_clock(rq);
2386 if (!(p->state & state))
2387 goto out;
2389 if (p->se.on_rq)
2390 goto out_running;
2392 cpu = task_cpu(p);
2393 orig_cpu = cpu;
2395 #ifdef CONFIG_SMP
2396 if (unlikely(task_running(rq, p)))
2397 goto out_activate;
2400 * In order to handle concurrent wakeups and release the rq->lock
2401 * we put the task in TASK_WAKING state.
2403 * First fix up the nr_uninterruptible count:
2405 if (task_contributes_to_load(p))
2406 rq->nr_uninterruptible--;
2407 p->state = TASK_WAKING;
2409 if (p->sched_class->task_waking)
2410 p->sched_class->task_waking(rq, p);
2412 __task_rq_unlock(rq);
2414 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2415 if (cpu != orig_cpu) {
2417 * Since we migrate the task without holding any rq->lock,
2418 * we need to be careful with task_rq_lock(), since that
2419 * might end up locking an invalid rq.
2421 set_task_cpu(p, cpu);
2424 rq = cpu_rq(cpu);
2425 raw_spin_lock(&rq->lock);
2426 update_rq_clock(rq);
2429 * We migrated the task without holding either rq->lock, however
2430 * since the task is not on the task list itself, nobody else
2431 * will try and migrate the task, hence the rq should match the
2432 * cpu we just moved it to.
2434 WARN_ON(task_cpu(p) != cpu);
2435 WARN_ON(p->state != TASK_WAKING);
2437 #ifdef CONFIG_SCHEDSTATS
2438 schedstat_inc(rq, ttwu_count);
2439 if (cpu == this_cpu)
2440 schedstat_inc(rq, ttwu_local);
2441 else {
2442 struct sched_domain *sd;
2443 for_each_domain(this_cpu, sd) {
2444 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2445 schedstat_inc(sd, ttwu_wake_remote);
2446 break;
2450 #endif /* CONFIG_SCHEDSTATS */
2452 out_activate:
2453 #endif /* CONFIG_SMP */
2454 schedstat_inc(p, se.nr_wakeups);
2455 if (wake_flags & WF_SYNC)
2456 schedstat_inc(p, se.nr_wakeups_sync);
2457 if (orig_cpu != cpu)
2458 schedstat_inc(p, se.nr_wakeups_migrate);
2459 if (cpu == this_cpu)
2460 schedstat_inc(p, se.nr_wakeups_local);
2461 else
2462 schedstat_inc(p, se.nr_wakeups_remote);
2463 activate_task(rq, p, 1);
2464 success = 1;
2467 * Only attribute actual wakeups done by this task.
2469 if (!in_interrupt()) {
2470 struct sched_entity *se = &current->se;
2471 u64 sample = se->sum_exec_runtime;
2473 if (se->last_wakeup)
2474 sample -= se->last_wakeup;
2475 else
2476 sample -= se->start_runtime;
2477 update_avg(&se->avg_wakeup, sample);
2479 se->last_wakeup = se->sum_exec_runtime;
2482 out_running:
2483 trace_sched_wakeup(rq, p, success);
2484 check_preempt_curr(rq, p, wake_flags);
2486 p->state = TASK_RUNNING;
2487 #ifdef CONFIG_SMP
2488 if (p->sched_class->task_woken)
2489 p->sched_class->task_woken(rq, p);
2491 if (unlikely(rq->idle_stamp)) {
2492 u64 delta = rq->clock - rq->idle_stamp;
2493 u64 max = 2*sysctl_sched_migration_cost;
2495 if (delta > max)
2496 rq->avg_idle = max;
2497 else
2498 update_avg(&rq->avg_idle, delta);
2499 rq->idle_stamp = 0;
2501 #endif
2502 out:
2503 task_rq_unlock(rq, &flags);
2504 put_cpu();
2506 return success;
2510 * wake_up_process - Wake up a specific process
2511 * @p: The process to be woken up.
2513 * Attempt to wake up the nominated process and move it to the set of runnable
2514 * processes. Returns 1 if the process was woken up, 0 if it was already
2515 * running.
2517 * It may be assumed that this function implies a write memory barrier before
2518 * changing the task state if and only if any tasks are woken up.
2520 int wake_up_process(struct task_struct *p)
2522 return try_to_wake_up(p, TASK_ALL, 0);
2524 EXPORT_SYMBOL(wake_up_process);
2526 int wake_up_state(struct task_struct *p, unsigned int state)
2528 return try_to_wake_up(p, state, 0);
2532 * Perform scheduler related setup for a newly forked process p.
2533 * p is forked by current.
2535 * __sched_fork() is basic setup used by init_idle() too:
2537 static void __sched_fork(struct task_struct *p)
2539 p->se.exec_start = 0;
2540 p->se.sum_exec_runtime = 0;
2541 p->se.prev_sum_exec_runtime = 0;
2542 p->se.nr_migrations = 0;
2543 p->se.last_wakeup = 0;
2544 p->se.avg_overlap = 0;
2545 p->se.start_runtime = 0;
2546 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2548 #ifdef CONFIG_SCHEDSTATS
2549 p->se.wait_start = 0;
2550 p->se.wait_max = 0;
2551 p->se.wait_count = 0;
2552 p->se.wait_sum = 0;
2554 p->se.sleep_start = 0;
2555 p->se.sleep_max = 0;
2556 p->se.sum_sleep_runtime = 0;
2558 p->se.block_start = 0;
2559 p->se.block_max = 0;
2560 p->se.exec_max = 0;
2561 p->se.slice_max = 0;
2563 p->se.nr_migrations_cold = 0;
2564 p->se.nr_failed_migrations_affine = 0;
2565 p->se.nr_failed_migrations_running = 0;
2566 p->se.nr_failed_migrations_hot = 0;
2567 p->se.nr_forced_migrations = 0;
2569 p->se.nr_wakeups = 0;
2570 p->se.nr_wakeups_sync = 0;
2571 p->se.nr_wakeups_migrate = 0;
2572 p->se.nr_wakeups_local = 0;
2573 p->se.nr_wakeups_remote = 0;
2574 p->se.nr_wakeups_affine = 0;
2575 p->se.nr_wakeups_affine_attempts = 0;
2576 p->se.nr_wakeups_passive = 0;
2577 p->se.nr_wakeups_idle = 0;
2579 #endif
2581 INIT_LIST_HEAD(&p->rt.run_list);
2582 p->se.on_rq = 0;
2583 INIT_LIST_HEAD(&p->se.group_node);
2585 #ifdef CONFIG_PREEMPT_NOTIFIERS
2586 INIT_HLIST_HEAD(&p->preempt_notifiers);
2587 #endif
2591 * fork()/clone()-time setup:
2593 void sched_fork(struct task_struct *p, int clone_flags)
2595 int cpu = get_cpu();
2597 __sched_fork(p);
2599 * We mark the process as waking here. This guarantees that
2600 * nobody will actually run it, and a signal or other external
2601 * event cannot wake it up and insert it on the runqueue either.
2603 p->state = TASK_WAKING;
2606 * Revert to default priority/policy on fork if requested.
2608 if (unlikely(p->sched_reset_on_fork)) {
2609 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2610 p->policy = SCHED_NORMAL;
2611 p->normal_prio = p->static_prio;
2614 if (PRIO_TO_NICE(p->static_prio) < 0) {
2615 p->static_prio = NICE_TO_PRIO(0);
2616 p->normal_prio = p->static_prio;
2617 set_load_weight(p);
2621 * We don't need the reset flag anymore after the fork. It has
2622 * fulfilled its duty:
2624 p->sched_reset_on_fork = 0;
2628 * Make sure we do not leak PI boosting priority to the child.
2630 p->prio = current->normal_prio;
2632 if (!rt_prio(p->prio))
2633 p->sched_class = &fair_sched_class;
2635 if (p->sched_class->task_fork)
2636 p->sched_class->task_fork(p);
2638 set_task_cpu(p, cpu);
2640 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2641 if (likely(sched_info_on()))
2642 memset(&p->sched_info, 0, sizeof(p->sched_info));
2643 #endif
2644 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2645 p->oncpu = 0;
2646 #endif
2647 #ifdef CONFIG_PREEMPT
2648 /* Want to start with kernel preemption disabled. */
2649 task_thread_info(p)->preempt_count = 1;
2650 #endif
2651 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2653 put_cpu();
2657 * wake_up_new_task - wake up a newly created task for the first time.
2659 * This function will do some initial scheduler statistics housekeeping
2660 * that must be done for every newly created context, then puts the task
2661 * on the runqueue and wakes it.
2663 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2665 unsigned long flags;
2666 struct rq *rq;
2667 int cpu __maybe_unused = get_cpu();
2669 #ifdef CONFIG_SMP
2671 * Fork balancing, do it here and not earlier because:
2672 * - cpus_allowed can change in the fork path
2673 * - any previously selected cpu might disappear through hotplug
2675 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2676 * ->cpus_allowed is stable, we have preemption disabled, meaning
2677 * cpu_online_mask is stable.
2679 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2680 set_task_cpu(p, cpu);
2681 #endif
2684 * Since the task is not on the rq and we still have TASK_WAKING set
2685 * nobody else will migrate this task.
2687 rq = cpu_rq(cpu);
2688 raw_spin_lock_irqsave(&rq->lock, flags);
2690 BUG_ON(p->state != TASK_WAKING);
2691 p->state = TASK_RUNNING;
2692 update_rq_clock(rq);
2693 activate_task(rq, p, 0);
2694 trace_sched_wakeup_new(rq, p, 1);
2695 check_preempt_curr(rq, p, WF_FORK);
2696 #ifdef CONFIG_SMP
2697 if (p->sched_class->task_woken)
2698 p->sched_class->task_woken(rq, p);
2699 #endif
2700 task_rq_unlock(rq, &flags);
2701 put_cpu();
2704 #ifdef CONFIG_PREEMPT_NOTIFIERS
2707 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2708 * @notifier: notifier struct to register
2710 void preempt_notifier_register(struct preempt_notifier *notifier)
2712 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2714 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2717 * preempt_notifier_unregister - no longer interested in preemption notifications
2718 * @notifier: notifier struct to unregister
2720 * This is safe to call from within a preemption notifier.
2722 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2724 hlist_del(&notifier->link);
2726 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2728 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2730 struct preempt_notifier *notifier;
2731 struct hlist_node *node;
2733 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2734 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2737 static void
2738 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2739 struct task_struct *next)
2741 struct preempt_notifier *notifier;
2742 struct hlist_node *node;
2744 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2745 notifier->ops->sched_out(notifier, next);
2748 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2750 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2754 static void
2755 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2756 struct task_struct *next)
2760 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2763 * prepare_task_switch - prepare to switch tasks
2764 * @rq: the runqueue preparing to switch
2765 * @prev: the current task that is being switched out
2766 * @next: the task we are going to switch to.
2768 * This is called with the rq lock held and interrupts off. It must
2769 * be paired with a subsequent finish_task_switch after the context
2770 * switch.
2772 * prepare_task_switch sets up locking and calls architecture specific
2773 * hooks.
2775 static inline void
2776 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2777 struct task_struct *next)
2779 fire_sched_out_preempt_notifiers(prev, next);
2780 prepare_lock_switch(rq, next);
2781 prepare_arch_switch(next);
2785 * finish_task_switch - clean up after a task-switch
2786 * @rq: runqueue associated with task-switch
2787 * @prev: the thread we just switched away from.
2789 * finish_task_switch must be called after the context switch, paired
2790 * with a prepare_task_switch call before the context switch.
2791 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2792 * and do any other architecture-specific cleanup actions.
2794 * Note that we may have delayed dropping an mm in context_switch(). If
2795 * so, we finish that here outside of the runqueue lock. (Doing it
2796 * with the lock held can cause deadlocks; see schedule() for
2797 * details.)
2799 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2800 __releases(rq->lock)
2802 struct mm_struct *mm = rq->prev_mm;
2803 long prev_state;
2805 rq->prev_mm = NULL;
2808 * A task struct has one reference for the use as "current".
2809 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2810 * schedule one last time. The schedule call will never return, and
2811 * the scheduled task must drop that reference.
2812 * The test for TASK_DEAD must occur while the runqueue locks are
2813 * still held, otherwise prev could be scheduled on another cpu, die
2814 * there before we look at prev->state, and then the reference would
2815 * be dropped twice.
2816 * Manfred Spraul <manfred@colorfullife.com>
2818 prev_state = prev->state;
2819 finish_arch_switch(prev);
2820 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2821 local_irq_disable();
2822 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2823 perf_event_task_sched_in(current);
2824 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2825 local_irq_enable();
2826 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2827 finish_lock_switch(rq, prev);
2829 fire_sched_in_preempt_notifiers(current);
2830 if (mm)
2831 mmdrop(mm);
2832 if (unlikely(prev_state == TASK_DEAD)) {
2834 * Remove function-return probe instances associated with this
2835 * task and put them back on the free list.
2837 kprobe_flush_task(prev);
2838 put_task_struct(prev);
2842 #ifdef CONFIG_SMP
2844 /* assumes rq->lock is held */
2845 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2847 if (prev->sched_class->pre_schedule)
2848 prev->sched_class->pre_schedule(rq, prev);
2851 /* rq->lock is NOT held, but preemption is disabled */
2852 static inline void post_schedule(struct rq *rq)
2854 if (rq->post_schedule) {
2855 unsigned long flags;
2857 raw_spin_lock_irqsave(&rq->lock, flags);
2858 if (rq->curr->sched_class->post_schedule)
2859 rq->curr->sched_class->post_schedule(rq);
2860 raw_spin_unlock_irqrestore(&rq->lock, flags);
2862 rq->post_schedule = 0;
2866 #else
2868 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2872 static inline void post_schedule(struct rq *rq)
2876 #endif
2879 * schedule_tail - first thing a freshly forked thread must call.
2880 * @prev: the thread we just switched away from.
2882 asmlinkage void schedule_tail(struct task_struct *prev)
2883 __releases(rq->lock)
2885 struct rq *rq = this_rq();
2887 finish_task_switch(rq, prev);
2890 * FIXME: do we need to worry about rq being invalidated by the
2891 * task_switch?
2893 post_schedule(rq);
2895 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2896 /* In this case, finish_task_switch does not reenable preemption */
2897 preempt_enable();
2898 #endif
2899 if (current->set_child_tid)
2900 put_user(task_pid_vnr(current), current->set_child_tid);
2904 * context_switch - switch to the new MM and the new
2905 * thread's register state.
2907 static inline void
2908 context_switch(struct rq *rq, struct task_struct *prev,
2909 struct task_struct *next)
2911 struct mm_struct *mm, *oldmm;
2913 prepare_task_switch(rq, prev, next);
2914 trace_sched_switch(rq, prev, next);
2915 mm = next->mm;
2916 oldmm = prev->active_mm;
2918 * For paravirt, this is coupled with an exit in switch_to to
2919 * combine the page table reload and the switch backend into
2920 * one hypercall.
2922 arch_start_context_switch(prev);
2924 if (likely(!mm)) {
2925 next->active_mm = oldmm;
2926 atomic_inc(&oldmm->mm_count);
2927 enter_lazy_tlb(oldmm, next);
2928 } else
2929 switch_mm(oldmm, mm, next);
2931 if (likely(!prev->mm)) {
2932 prev->active_mm = NULL;
2933 rq->prev_mm = oldmm;
2936 * Since the runqueue lock will be released by the next
2937 * task (which is an invalid locking op but in the case
2938 * of the scheduler it's an obvious special-case), so we
2939 * do an early lockdep release here:
2941 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2942 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2943 #endif
2945 /* Here we just switch the register state and the stack. */
2946 switch_to(prev, next, prev);
2948 barrier();
2950 * this_rq must be evaluated again because prev may have moved
2951 * CPUs since it called schedule(), thus the 'rq' on its stack
2952 * frame will be invalid.
2954 finish_task_switch(this_rq(), prev);
2958 * nr_running, nr_uninterruptible and nr_context_switches:
2960 * externally visible scheduler statistics: current number of runnable
2961 * threads, current number of uninterruptible-sleeping threads, total
2962 * number of context switches performed since bootup.
2964 unsigned long nr_running(void)
2966 unsigned long i, sum = 0;
2968 for_each_online_cpu(i)
2969 sum += cpu_rq(i)->nr_running;
2971 return sum;
2974 unsigned long nr_uninterruptible(void)
2976 unsigned long i, sum = 0;
2978 for_each_possible_cpu(i)
2979 sum += cpu_rq(i)->nr_uninterruptible;
2982 * Since we read the counters lockless, it might be slightly
2983 * inaccurate. Do not allow it to go below zero though:
2985 if (unlikely((long)sum < 0))
2986 sum = 0;
2988 return sum;
2991 unsigned long long nr_context_switches(void)
2993 int i;
2994 unsigned long long sum = 0;
2996 for_each_possible_cpu(i)
2997 sum += cpu_rq(i)->nr_switches;
2999 return sum;
3002 unsigned long nr_iowait(void)
3004 unsigned long i, sum = 0;
3006 for_each_possible_cpu(i)
3007 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3009 return sum;
3012 unsigned long nr_iowait_cpu(void)
3014 struct rq *this = this_rq();
3015 return atomic_read(&this->nr_iowait);
3018 unsigned long this_cpu_load(void)
3020 struct rq *this = this_rq();
3021 return this->cpu_load[0];
3025 /* Variables and functions for calc_load */
3026 static atomic_long_t calc_load_tasks;
3027 static unsigned long calc_load_update;
3028 unsigned long avenrun[3];
3029 EXPORT_SYMBOL(avenrun);
3032 * get_avenrun - get the load average array
3033 * @loads: pointer to dest load array
3034 * @offset: offset to add
3035 * @shift: shift count to shift the result left
3037 * These values are estimates at best, so no need for locking.
3039 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3041 loads[0] = (avenrun[0] + offset) << shift;
3042 loads[1] = (avenrun[1] + offset) << shift;
3043 loads[2] = (avenrun[2] + offset) << shift;
3046 static unsigned long
3047 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3049 load *= exp;
3050 load += active * (FIXED_1 - exp);
3051 return load >> FSHIFT;
3055 * calc_load - update the avenrun load estimates 10 ticks after the
3056 * CPUs have updated calc_load_tasks.
3058 void calc_global_load(void)
3060 unsigned long upd = calc_load_update + 10;
3061 long active;
3063 if (time_before(jiffies, upd))
3064 return;
3066 active = atomic_long_read(&calc_load_tasks);
3067 active = active > 0 ? active * FIXED_1 : 0;
3069 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3070 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3071 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3073 calc_load_update += LOAD_FREQ;
3077 * Either called from update_cpu_load() or from a cpu going idle
3079 static void calc_load_account_active(struct rq *this_rq)
3081 long nr_active, delta;
3083 nr_active = this_rq->nr_running;
3084 nr_active += (long) this_rq->nr_uninterruptible;
3086 if (nr_active != this_rq->calc_load_active) {
3087 delta = nr_active - this_rq->calc_load_active;
3088 this_rq->calc_load_active = nr_active;
3089 atomic_long_add(delta, &calc_load_tasks);
3094 * Update rq->cpu_load[] statistics. This function is usually called every
3095 * scheduler tick (TICK_NSEC).
3097 static void update_cpu_load(struct rq *this_rq)
3099 unsigned long this_load = this_rq->load.weight;
3100 int i, scale;
3102 this_rq->nr_load_updates++;
3104 /* Update our load: */
3105 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3106 unsigned long old_load, new_load;
3108 /* scale is effectively 1 << i now, and >> i divides by scale */
3110 old_load = this_rq->cpu_load[i];
3111 new_load = this_load;
3113 * Round up the averaging division if load is increasing. This
3114 * prevents us from getting stuck on 9 if the load is 10, for
3115 * example.
3117 if (new_load > old_load)
3118 new_load += scale-1;
3119 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3122 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3123 this_rq->calc_load_update += LOAD_FREQ;
3124 calc_load_account_active(this_rq);
3128 #ifdef CONFIG_SMP
3131 * sched_exec - execve() is a valuable balancing opportunity, because at
3132 * this point the task has the smallest effective memory and cache footprint.
3134 void sched_exec(void)
3136 struct task_struct *p = current;
3137 struct migration_req req;
3138 int dest_cpu, this_cpu;
3139 unsigned long flags;
3140 struct rq *rq;
3142 again:
3143 this_cpu = get_cpu();
3144 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3145 if (dest_cpu == this_cpu) {
3146 put_cpu();
3147 return;
3150 rq = task_rq_lock(p, &flags);
3151 put_cpu();
3154 * select_task_rq() can race against ->cpus_allowed
3156 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3157 || unlikely(!cpu_active(dest_cpu))) {
3158 task_rq_unlock(rq, &flags);
3159 goto again;
3162 /* force the process onto the specified CPU */
3163 if (migrate_task(p, dest_cpu, &req)) {
3164 /* Need to wait for migration thread (might exit: take ref). */
3165 struct task_struct *mt = rq->migration_thread;
3167 get_task_struct(mt);
3168 task_rq_unlock(rq, &flags);
3169 wake_up_process(mt);
3170 put_task_struct(mt);
3171 wait_for_completion(&req.done);
3173 return;
3175 task_rq_unlock(rq, &flags);
3178 #endif
3180 DEFINE_PER_CPU(struct kernel_stat, kstat);
3182 EXPORT_PER_CPU_SYMBOL(kstat);
3185 * Return any ns on the sched_clock that have not yet been accounted in
3186 * @p in case that task is currently running.
3188 * Called with task_rq_lock() held on @rq.
3190 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3192 u64 ns = 0;
3194 if (task_current(rq, p)) {
3195 update_rq_clock(rq);
3196 ns = rq->clock - p->se.exec_start;
3197 if ((s64)ns < 0)
3198 ns = 0;
3201 return ns;
3204 unsigned long long task_delta_exec(struct task_struct *p)
3206 unsigned long flags;
3207 struct rq *rq;
3208 u64 ns = 0;
3210 rq = task_rq_lock(p, &flags);
3211 ns = do_task_delta_exec(p, rq);
3212 task_rq_unlock(rq, &flags);
3214 return ns;
3218 * Return accounted runtime for the task.
3219 * In case the task is currently running, return the runtime plus current's
3220 * pending runtime that have not been accounted yet.
3222 unsigned long long task_sched_runtime(struct task_struct *p)
3224 unsigned long flags;
3225 struct rq *rq;
3226 u64 ns = 0;
3228 rq = task_rq_lock(p, &flags);
3229 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3230 task_rq_unlock(rq, &flags);
3232 return ns;
3236 * Return sum_exec_runtime for the thread group.
3237 * In case the task is currently running, return the sum plus current's
3238 * pending runtime that have not been accounted yet.
3240 * Note that the thread group might have other running tasks as well,
3241 * so the return value not includes other pending runtime that other
3242 * running tasks might have.
3244 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3246 struct task_cputime totals;
3247 unsigned long flags;
3248 struct rq *rq;
3249 u64 ns;
3251 rq = task_rq_lock(p, &flags);
3252 thread_group_cputime(p, &totals);
3253 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3254 task_rq_unlock(rq, &flags);
3256 return ns;
3260 * Account user cpu time to a process.
3261 * @p: the process that the cpu time gets accounted to
3262 * @cputime: the cpu time spent in user space since the last update
3263 * @cputime_scaled: cputime scaled by cpu frequency
3265 void account_user_time(struct task_struct *p, cputime_t cputime,
3266 cputime_t cputime_scaled)
3268 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3269 cputime64_t tmp;
3271 /* Add user time to process. */
3272 p->utime = cputime_add(p->utime, cputime);
3273 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3274 account_group_user_time(p, cputime);
3276 /* Add user time to cpustat. */
3277 tmp = cputime_to_cputime64(cputime);
3278 if (TASK_NICE(p) > 0)
3279 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3280 else
3281 cpustat->user = cputime64_add(cpustat->user, tmp);
3283 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3284 /* Account for user time used */
3285 acct_update_integrals(p);
3289 * Account guest cpu time to a process.
3290 * @p: the process that the cpu time gets accounted to
3291 * @cputime: the cpu time spent in virtual machine since the last update
3292 * @cputime_scaled: cputime scaled by cpu frequency
3294 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3295 cputime_t cputime_scaled)
3297 cputime64_t tmp;
3298 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3300 tmp = cputime_to_cputime64(cputime);
3302 /* Add guest time to process. */
3303 p->utime = cputime_add(p->utime, cputime);
3304 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3305 account_group_user_time(p, cputime);
3306 p->gtime = cputime_add(p->gtime, cputime);
3308 /* Add guest time to cpustat. */
3309 if (TASK_NICE(p) > 0) {
3310 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3311 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3312 } else {
3313 cpustat->user = cputime64_add(cpustat->user, tmp);
3314 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3319 * Account system cpu time to a process.
3320 * @p: the process that the cpu time gets accounted to
3321 * @hardirq_offset: the offset to subtract from hardirq_count()
3322 * @cputime: the cpu time spent in kernel space since the last update
3323 * @cputime_scaled: cputime scaled by cpu frequency
3325 void account_system_time(struct task_struct *p, int hardirq_offset,
3326 cputime_t cputime, cputime_t cputime_scaled)
3328 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3329 cputime64_t tmp;
3331 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3332 account_guest_time(p, cputime, cputime_scaled);
3333 return;
3336 /* Add system time to process. */
3337 p->stime = cputime_add(p->stime, cputime);
3338 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3339 account_group_system_time(p, cputime);
3341 /* Add system time to cpustat. */
3342 tmp = cputime_to_cputime64(cputime);
3343 if (hardirq_count() - hardirq_offset)
3344 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3345 else if (softirq_count())
3346 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3347 else
3348 cpustat->system = cputime64_add(cpustat->system, tmp);
3350 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3352 /* Account for system time used */
3353 acct_update_integrals(p);
3357 * Account for involuntary wait time.
3358 * @steal: the cpu time spent in involuntary wait
3360 void account_steal_time(cputime_t cputime)
3362 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3363 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3365 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3369 * Account for idle time.
3370 * @cputime: the cpu time spent in idle wait
3372 void account_idle_time(cputime_t cputime)
3374 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3375 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3376 struct rq *rq = this_rq();
3378 if (atomic_read(&rq->nr_iowait) > 0)
3379 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3380 else
3381 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3384 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3387 * Account a single tick of cpu time.
3388 * @p: the process that the cpu time gets accounted to
3389 * @user_tick: indicates if the tick is a user or a system tick
3391 void account_process_tick(struct task_struct *p, int user_tick)
3393 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3394 struct rq *rq = this_rq();
3396 if (user_tick)
3397 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3398 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3399 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3400 one_jiffy_scaled);
3401 else
3402 account_idle_time(cputime_one_jiffy);
3406 * Account multiple ticks of steal time.
3407 * @p: the process from which the cpu time has been stolen
3408 * @ticks: number of stolen ticks
3410 void account_steal_ticks(unsigned long ticks)
3412 account_steal_time(jiffies_to_cputime(ticks));
3416 * Account multiple ticks of idle time.
3417 * @ticks: number of stolen ticks
3419 void account_idle_ticks(unsigned long ticks)
3421 account_idle_time(jiffies_to_cputime(ticks));
3424 #endif
3427 * Use precise platform statistics if available:
3429 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3430 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3432 *ut = p->utime;
3433 *st = p->stime;
3436 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3438 struct task_cputime cputime;
3440 thread_group_cputime(p, &cputime);
3442 *ut = cputime.utime;
3443 *st = cputime.stime;
3445 #else
3447 #ifndef nsecs_to_cputime
3448 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3449 #endif
3451 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3453 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3456 * Use CFS's precise accounting:
3458 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3460 if (total) {
3461 u64 temp;
3463 temp = (u64)(rtime * utime);
3464 do_div(temp, total);
3465 utime = (cputime_t)temp;
3466 } else
3467 utime = rtime;
3470 * Compare with previous values, to keep monotonicity:
3472 p->prev_utime = max(p->prev_utime, utime);
3473 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3475 *ut = p->prev_utime;
3476 *st = p->prev_stime;
3480 * Must be called with siglock held.
3482 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3484 struct signal_struct *sig = p->signal;
3485 struct task_cputime cputime;
3486 cputime_t rtime, utime, total;
3488 thread_group_cputime(p, &cputime);
3490 total = cputime_add(cputime.utime, cputime.stime);
3491 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3493 if (total) {
3494 u64 temp;
3496 temp = (u64)(rtime * cputime.utime);
3497 do_div(temp, total);
3498 utime = (cputime_t)temp;
3499 } else
3500 utime = rtime;
3502 sig->prev_utime = max(sig->prev_utime, utime);
3503 sig->prev_stime = max(sig->prev_stime,
3504 cputime_sub(rtime, sig->prev_utime));
3506 *ut = sig->prev_utime;
3507 *st = sig->prev_stime;
3509 #endif
3512 * This function gets called by the timer code, with HZ frequency.
3513 * We call it with interrupts disabled.
3515 * It also gets called by the fork code, when changing the parent's
3516 * timeslices.
3518 void scheduler_tick(void)
3520 int cpu = smp_processor_id();
3521 struct rq *rq = cpu_rq(cpu);
3522 struct task_struct *curr = rq->curr;
3524 sched_clock_tick();
3526 raw_spin_lock(&rq->lock);
3527 update_rq_clock(rq);
3528 update_cpu_load(rq);
3529 curr->sched_class->task_tick(rq, curr, 0);
3530 raw_spin_unlock(&rq->lock);
3532 perf_event_task_tick(curr);
3534 #ifdef CONFIG_SMP
3535 rq->idle_at_tick = idle_cpu(cpu);
3536 trigger_load_balance(rq, cpu);
3537 #endif
3540 notrace unsigned long get_parent_ip(unsigned long addr)
3542 if (in_lock_functions(addr)) {
3543 addr = CALLER_ADDR2;
3544 if (in_lock_functions(addr))
3545 addr = CALLER_ADDR3;
3547 return addr;
3550 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3551 defined(CONFIG_PREEMPT_TRACER))
3553 void __kprobes add_preempt_count(int val)
3555 #ifdef CONFIG_DEBUG_PREEMPT
3557 * Underflow?
3559 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3560 return;
3561 #endif
3562 preempt_count() += val;
3563 #ifdef CONFIG_DEBUG_PREEMPT
3565 * Spinlock count overflowing soon?
3567 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3568 PREEMPT_MASK - 10);
3569 #endif
3570 if (preempt_count() == val)
3571 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3573 EXPORT_SYMBOL(add_preempt_count);
3575 void __kprobes sub_preempt_count(int val)
3577 #ifdef CONFIG_DEBUG_PREEMPT
3579 * Underflow?
3581 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3582 return;
3584 * Is the spinlock portion underflowing?
3586 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3587 !(preempt_count() & PREEMPT_MASK)))
3588 return;
3589 #endif
3591 if (preempt_count() == val)
3592 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3593 preempt_count() -= val;
3595 EXPORT_SYMBOL(sub_preempt_count);
3597 #endif
3600 * Print scheduling while atomic bug:
3602 static noinline void __schedule_bug(struct task_struct *prev)
3604 struct pt_regs *regs = get_irq_regs();
3606 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3607 prev->comm, prev->pid, preempt_count());
3609 debug_show_held_locks(prev);
3610 print_modules();
3611 if (irqs_disabled())
3612 print_irqtrace_events(prev);
3614 if (regs)
3615 show_regs(regs);
3616 else
3617 dump_stack();
3621 * Various schedule()-time debugging checks and statistics:
3623 static inline void schedule_debug(struct task_struct *prev)
3626 * Test if we are atomic. Since do_exit() needs to call into
3627 * schedule() atomically, we ignore that path for now.
3628 * Otherwise, whine if we are scheduling when we should not be.
3630 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3631 __schedule_bug(prev);
3633 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3635 schedstat_inc(this_rq(), sched_count);
3636 #ifdef CONFIG_SCHEDSTATS
3637 if (unlikely(prev->lock_depth >= 0)) {
3638 schedstat_inc(this_rq(), bkl_count);
3639 schedstat_inc(prev, sched_info.bkl_count);
3641 #endif
3644 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3646 if (prev->state == TASK_RUNNING) {
3647 u64 runtime = prev->se.sum_exec_runtime;
3649 runtime -= prev->se.prev_sum_exec_runtime;
3650 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
3653 * In order to avoid avg_overlap growing stale when we are
3654 * indeed overlapping and hence not getting put to sleep, grow
3655 * the avg_overlap on preemption.
3657 * We use the average preemption runtime because that
3658 * correlates to the amount of cache footprint a task can
3659 * build up.
3661 update_avg(&prev->se.avg_overlap, runtime);
3663 prev->sched_class->put_prev_task(rq, prev);
3667 * Pick up the highest-prio task:
3669 static inline struct task_struct *
3670 pick_next_task(struct rq *rq)
3672 const struct sched_class *class;
3673 struct task_struct *p;
3676 * Optimization: we know that if all tasks are in
3677 * the fair class we can call that function directly:
3679 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3680 p = fair_sched_class.pick_next_task(rq);
3681 if (likely(p))
3682 return p;
3685 class = sched_class_highest;
3686 for ( ; ; ) {
3687 p = class->pick_next_task(rq);
3688 if (p)
3689 return p;
3691 * Will never be NULL as the idle class always
3692 * returns a non-NULL p:
3694 class = class->next;
3699 * schedule() is the main scheduler function.
3701 asmlinkage void __sched schedule(void)
3703 struct task_struct *prev, *next;
3704 unsigned long *switch_count;
3705 struct rq *rq;
3706 int cpu;
3708 need_resched:
3709 preempt_disable();
3710 cpu = smp_processor_id();
3711 rq = cpu_rq(cpu);
3712 rcu_sched_qs(cpu);
3713 prev = rq->curr;
3714 switch_count = &prev->nivcsw;
3716 release_kernel_lock(prev);
3717 need_resched_nonpreemptible:
3719 schedule_debug(prev);
3721 if (sched_feat(HRTICK))
3722 hrtick_clear(rq);
3724 raw_spin_lock_irq(&rq->lock);
3725 update_rq_clock(rq);
3726 clear_tsk_need_resched(prev);
3728 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3729 if (unlikely(signal_pending_state(prev->state, prev)))
3730 prev->state = TASK_RUNNING;
3731 else
3732 deactivate_task(rq, prev, 1);
3733 switch_count = &prev->nvcsw;
3736 pre_schedule(rq, prev);
3738 if (unlikely(!rq->nr_running))
3739 idle_balance(cpu, rq);
3741 put_prev_task(rq, prev);
3742 next = pick_next_task(rq);
3744 if (likely(prev != next)) {
3745 sched_info_switch(prev, next);
3746 perf_event_task_sched_out(prev, next);
3748 rq->nr_switches++;
3749 rq->curr = next;
3750 ++*switch_count;
3752 context_switch(rq, prev, next); /* unlocks the rq */
3754 * the context switch might have flipped the stack from under
3755 * us, hence refresh the local variables.
3757 cpu = smp_processor_id();
3758 rq = cpu_rq(cpu);
3759 } else
3760 raw_spin_unlock_irq(&rq->lock);
3762 post_schedule(rq);
3764 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3765 prev = rq->curr;
3766 switch_count = &prev->nivcsw;
3767 goto need_resched_nonpreemptible;
3770 preempt_enable_no_resched();
3771 if (need_resched())
3772 goto need_resched;
3774 EXPORT_SYMBOL(schedule);
3776 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3778 * Look out! "owner" is an entirely speculative pointer
3779 * access and not reliable.
3781 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3783 unsigned int cpu;
3784 struct rq *rq;
3786 if (!sched_feat(OWNER_SPIN))
3787 return 0;
3789 #ifdef CONFIG_DEBUG_PAGEALLOC
3791 * Need to access the cpu field knowing that
3792 * DEBUG_PAGEALLOC could have unmapped it if
3793 * the mutex owner just released it and exited.
3795 if (probe_kernel_address(&owner->cpu, cpu))
3796 return 0;
3797 #else
3798 cpu = owner->cpu;
3799 #endif
3802 * Even if the access succeeded (likely case),
3803 * the cpu field may no longer be valid.
3805 if (cpu >= nr_cpumask_bits)
3806 return 0;
3809 * We need to validate that we can do a
3810 * get_cpu() and that we have the percpu area.
3812 if (!cpu_online(cpu))
3813 return 0;
3815 rq = cpu_rq(cpu);
3817 for (;;) {
3819 * Owner changed, break to re-assess state.
3821 if (lock->owner != owner)
3822 break;
3825 * Is that owner really running on that cpu?
3827 if (task_thread_info(rq->curr) != owner || need_resched())
3828 return 0;
3830 cpu_relax();
3833 return 1;
3835 #endif
3837 #ifdef CONFIG_PREEMPT
3839 * this is the entry point to schedule() from in-kernel preemption
3840 * off of preempt_enable. Kernel preemptions off return from interrupt
3841 * occur there and call schedule directly.
3843 asmlinkage void __sched preempt_schedule(void)
3845 struct thread_info *ti = current_thread_info();
3848 * If there is a non-zero preempt_count or interrupts are disabled,
3849 * we do not want to preempt the current task. Just return..
3851 if (likely(ti->preempt_count || irqs_disabled()))
3852 return;
3854 do {
3855 add_preempt_count(PREEMPT_ACTIVE);
3856 schedule();
3857 sub_preempt_count(PREEMPT_ACTIVE);
3860 * Check again in case we missed a preemption opportunity
3861 * between schedule and now.
3863 barrier();
3864 } while (need_resched());
3866 EXPORT_SYMBOL(preempt_schedule);
3869 * this is the entry point to schedule() from kernel preemption
3870 * off of irq context.
3871 * Note, that this is called and return with irqs disabled. This will
3872 * protect us against recursive calling from irq.
3874 asmlinkage void __sched preempt_schedule_irq(void)
3876 struct thread_info *ti = current_thread_info();
3878 /* Catch callers which need to be fixed */
3879 BUG_ON(ti->preempt_count || !irqs_disabled());
3881 do {
3882 add_preempt_count(PREEMPT_ACTIVE);
3883 local_irq_enable();
3884 schedule();
3885 local_irq_disable();
3886 sub_preempt_count(PREEMPT_ACTIVE);
3889 * Check again in case we missed a preemption opportunity
3890 * between schedule and now.
3892 barrier();
3893 } while (need_resched());
3896 #endif /* CONFIG_PREEMPT */
3898 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3899 void *key)
3901 return try_to_wake_up(curr->private, mode, wake_flags);
3903 EXPORT_SYMBOL(default_wake_function);
3906 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3907 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3908 * number) then we wake all the non-exclusive tasks and one exclusive task.
3910 * There are circumstances in which we can try to wake a task which has already
3911 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3912 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3914 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3915 int nr_exclusive, int wake_flags, void *key)
3917 wait_queue_t *curr, *next;
3919 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3920 unsigned flags = curr->flags;
3922 if (curr->func(curr, mode, wake_flags, key) &&
3923 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3924 break;
3929 * __wake_up - wake up threads blocked on a waitqueue.
3930 * @q: the waitqueue
3931 * @mode: which threads
3932 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3933 * @key: is directly passed to the wakeup function
3935 * It may be assumed that this function implies a write memory barrier before
3936 * changing the task state if and only if any tasks are woken up.
3938 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3939 int nr_exclusive, void *key)
3941 unsigned long flags;
3943 spin_lock_irqsave(&q->lock, flags);
3944 __wake_up_common(q, mode, nr_exclusive, 0, key);
3945 spin_unlock_irqrestore(&q->lock, flags);
3947 EXPORT_SYMBOL(__wake_up);
3950 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3952 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3954 __wake_up_common(q, mode, 1, 0, NULL);
3957 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3959 __wake_up_common(q, mode, 1, 0, key);
3963 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3964 * @q: the waitqueue
3965 * @mode: which threads
3966 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3967 * @key: opaque value to be passed to wakeup targets
3969 * The sync wakeup differs that the waker knows that it will schedule
3970 * away soon, so while the target thread will be woken up, it will not
3971 * be migrated to another CPU - ie. the two threads are 'synchronized'
3972 * with each other. This can prevent needless bouncing between CPUs.
3974 * On UP it can prevent extra preemption.
3976 * It may be assumed that this function implies a write memory barrier before
3977 * changing the task state if and only if any tasks are woken up.
3979 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3980 int nr_exclusive, void *key)
3982 unsigned long flags;
3983 int wake_flags = WF_SYNC;
3985 if (unlikely(!q))
3986 return;
3988 if (unlikely(!nr_exclusive))
3989 wake_flags = 0;
3991 spin_lock_irqsave(&q->lock, flags);
3992 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3993 spin_unlock_irqrestore(&q->lock, flags);
3995 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3998 * __wake_up_sync - see __wake_up_sync_key()
4000 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4002 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4004 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4007 * complete: - signals a single thread waiting on this completion
4008 * @x: holds the state of this particular completion
4010 * This will wake up a single thread waiting on this completion. Threads will be
4011 * awakened in the same order in which they were queued.
4013 * See also complete_all(), wait_for_completion() and related routines.
4015 * It may be assumed that this function implies a write memory barrier before
4016 * changing the task state if and only if any tasks are woken up.
4018 void complete(struct completion *x)
4020 unsigned long flags;
4022 spin_lock_irqsave(&x->wait.lock, flags);
4023 x->done++;
4024 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4025 spin_unlock_irqrestore(&x->wait.lock, flags);
4027 EXPORT_SYMBOL(complete);
4030 * complete_all: - signals all threads waiting on this completion
4031 * @x: holds the state of this particular completion
4033 * This will wake up all threads waiting on this particular completion event.
4035 * It may be assumed that this function implies a write memory barrier before
4036 * changing the task state if and only if any tasks are woken up.
4038 void complete_all(struct completion *x)
4040 unsigned long flags;
4042 spin_lock_irqsave(&x->wait.lock, flags);
4043 x->done += UINT_MAX/2;
4044 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4045 spin_unlock_irqrestore(&x->wait.lock, flags);
4047 EXPORT_SYMBOL(complete_all);
4049 static inline long __sched
4050 do_wait_for_common(struct completion *x, long timeout, int state)
4052 if (!x->done) {
4053 DECLARE_WAITQUEUE(wait, current);
4055 wait.flags |= WQ_FLAG_EXCLUSIVE;
4056 __add_wait_queue_tail(&x->wait, &wait);
4057 do {
4058 if (signal_pending_state(state, current)) {
4059 timeout = -ERESTARTSYS;
4060 break;
4062 __set_current_state(state);
4063 spin_unlock_irq(&x->wait.lock);
4064 timeout = schedule_timeout(timeout);
4065 spin_lock_irq(&x->wait.lock);
4066 } while (!x->done && timeout);
4067 __remove_wait_queue(&x->wait, &wait);
4068 if (!x->done)
4069 return timeout;
4071 x->done--;
4072 return timeout ?: 1;
4075 static long __sched
4076 wait_for_common(struct completion *x, long timeout, int state)
4078 might_sleep();
4080 spin_lock_irq(&x->wait.lock);
4081 timeout = do_wait_for_common(x, timeout, state);
4082 spin_unlock_irq(&x->wait.lock);
4083 return timeout;
4087 * wait_for_completion: - waits for completion of a task
4088 * @x: holds the state of this particular completion
4090 * This waits to be signaled for completion of a specific task. It is NOT
4091 * interruptible and there is no timeout.
4093 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4094 * and interrupt capability. Also see complete().
4096 void __sched wait_for_completion(struct completion *x)
4098 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4100 EXPORT_SYMBOL(wait_for_completion);
4103 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4104 * @x: holds the state of this particular completion
4105 * @timeout: timeout value in jiffies
4107 * This waits for either a completion of a specific task to be signaled or for a
4108 * specified timeout to expire. The timeout is in jiffies. It is not
4109 * interruptible.
4111 unsigned long __sched
4112 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4114 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4116 EXPORT_SYMBOL(wait_for_completion_timeout);
4119 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4120 * @x: holds the state of this particular completion
4122 * This waits for completion of a specific task to be signaled. It is
4123 * interruptible.
4125 int __sched wait_for_completion_interruptible(struct completion *x)
4127 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4128 if (t == -ERESTARTSYS)
4129 return t;
4130 return 0;
4132 EXPORT_SYMBOL(wait_for_completion_interruptible);
4135 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4136 * @x: holds the state of this particular completion
4137 * @timeout: timeout value in jiffies
4139 * This waits for either a completion of a specific task to be signaled or for a
4140 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4142 unsigned long __sched
4143 wait_for_completion_interruptible_timeout(struct completion *x,
4144 unsigned long timeout)
4146 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4148 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4151 * wait_for_completion_killable: - waits for completion of a task (killable)
4152 * @x: holds the state of this particular completion
4154 * This waits to be signaled for completion of a specific task. It can be
4155 * interrupted by a kill signal.
4157 int __sched wait_for_completion_killable(struct completion *x)
4159 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4160 if (t == -ERESTARTSYS)
4161 return t;
4162 return 0;
4164 EXPORT_SYMBOL(wait_for_completion_killable);
4167 * try_wait_for_completion - try to decrement a completion without blocking
4168 * @x: completion structure
4170 * Returns: 0 if a decrement cannot be done without blocking
4171 * 1 if a decrement succeeded.
4173 * If a completion is being used as a counting completion,
4174 * attempt to decrement the counter without blocking. This
4175 * enables us to avoid waiting if the resource the completion
4176 * is protecting is not available.
4178 bool try_wait_for_completion(struct completion *x)
4180 unsigned long flags;
4181 int ret = 1;
4183 spin_lock_irqsave(&x->wait.lock, flags);
4184 if (!x->done)
4185 ret = 0;
4186 else
4187 x->done--;
4188 spin_unlock_irqrestore(&x->wait.lock, flags);
4189 return ret;
4191 EXPORT_SYMBOL(try_wait_for_completion);
4194 * completion_done - Test to see if a completion has any waiters
4195 * @x: completion structure
4197 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4198 * 1 if there are no waiters.
4201 bool completion_done(struct completion *x)
4203 unsigned long flags;
4204 int ret = 1;
4206 spin_lock_irqsave(&x->wait.lock, flags);
4207 if (!x->done)
4208 ret = 0;
4209 spin_unlock_irqrestore(&x->wait.lock, flags);
4210 return ret;
4212 EXPORT_SYMBOL(completion_done);
4214 static long __sched
4215 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4217 unsigned long flags;
4218 wait_queue_t wait;
4220 init_waitqueue_entry(&wait, current);
4222 __set_current_state(state);
4224 spin_lock_irqsave(&q->lock, flags);
4225 __add_wait_queue(q, &wait);
4226 spin_unlock(&q->lock);
4227 timeout = schedule_timeout(timeout);
4228 spin_lock_irq(&q->lock);
4229 __remove_wait_queue(q, &wait);
4230 spin_unlock_irqrestore(&q->lock, flags);
4232 return timeout;
4235 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4237 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4239 EXPORT_SYMBOL(interruptible_sleep_on);
4241 long __sched
4242 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4244 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4246 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4248 void __sched sleep_on(wait_queue_head_t *q)
4250 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4252 EXPORT_SYMBOL(sleep_on);
4254 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4256 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4258 EXPORT_SYMBOL(sleep_on_timeout);
4260 #ifdef CONFIG_RT_MUTEXES
4263 * rt_mutex_setprio - set the current priority of a task
4264 * @p: task
4265 * @prio: prio value (kernel-internal form)
4267 * This function changes the 'effective' priority of a task. It does
4268 * not touch ->normal_prio like __setscheduler().
4270 * Used by the rt_mutex code to implement priority inheritance logic.
4272 void rt_mutex_setprio(struct task_struct *p, int prio)
4274 unsigned long flags;
4275 int oldprio, on_rq, running;
4276 struct rq *rq;
4277 const struct sched_class *prev_class;
4279 BUG_ON(prio < 0 || prio > MAX_PRIO);
4281 rq = task_rq_lock(p, &flags);
4282 update_rq_clock(rq);
4284 oldprio = p->prio;
4285 prev_class = p->sched_class;
4286 on_rq = p->se.on_rq;
4287 running = task_current(rq, p);
4288 if (on_rq)
4289 dequeue_task(rq, p, 0);
4290 if (running)
4291 p->sched_class->put_prev_task(rq, p);
4293 if (rt_prio(prio))
4294 p->sched_class = &rt_sched_class;
4295 else
4296 p->sched_class = &fair_sched_class;
4298 p->prio = prio;
4300 if (running)
4301 p->sched_class->set_curr_task(rq);
4302 if (on_rq) {
4303 enqueue_task(rq, p, 0, oldprio < prio);
4305 check_class_changed(rq, p, prev_class, oldprio, running);
4307 task_rq_unlock(rq, &flags);
4310 #endif
4312 void set_user_nice(struct task_struct *p, long nice)
4314 int old_prio, delta, on_rq;
4315 unsigned long flags;
4316 struct rq *rq;
4318 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4319 return;
4321 * We have to be careful, if called from sys_setpriority(),
4322 * the task might be in the middle of scheduling on another CPU.
4324 rq = task_rq_lock(p, &flags);
4325 update_rq_clock(rq);
4327 * The RT priorities are set via sched_setscheduler(), but we still
4328 * allow the 'normal' nice value to be set - but as expected
4329 * it wont have any effect on scheduling until the task is
4330 * SCHED_FIFO/SCHED_RR:
4332 if (task_has_rt_policy(p)) {
4333 p->static_prio = NICE_TO_PRIO(nice);
4334 goto out_unlock;
4336 on_rq = p->se.on_rq;
4337 if (on_rq)
4338 dequeue_task(rq, p, 0);
4340 p->static_prio = NICE_TO_PRIO(nice);
4341 set_load_weight(p);
4342 old_prio = p->prio;
4343 p->prio = effective_prio(p);
4344 delta = p->prio - old_prio;
4346 if (on_rq) {
4347 enqueue_task(rq, p, 0, false);
4349 * If the task increased its priority or is running and
4350 * lowered its priority, then reschedule its CPU:
4352 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4353 resched_task(rq->curr);
4355 out_unlock:
4356 task_rq_unlock(rq, &flags);
4358 EXPORT_SYMBOL(set_user_nice);
4361 * can_nice - check if a task can reduce its nice value
4362 * @p: task
4363 * @nice: nice value
4365 int can_nice(const struct task_struct *p, const int nice)
4367 /* convert nice value [19,-20] to rlimit style value [1,40] */
4368 int nice_rlim = 20 - nice;
4370 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4371 capable(CAP_SYS_NICE));
4374 #ifdef __ARCH_WANT_SYS_NICE
4377 * sys_nice - change the priority of the current process.
4378 * @increment: priority increment
4380 * sys_setpriority is a more generic, but much slower function that
4381 * does similar things.
4383 SYSCALL_DEFINE1(nice, int, increment)
4385 long nice, retval;
4388 * Setpriority might change our priority at the same moment.
4389 * We don't have to worry. Conceptually one call occurs first
4390 * and we have a single winner.
4392 if (increment < -40)
4393 increment = -40;
4394 if (increment > 40)
4395 increment = 40;
4397 nice = TASK_NICE(current) + increment;
4398 if (nice < -20)
4399 nice = -20;
4400 if (nice > 19)
4401 nice = 19;
4403 if (increment < 0 && !can_nice(current, nice))
4404 return -EPERM;
4406 retval = security_task_setnice(current, nice);
4407 if (retval)
4408 return retval;
4410 set_user_nice(current, nice);
4411 return 0;
4414 #endif
4417 * task_prio - return the priority value of a given task.
4418 * @p: the task in question.
4420 * This is the priority value as seen by users in /proc.
4421 * RT tasks are offset by -200. Normal tasks are centered
4422 * around 0, value goes from -16 to +15.
4424 int task_prio(const struct task_struct *p)
4426 return p->prio - MAX_RT_PRIO;
4430 * task_nice - return the nice value of a given task.
4431 * @p: the task in question.
4433 int task_nice(const struct task_struct *p)
4435 return TASK_NICE(p);
4437 EXPORT_SYMBOL(task_nice);
4440 * idle_cpu - is a given cpu idle currently?
4441 * @cpu: the processor in question.
4443 int idle_cpu(int cpu)
4445 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4449 * idle_task - return the idle task for a given cpu.
4450 * @cpu: the processor in question.
4452 struct task_struct *idle_task(int cpu)
4454 return cpu_rq(cpu)->idle;
4458 * find_process_by_pid - find a process with a matching PID value.
4459 * @pid: the pid in question.
4461 static struct task_struct *find_process_by_pid(pid_t pid)
4463 return pid ? find_task_by_vpid(pid) : current;
4466 /* Actually do priority change: must hold rq lock. */
4467 static void
4468 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4470 BUG_ON(p->se.on_rq);
4472 p->policy = policy;
4473 p->rt_priority = prio;
4474 p->normal_prio = normal_prio(p);
4475 /* we are holding p->pi_lock already */
4476 p->prio = rt_mutex_getprio(p);
4477 if (rt_prio(p->prio))
4478 p->sched_class = &rt_sched_class;
4479 else
4480 p->sched_class = &fair_sched_class;
4481 set_load_weight(p);
4485 * check the target process has a UID that matches the current process's
4487 static bool check_same_owner(struct task_struct *p)
4489 const struct cred *cred = current_cred(), *pcred;
4490 bool match;
4492 rcu_read_lock();
4493 pcred = __task_cred(p);
4494 match = (cred->euid == pcred->euid ||
4495 cred->euid == pcred->uid);
4496 rcu_read_unlock();
4497 return match;
4500 static int __sched_setscheduler(struct task_struct *p, int policy,
4501 struct sched_param *param, bool user)
4503 int retval, oldprio, oldpolicy = -1, on_rq, running;
4504 unsigned long flags;
4505 const struct sched_class *prev_class;
4506 struct rq *rq;
4507 int reset_on_fork;
4509 /* may grab non-irq protected spin_locks */
4510 BUG_ON(in_interrupt());
4511 recheck:
4512 /* double check policy once rq lock held */
4513 if (policy < 0) {
4514 reset_on_fork = p->sched_reset_on_fork;
4515 policy = oldpolicy = p->policy;
4516 } else {
4517 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4518 policy &= ~SCHED_RESET_ON_FORK;
4520 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4521 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4522 policy != SCHED_IDLE)
4523 return -EINVAL;
4527 * Valid priorities for SCHED_FIFO and SCHED_RR are
4528 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4529 * SCHED_BATCH and SCHED_IDLE is 0.
4531 if (param->sched_priority < 0 ||
4532 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4533 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4534 return -EINVAL;
4535 if (rt_policy(policy) != (param->sched_priority != 0))
4536 return -EINVAL;
4539 * Allow unprivileged RT tasks to decrease priority:
4541 if (user && !capable(CAP_SYS_NICE)) {
4542 if (rt_policy(policy)) {
4543 unsigned long rlim_rtprio;
4545 if (!lock_task_sighand(p, &flags))
4546 return -ESRCH;
4547 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4548 unlock_task_sighand(p, &flags);
4550 /* can't set/change the rt policy */
4551 if (policy != p->policy && !rlim_rtprio)
4552 return -EPERM;
4554 /* can't increase priority */
4555 if (param->sched_priority > p->rt_priority &&
4556 param->sched_priority > rlim_rtprio)
4557 return -EPERM;
4560 * Like positive nice levels, dont allow tasks to
4561 * move out of SCHED_IDLE either:
4563 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4564 return -EPERM;
4566 /* can't change other user's priorities */
4567 if (!check_same_owner(p))
4568 return -EPERM;
4570 /* Normal users shall not reset the sched_reset_on_fork flag */
4571 if (p->sched_reset_on_fork && !reset_on_fork)
4572 return -EPERM;
4575 if (user) {
4576 #ifdef CONFIG_RT_GROUP_SCHED
4578 * Do not allow realtime tasks into groups that have no runtime
4579 * assigned.
4581 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4582 task_group(p)->rt_bandwidth.rt_runtime == 0)
4583 return -EPERM;
4584 #endif
4586 retval = security_task_setscheduler(p, policy, param);
4587 if (retval)
4588 return retval;
4592 * make sure no PI-waiters arrive (or leave) while we are
4593 * changing the priority of the task:
4595 raw_spin_lock_irqsave(&p->pi_lock, flags);
4597 * To be able to change p->policy safely, the apropriate
4598 * runqueue lock must be held.
4600 rq = __task_rq_lock(p);
4601 /* recheck policy now with rq lock held */
4602 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4603 policy = oldpolicy = -1;
4604 __task_rq_unlock(rq);
4605 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4606 goto recheck;
4608 update_rq_clock(rq);
4609 on_rq = p->se.on_rq;
4610 running = task_current(rq, p);
4611 if (on_rq)
4612 deactivate_task(rq, p, 0);
4613 if (running)
4614 p->sched_class->put_prev_task(rq, p);
4616 p->sched_reset_on_fork = reset_on_fork;
4618 oldprio = p->prio;
4619 prev_class = p->sched_class;
4620 __setscheduler(rq, p, policy, param->sched_priority);
4622 if (running)
4623 p->sched_class->set_curr_task(rq);
4624 if (on_rq) {
4625 activate_task(rq, p, 0);
4627 check_class_changed(rq, p, prev_class, oldprio, running);
4629 __task_rq_unlock(rq);
4630 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4632 rt_mutex_adjust_pi(p);
4634 return 0;
4638 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4639 * @p: the task in question.
4640 * @policy: new policy.
4641 * @param: structure containing the new RT priority.
4643 * NOTE that the task may be already dead.
4645 int sched_setscheduler(struct task_struct *p, int policy,
4646 struct sched_param *param)
4648 return __sched_setscheduler(p, policy, param, true);
4650 EXPORT_SYMBOL_GPL(sched_setscheduler);
4653 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4654 * @p: the task in question.
4655 * @policy: new policy.
4656 * @param: structure containing the new RT priority.
4658 * Just like sched_setscheduler, only don't bother checking if the
4659 * current context has permission. For example, this is needed in
4660 * stop_machine(): we create temporary high priority worker threads,
4661 * but our caller might not have that capability.
4663 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4664 struct sched_param *param)
4666 return __sched_setscheduler(p, policy, param, false);
4669 static int
4670 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4672 struct sched_param lparam;
4673 struct task_struct *p;
4674 int retval;
4676 if (!param || pid < 0)
4677 return -EINVAL;
4678 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4679 return -EFAULT;
4681 rcu_read_lock();
4682 retval = -ESRCH;
4683 p = find_process_by_pid(pid);
4684 if (p != NULL)
4685 retval = sched_setscheduler(p, policy, &lparam);
4686 rcu_read_unlock();
4688 return retval;
4692 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4693 * @pid: the pid in question.
4694 * @policy: new policy.
4695 * @param: structure containing the new RT priority.
4697 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4698 struct sched_param __user *, param)
4700 /* negative values for policy are not valid */
4701 if (policy < 0)
4702 return -EINVAL;
4704 return do_sched_setscheduler(pid, policy, param);
4708 * sys_sched_setparam - set/change the RT priority of a thread
4709 * @pid: the pid in question.
4710 * @param: structure containing the new RT priority.
4712 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4714 return do_sched_setscheduler(pid, -1, param);
4718 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4719 * @pid: the pid in question.
4721 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4723 struct task_struct *p;
4724 int retval;
4726 if (pid < 0)
4727 return -EINVAL;
4729 retval = -ESRCH;
4730 rcu_read_lock();
4731 p = find_process_by_pid(pid);
4732 if (p) {
4733 retval = security_task_getscheduler(p);
4734 if (!retval)
4735 retval = p->policy
4736 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4738 rcu_read_unlock();
4739 return retval;
4743 * sys_sched_getparam - get the RT priority of a thread
4744 * @pid: the pid in question.
4745 * @param: structure containing the RT priority.
4747 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4749 struct sched_param lp;
4750 struct task_struct *p;
4751 int retval;
4753 if (!param || pid < 0)
4754 return -EINVAL;
4756 rcu_read_lock();
4757 p = find_process_by_pid(pid);
4758 retval = -ESRCH;
4759 if (!p)
4760 goto out_unlock;
4762 retval = security_task_getscheduler(p);
4763 if (retval)
4764 goto out_unlock;
4766 lp.sched_priority = p->rt_priority;
4767 rcu_read_unlock();
4770 * This one might sleep, we cannot do it with a spinlock held ...
4772 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4774 return retval;
4776 out_unlock:
4777 rcu_read_unlock();
4778 return retval;
4781 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4783 cpumask_var_t cpus_allowed, new_mask;
4784 struct task_struct *p;
4785 int retval;
4787 get_online_cpus();
4788 rcu_read_lock();
4790 p = find_process_by_pid(pid);
4791 if (!p) {
4792 rcu_read_unlock();
4793 put_online_cpus();
4794 return -ESRCH;
4797 /* Prevent p going away */
4798 get_task_struct(p);
4799 rcu_read_unlock();
4801 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4802 retval = -ENOMEM;
4803 goto out_put_task;
4805 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4806 retval = -ENOMEM;
4807 goto out_free_cpus_allowed;
4809 retval = -EPERM;
4810 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4811 goto out_unlock;
4813 retval = security_task_setscheduler(p, 0, NULL);
4814 if (retval)
4815 goto out_unlock;
4817 cpuset_cpus_allowed(p, cpus_allowed);
4818 cpumask_and(new_mask, in_mask, cpus_allowed);
4819 again:
4820 retval = set_cpus_allowed_ptr(p, new_mask);
4822 if (!retval) {
4823 cpuset_cpus_allowed(p, cpus_allowed);
4824 if (!cpumask_subset(new_mask, cpus_allowed)) {
4826 * We must have raced with a concurrent cpuset
4827 * update. Just reset the cpus_allowed to the
4828 * cpuset's cpus_allowed
4830 cpumask_copy(new_mask, cpus_allowed);
4831 goto again;
4834 out_unlock:
4835 free_cpumask_var(new_mask);
4836 out_free_cpus_allowed:
4837 free_cpumask_var(cpus_allowed);
4838 out_put_task:
4839 put_task_struct(p);
4840 put_online_cpus();
4841 return retval;
4844 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4845 struct cpumask *new_mask)
4847 if (len < cpumask_size())
4848 cpumask_clear(new_mask);
4849 else if (len > cpumask_size())
4850 len = cpumask_size();
4852 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4856 * sys_sched_setaffinity - set the cpu affinity of a process
4857 * @pid: pid of the process
4858 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4859 * @user_mask_ptr: user-space pointer to the new cpu mask
4861 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4862 unsigned long __user *, user_mask_ptr)
4864 cpumask_var_t new_mask;
4865 int retval;
4867 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4868 return -ENOMEM;
4870 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4871 if (retval == 0)
4872 retval = sched_setaffinity(pid, new_mask);
4873 free_cpumask_var(new_mask);
4874 return retval;
4877 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4879 struct task_struct *p;
4880 unsigned long flags;
4881 struct rq *rq;
4882 int retval;
4884 get_online_cpus();
4885 rcu_read_lock();
4887 retval = -ESRCH;
4888 p = find_process_by_pid(pid);
4889 if (!p)
4890 goto out_unlock;
4892 retval = security_task_getscheduler(p);
4893 if (retval)
4894 goto out_unlock;
4896 rq = task_rq_lock(p, &flags);
4897 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4898 task_rq_unlock(rq, &flags);
4900 out_unlock:
4901 rcu_read_unlock();
4902 put_online_cpus();
4904 return retval;
4908 * sys_sched_getaffinity - get the cpu affinity of a process
4909 * @pid: pid of the process
4910 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4911 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4913 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4914 unsigned long __user *, user_mask_ptr)
4916 int ret;
4917 cpumask_var_t mask;
4919 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4920 return -EINVAL;
4921 if (len & (sizeof(unsigned long)-1))
4922 return -EINVAL;
4924 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4925 return -ENOMEM;
4927 ret = sched_getaffinity(pid, mask);
4928 if (ret == 0) {
4929 size_t retlen = min_t(size_t, len, cpumask_size());
4931 if (copy_to_user(user_mask_ptr, mask, retlen))
4932 ret = -EFAULT;
4933 else
4934 ret = retlen;
4936 free_cpumask_var(mask);
4938 return ret;
4942 * sys_sched_yield - yield the current processor to other threads.
4944 * This function yields the current CPU to other tasks. If there are no
4945 * other threads running on this CPU then this function will return.
4947 SYSCALL_DEFINE0(sched_yield)
4949 struct rq *rq = this_rq_lock();
4951 schedstat_inc(rq, yld_count);
4952 current->sched_class->yield_task(rq);
4955 * Since we are going to call schedule() anyway, there's
4956 * no need to preempt or enable interrupts:
4958 __release(rq->lock);
4959 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4960 do_raw_spin_unlock(&rq->lock);
4961 preempt_enable_no_resched();
4963 schedule();
4965 return 0;
4968 static inline int should_resched(void)
4970 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4973 static void __cond_resched(void)
4975 add_preempt_count(PREEMPT_ACTIVE);
4976 schedule();
4977 sub_preempt_count(PREEMPT_ACTIVE);
4980 int __sched _cond_resched(void)
4982 if (should_resched()) {
4983 __cond_resched();
4984 return 1;
4986 return 0;
4988 EXPORT_SYMBOL(_cond_resched);
4991 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4992 * call schedule, and on return reacquire the lock.
4994 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4995 * operations here to prevent schedule() from being called twice (once via
4996 * spin_unlock(), once by hand).
4998 int __cond_resched_lock(spinlock_t *lock)
5000 int resched = should_resched();
5001 int ret = 0;
5003 lockdep_assert_held(lock);
5005 if (spin_needbreak(lock) || resched) {
5006 spin_unlock(lock);
5007 if (resched)
5008 __cond_resched();
5009 else
5010 cpu_relax();
5011 ret = 1;
5012 spin_lock(lock);
5014 return ret;
5016 EXPORT_SYMBOL(__cond_resched_lock);
5018 int __sched __cond_resched_softirq(void)
5020 BUG_ON(!in_softirq());
5022 if (should_resched()) {
5023 local_bh_enable();
5024 __cond_resched();
5025 local_bh_disable();
5026 return 1;
5028 return 0;
5030 EXPORT_SYMBOL(__cond_resched_softirq);
5033 * yield - yield the current processor to other threads.
5035 * This is a shortcut for kernel-space yielding - it marks the
5036 * thread runnable and calls sys_sched_yield().
5038 void __sched yield(void)
5040 set_current_state(TASK_RUNNING);
5041 sys_sched_yield();
5043 EXPORT_SYMBOL(yield);
5046 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5047 * that process accounting knows that this is a task in IO wait state.
5049 void __sched io_schedule(void)
5051 struct rq *rq = raw_rq();
5053 delayacct_blkio_start();
5054 atomic_inc(&rq->nr_iowait);
5055 current->in_iowait = 1;
5056 schedule();
5057 current->in_iowait = 0;
5058 atomic_dec(&rq->nr_iowait);
5059 delayacct_blkio_end();
5061 EXPORT_SYMBOL(io_schedule);
5063 long __sched io_schedule_timeout(long timeout)
5065 struct rq *rq = raw_rq();
5066 long ret;
5068 delayacct_blkio_start();
5069 atomic_inc(&rq->nr_iowait);
5070 current->in_iowait = 1;
5071 ret = schedule_timeout(timeout);
5072 current->in_iowait = 0;
5073 atomic_dec(&rq->nr_iowait);
5074 delayacct_blkio_end();
5075 return ret;
5079 * sys_sched_get_priority_max - return maximum RT priority.
5080 * @policy: scheduling class.
5082 * this syscall returns the maximum rt_priority that can be used
5083 * by a given scheduling class.
5085 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5087 int ret = -EINVAL;
5089 switch (policy) {
5090 case SCHED_FIFO:
5091 case SCHED_RR:
5092 ret = MAX_USER_RT_PRIO-1;
5093 break;
5094 case SCHED_NORMAL:
5095 case SCHED_BATCH:
5096 case SCHED_IDLE:
5097 ret = 0;
5098 break;
5100 return ret;
5104 * sys_sched_get_priority_min - return minimum RT priority.
5105 * @policy: scheduling class.
5107 * this syscall returns the minimum rt_priority that can be used
5108 * by a given scheduling class.
5110 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5112 int ret = -EINVAL;
5114 switch (policy) {
5115 case SCHED_FIFO:
5116 case SCHED_RR:
5117 ret = 1;
5118 break;
5119 case SCHED_NORMAL:
5120 case SCHED_BATCH:
5121 case SCHED_IDLE:
5122 ret = 0;
5124 return ret;
5128 * sys_sched_rr_get_interval - return the default timeslice of a process.
5129 * @pid: pid of the process.
5130 * @interval: userspace pointer to the timeslice value.
5132 * this syscall writes the default timeslice value of a given process
5133 * into the user-space timespec buffer. A value of '0' means infinity.
5135 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5136 struct timespec __user *, interval)
5138 struct task_struct *p;
5139 unsigned int time_slice;
5140 unsigned long flags;
5141 struct rq *rq;
5142 int retval;
5143 struct timespec t;
5145 if (pid < 0)
5146 return -EINVAL;
5148 retval = -ESRCH;
5149 rcu_read_lock();
5150 p = find_process_by_pid(pid);
5151 if (!p)
5152 goto out_unlock;
5154 retval = security_task_getscheduler(p);
5155 if (retval)
5156 goto out_unlock;
5158 rq = task_rq_lock(p, &flags);
5159 time_slice = p->sched_class->get_rr_interval(rq, p);
5160 task_rq_unlock(rq, &flags);
5162 rcu_read_unlock();
5163 jiffies_to_timespec(time_slice, &t);
5164 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5165 return retval;
5167 out_unlock:
5168 rcu_read_unlock();
5169 return retval;
5172 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5174 void sched_show_task(struct task_struct *p)
5176 unsigned long free = 0;
5177 unsigned state;
5179 state = p->state ? __ffs(p->state) + 1 : 0;
5180 printk(KERN_INFO "%-13.13s %c", p->comm,
5181 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5182 #if BITS_PER_LONG == 32
5183 if (state == TASK_RUNNING)
5184 printk(KERN_CONT " running ");
5185 else
5186 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5187 #else
5188 if (state == TASK_RUNNING)
5189 printk(KERN_CONT " running task ");
5190 else
5191 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5192 #endif
5193 #ifdef CONFIG_DEBUG_STACK_USAGE
5194 free = stack_not_used(p);
5195 #endif
5196 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5197 task_pid_nr(p), task_pid_nr(p->real_parent),
5198 (unsigned long)task_thread_info(p)->flags);
5200 show_stack(p, NULL);
5203 void show_state_filter(unsigned long state_filter)
5205 struct task_struct *g, *p;
5207 #if BITS_PER_LONG == 32
5208 printk(KERN_INFO
5209 " task PC stack pid father\n");
5210 #else
5211 printk(KERN_INFO
5212 " task PC stack pid father\n");
5213 #endif
5214 read_lock(&tasklist_lock);
5215 do_each_thread(g, p) {
5217 * reset the NMI-timeout, listing all files on a slow
5218 * console might take alot of time:
5220 touch_nmi_watchdog();
5221 if (!state_filter || (p->state & state_filter))
5222 sched_show_task(p);
5223 } while_each_thread(g, p);
5225 touch_all_softlockup_watchdogs();
5227 #ifdef CONFIG_SCHED_DEBUG
5228 sysrq_sched_debug_show();
5229 #endif
5230 read_unlock(&tasklist_lock);
5232 * Only show locks if all tasks are dumped:
5234 if (!state_filter)
5235 debug_show_all_locks();
5238 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5240 idle->sched_class = &idle_sched_class;
5244 * init_idle - set up an idle thread for a given CPU
5245 * @idle: task in question
5246 * @cpu: cpu the idle task belongs to
5248 * NOTE: this function does not set the idle thread's NEED_RESCHED
5249 * flag, to make booting more robust.
5251 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5253 struct rq *rq = cpu_rq(cpu);
5254 unsigned long flags;
5256 raw_spin_lock_irqsave(&rq->lock, flags);
5258 __sched_fork(idle);
5259 idle->state = TASK_RUNNING;
5260 idle->se.exec_start = sched_clock();
5262 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5263 __set_task_cpu(idle, cpu);
5265 rq->curr = rq->idle = idle;
5266 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5267 idle->oncpu = 1;
5268 #endif
5269 raw_spin_unlock_irqrestore(&rq->lock, flags);
5271 /* Set the preempt count _outside_ the spinlocks! */
5272 #if defined(CONFIG_PREEMPT)
5273 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5274 #else
5275 task_thread_info(idle)->preempt_count = 0;
5276 #endif
5278 * The idle tasks have their own, simple scheduling class:
5280 idle->sched_class = &idle_sched_class;
5281 ftrace_graph_init_task(idle);
5285 * In a system that switches off the HZ timer nohz_cpu_mask
5286 * indicates which cpus entered this state. This is used
5287 * in the rcu update to wait only for active cpus. For system
5288 * which do not switch off the HZ timer nohz_cpu_mask should
5289 * always be CPU_BITS_NONE.
5291 cpumask_var_t nohz_cpu_mask;
5294 * Increase the granularity value when there are more CPUs,
5295 * because with more CPUs the 'effective latency' as visible
5296 * to users decreases. But the relationship is not linear,
5297 * so pick a second-best guess by going with the log2 of the
5298 * number of CPUs.
5300 * This idea comes from the SD scheduler of Con Kolivas:
5302 static int get_update_sysctl_factor(void)
5304 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5305 unsigned int factor;
5307 switch (sysctl_sched_tunable_scaling) {
5308 case SCHED_TUNABLESCALING_NONE:
5309 factor = 1;
5310 break;
5311 case SCHED_TUNABLESCALING_LINEAR:
5312 factor = cpus;
5313 break;
5314 case SCHED_TUNABLESCALING_LOG:
5315 default:
5316 factor = 1 + ilog2(cpus);
5317 break;
5320 return factor;
5323 static void update_sysctl(void)
5325 unsigned int factor = get_update_sysctl_factor();
5327 #define SET_SYSCTL(name) \
5328 (sysctl_##name = (factor) * normalized_sysctl_##name)
5329 SET_SYSCTL(sched_min_granularity);
5330 SET_SYSCTL(sched_latency);
5331 SET_SYSCTL(sched_wakeup_granularity);
5332 SET_SYSCTL(sched_shares_ratelimit);
5333 #undef SET_SYSCTL
5336 static inline void sched_init_granularity(void)
5338 update_sysctl();
5341 #ifdef CONFIG_SMP
5343 * This is how migration works:
5345 * 1) we queue a struct migration_req structure in the source CPU's
5346 * runqueue and wake up that CPU's migration thread.
5347 * 2) we down() the locked semaphore => thread blocks.
5348 * 3) migration thread wakes up (implicitly it forces the migrated
5349 * thread off the CPU)
5350 * 4) it gets the migration request and checks whether the migrated
5351 * task is still in the wrong runqueue.
5352 * 5) if it's in the wrong runqueue then the migration thread removes
5353 * it and puts it into the right queue.
5354 * 6) migration thread up()s the semaphore.
5355 * 7) we wake up and the migration is done.
5359 * Change a given task's CPU affinity. Migrate the thread to a
5360 * proper CPU and schedule it away if the CPU it's executing on
5361 * is removed from the allowed bitmask.
5363 * NOTE: the caller must have a valid reference to the task, the
5364 * task must not exit() & deallocate itself prematurely. The
5365 * call is not atomic; no spinlocks may be held.
5367 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5369 struct migration_req req;
5370 unsigned long flags;
5371 struct rq *rq;
5372 int ret = 0;
5374 rq = task_rq_lock(p, &flags);
5376 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5377 ret = -EINVAL;
5378 goto out;
5381 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5382 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5383 ret = -EINVAL;
5384 goto out;
5387 if (p->sched_class->set_cpus_allowed)
5388 p->sched_class->set_cpus_allowed(p, new_mask);
5389 else {
5390 cpumask_copy(&p->cpus_allowed, new_mask);
5391 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5394 /* Can the task run on the task's current CPU? If so, we're done */
5395 if (cpumask_test_cpu(task_cpu(p), new_mask))
5396 goto out;
5398 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
5399 /* Need help from migration thread: drop lock and wait. */
5400 struct task_struct *mt = rq->migration_thread;
5402 get_task_struct(mt);
5403 task_rq_unlock(rq, &flags);
5404 wake_up_process(mt);
5405 put_task_struct(mt);
5406 wait_for_completion(&req.done);
5407 tlb_migrate_finish(p->mm);
5408 return 0;
5410 out:
5411 task_rq_unlock(rq, &flags);
5413 return ret;
5415 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5418 * Move (not current) task off this cpu, onto dest cpu. We're doing
5419 * this because either it can't run here any more (set_cpus_allowed()
5420 * away from this CPU, or CPU going down), or because we're
5421 * attempting to rebalance this task on exec (sched_exec).
5423 * So we race with normal scheduler movements, but that's OK, as long
5424 * as the task is no longer on this CPU.
5426 * Returns non-zero if task was successfully migrated.
5428 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5430 struct rq *rq_dest, *rq_src;
5431 int ret = 0;
5433 if (unlikely(!cpu_active(dest_cpu)))
5434 return ret;
5436 rq_src = cpu_rq(src_cpu);
5437 rq_dest = cpu_rq(dest_cpu);
5439 double_rq_lock(rq_src, rq_dest);
5440 /* Already moved. */
5441 if (task_cpu(p) != src_cpu)
5442 goto done;
5443 /* Affinity changed (again). */
5444 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5445 goto fail;
5448 * If we're not on a rq, the next wake-up will ensure we're
5449 * placed properly.
5451 if (p->se.on_rq) {
5452 deactivate_task(rq_src, p, 0);
5453 set_task_cpu(p, dest_cpu);
5454 activate_task(rq_dest, p, 0);
5455 check_preempt_curr(rq_dest, p, 0);
5457 done:
5458 ret = 1;
5459 fail:
5460 double_rq_unlock(rq_src, rq_dest);
5461 return ret;
5464 #define RCU_MIGRATION_IDLE 0
5465 #define RCU_MIGRATION_NEED_QS 1
5466 #define RCU_MIGRATION_GOT_QS 2
5467 #define RCU_MIGRATION_MUST_SYNC 3
5470 * migration_thread - this is a highprio system thread that performs
5471 * thread migration by bumping thread off CPU then 'pushing' onto
5472 * another runqueue.
5474 static int migration_thread(void *data)
5476 int badcpu;
5477 int cpu = (long)data;
5478 struct rq *rq;
5480 rq = cpu_rq(cpu);
5481 BUG_ON(rq->migration_thread != current);
5483 set_current_state(TASK_INTERRUPTIBLE);
5484 while (!kthread_should_stop()) {
5485 struct migration_req *req;
5486 struct list_head *head;
5488 raw_spin_lock_irq(&rq->lock);
5490 if (cpu_is_offline(cpu)) {
5491 raw_spin_unlock_irq(&rq->lock);
5492 break;
5495 if (rq->active_balance) {
5496 active_load_balance(rq, cpu);
5497 rq->active_balance = 0;
5500 head = &rq->migration_queue;
5502 if (list_empty(head)) {
5503 raw_spin_unlock_irq(&rq->lock);
5504 schedule();
5505 set_current_state(TASK_INTERRUPTIBLE);
5506 continue;
5508 req = list_entry(head->next, struct migration_req, list);
5509 list_del_init(head->next);
5511 if (req->task != NULL) {
5512 raw_spin_unlock(&rq->lock);
5513 __migrate_task(req->task, cpu, req->dest_cpu);
5514 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5515 req->dest_cpu = RCU_MIGRATION_GOT_QS;
5516 raw_spin_unlock(&rq->lock);
5517 } else {
5518 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5519 raw_spin_unlock(&rq->lock);
5520 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5522 local_irq_enable();
5524 complete(&req->done);
5526 __set_current_state(TASK_RUNNING);
5528 return 0;
5531 #ifdef CONFIG_HOTPLUG_CPU
5533 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5535 int ret;
5537 local_irq_disable();
5538 ret = __migrate_task(p, src_cpu, dest_cpu);
5539 local_irq_enable();
5540 return ret;
5544 * Figure out where task on dead CPU should go, use force if necessary.
5546 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5548 int dest_cpu;
5550 again:
5551 dest_cpu = select_fallback_rq(dead_cpu, p);
5553 /* It can have affinity changed while we were choosing. */
5554 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5555 goto again;
5559 * While a dead CPU has no uninterruptible tasks queued at this point,
5560 * it might still have a nonzero ->nr_uninterruptible counter, because
5561 * for performance reasons the counter is not stricly tracking tasks to
5562 * their home CPUs. So we just add the counter to another CPU's counter,
5563 * to keep the global sum constant after CPU-down:
5565 static void migrate_nr_uninterruptible(struct rq *rq_src)
5567 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5568 unsigned long flags;
5570 local_irq_save(flags);
5571 double_rq_lock(rq_src, rq_dest);
5572 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5573 rq_src->nr_uninterruptible = 0;
5574 double_rq_unlock(rq_src, rq_dest);
5575 local_irq_restore(flags);
5578 /* Run through task list and migrate tasks from the dead cpu. */
5579 static void migrate_live_tasks(int src_cpu)
5581 struct task_struct *p, *t;
5583 read_lock(&tasklist_lock);
5585 do_each_thread(t, p) {
5586 if (p == current)
5587 continue;
5589 if (task_cpu(p) == src_cpu)
5590 move_task_off_dead_cpu(src_cpu, p);
5591 } while_each_thread(t, p);
5593 read_unlock(&tasklist_lock);
5597 * Schedules idle task to be the next runnable task on current CPU.
5598 * It does so by boosting its priority to highest possible.
5599 * Used by CPU offline code.
5601 void sched_idle_next(void)
5603 int this_cpu = smp_processor_id();
5604 struct rq *rq = cpu_rq(this_cpu);
5605 struct task_struct *p = rq->idle;
5606 unsigned long flags;
5608 /* cpu has to be offline */
5609 BUG_ON(cpu_online(this_cpu));
5612 * Strictly not necessary since rest of the CPUs are stopped by now
5613 * and interrupts disabled on the current cpu.
5615 raw_spin_lock_irqsave(&rq->lock, flags);
5617 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5619 update_rq_clock(rq);
5620 activate_task(rq, p, 0);
5622 raw_spin_unlock_irqrestore(&rq->lock, flags);
5626 * Ensures that the idle task is using init_mm right before its cpu goes
5627 * offline.
5629 void idle_task_exit(void)
5631 struct mm_struct *mm = current->active_mm;
5633 BUG_ON(cpu_online(smp_processor_id()));
5635 if (mm != &init_mm)
5636 switch_mm(mm, &init_mm, current);
5637 mmdrop(mm);
5640 /* called under rq->lock with disabled interrupts */
5641 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5643 struct rq *rq = cpu_rq(dead_cpu);
5645 /* Must be exiting, otherwise would be on tasklist. */
5646 BUG_ON(!p->exit_state);
5648 /* Cannot have done final schedule yet: would have vanished. */
5649 BUG_ON(p->state == TASK_DEAD);
5651 get_task_struct(p);
5654 * Drop lock around migration; if someone else moves it,
5655 * that's OK. No task can be added to this CPU, so iteration is
5656 * fine.
5658 raw_spin_unlock_irq(&rq->lock);
5659 move_task_off_dead_cpu(dead_cpu, p);
5660 raw_spin_lock_irq(&rq->lock);
5662 put_task_struct(p);
5665 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5666 static void migrate_dead_tasks(unsigned int dead_cpu)
5668 struct rq *rq = cpu_rq(dead_cpu);
5669 struct task_struct *next;
5671 for ( ; ; ) {
5672 if (!rq->nr_running)
5673 break;
5674 update_rq_clock(rq);
5675 next = pick_next_task(rq);
5676 if (!next)
5677 break;
5678 next->sched_class->put_prev_task(rq, next);
5679 migrate_dead(dead_cpu, next);
5685 * remove the tasks which were accounted by rq from calc_load_tasks.
5687 static void calc_global_load_remove(struct rq *rq)
5689 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5690 rq->calc_load_active = 0;
5692 #endif /* CONFIG_HOTPLUG_CPU */
5694 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5696 static struct ctl_table sd_ctl_dir[] = {
5698 .procname = "sched_domain",
5699 .mode = 0555,
5704 static struct ctl_table sd_ctl_root[] = {
5706 .procname = "kernel",
5707 .mode = 0555,
5708 .child = sd_ctl_dir,
5713 static struct ctl_table *sd_alloc_ctl_entry(int n)
5715 struct ctl_table *entry =
5716 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5718 return entry;
5721 static void sd_free_ctl_entry(struct ctl_table **tablep)
5723 struct ctl_table *entry;
5726 * In the intermediate directories, both the child directory and
5727 * procname are dynamically allocated and could fail but the mode
5728 * will always be set. In the lowest directory the names are
5729 * static strings and all have proc handlers.
5731 for (entry = *tablep; entry->mode; entry++) {
5732 if (entry->child)
5733 sd_free_ctl_entry(&entry->child);
5734 if (entry->proc_handler == NULL)
5735 kfree(entry->procname);
5738 kfree(*tablep);
5739 *tablep = NULL;
5742 static void
5743 set_table_entry(struct ctl_table *entry,
5744 const char *procname, void *data, int maxlen,
5745 mode_t mode, proc_handler *proc_handler)
5747 entry->procname = procname;
5748 entry->data = data;
5749 entry->maxlen = maxlen;
5750 entry->mode = mode;
5751 entry->proc_handler = proc_handler;
5754 static struct ctl_table *
5755 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5757 struct ctl_table *table = sd_alloc_ctl_entry(13);
5759 if (table == NULL)
5760 return NULL;
5762 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5763 sizeof(long), 0644, proc_doulongvec_minmax);
5764 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5765 sizeof(long), 0644, proc_doulongvec_minmax);
5766 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5767 sizeof(int), 0644, proc_dointvec_minmax);
5768 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5769 sizeof(int), 0644, proc_dointvec_minmax);
5770 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5771 sizeof(int), 0644, proc_dointvec_minmax);
5772 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5773 sizeof(int), 0644, proc_dointvec_minmax);
5774 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5775 sizeof(int), 0644, proc_dointvec_minmax);
5776 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5777 sizeof(int), 0644, proc_dointvec_minmax);
5778 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5779 sizeof(int), 0644, proc_dointvec_minmax);
5780 set_table_entry(&table[9], "cache_nice_tries",
5781 &sd->cache_nice_tries,
5782 sizeof(int), 0644, proc_dointvec_minmax);
5783 set_table_entry(&table[10], "flags", &sd->flags,
5784 sizeof(int), 0644, proc_dointvec_minmax);
5785 set_table_entry(&table[11], "name", sd->name,
5786 CORENAME_MAX_SIZE, 0444, proc_dostring);
5787 /* &table[12] is terminator */
5789 return table;
5792 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5794 struct ctl_table *entry, *table;
5795 struct sched_domain *sd;
5796 int domain_num = 0, i;
5797 char buf[32];
5799 for_each_domain(cpu, sd)
5800 domain_num++;
5801 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5802 if (table == NULL)
5803 return NULL;
5805 i = 0;
5806 for_each_domain(cpu, sd) {
5807 snprintf(buf, 32, "domain%d", i);
5808 entry->procname = kstrdup(buf, GFP_KERNEL);
5809 entry->mode = 0555;
5810 entry->child = sd_alloc_ctl_domain_table(sd);
5811 entry++;
5812 i++;
5814 return table;
5817 static struct ctl_table_header *sd_sysctl_header;
5818 static void register_sched_domain_sysctl(void)
5820 int i, cpu_num = num_possible_cpus();
5821 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5822 char buf[32];
5824 WARN_ON(sd_ctl_dir[0].child);
5825 sd_ctl_dir[0].child = entry;
5827 if (entry == NULL)
5828 return;
5830 for_each_possible_cpu(i) {
5831 snprintf(buf, 32, "cpu%d", i);
5832 entry->procname = kstrdup(buf, GFP_KERNEL);
5833 entry->mode = 0555;
5834 entry->child = sd_alloc_ctl_cpu_table(i);
5835 entry++;
5838 WARN_ON(sd_sysctl_header);
5839 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5842 /* may be called multiple times per register */
5843 static void unregister_sched_domain_sysctl(void)
5845 if (sd_sysctl_header)
5846 unregister_sysctl_table(sd_sysctl_header);
5847 sd_sysctl_header = NULL;
5848 if (sd_ctl_dir[0].child)
5849 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5851 #else
5852 static void register_sched_domain_sysctl(void)
5855 static void unregister_sched_domain_sysctl(void)
5858 #endif
5860 static void set_rq_online(struct rq *rq)
5862 if (!rq->online) {
5863 const struct sched_class *class;
5865 cpumask_set_cpu(rq->cpu, rq->rd->online);
5866 rq->online = 1;
5868 for_each_class(class) {
5869 if (class->rq_online)
5870 class->rq_online(rq);
5875 static void set_rq_offline(struct rq *rq)
5877 if (rq->online) {
5878 const struct sched_class *class;
5880 for_each_class(class) {
5881 if (class->rq_offline)
5882 class->rq_offline(rq);
5885 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5886 rq->online = 0;
5891 * migration_call - callback that gets triggered when a CPU is added.
5892 * Here we can start up the necessary migration thread for the new CPU.
5894 static int __cpuinit
5895 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5897 struct task_struct *p;
5898 int cpu = (long)hcpu;
5899 unsigned long flags;
5900 struct rq *rq;
5902 switch (action) {
5904 case CPU_UP_PREPARE:
5905 case CPU_UP_PREPARE_FROZEN:
5906 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5907 if (IS_ERR(p))
5908 return NOTIFY_BAD;
5909 kthread_bind(p, cpu);
5910 /* Must be high prio: stop_machine expects to yield to it. */
5911 rq = task_rq_lock(p, &flags);
5912 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5913 task_rq_unlock(rq, &flags);
5914 get_task_struct(p);
5915 cpu_rq(cpu)->migration_thread = p;
5916 rq->calc_load_update = calc_load_update;
5917 break;
5919 case CPU_ONLINE:
5920 case CPU_ONLINE_FROZEN:
5921 /* Strictly unnecessary, as first user will wake it. */
5922 wake_up_process(cpu_rq(cpu)->migration_thread);
5924 /* Update our root-domain */
5925 rq = cpu_rq(cpu);
5926 raw_spin_lock_irqsave(&rq->lock, flags);
5927 if (rq->rd) {
5928 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5930 set_rq_online(rq);
5932 raw_spin_unlock_irqrestore(&rq->lock, flags);
5933 break;
5935 #ifdef CONFIG_HOTPLUG_CPU
5936 case CPU_UP_CANCELED:
5937 case CPU_UP_CANCELED_FROZEN:
5938 if (!cpu_rq(cpu)->migration_thread)
5939 break;
5940 /* Unbind it from offline cpu so it can run. Fall thru. */
5941 kthread_bind(cpu_rq(cpu)->migration_thread,
5942 cpumask_any(cpu_online_mask));
5943 kthread_stop(cpu_rq(cpu)->migration_thread);
5944 put_task_struct(cpu_rq(cpu)->migration_thread);
5945 cpu_rq(cpu)->migration_thread = NULL;
5946 break;
5948 case CPU_DEAD:
5949 case CPU_DEAD_FROZEN:
5950 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5951 migrate_live_tasks(cpu);
5952 rq = cpu_rq(cpu);
5953 kthread_stop(rq->migration_thread);
5954 put_task_struct(rq->migration_thread);
5955 rq->migration_thread = NULL;
5956 /* Idle task back to normal (off runqueue, low prio) */
5957 raw_spin_lock_irq(&rq->lock);
5958 update_rq_clock(rq);
5959 deactivate_task(rq, rq->idle, 0);
5960 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5961 rq->idle->sched_class = &idle_sched_class;
5962 migrate_dead_tasks(cpu);
5963 raw_spin_unlock_irq(&rq->lock);
5964 cpuset_unlock();
5965 migrate_nr_uninterruptible(rq);
5966 BUG_ON(rq->nr_running != 0);
5967 calc_global_load_remove(rq);
5969 * No need to migrate the tasks: it was best-effort if
5970 * they didn't take sched_hotcpu_mutex. Just wake up
5971 * the requestors.
5973 raw_spin_lock_irq(&rq->lock);
5974 while (!list_empty(&rq->migration_queue)) {
5975 struct migration_req *req;
5977 req = list_entry(rq->migration_queue.next,
5978 struct migration_req, list);
5979 list_del_init(&req->list);
5980 raw_spin_unlock_irq(&rq->lock);
5981 complete(&req->done);
5982 raw_spin_lock_irq(&rq->lock);
5984 raw_spin_unlock_irq(&rq->lock);
5985 break;
5987 case CPU_DYING:
5988 case CPU_DYING_FROZEN:
5989 /* Update our root-domain */
5990 rq = cpu_rq(cpu);
5991 raw_spin_lock_irqsave(&rq->lock, flags);
5992 if (rq->rd) {
5993 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5994 set_rq_offline(rq);
5996 raw_spin_unlock_irqrestore(&rq->lock, flags);
5997 break;
5998 #endif
6000 return NOTIFY_OK;
6004 * Register at high priority so that task migration (migrate_all_tasks)
6005 * happens before everything else. This has to be lower priority than
6006 * the notifier in the perf_event subsystem, though.
6008 static struct notifier_block __cpuinitdata migration_notifier = {
6009 .notifier_call = migration_call,
6010 .priority = 10
6013 static int __init migration_init(void)
6015 void *cpu = (void *)(long)smp_processor_id();
6016 int err;
6018 /* Start one for the boot CPU: */
6019 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6020 BUG_ON(err == NOTIFY_BAD);
6021 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6022 register_cpu_notifier(&migration_notifier);
6024 return 0;
6026 early_initcall(migration_init);
6027 #endif
6029 #ifdef CONFIG_SMP
6031 #ifdef CONFIG_SCHED_DEBUG
6033 static __read_mostly int sched_domain_debug_enabled;
6035 static int __init sched_domain_debug_setup(char *str)
6037 sched_domain_debug_enabled = 1;
6039 return 0;
6041 early_param("sched_debug", sched_domain_debug_setup);
6043 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6044 struct cpumask *groupmask)
6046 struct sched_group *group = sd->groups;
6047 char str[256];
6049 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6050 cpumask_clear(groupmask);
6052 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6054 if (!(sd->flags & SD_LOAD_BALANCE)) {
6055 printk("does not load-balance\n");
6056 if (sd->parent)
6057 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6058 " has parent");
6059 return -1;
6062 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6064 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6065 printk(KERN_ERR "ERROR: domain->span does not contain "
6066 "CPU%d\n", cpu);
6068 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6069 printk(KERN_ERR "ERROR: domain->groups does not contain"
6070 " CPU%d\n", cpu);
6073 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6074 do {
6075 if (!group) {
6076 printk("\n");
6077 printk(KERN_ERR "ERROR: group is NULL\n");
6078 break;
6081 if (!group->cpu_power) {
6082 printk(KERN_CONT "\n");
6083 printk(KERN_ERR "ERROR: domain->cpu_power not "
6084 "set\n");
6085 break;
6088 if (!cpumask_weight(sched_group_cpus(group))) {
6089 printk(KERN_CONT "\n");
6090 printk(KERN_ERR "ERROR: empty group\n");
6091 break;
6094 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6095 printk(KERN_CONT "\n");
6096 printk(KERN_ERR "ERROR: repeated CPUs\n");
6097 break;
6100 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6102 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6104 printk(KERN_CONT " %s", str);
6105 if (group->cpu_power != SCHED_LOAD_SCALE) {
6106 printk(KERN_CONT " (cpu_power = %d)",
6107 group->cpu_power);
6110 group = group->next;
6111 } while (group != sd->groups);
6112 printk(KERN_CONT "\n");
6114 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6115 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6117 if (sd->parent &&
6118 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6119 printk(KERN_ERR "ERROR: parent span is not a superset "
6120 "of domain->span\n");
6121 return 0;
6124 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6126 cpumask_var_t groupmask;
6127 int level = 0;
6129 if (!sched_domain_debug_enabled)
6130 return;
6132 if (!sd) {
6133 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6134 return;
6137 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6139 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6140 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6141 return;
6144 for (;;) {
6145 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6146 break;
6147 level++;
6148 sd = sd->parent;
6149 if (!sd)
6150 break;
6152 free_cpumask_var(groupmask);
6154 #else /* !CONFIG_SCHED_DEBUG */
6155 # define sched_domain_debug(sd, cpu) do { } while (0)
6156 #endif /* CONFIG_SCHED_DEBUG */
6158 static int sd_degenerate(struct sched_domain *sd)
6160 if (cpumask_weight(sched_domain_span(sd)) == 1)
6161 return 1;
6163 /* Following flags need at least 2 groups */
6164 if (sd->flags & (SD_LOAD_BALANCE |
6165 SD_BALANCE_NEWIDLE |
6166 SD_BALANCE_FORK |
6167 SD_BALANCE_EXEC |
6168 SD_SHARE_CPUPOWER |
6169 SD_SHARE_PKG_RESOURCES)) {
6170 if (sd->groups != sd->groups->next)
6171 return 0;
6174 /* Following flags don't use groups */
6175 if (sd->flags & (SD_WAKE_AFFINE))
6176 return 0;
6178 return 1;
6181 static int
6182 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6184 unsigned long cflags = sd->flags, pflags = parent->flags;
6186 if (sd_degenerate(parent))
6187 return 1;
6189 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6190 return 0;
6192 /* Flags needing groups don't count if only 1 group in parent */
6193 if (parent->groups == parent->groups->next) {
6194 pflags &= ~(SD_LOAD_BALANCE |
6195 SD_BALANCE_NEWIDLE |
6196 SD_BALANCE_FORK |
6197 SD_BALANCE_EXEC |
6198 SD_SHARE_CPUPOWER |
6199 SD_SHARE_PKG_RESOURCES);
6200 if (nr_node_ids == 1)
6201 pflags &= ~SD_SERIALIZE;
6203 if (~cflags & pflags)
6204 return 0;
6206 return 1;
6209 static void free_rootdomain(struct root_domain *rd)
6211 synchronize_sched();
6213 cpupri_cleanup(&rd->cpupri);
6215 free_cpumask_var(rd->rto_mask);
6216 free_cpumask_var(rd->online);
6217 free_cpumask_var(rd->span);
6218 kfree(rd);
6221 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6223 struct root_domain *old_rd = NULL;
6224 unsigned long flags;
6226 raw_spin_lock_irqsave(&rq->lock, flags);
6228 if (rq->rd) {
6229 old_rd = rq->rd;
6231 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6232 set_rq_offline(rq);
6234 cpumask_clear_cpu(rq->cpu, old_rd->span);
6237 * If we dont want to free the old_rt yet then
6238 * set old_rd to NULL to skip the freeing later
6239 * in this function:
6241 if (!atomic_dec_and_test(&old_rd->refcount))
6242 old_rd = NULL;
6245 atomic_inc(&rd->refcount);
6246 rq->rd = rd;
6248 cpumask_set_cpu(rq->cpu, rd->span);
6249 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6250 set_rq_online(rq);
6252 raw_spin_unlock_irqrestore(&rq->lock, flags);
6254 if (old_rd)
6255 free_rootdomain(old_rd);
6258 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6260 gfp_t gfp = GFP_KERNEL;
6262 memset(rd, 0, sizeof(*rd));
6264 if (bootmem)
6265 gfp = GFP_NOWAIT;
6267 if (!alloc_cpumask_var(&rd->span, gfp))
6268 goto out;
6269 if (!alloc_cpumask_var(&rd->online, gfp))
6270 goto free_span;
6271 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6272 goto free_online;
6274 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6275 goto free_rto_mask;
6276 return 0;
6278 free_rto_mask:
6279 free_cpumask_var(rd->rto_mask);
6280 free_online:
6281 free_cpumask_var(rd->online);
6282 free_span:
6283 free_cpumask_var(rd->span);
6284 out:
6285 return -ENOMEM;
6288 static void init_defrootdomain(void)
6290 init_rootdomain(&def_root_domain, true);
6292 atomic_set(&def_root_domain.refcount, 1);
6295 static struct root_domain *alloc_rootdomain(void)
6297 struct root_domain *rd;
6299 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6300 if (!rd)
6301 return NULL;
6303 if (init_rootdomain(rd, false) != 0) {
6304 kfree(rd);
6305 return NULL;
6308 return rd;
6312 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6313 * hold the hotplug lock.
6315 static void
6316 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6318 struct rq *rq = cpu_rq(cpu);
6319 struct sched_domain *tmp;
6321 /* Remove the sched domains which do not contribute to scheduling. */
6322 for (tmp = sd; tmp; ) {
6323 struct sched_domain *parent = tmp->parent;
6324 if (!parent)
6325 break;
6327 if (sd_parent_degenerate(tmp, parent)) {
6328 tmp->parent = parent->parent;
6329 if (parent->parent)
6330 parent->parent->child = tmp;
6331 } else
6332 tmp = tmp->parent;
6335 if (sd && sd_degenerate(sd)) {
6336 sd = sd->parent;
6337 if (sd)
6338 sd->child = NULL;
6341 sched_domain_debug(sd, cpu);
6343 rq_attach_root(rq, rd);
6344 rcu_assign_pointer(rq->sd, sd);
6347 /* cpus with isolated domains */
6348 static cpumask_var_t cpu_isolated_map;
6350 /* Setup the mask of cpus configured for isolated domains */
6351 static int __init isolated_cpu_setup(char *str)
6353 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6354 cpulist_parse(str, cpu_isolated_map);
6355 return 1;
6358 __setup("isolcpus=", isolated_cpu_setup);
6361 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6362 * to a function which identifies what group(along with sched group) a CPU
6363 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6364 * (due to the fact that we keep track of groups covered with a struct cpumask).
6366 * init_sched_build_groups will build a circular linked list of the groups
6367 * covered by the given span, and will set each group's ->cpumask correctly,
6368 * and ->cpu_power to 0.
6370 static void
6371 init_sched_build_groups(const struct cpumask *span,
6372 const struct cpumask *cpu_map,
6373 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6374 struct sched_group **sg,
6375 struct cpumask *tmpmask),
6376 struct cpumask *covered, struct cpumask *tmpmask)
6378 struct sched_group *first = NULL, *last = NULL;
6379 int i;
6381 cpumask_clear(covered);
6383 for_each_cpu(i, span) {
6384 struct sched_group *sg;
6385 int group = group_fn(i, cpu_map, &sg, tmpmask);
6386 int j;
6388 if (cpumask_test_cpu(i, covered))
6389 continue;
6391 cpumask_clear(sched_group_cpus(sg));
6392 sg->cpu_power = 0;
6394 for_each_cpu(j, span) {
6395 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6396 continue;
6398 cpumask_set_cpu(j, covered);
6399 cpumask_set_cpu(j, sched_group_cpus(sg));
6401 if (!first)
6402 first = sg;
6403 if (last)
6404 last->next = sg;
6405 last = sg;
6407 last->next = first;
6410 #define SD_NODES_PER_DOMAIN 16
6412 #ifdef CONFIG_NUMA
6415 * find_next_best_node - find the next node to include in a sched_domain
6416 * @node: node whose sched_domain we're building
6417 * @used_nodes: nodes already in the sched_domain
6419 * Find the next node to include in a given scheduling domain. Simply
6420 * finds the closest node not already in the @used_nodes map.
6422 * Should use nodemask_t.
6424 static int find_next_best_node(int node, nodemask_t *used_nodes)
6426 int i, n, val, min_val, best_node = 0;
6428 min_val = INT_MAX;
6430 for (i = 0; i < nr_node_ids; i++) {
6431 /* Start at @node */
6432 n = (node + i) % nr_node_ids;
6434 if (!nr_cpus_node(n))
6435 continue;
6437 /* Skip already used nodes */
6438 if (node_isset(n, *used_nodes))
6439 continue;
6441 /* Simple min distance search */
6442 val = node_distance(node, n);
6444 if (val < min_val) {
6445 min_val = val;
6446 best_node = n;
6450 node_set(best_node, *used_nodes);
6451 return best_node;
6455 * sched_domain_node_span - get a cpumask for a node's sched_domain
6456 * @node: node whose cpumask we're constructing
6457 * @span: resulting cpumask
6459 * Given a node, construct a good cpumask for its sched_domain to span. It
6460 * should be one that prevents unnecessary balancing, but also spreads tasks
6461 * out optimally.
6463 static void sched_domain_node_span(int node, struct cpumask *span)
6465 nodemask_t used_nodes;
6466 int i;
6468 cpumask_clear(span);
6469 nodes_clear(used_nodes);
6471 cpumask_or(span, span, cpumask_of_node(node));
6472 node_set(node, used_nodes);
6474 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6475 int next_node = find_next_best_node(node, &used_nodes);
6477 cpumask_or(span, span, cpumask_of_node(next_node));
6480 #endif /* CONFIG_NUMA */
6482 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6485 * The cpus mask in sched_group and sched_domain hangs off the end.
6487 * ( See the the comments in include/linux/sched.h:struct sched_group
6488 * and struct sched_domain. )
6490 struct static_sched_group {
6491 struct sched_group sg;
6492 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6495 struct static_sched_domain {
6496 struct sched_domain sd;
6497 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6500 struct s_data {
6501 #ifdef CONFIG_NUMA
6502 int sd_allnodes;
6503 cpumask_var_t domainspan;
6504 cpumask_var_t covered;
6505 cpumask_var_t notcovered;
6506 #endif
6507 cpumask_var_t nodemask;
6508 cpumask_var_t this_sibling_map;
6509 cpumask_var_t this_core_map;
6510 cpumask_var_t send_covered;
6511 cpumask_var_t tmpmask;
6512 struct sched_group **sched_group_nodes;
6513 struct root_domain *rd;
6516 enum s_alloc {
6517 sa_sched_groups = 0,
6518 sa_rootdomain,
6519 sa_tmpmask,
6520 sa_send_covered,
6521 sa_this_core_map,
6522 sa_this_sibling_map,
6523 sa_nodemask,
6524 sa_sched_group_nodes,
6525 #ifdef CONFIG_NUMA
6526 sa_notcovered,
6527 sa_covered,
6528 sa_domainspan,
6529 #endif
6530 sa_none,
6534 * SMT sched-domains:
6536 #ifdef CONFIG_SCHED_SMT
6537 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6538 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6540 static int
6541 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6542 struct sched_group **sg, struct cpumask *unused)
6544 if (sg)
6545 *sg = &per_cpu(sched_groups, cpu).sg;
6546 return cpu;
6548 #endif /* CONFIG_SCHED_SMT */
6551 * multi-core sched-domains:
6553 #ifdef CONFIG_SCHED_MC
6554 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6555 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6556 #endif /* CONFIG_SCHED_MC */
6558 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6559 static int
6560 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6561 struct sched_group **sg, struct cpumask *mask)
6563 int group;
6565 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6566 group = cpumask_first(mask);
6567 if (sg)
6568 *sg = &per_cpu(sched_group_core, group).sg;
6569 return group;
6571 #elif defined(CONFIG_SCHED_MC)
6572 static int
6573 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6574 struct sched_group **sg, struct cpumask *unused)
6576 if (sg)
6577 *sg = &per_cpu(sched_group_core, cpu).sg;
6578 return cpu;
6580 #endif
6582 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6583 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6585 static int
6586 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6587 struct sched_group **sg, struct cpumask *mask)
6589 int group;
6590 #ifdef CONFIG_SCHED_MC
6591 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6592 group = cpumask_first(mask);
6593 #elif defined(CONFIG_SCHED_SMT)
6594 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6595 group = cpumask_first(mask);
6596 #else
6597 group = cpu;
6598 #endif
6599 if (sg)
6600 *sg = &per_cpu(sched_group_phys, group).sg;
6601 return group;
6604 #ifdef CONFIG_NUMA
6606 * The init_sched_build_groups can't handle what we want to do with node
6607 * groups, so roll our own. Now each node has its own list of groups which
6608 * gets dynamically allocated.
6610 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6611 static struct sched_group ***sched_group_nodes_bycpu;
6613 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6614 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6616 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6617 struct sched_group **sg,
6618 struct cpumask *nodemask)
6620 int group;
6622 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6623 group = cpumask_first(nodemask);
6625 if (sg)
6626 *sg = &per_cpu(sched_group_allnodes, group).sg;
6627 return group;
6630 static void init_numa_sched_groups_power(struct sched_group *group_head)
6632 struct sched_group *sg = group_head;
6633 int j;
6635 if (!sg)
6636 return;
6637 do {
6638 for_each_cpu(j, sched_group_cpus(sg)) {
6639 struct sched_domain *sd;
6641 sd = &per_cpu(phys_domains, j).sd;
6642 if (j != group_first_cpu(sd->groups)) {
6644 * Only add "power" once for each
6645 * physical package.
6647 continue;
6650 sg->cpu_power += sd->groups->cpu_power;
6652 sg = sg->next;
6653 } while (sg != group_head);
6656 static int build_numa_sched_groups(struct s_data *d,
6657 const struct cpumask *cpu_map, int num)
6659 struct sched_domain *sd;
6660 struct sched_group *sg, *prev;
6661 int n, j;
6663 cpumask_clear(d->covered);
6664 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6665 if (cpumask_empty(d->nodemask)) {
6666 d->sched_group_nodes[num] = NULL;
6667 goto out;
6670 sched_domain_node_span(num, d->domainspan);
6671 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6673 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6674 GFP_KERNEL, num);
6675 if (!sg) {
6676 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6677 num);
6678 return -ENOMEM;
6680 d->sched_group_nodes[num] = sg;
6682 for_each_cpu(j, d->nodemask) {
6683 sd = &per_cpu(node_domains, j).sd;
6684 sd->groups = sg;
6687 sg->cpu_power = 0;
6688 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6689 sg->next = sg;
6690 cpumask_or(d->covered, d->covered, d->nodemask);
6692 prev = sg;
6693 for (j = 0; j < nr_node_ids; j++) {
6694 n = (num + j) % nr_node_ids;
6695 cpumask_complement(d->notcovered, d->covered);
6696 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6697 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6698 if (cpumask_empty(d->tmpmask))
6699 break;
6700 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6701 if (cpumask_empty(d->tmpmask))
6702 continue;
6703 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6704 GFP_KERNEL, num);
6705 if (!sg) {
6706 printk(KERN_WARNING
6707 "Can not alloc domain group for node %d\n", j);
6708 return -ENOMEM;
6710 sg->cpu_power = 0;
6711 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6712 sg->next = prev->next;
6713 cpumask_or(d->covered, d->covered, d->tmpmask);
6714 prev->next = sg;
6715 prev = sg;
6717 out:
6718 return 0;
6720 #endif /* CONFIG_NUMA */
6722 #ifdef CONFIG_NUMA
6723 /* Free memory allocated for various sched_group structures */
6724 static void free_sched_groups(const struct cpumask *cpu_map,
6725 struct cpumask *nodemask)
6727 int cpu, i;
6729 for_each_cpu(cpu, cpu_map) {
6730 struct sched_group **sched_group_nodes
6731 = sched_group_nodes_bycpu[cpu];
6733 if (!sched_group_nodes)
6734 continue;
6736 for (i = 0; i < nr_node_ids; i++) {
6737 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6739 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6740 if (cpumask_empty(nodemask))
6741 continue;
6743 if (sg == NULL)
6744 continue;
6745 sg = sg->next;
6746 next_sg:
6747 oldsg = sg;
6748 sg = sg->next;
6749 kfree(oldsg);
6750 if (oldsg != sched_group_nodes[i])
6751 goto next_sg;
6753 kfree(sched_group_nodes);
6754 sched_group_nodes_bycpu[cpu] = NULL;
6757 #else /* !CONFIG_NUMA */
6758 static void free_sched_groups(const struct cpumask *cpu_map,
6759 struct cpumask *nodemask)
6762 #endif /* CONFIG_NUMA */
6765 * Initialize sched groups cpu_power.
6767 * cpu_power indicates the capacity of sched group, which is used while
6768 * distributing the load between different sched groups in a sched domain.
6769 * Typically cpu_power for all the groups in a sched domain will be same unless
6770 * there are asymmetries in the topology. If there are asymmetries, group
6771 * having more cpu_power will pickup more load compared to the group having
6772 * less cpu_power.
6774 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6776 struct sched_domain *child;
6777 struct sched_group *group;
6778 long power;
6779 int weight;
6781 WARN_ON(!sd || !sd->groups);
6783 if (cpu != group_first_cpu(sd->groups))
6784 return;
6786 child = sd->child;
6788 sd->groups->cpu_power = 0;
6790 if (!child) {
6791 power = SCHED_LOAD_SCALE;
6792 weight = cpumask_weight(sched_domain_span(sd));
6794 * SMT siblings share the power of a single core.
6795 * Usually multiple threads get a better yield out of
6796 * that one core than a single thread would have,
6797 * reflect that in sd->smt_gain.
6799 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6800 power *= sd->smt_gain;
6801 power /= weight;
6802 power >>= SCHED_LOAD_SHIFT;
6804 sd->groups->cpu_power += power;
6805 return;
6809 * Add cpu_power of each child group to this groups cpu_power.
6811 group = child->groups;
6812 do {
6813 sd->groups->cpu_power += group->cpu_power;
6814 group = group->next;
6815 } while (group != child->groups);
6819 * Initializers for schedule domains
6820 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6823 #ifdef CONFIG_SCHED_DEBUG
6824 # define SD_INIT_NAME(sd, type) sd->name = #type
6825 #else
6826 # define SD_INIT_NAME(sd, type) do { } while (0)
6827 #endif
6829 #define SD_INIT(sd, type) sd_init_##type(sd)
6831 #define SD_INIT_FUNC(type) \
6832 static noinline void sd_init_##type(struct sched_domain *sd) \
6834 memset(sd, 0, sizeof(*sd)); \
6835 *sd = SD_##type##_INIT; \
6836 sd->level = SD_LV_##type; \
6837 SD_INIT_NAME(sd, type); \
6840 SD_INIT_FUNC(CPU)
6841 #ifdef CONFIG_NUMA
6842 SD_INIT_FUNC(ALLNODES)
6843 SD_INIT_FUNC(NODE)
6844 #endif
6845 #ifdef CONFIG_SCHED_SMT
6846 SD_INIT_FUNC(SIBLING)
6847 #endif
6848 #ifdef CONFIG_SCHED_MC
6849 SD_INIT_FUNC(MC)
6850 #endif
6852 static int default_relax_domain_level = -1;
6854 static int __init setup_relax_domain_level(char *str)
6856 unsigned long val;
6858 val = simple_strtoul(str, NULL, 0);
6859 if (val < SD_LV_MAX)
6860 default_relax_domain_level = val;
6862 return 1;
6864 __setup("relax_domain_level=", setup_relax_domain_level);
6866 static void set_domain_attribute(struct sched_domain *sd,
6867 struct sched_domain_attr *attr)
6869 int request;
6871 if (!attr || attr->relax_domain_level < 0) {
6872 if (default_relax_domain_level < 0)
6873 return;
6874 else
6875 request = default_relax_domain_level;
6876 } else
6877 request = attr->relax_domain_level;
6878 if (request < sd->level) {
6879 /* turn off idle balance on this domain */
6880 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6881 } else {
6882 /* turn on idle balance on this domain */
6883 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6887 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6888 const struct cpumask *cpu_map)
6890 switch (what) {
6891 case sa_sched_groups:
6892 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6893 d->sched_group_nodes = NULL;
6894 case sa_rootdomain:
6895 free_rootdomain(d->rd); /* fall through */
6896 case sa_tmpmask:
6897 free_cpumask_var(d->tmpmask); /* fall through */
6898 case sa_send_covered:
6899 free_cpumask_var(d->send_covered); /* fall through */
6900 case sa_this_core_map:
6901 free_cpumask_var(d->this_core_map); /* fall through */
6902 case sa_this_sibling_map:
6903 free_cpumask_var(d->this_sibling_map); /* fall through */
6904 case sa_nodemask:
6905 free_cpumask_var(d->nodemask); /* fall through */
6906 case sa_sched_group_nodes:
6907 #ifdef CONFIG_NUMA
6908 kfree(d->sched_group_nodes); /* fall through */
6909 case sa_notcovered:
6910 free_cpumask_var(d->notcovered); /* fall through */
6911 case sa_covered:
6912 free_cpumask_var(d->covered); /* fall through */
6913 case sa_domainspan:
6914 free_cpumask_var(d->domainspan); /* fall through */
6915 #endif
6916 case sa_none:
6917 break;
6921 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6922 const struct cpumask *cpu_map)
6924 #ifdef CONFIG_NUMA
6925 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6926 return sa_none;
6927 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6928 return sa_domainspan;
6929 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6930 return sa_covered;
6931 /* Allocate the per-node list of sched groups */
6932 d->sched_group_nodes = kcalloc(nr_node_ids,
6933 sizeof(struct sched_group *), GFP_KERNEL);
6934 if (!d->sched_group_nodes) {
6935 printk(KERN_WARNING "Can not alloc sched group node list\n");
6936 return sa_notcovered;
6938 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6939 #endif
6940 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6941 return sa_sched_group_nodes;
6942 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6943 return sa_nodemask;
6944 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6945 return sa_this_sibling_map;
6946 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6947 return sa_this_core_map;
6948 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6949 return sa_send_covered;
6950 d->rd = alloc_rootdomain();
6951 if (!d->rd) {
6952 printk(KERN_WARNING "Cannot alloc root domain\n");
6953 return sa_tmpmask;
6955 return sa_rootdomain;
6958 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6959 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6961 struct sched_domain *sd = NULL;
6962 #ifdef CONFIG_NUMA
6963 struct sched_domain *parent;
6965 d->sd_allnodes = 0;
6966 if (cpumask_weight(cpu_map) >
6967 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6968 sd = &per_cpu(allnodes_domains, i).sd;
6969 SD_INIT(sd, ALLNODES);
6970 set_domain_attribute(sd, attr);
6971 cpumask_copy(sched_domain_span(sd), cpu_map);
6972 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6973 d->sd_allnodes = 1;
6975 parent = sd;
6977 sd = &per_cpu(node_domains, i).sd;
6978 SD_INIT(sd, NODE);
6979 set_domain_attribute(sd, attr);
6980 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6981 sd->parent = parent;
6982 if (parent)
6983 parent->child = sd;
6984 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6985 #endif
6986 return sd;
6989 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6990 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6991 struct sched_domain *parent, int i)
6993 struct sched_domain *sd;
6994 sd = &per_cpu(phys_domains, i).sd;
6995 SD_INIT(sd, CPU);
6996 set_domain_attribute(sd, attr);
6997 cpumask_copy(sched_domain_span(sd), d->nodemask);
6998 sd->parent = parent;
6999 if (parent)
7000 parent->child = sd;
7001 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7002 return sd;
7005 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7006 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7007 struct sched_domain *parent, int i)
7009 struct sched_domain *sd = parent;
7010 #ifdef CONFIG_SCHED_MC
7011 sd = &per_cpu(core_domains, i).sd;
7012 SD_INIT(sd, MC);
7013 set_domain_attribute(sd, attr);
7014 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7015 sd->parent = parent;
7016 parent->child = sd;
7017 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7018 #endif
7019 return sd;
7022 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7023 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7024 struct sched_domain *parent, int i)
7026 struct sched_domain *sd = parent;
7027 #ifdef CONFIG_SCHED_SMT
7028 sd = &per_cpu(cpu_domains, i).sd;
7029 SD_INIT(sd, SIBLING);
7030 set_domain_attribute(sd, attr);
7031 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7032 sd->parent = parent;
7033 parent->child = sd;
7034 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7035 #endif
7036 return sd;
7039 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7040 const struct cpumask *cpu_map, int cpu)
7042 switch (l) {
7043 #ifdef CONFIG_SCHED_SMT
7044 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7045 cpumask_and(d->this_sibling_map, cpu_map,
7046 topology_thread_cpumask(cpu));
7047 if (cpu == cpumask_first(d->this_sibling_map))
7048 init_sched_build_groups(d->this_sibling_map, cpu_map,
7049 &cpu_to_cpu_group,
7050 d->send_covered, d->tmpmask);
7051 break;
7052 #endif
7053 #ifdef CONFIG_SCHED_MC
7054 case SD_LV_MC: /* set up multi-core groups */
7055 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7056 if (cpu == cpumask_first(d->this_core_map))
7057 init_sched_build_groups(d->this_core_map, cpu_map,
7058 &cpu_to_core_group,
7059 d->send_covered, d->tmpmask);
7060 break;
7061 #endif
7062 case SD_LV_CPU: /* set up physical groups */
7063 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7064 if (!cpumask_empty(d->nodemask))
7065 init_sched_build_groups(d->nodemask, cpu_map,
7066 &cpu_to_phys_group,
7067 d->send_covered, d->tmpmask);
7068 break;
7069 #ifdef CONFIG_NUMA
7070 case SD_LV_ALLNODES:
7071 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7072 d->send_covered, d->tmpmask);
7073 break;
7074 #endif
7075 default:
7076 break;
7081 * Build sched domains for a given set of cpus and attach the sched domains
7082 * to the individual cpus
7084 static int __build_sched_domains(const struct cpumask *cpu_map,
7085 struct sched_domain_attr *attr)
7087 enum s_alloc alloc_state = sa_none;
7088 struct s_data d;
7089 struct sched_domain *sd;
7090 int i;
7091 #ifdef CONFIG_NUMA
7092 d.sd_allnodes = 0;
7093 #endif
7095 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7096 if (alloc_state != sa_rootdomain)
7097 goto error;
7098 alloc_state = sa_sched_groups;
7101 * Set up domains for cpus specified by the cpu_map.
7103 for_each_cpu(i, cpu_map) {
7104 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7105 cpu_map);
7107 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7108 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7109 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7110 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7113 for_each_cpu(i, cpu_map) {
7114 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7115 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7118 /* Set up physical groups */
7119 for (i = 0; i < nr_node_ids; i++)
7120 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7122 #ifdef CONFIG_NUMA
7123 /* Set up node groups */
7124 if (d.sd_allnodes)
7125 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7127 for (i = 0; i < nr_node_ids; i++)
7128 if (build_numa_sched_groups(&d, cpu_map, i))
7129 goto error;
7130 #endif
7132 /* Calculate CPU power for physical packages and nodes */
7133 #ifdef CONFIG_SCHED_SMT
7134 for_each_cpu(i, cpu_map) {
7135 sd = &per_cpu(cpu_domains, i).sd;
7136 init_sched_groups_power(i, sd);
7138 #endif
7139 #ifdef CONFIG_SCHED_MC
7140 for_each_cpu(i, cpu_map) {
7141 sd = &per_cpu(core_domains, i).sd;
7142 init_sched_groups_power(i, sd);
7144 #endif
7146 for_each_cpu(i, cpu_map) {
7147 sd = &per_cpu(phys_domains, i).sd;
7148 init_sched_groups_power(i, sd);
7151 #ifdef CONFIG_NUMA
7152 for (i = 0; i < nr_node_ids; i++)
7153 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7155 if (d.sd_allnodes) {
7156 struct sched_group *sg;
7158 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7159 d.tmpmask);
7160 init_numa_sched_groups_power(sg);
7162 #endif
7164 /* Attach the domains */
7165 for_each_cpu(i, cpu_map) {
7166 #ifdef CONFIG_SCHED_SMT
7167 sd = &per_cpu(cpu_domains, i).sd;
7168 #elif defined(CONFIG_SCHED_MC)
7169 sd = &per_cpu(core_domains, i).sd;
7170 #else
7171 sd = &per_cpu(phys_domains, i).sd;
7172 #endif
7173 cpu_attach_domain(sd, d.rd, i);
7176 d.sched_group_nodes = NULL; /* don't free this we still need it */
7177 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7178 return 0;
7180 error:
7181 __free_domain_allocs(&d, alloc_state, cpu_map);
7182 return -ENOMEM;
7185 static int build_sched_domains(const struct cpumask *cpu_map)
7187 return __build_sched_domains(cpu_map, NULL);
7190 static cpumask_var_t *doms_cur; /* current sched domains */
7191 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7192 static struct sched_domain_attr *dattr_cur;
7193 /* attribues of custom domains in 'doms_cur' */
7196 * Special case: If a kmalloc of a doms_cur partition (array of
7197 * cpumask) fails, then fallback to a single sched domain,
7198 * as determined by the single cpumask fallback_doms.
7200 static cpumask_var_t fallback_doms;
7203 * arch_update_cpu_topology lets virtualized architectures update the
7204 * cpu core maps. It is supposed to return 1 if the topology changed
7205 * or 0 if it stayed the same.
7207 int __attribute__((weak)) arch_update_cpu_topology(void)
7209 return 0;
7212 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7214 int i;
7215 cpumask_var_t *doms;
7217 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7218 if (!doms)
7219 return NULL;
7220 for (i = 0; i < ndoms; i++) {
7221 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7222 free_sched_domains(doms, i);
7223 return NULL;
7226 return doms;
7229 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7231 unsigned int i;
7232 for (i = 0; i < ndoms; i++)
7233 free_cpumask_var(doms[i]);
7234 kfree(doms);
7238 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7239 * For now this just excludes isolated cpus, but could be used to
7240 * exclude other special cases in the future.
7242 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7244 int err;
7246 arch_update_cpu_topology();
7247 ndoms_cur = 1;
7248 doms_cur = alloc_sched_domains(ndoms_cur);
7249 if (!doms_cur)
7250 doms_cur = &fallback_doms;
7251 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7252 dattr_cur = NULL;
7253 err = build_sched_domains(doms_cur[0]);
7254 register_sched_domain_sysctl();
7256 return err;
7259 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7260 struct cpumask *tmpmask)
7262 free_sched_groups(cpu_map, tmpmask);
7266 * Detach sched domains from a group of cpus specified in cpu_map
7267 * These cpus will now be attached to the NULL domain
7269 static void detach_destroy_domains(const struct cpumask *cpu_map)
7271 /* Save because hotplug lock held. */
7272 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7273 int i;
7275 for_each_cpu(i, cpu_map)
7276 cpu_attach_domain(NULL, &def_root_domain, i);
7277 synchronize_sched();
7278 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7281 /* handle null as "default" */
7282 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7283 struct sched_domain_attr *new, int idx_new)
7285 struct sched_domain_attr tmp;
7287 /* fast path */
7288 if (!new && !cur)
7289 return 1;
7291 tmp = SD_ATTR_INIT;
7292 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7293 new ? (new + idx_new) : &tmp,
7294 sizeof(struct sched_domain_attr));
7298 * Partition sched domains as specified by the 'ndoms_new'
7299 * cpumasks in the array doms_new[] of cpumasks. This compares
7300 * doms_new[] to the current sched domain partitioning, doms_cur[].
7301 * It destroys each deleted domain and builds each new domain.
7303 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7304 * The masks don't intersect (don't overlap.) We should setup one
7305 * sched domain for each mask. CPUs not in any of the cpumasks will
7306 * not be load balanced. If the same cpumask appears both in the
7307 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7308 * it as it is.
7310 * The passed in 'doms_new' should be allocated using
7311 * alloc_sched_domains. This routine takes ownership of it and will
7312 * free_sched_domains it when done with it. If the caller failed the
7313 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7314 * and partition_sched_domains() will fallback to the single partition
7315 * 'fallback_doms', it also forces the domains to be rebuilt.
7317 * If doms_new == NULL it will be replaced with cpu_online_mask.
7318 * ndoms_new == 0 is a special case for destroying existing domains,
7319 * and it will not create the default domain.
7321 * Call with hotplug lock held
7323 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7324 struct sched_domain_attr *dattr_new)
7326 int i, j, n;
7327 int new_topology;
7329 mutex_lock(&sched_domains_mutex);
7331 /* always unregister in case we don't destroy any domains */
7332 unregister_sched_domain_sysctl();
7334 /* Let architecture update cpu core mappings. */
7335 new_topology = arch_update_cpu_topology();
7337 n = doms_new ? ndoms_new : 0;
7339 /* Destroy deleted domains */
7340 for (i = 0; i < ndoms_cur; i++) {
7341 for (j = 0; j < n && !new_topology; j++) {
7342 if (cpumask_equal(doms_cur[i], doms_new[j])
7343 && dattrs_equal(dattr_cur, i, dattr_new, j))
7344 goto match1;
7346 /* no match - a current sched domain not in new doms_new[] */
7347 detach_destroy_domains(doms_cur[i]);
7348 match1:
7352 if (doms_new == NULL) {
7353 ndoms_cur = 0;
7354 doms_new = &fallback_doms;
7355 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7356 WARN_ON_ONCE(dattr_new);
7359 /* Build new domains */
7360 for (i = 0; i < ndoms_new; i++) {
7361 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7362 if (cpumask_equal(doms_new[i], doms_cur[j])
7363 && dattrs_equal(dattr_new, i, dattr_cur, j))
7364 goto match2;
7366 /* no match - add a new doms_new */
7367 __build_sched_domains(doms_new[i],
7368 dattr_new ? dattr_new + i : NULL);
7369 match2:
7373 /* Remember the new sched domains */
7374 if (doms_cur != &fallback_doms)
7375 free_sched_domains(doms_cur, ndoms_cur);
7376 kfree(dattr_cur); /* kfree(NULL) is safe */
7377 doms_cur = doms_new;
7378 dattr_cur = dattr_new;
7379 ndoms_cur = ndoms_new;
7381 register_sched_domain_sysctl();
7383 mutex_unlock(&sched_domains_mutex);
7386 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7387 static void arch_reinit_sched_domains(void)
7389 get_online_cpus();
7391 /* Destroy domains first to force the rebuild */
7392 partition_sched_domains(0, NULL, NULL);
7394 rebuild_sched_domains();
7395 put_online_cpus();
7398 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7400 unsigned int level = 0;
7402 if (sscanf(buf, "%u", &level) != 1)
7403 return -EINVAL;
7406 * level is always be positive so don't check for
7407 * level < POWERSAVINGS_BALANCE_NONE which is 0
7408 * What happens on 0 or 1 byte write,
7409 * need to check for count as well?
7412 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7413 return -EINVAL;
7415 if (smt)
7416 sched_smt_power_savings = level;
7417 else
7418 sched_mc_power_savings = level;
7420 arch_reinit_sched_domains();
7422 return count;
7425 #ifdef CONFIG_SCHED_MC
7426 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7427 struct sysdev_class_attribute *attr,
7428 char *page)
7430 return sprintf(page, "%u\n", sched_mc_power_savings);
7432 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7433 struct sysdev_class_attribute *attr,
7434 const char *buf, size_t count)
7436 return sched_power_savings_store(buf, count, 0);
7438 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7439 sched_mc_power_savings_show,
7440 sched_mc_power_savings_store);
7441 #endif
7443 #ifdef CONFIG_SCHED_SMT
7444 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7445 struct sysdev_class_attribute *attr,
7446 char *page)
7448 return sprintf(page, "%u\n", sched_smt_power_savings);
7450 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7451 struct sysdev_class_attribute *attr,
7452 const char *buf, size_t count)
7454 return sched_power_savings_store(buf, count, 1);
7456 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7457 sched_smt_power_savings_show,
7458 sched_smt_power_savings_store);
7459 #endif
7461 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7463 int err = 0;
7465 #ifdef CONFIG_SCHED_SMT
7466 if (smt_capable())
7467 err = sysfs_create_file(&cls->kset.kobj,
7468 &attr_sched_smt_power_savings.attr);
7469 #endif
7470 #ifdef CONFIG_SCHED_MC
7471 if (!err && mc_capable())
7472 err = sysfs_create_file(&cls->kset.kobj,
7473 &attr_sched_mc_power_savings.attr);
7474 #endif
7475 return err;
7477 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7479 #ifndef CONFIG_CPUSETS
7481 * Add online and remove offline CPUs from the scheduler domains.
7482 * When cpusets are enabled they take over this function.
7484 static int update_sched_domains(struct notifier_block *nfb,
7485 unsigned long action, void *hcpu)
7487 switch (action) {
7488 case CPU_ONLINE:
7489 case CPU_ONLINE_FROZEN:
7490 case CPU_DOWN_PREPARE:
7491 case CPU_DOWN_PREPARE_FROZEN:
7492 case CPU_DOWN_FAILED:
7493 case CPU_DOWN_FAILED_FROZEN:
7494 partition_sched_domains(1, NULL, NULL);
7495 return NOTIFY_OK;
7497 default:
7498 return NOTIFY_DONE;
7501 #endif
7503 static int update_runtime(struct notifier_block *nfb,
7504 unsigned long action, void *hcpu)
7506 int cpu = (int)(long)hcpu;
7508 switch (action) {
7509 case CPU_DOWN_PREPARE:
7510 case CPU_DOWN_PREPARE_FROZEN:
7511 disable_runtime(cpu_rq(cpu));
7512 return NOTIFY_OK;
7514 case CPU_DOWN_FAILED:
7515 case CPU_DOWN_FAILED_FROZEN:
7516 case CPU_ONLINE:
7517 case CPU_ONLINE_FROZEN:
7518 enable_runtime(cpu_rq(cpu));
7519 return NOTIFY_OK;
7521 default:
7522 return NOTIFY_DONE;
7526 void __init sched_init_smp(void)
7528 cpumask_var_t non_isolated_cpus;
7530 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7531 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7533 #if defined(CONFIG_NUMA)
7534 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7535 GFP_KERNEL);
7536 BUG_ON(sched_group_nodes_bycpu == NULL);
7537 #endif
7538 get_online_cpus();
7539 mutex_lock(&sched_domains_mutex);
7540 arch_init_sched_domains(cpu_active_mask);
7541 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7542 if (cpumask_empty(non_isolated_cpus))
7543 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7544 mutex_unlock(&sched_domains_mutex);
7545 put_online_cpus();
7547 #ifndef CONFIG_CPUSETS
7548 /* XXX: Theoretical race here - CPU may be hotplugged now */
7549 hotcpu_notifier(update_sched_domains, 0);
7550 #endif
7552 /* RT runtime code needs to handle some hotplug events */
7553 hotcpu_notifier(update_runtime, 0);
7555 init_hrtick();
7557 /* Move init over to a non-isolated CPU */
7558 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7559 BUG();
7560 sched_init_granularity();
7561 free_cpumask_var(non_isolated_cpus);
7563 init_sched_rt_class();
7565 #else
7566 void __init sched_init_smp(void)
7568 sched_init_granularity();
7570 #endif /* CONFIG_SMP */
7572 const_debug unsigned int sysctl_timer_migration = 1;
7574 int in_sched_functions(unsigned long addr)
7576 return in_lock_functions(addr) ||
7577 (addr >= (unsigned long)__sched_text_start
7578 && addr < (unsigned long)__sched_text_end);
7581 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7583 cfs_rq->tasks_timeline = RB_ROOT;
7584 INIT_LIST_HEAD(&cfs_rq->tasks);
7585 #ifdef CONFIG_FAIR_GROUP_SCHED
7586 cfs_rq->rq = rq;
7587 #endif
7588 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7591 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7593 struct rt_prio_array *array;
7594 int i;
7596 array = &rt_rq->active;
7597 for (i = 0; i < MAX_RT_PRIO; i++) {
7598 INIT_LIST_HEAD(array->queue + i);
7599 __clear_bit(i, array->bitmap);
7601 /* delimiter for bitsearch: */
7602 __set_bit(MAX_RT_PRIO, array->bitmap);
7604 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7605 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7606 #ifdef CONFIG_SMP
7607 rt_rq->highest_prio.next = MAX_RT_PRIO;
7608 #endif
7609 #endif
7610 #ifdef CONFIG_SMP
7611 rt_rq->rt_nr_migratory = 0;
7612 rt_rq->overloaded = 0;
7613 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7614 #endif
7616 rt_rq->rt_time = 0;
7617 rt_rq->rt_throttled = 0;
7618 rt_rq->rt_runtime = 0;
7619 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7621 #ifdef CONFIG_RT_GROUP_SCHED
7622 rt_rq->rt_nr_boosted = 0;
7623 rt_rq->rq = rq;
7624 #endif
7627 #ifdef CONFIG_FAIR_GROUP_SCHED
7628 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7629 struct sched_entity *se, int cpu, int add,
7630 struct sched_entity *parent)
7632 struct rq *rq = cpu_rq(cpu);
7633 tg->cfs_rq[cpu] = cfs_rq;
7634 init_cfs_rq(cfs_rq, rq);
7635 cfs_rq->tg = tg;
7636 if (add)
7637 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7639 tg->se[cpu] = se;
7640 /* se could be NULL for init_task_group */
7641 if (!se)
7642 return;
7644 if (!parent)
7645 se->cfs_rq = &rq->cfs;
7646 else
7647 se->cfs_rq = parent->my_q;
7649 se->my_q = cfs_rq;
7650 se->load.weight = tg->shares;
7651 se->load.inv_weight = 0;
7652 se->parent = parent;
7654 #endif
7656 #ifdef CONFIG_RT_GROUP_SCHED
7657 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7658 struct sched_rt_entity *rt_se, int cpu, int add,
7659 struct sched_rt_entity *parent)
7661 struct rq *rq = cpu_rq(cpu);
7663 tg->rt_rq[cpu] = rt_rq;
7664 init_rt_rq(rt_rq, rq);
7665 rt_rq->tg = tg;
7666 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7667 if (add)
7668 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7670 tg->rt_se[cpu] = rt_se;
7671 if (!rt_se)
7672 return;
7674 if (!parent)
7675 rt_se->rt_rq = &rq->rt;
7676 else
7677 rt_se->rt_rq = parent->my_q;
7679 rt_se->my_q = rt_rq;
7680 rt_se->parent = parent;
7681 INIT_LIST_HEAD(&rt_se->run_list);
7683 #endif
7685 void __init sched_init(void)
7687 int i, j;
7688 unsigned long alloc_size = 0, ptr;
7690 #ifdef CONFIG_FAIR_GROUP_SCHED
7691 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7692 #endif
7693 #ifdef CONFIG_RT_GROUP_SCHED
7694 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7695 #endif
7696 #ifdef CONFIG_CPUMASK_OFFSTACK
7697 alloc_size += num_possible_cpus() * cpumask_size();
7698 #endif
7699 if (alloc_size) {
7700 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7702 #ifdef CONFIG_FAIR_GROUP_SCHED
7703 init_task_group.se = (struct sched_entity **)ptr;
7704 ptr += nr_cpu_ids * sizeof(void **);
7706 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7707 ptr += nr_cpu_ids * sizeof(void **);
7709 #endif /* CONFIG_FAIR_GROUP_SCHED */
7710 #ifdef CONFIG_RT_GROUP_SCHED
7711 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7712 ptr += nr_cpu_ids * sizeof(void **);
7714 init_task_group.rt_rq = (struct rt_rq **)ptr;
7715 ptr += nr_cpu_ids * sizeof(void **);
7717 #endif /* CONFIG_RT_GROUP_SCHED */
7718 #ifdef CONFIG_CPUMASK_OFFSTACK
7719 for_each_possible_cpu(i) {
7720 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7721 ptr += cpumask_size();
7723 #endif /* CONFIG_CPUMASK_OFFSTACK */
7726 #ifdef CONFIG_SMP
7727 init_defrootdomain();
7728 #endif
7730 init_rt_bandwidth(&def_rt_bandwidth,
7731 global_rt_period(), global_rt_runtime());
7733 #ifdef CONFIG_RT_GROUP_SCHED
7734 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7735 global_rt_period(), global_rt_runtime());
7736 #endif /* CONFIG_RT_GROUP_SCHED */
7738 #ifdef CONFIG_CGROUP_SCHED
7739 list_add(&init_task_group.list, &task_groups);
7740 INIT_LIST_HEAD(&init_task_group.children);
7742 #endif /* CONFIG_CGROUP_SCHED */
7744 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7745 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7746 __alignof__(unsigned long));
7747 #endif
7748 for_each_possible_cpu(i) {
7749 struct rq *rq;
7751 rq = cpu_rq(i);
7752 raw_spin_lock_init(&rq->lock);
7753 rq->nr_running = 0;
7754 rq->calc_load_active = 0;
7755 rq->calc_load_update = jiffies + LOAD_FREQ;
7756 init_cfs_rq(&rq->cfs, rq);
7757 init_rt_rq(&rq->rt, rq);
7758 #ifdef CONFIG_FAIR_GROUP_SCHED
7759 init_task_group.shares = init_task_group_load;
7760 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7761 #ifdef CONFIG_CGROUP_SCHED
7763 * How much cpu bandwidth does init_task_group get?
7765 * In case of task-groups formed thr' the cgroup filesystem, it
7766 * gets 100% of the cpu resources in the system. This overall
7767 * system cpu resource is divided among the tasks of
7768 * init_task_group and its child task-groups in a fair manner,
7769 * based on each entity's (task or task-group's) weight
7770 * (se->load.weight).
7772 * In other words, if init_task_group has 10 tasks of weight
7773 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7774 * then A0's share of the cpu resource is:
7776 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7778 * We achieve this by letting init_task_group's tasks sit
7779 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7781 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7782 #endif
7783 #endif /* CONFIG_FAIR_GROUP_SCHED */
7785 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7786 #ifdef CONFIG_RT_GROUP_SCHED
7787 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7788 #ifdef CONFIG_CGROUP_SCHED
7789 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7790 #endif
7791 #endif
7793 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7794 rq->cpu_load[j] = 0;
7795 #ifdef CONFIG_SMP
7796 rq->sd = NULL;
7797 rq->rd = NULL;
7798 rq->post_schedule = 0;
7799 rq->active_balance = 0;
7800 rq->next_balance = jiffies;
7801 rq->push_cpu = 0;
7802 rq->cpu = i;
7803 rq->online = 0;
7804 rq->migration_thread = NULL;
7805 rq->idle_stamp = 0;
7806 rq->avg_idle = 2*sysctl_sched_migration_cost;
7807 INIT_LIST_HEAD(&rq->migration_queue);
7808 rq_attach_root(rq, &def_root_domain);
7809 #endif
7810 init_rq_hrtick(rq);
7811 atomic_set(&rq->nr_iowait, 0);
7814 set_load_weight(&init_task);
7816 #ifdef CONFIG_PREEMPT_NOTIFIERS
7817 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7818 #endif
7820 #ifdef CONFIG_SMP
7821 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7822 #endif
7824 #ifdef CONFIG_RT_MUTEXES
7825 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7826 #endif
7829 * The boot idle thread does lazy MMU switching as well:
7831 atomic_inc(&init_mm.mm_count);
7832 enter_lazy_tlb(&init_mm, current);
7835 * Make us the idle thread. Technically, schedule() should not be
7836 * called from this thread, however somewhere below it might be,
7837 * but because we are the idle thread, we just pick up running again
7838 * when this runqueue becomes "idle".
7840 init_idle(current, smp_processor_id());
7842 calc_load_update = jiffies + LOAD_FREQ;
7845 * During early bootup we pretend to be a normal task:
7847 current->sched_class = &fair_sched_class;
7849 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7850 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7851 #ifdef CONFIG_SMP
7852 #ifdef CONFIG_NO_HZ
7853 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7854 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7855 #endif
7856 /* May be allocated at isolcpus cmdline parse time */
7857 if (cpu_isolated_map == NULL)
7858 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7859 #endif /* SMP */
7861 perf_event_init();
7863 scheduler_running = 1;
7866 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7867 static inline int preempt_count_equals(int preempt_offset)
7869 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7871 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7874 void __might_sleep(const char *file, int line, int preempt_offset)
7876 #ifdef in_atomic
7877 static unsigned long prev_jiffy; /* ratelimiting */
7879 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7880 system_state != SYSTEM_RUNNING || oops_in_progress)
7881 return;
7882 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7883 return;
7884 prev_jiffy = jiffies;
7886 printk(KERN_ERR
7887 "BUG: sleeping function called from invalid context at %s:%d\n",
7888 file, line);
7889 printk(KERN_ERR
7890 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7891 in_atomic(), irqs_disabled(),
7892 current->pid, current->comm);
7894 debug_show_held_locks(current);
7895 if (irqs_disabled())
7896 print_irqtrace_events(current);
7897 dump_stack();
7898 #endif
7900 EXPORT_SYMBOL(__might_sleep);
7901 #endif
7903 #ifdef CONFIG_MAGIC_SYSRQ
7904 static void normalize_task(struct rq *rq, struct task_struct *p)
7906 int on_rq;
7908 update_rq_clock(rq);
7909 on_rq = p->se.on_rq;
7910 if (on_rq)
7911 deactivate_task(rq, p, 0);
7912 __setscheduler(rq, p, SCHED_NORMAL, 0);
7913 if (on_rq) {
7914 activate_task(rq, p, 0);
7915 resched_task(rq->curr);
7919 void normalize_rt_tasks(void)
7921 struct task_struct *g, *p;
7922 unsigned long flags;
7923 struct rq *rq;
7925 read_lock_irqsave(&tasklist_lock, flags);
7926 do_each_thread(g, p) {
7928 * Only normalize user tasks:
7930 if (!p->mm)
7931 continue;
7933 p->se.exec_start = 0;
7934 #ifdef CONFIG_SCHEDSTATS
7935 p->se.wait_start = 0;
7936 p->se.sleep_start = 0;
7937 p->se.block_start = 0;
7938 #endif
7940 if (!rt_task(p)) {
7942 * Renice negative nice level userspace
7943 * tasks back to 0:
7945 if (TASK_NICE(p) < 0 && p->mm)
7946 set_user_nice(p, 0);
7947 continue;
7950 raw_spin_lock(&p->pi_lock);
7951 rq = __task_rq_lock(p);
7953 normalize_task(rq, p);
7955 __task_rq_unlock(rq);
7956 raw_spin_unlock(&p->pi_lock);
7957 } while_each_thread(g, p);
7959 read_unlock_irqrestore(&tasklist_lock, flags);
7962 #endif /* CONFIG_MAGIC_SYSRQ */
7964 #ifdef CONFIG_IA64
7966 * These functions are only useful for the IA64 MCA handling.
7968 * They can only be called when the whole system has been
7969 * stopped - every CPU needs to be quiescent, and no scheduling
7970 * activity can take place. Using them for anything else would
7971 * be a serious bug, and as a result, they aren't even visible
7972 * under any other configuration.
7976 * curr_task - return the current task for a given cpu.
7977 * @cpu: the processor in question.
7979 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7981 struct task_struct *curr_task(int cpu)
7983 return cpu_curr(cpu);
7987 * set_curr_task - set the current task for a given cpu.
7988 * @cpu: the processor in question.
7989 * @p: the task pointer to set.
7991 * Description: This function must only be used when non-maskable interrupts
7992 * are serviced on a separate stack. It allows the architecture to switch the
7993 * notion of the current task on a cpu in a non-blocking manner. This function
7994 * must be called with all CPU's synchronized, and interrupts disabled, the
7995 * and caller must save the original value of the current task (see
7996 * curr_task() above) and restore that value before reenabling interrupts and
7997 * re-starting the system.
7999 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8001 void set_curr_task(int cpu, struct task_struct *p)
8003 cpu_curr(cpu) = p;
8006 #endif
8008 #ifdef CONFIG_FAIR_GROUP_SCHED
8009 static void free_fair_sched_group(struct task_group *tg)
8011 int i;
8013 for_each_possible_cpu(i) {
8014 if (tg->cfs_rq)
8015 kfree(tg->cfs_rq[i]);
8016 if (tg->se)
8017 kfree(tg->se[i]);
8020 kfree(tg->cfs_rq);
8021 kfree(tg->se);
8024 static
8025 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8027 struct cfs_rq *cfs_rq;
8028 struct sched_entity *se;
8029 struct rq *rq;
8030 int i;
8032 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8033 if (!tg->cfs_rq)
8034 goto err;
8035 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8036 if (!tg->se)
8037 goto err;
8039 tg->shares = NICE_0_LOAD;
8041 for_each_possible_cpu(i) {
8042 rq = cpu_rq(i);
8044 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8045 GFP_KERNEL, cpu_to_node(i));
8046 if (!cfs_rq)
8047 goto err;
8049 se = kzalloc_node(sizeof(struct sched_entity),
8050 GFP_KERNEL, cpu_to_node(i));
8051 if (!se)
8052 goto err_free_rq;
8054 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8057 return 1;
8059 err_free_rq:
8060 kfree(cfs_rq);
8061 err:
8062 return 0;
8065 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8067 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8068 &cpu_rq(cpu)->leaf_cfs_rq_list);
8071 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8073 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8075 #else /* !CONFG_FAIR_GROUP_SCHED */
8076 static inline void free_fair_sched_group(struct task_group *tg)
8080 static inline
8081 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8083 return 1;
8086 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8090 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8093 #endif /* CONFIG_FAIR_GROUP_SCHED */
8095 #ifdef CONFIG_RT_GROUP_SCHED
8096 static void free_rt_sched_group(struct task_group *tg)
8098 int i;
8100 destroy_rt_bandwidth(&tg->rt_bandwidth);
8102 for_each_possible_cpu(i) {
8103 if (tg->rt_rq)
8104 kfree(tg->rt_rq[i]);
8105 if (tg->rt_se)
8106 kfree(tg->rt_se[i]);
8109 kfree(tg->rt_rq);
8110 kfree(tg->rt_se);
8113 static
8114 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8116 struct rt_rq *rt_rq;
8117 struct sched_rt_entity *rt_se;
8118 struct rq *rq;
8119 int i;
8121 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8122 if (!tg->rt_rq)
8123 goto err;
8124 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8125 if (!tg->rt_se)
8126 goto err;
8128 init_rt_bandwidth(&tg->rt_bandwidth,
8129 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8131 for_each_possible_cpu(i) {
8132 rq = cpu_rq(i);
8134 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8135 GFP_KERNEL, cpu_to_node(i));
8136 if (!rt_rq)
8137 goto err;
8139 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8140 GFP_KERNEL, cpu_to_node(i));
8141 if (!rt_se)
8142 goto err_free_rq;
8144 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8147 return 1;
8149 err_free_rq:
8150 kfree(rt_rq);
8151 err:
8152 return 0;
8155 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8157 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8158 &cpu_rq(cpu)->leaf_rt_rq_list);
8161 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8163 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8165 #else /* !CONFIG_RT_GROUP_SCHED */
8166 static inline void free_rt_sched_group(struct task_group *tg)
8170 static inline
8171 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8173 return 1;
8176 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8180 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8183 #endif /* CONFIG_RT_GROUP_SCHED */
8185 #ifdef CONFIG_CGROUP_SCHED
8186 static void free_sched_group(struct task_group *tg)
8188 free_fair_sched_group(tg);
8189 free_rt_sched_group(tg);
8190 kfree(tg);
8193 /* allocate runqueue etc for a new task group */
8194 struct task_group *sched_create_group(struct task_group *parent)
8196 struct task_group *tg;
8197 unsigned long flags;
8198 int i;
8200 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8201 if (!tg)
8202 return ERR_PTR(-ENOMEM);
8204 if (!alloc_fair_sched_group(tg, parent))
8205 goto err;
8207 if (!alloc_rt_sched_group(tg, parent))
8208 goto err;
8210 spin_lock_irqsave(&task_group_lock, flags);
8211 for_each_possible_cpu(i) {
8212 register_fair_sched_group(tg, i);
8213 register_rt_sched_group(tg, i);
8215 list_add_rcu(&tg->list, &task_groups);
8217 WARN_ON(!parent); /* root should already exist */
8219 tg->parent = parent;
8220 INIT_LIST_HEAD(&tg->children);
8221 list_add_rcu(&tg->siblings, &parent->children);
8222 spin_unlock_irqrestore(&task_group_lock, flags);
8224 return tg;
8226 err:
8227 free_sched_group(tg);
8228 return ERR_PTR(-ENOMEM);
8231 /* rcu callback to free various structures associated with a task group */
8232 static void free_sched_group_rcu(struct rcu_head *rhp)
8234 /* now it should be safe to free those cfs_rqs */
8235 free_sched_group(container_of(rhp, struct task_group, rcu));
8238 /* Destroy runqueue etc associated with a task group */
8239 void sched_destroy_group(struct task_group *tg)
8241 unsigned long flags;
8242 int i;
8244 spin_lock_irqsave(&task_group_lock, flags);
8245 for_each_possible_cpu(i) {
8246 unregister_fair_sched_group(tg, i);
8247 unregister_rt_sched_group(tg, i);
8249 list_del_rcu(&tg->list);
8250 list_del_rcu(&tg->siblings);
8251 spin_unlock_irqrestore(&task_group_lock, flags);
8253 /* wait for possible concurrent references to cfs_rqs complete */
8254 call_rcu(&tg->rcu, free_sched_group_rcu);
8257 /* change task's runqueue when it moves between groups.
8258 * The caller of this function should have put the task in its new group
8259 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8260 * reflect its new group.
8262 void sched_move_task(struct task_struct *tsk)
8264 int on_rq, running;
8265 unsigned long flags;
8266 struct rq *rq;
8268 rq = task_rq_lock(tsk, &flags);
8270 update_rq_clock(rq);
8272 running = task_current(rq, tsk);
8273 on_rq = tsk->se.on_rq;
8275 if (on_rq)
8276 dequeue_task(rq, tsk, 0);
8277 if (unlikely(running))
8278 tsk->sched_class->put_prev_task(rq, tsk);
8280 set_task_rq(tsk, task_cpu(tsk));
8282 #ifdef CONFIG_FAIR_GROUP_SCHED
8283 if (tsk->sched_class->moved_group)
8284 tsk->sched_class->moved_group(tsk, on_rq);
8285 #endif
8287 if (unlikely(running))
8288 tsk->sched_class->set_curr_task(rq);
8289 if (on_rq)
8290 enqueue_task(rq, tsk, 0, false);
8292 task_rq_unlock(rq, &flags);
8294 #endif /* CONFIG_CGROUP_SCHED */
8296 #ifdef CONFIG_FAIR_GROUP_SCHED
8297 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8299 struct cfs_rq *cfs_rq = se->cfs_rq;
8300 int on_rq;
8302 on_rq = se->on_rq;
8303 if (on_rq)
8304 dequeue_entity(cfs_rq, se, 0);
8306 se->load.weight = shares;
8307 se->load.inv_weight = 0;
8309 if (on_rq)
8310 enqueue_entity(cfs_rq, se, 0);
8313 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8315 struct cfs_rq *cfs_rq = se->cfs_rq;
8316 struct rq *rq = cfs_rq->rq;
8317 unsigned long flags;
8319 raw_spin_lock_irqsave(&rq->lock, flags);
8320 __set_se_shares(se, shares);
8321 raw_spin_unlock_irqrestore(&rq->lock, flags);
8324 static DEFINE_MUTEX(shares_mutex);
8326 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8328 int i;
8329 unsigned long flags;
8332 * We can't change the weight of the root cgroup.
8334 if (!tg->se[0])
8335 return -EINVAL;
8337 if (shares < MIN_SHARES)
8338 shares = MIN_SHARES;
8339 else if (shares > MAX_SHARES)
8340 shares = MAX_SHARES;
8342 mutex_lock(&shares_mutex);
8343 if (tg->shares == shares)
8344 goto done;
8346 spin_lock_irqsave(&task_group_lock, flags);
8347 for_each_possible_cpu(i)
8348 unregister_fair_sched_group(tg, i);
8349 list_del_rcu(&tg->siblings);
8350 spin_unlock_irqrestore(&task_group_lock, flags);
8352 /* wait for any ongoing reference to this group to finish */
8353 synchronize_sched();
8356 * Now we are free to modify the group's share on each cpu
8357 * w/o tripping rebalance_share or load_balance_fair.
8359 tg->shares = shares;
8360 for_each_possible_cpu(i) {
8362 * force a rebalance
8364 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8365 set_se_shares(tg->se[i], shares);
8369 * Enable load balance activity on this group, by inserting it back on
8370 * each cpu's rq->leaf_cfs_rq_list.
8372 spin_lock_irqsave(&task_group_lock, flags);
8373 for_each_possible_cpu(i)
8374 register_fair_sched_group(tg, i);
8375 list_add_rcu(&tg->siblings, &tg->parent->children);
8376 spin_unlock_irqrestore(&task_group_lock, flags);
8377 done:
8378 mutex_unlock(&shares_mutex);
8379 return 0;
8382 unsigned long sched_group_shares(struct task_group *tg)
8384 return tg->shares;
8386 #endif
8388 #ifdef CONFIG_RT_GROUP_SCHED
8390 * Ensure that the real time constraints are schedulable.
8392 static DEFINE_MUTEX(rt_constraints_mutex);
8394 static unsigned long to_ratio(u64 period, u64 runtime)
8396 if (runtime == RUNTIME_INF)
8397 return 1ULL << 20;
8399 return div64_u64(runtime << 20, period);
8402 /* Must be called with tasklist_lock held */
8403 static inline int tg_has_rt_tasks(struct task_group *tg)
8405 struct task_struct *g, *p;
8407 do_each_thread(g, p) {
8408 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8409 return 1;
8410 } while_each_thread(g, p);
8412 return 0;
8415 struct rt_schedulable_data {
8416 struct task_group *tg;
8417 u64 rt_period;
8418 u64 rt_runtime;
8421 static int tg_schedulable(struct task_group *tg, void *data)
8423 struct rt_schedulable_data *d = data;
8424 struct task_group *child;
8425 unsigned long total, sum = 0;
8426 u64 period, runtime;
8428 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8429 runtime = tg->rt_bandwidth.rt_runtime;
8431 if (tg == d->tg) {
8432 period = d->rt_period;
8433 runtime = d->rt_runtime;
8437 * Cannot have more runtime than the period.
8439 if (runtime > period && runtime != RUNTIME_INF)
8440 return -EINVAL;
8443 * Ensure we don't starve existing RT tasks.
8445 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8446 return -EBUSY;
8448 total = to_ratio(period, runtime);
8451 * Nobody can have more than the global setting allows.
8453 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8454 return -EINVAL;
8457 * The sum of our children's runtime should not exceed our own.
8459 list_for_each_entry_rcu(child, &tg->children, siblings) {
8460 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8461 runtime = child->rt_bandwidth.rt_runtime;
8463 if (child == d->tg) {
8464 period = d->rt_period;
8465 runtime = d->rt_runtime;
8468 sum += to_ratio(period, runtime);
8471 if (sum > total)
8472 return -EINVAL;
8474 return 0;
8477 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8479 struct rt_schedulable_data data = {
8480 .tg = tg,
8481 .rt_period = period,
8482 .rt_runtime = runtime,
8485 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8488 static int tg_set_bandwidth(struct task_group *tg,
8489 u64 rt_period, u64 rt_runtime)
8491 int i, err = 0;
8493 mutex_lock(&rt_constraints_mutex);
8494 read_lock(&tasklist_lock);
8495 err = __rt_schedulable(tg, rt_period, rt_runtime);
8496 if (err)
8497 goto unlock;
8499 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8500 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8501 tg->rt_bandwidth.rt_runtime = rt_runtime;
8503 for_each_possible_cpu(i) {
8504 struct rt_rq *rt_rq = tg->rt_rq[i];
8506 raw_spin_lock(&rt_rq->rt_runtime_lock);
8507 rt_rq->rt_runtime = rt_runtime;
8508 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8510 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8511 unlock:
8512 read_unlock(&tasklist_lock);
8513 mutex_unlock(&rt_constraints_mutex);
8515 return err;
8518 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8520 u64 rt_runtime, rt_period;
8522 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8523 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8524 if (rt_runtime_us < 0)
8525 rt_runtime = RUNTIME_INF;
8527 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8530 long sched_group_rt_runtime(struct task_group *tg)
8532 u64 rt_runtime_us;
8534 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8535 return -1;
8537 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8538 do_div(rt_runtime_us, NSEC_PER_USEC);
8539 return rt_runtime_us;
8542 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8544 u64 rt_runtime, rt_period;
8546 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8547 rt_runtime = tg->rt_bandwidth.rt_runtime;
8549 if (rt_period == 0)
8550 return -EINVAL;
8552 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8555 long sched_group_rt_period(struct task_group *tg)
8557 u64 rt_period_us;
8559 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8560 do_div(rt_period_us, NSEC_PER_USEC);
8561 return rt_period_us;
8564 static int sched_rt_global_constraints(void)
8566 u64 runtime, period;
8567 int ret = 0;
8569 if (sysctl_sched_rt_period <= 0)
8570 return -EINVAL;
8572 runtime = global_rt_runtime();
8573 period = global_rt_period();
8576 * Sanity check on the sysctl variables.
8578 if (runtime > period && runtime != RUNTIME_INF)
8579 return -EINVAL;
8581 mutex_lock(&rt_constraints_mutex);
8582 read_lock(&tasklist_lock);
8583 ret = __rt_schedulable(NULL, 0, 0);
8584 read_unlock(&tasklist_lock);
8585 mutex_unlock(&rt_constraints_mutex);
8587 return ret;
8590 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8592 /* Don't accept realtime tasks when there is no way for them to run */
8593 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8594 return 0;
8596 return 1;
8599 #else /* !CONFIG_RT_GROUP_SCHED */
8600 static int sched_rt_global_constraints(void)
8602 unsigned long flags;
8603 int i;
8605 if (sysctl_sched_rt_period <= 0)
8606 return -EINVAL;
8609 * There's always some RT tasks in the root group
8610 * -- migration, kstopmachine etc..
8612 if (sysctl_sched_rt_runtime == 0)
8613 return -EBUSY;
8615 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8616 for_each_possible_cpu(i) {
8617 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8619 raw_spin_lock(&rt_rq->rt_runtime_lock);
8620 rt_rq->rt_runtime = global_rt_runtime();
8621 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8623 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8625 return 0;
8627 #endif /* CONFIG_RT_GROUP_SCHED */
8629 int sched_rt_handler(struct ctl_table *table, int write,
8630 void __user *buffer, size_t *lenp,
8631 loff_t *ppos)
8633 int ret;
8634 int old_period, old_runtime;
8635 static DEFINE_MUTEX(mutex);
8637 mutex_lock(&mutex);
8638 old_period = sysctl_sched_rt_period;
8639 old_runtime = sysctl_sched_rt_runtime;
8641 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8643 if (!ret && write) {
8644 ret = sched_rt_global_constraints();
8645 if (ret) {
8646 sysctl_sched_rt_period = old_period;
8647 sysctl_sched_rt_runtime = old_runtime;
8648 } else {
8649 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8650 def_rt_bandwidth.rt_period =
8651 ns_to_ktime(global_rt_period());
8654 mutex_unlock(&mutex);
8656 return ret;
8659 #ifdef CONFIG_CGROUP_SCHED
8661 /* return corresponding task_group object of a cgroup */
8662 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8664 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8665 struct task_group, css);
8668 static struct cgroup_subsys_state *
8669 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8671 struct task_group *tg, *parent;
8673 if (!cgrp->parent) {
8674 /* This is early initialization for the top cgroup */
8675 return &init_task_group.css;
8678 parent = cgroup_tg(cgrp->parent);
8679 tg = sched_create_group(parent);
8680 if (IS_ERR(tg))
8681 return ERR_PTR(-ENOMEM);
8683 return &tg->css;
8686 static void
8687 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8689 struct task_group *tg = cgroup_tg(cgrp);
8691 sched_destroy_group(tg);
8694 static int
8695 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8697 #ifdef CONFIG_RT_GROUP_SCHED
8698 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8699 return -EINVAL;
8700 #else
8701 /* We don't support RT-tasks being in separate groups */
8702 if (tsk->sched_class != &fair_sched_class)
8703 return -EINVAL;
8704 #endif
8705 return 0;
8708 static int
8709 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8710 struct task_struct *tsk, bool threadgroup)
8712 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8713 if (retval)
8714 return retval;
8715 if (threadgroup) {
8716 struct task_struct *c;
8717 rcu_read_lock();
8718 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8719 retval = cpu_cgroup_can_attach_task(cgrp, c);
8720 if (retval) {
8721 rcu_read_unlock();
8722 return retval;
8725 rcu_read_unlock();
8727 return 0;
8730 static void
8731 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8732 struct cgroup *old_cont, struct task_struct *tsk,
8733 bool threadgroup)
8735 sched_move_task(tsk);
8736 if (threadgroup) {
8737 struct task_struct *c;
8738 rcu_read_lock();
8739 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8740 sched_move_task(c);
8742 rcu_read_unlock();
8746 #ifdef CONFIG_FAIR_GROUP_SCHED
8747 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8748 u64 shareval)
8750 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8753 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8755 struct task_group *tg = cgroup_tg(cgrp);
8757 return (u64) tg->shares;
8759 #endif /* CONFIG_FAIR_GROUP_SCHED */
8761 #ifdef CONFIG_RT_GROUP_SCHED
8762 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8763 s64 val)
8765 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8768 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8770 return sched_group_rt_runtime(cgroup_tg(cgrp));
8773 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8774 u64 rt_period_us)
8776 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8779 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8781 return sched_group_rt_period(cgroup_tg(cgrp));
8783 #endif /* CONFIG_RT_GROUP_SCHED */
8785 static struct cftype cpu_files[] = {
8786 #ifdef CONFIG_FAIR_GROUP_SCHED
8788 .name = "shares",
8789 .read_u64 = cpu_shares_read_u64,
8790 .write_u64 = cpu_shares_write_u64,
8792 #endif
8793 #ifdef CONFIG_RT_GROUP_SCHED
8795 .name = "rt_runtime_us",
8796 .read_s64 = cpu_rt_runtime_read,
8797 .write_s64 = cpu_rt_runtime_write,
8800 .name = "rt_period_us",
8801 .read_u64 = cpu_rt_period_read_uint,
8802 .write_u64 = cpu_rt_period_write_uint,
8804 #endif
8807 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8809 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8812 struct cgroup_subsys cpu_cgroup_subsys = {
8813 .name = "cpu",
8814 .create = cpu_cgroup_create,
8815 .destroy = cpu_cgroup_destroy,
8816 .can_attach = cpu_cgroup_can_attach,
8817 .attach = cpu_cgroup_attach,
8818 .populate = cpu_cgroup_populate,
8819 .subsys_id = cpu_cgroup_subsys_id,
8820 .early_init = 1,
8823 #endif /* CONFIG_CGROUP_SCHED */
8825 #ifdef CONFIG_CGROUP_CPUACCT
8828 * CPU accounting code for task groups.
8830 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8831 * (balbir@in.ibm.com).
8834 /* track cpu usage of a group of tasks and its child groups */
8835 struct cpuacct {
8836 struct cgroup_subsys_state css;
8837 /* cpuusage holds pointer to a u64-type object on every cpu */
8838 u64 __percpu *cpuusage;
8839 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8840 struct cpuacct *parent;
8843 struct cgroup_subsys cpuacct_subsys;
8845 /* return cpu accounting group corresponding to this container */
8846 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8848 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8849 struct cpuacct, css);
8852 /* return cpu accounting group to which this task belongs */
8853 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8855 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8856 struct cpuacct, css);
8859 /* create a new cpu accounting group */
8860 static struct cgroup_subsys_state *cpuacct_create(
8861 struct cgroup_subsys *ss, struct cgroup *cgrp)
8863 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8864 int i;
8866 if (!ca)
8867 goto out;
8869 ca->cpuusage = alloc_percpu(u64);
8870 if (!ca->cpuusage)
8871 goto out_free_ca;
8873 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8874 if (percpu_counter_init(&ca->cpustat[i], 0))
8875 goto out_free_counters;
8877 if (cgrp->parent)
8878 ca->parent = cgroup_ca(cgrp->parent);
8880 return &ca->css;
8882 out_free_counters:
8883 while (--i >= 0)
8884 percpu_counter_destroy(&ca->cpustat[i]);
8885 free_percpu(ca->cpuusage);
8886 out_free_ca:
8887 kfree(ca);
8888 out:
8889 return ERR_PTR(-ENOMEM);
8892 /* destroy an existing cpu accounting group */
8893 static void
8894 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8896 struct cpuacct *ca = cgroup_ca(cgrp);
8897 int i;
8899 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8900 percpu_counter_destroy(&ca->cpustat[i]);
8901 free_percpu(ca->cpuusage);
8902 kfree(ca);
8905 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8907 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8908 u64 data;
8910 #ifndef CONFIG_64BIT
8912 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8914 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8915 data = *cpuusage;
8916 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8917 #else
8918 data = *cpuusage;
8919 #endif
8921 return data;
8924 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8926 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8928 #ifndef CONFIG_64BIT
8930 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8932 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8933 *cpuusage = val;
8934 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8935 #else
8936 *cpuusage = val;
8937 #endif
8940 /* return total cpu usage (in nanoseconds) of a group */
8941 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8943 struct cpuacct *ca = cgroup_ca(cgrp);
8944 u64 totalcpuusage = 0;
8945 int i;
8947 for_each_present_cpu(i)
8948 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8950 return totalcpuusage;
8953 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8954 u64 reset)
8956 struct cpuacct *ca = cgroup_ca(cgrp);
8957 int err = 0;
8958 int i;
8960 if (reset) {
8961 err = -EINVAL;
8962 goto out;
8965 for_each_present_cpu(i)
8966 cpuacct_cpuusage_write(ca, i, 0);
8968 out:
8969 return err;
8972 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8973 struct seq_file *m)
8975 struct cpuacct *ca = cgroup_ca(cgroup);
8976 u64 percpu;
8977 int i;
8979 for_each_present_cpu(i) {
8980 percpu = cpuacct_cpuusage_read(ca, i);
8981 seq_printf(m, "%llu ", (unsigned long long) percpu);
8983 seq_printf(m, "\n");
8984 return 0;
8987 static const char *cpuacct_stat_desc[] = {
8988 [CPUACCT_STAT_USER] = "user",
8989 [CPUACCT_STAT_SYSTEM] = "system",
8992 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8993 struct cgroup_map_cb *cb)
8995 struct cpuacct *ca = cgroup_ca(cgrp);
8996 int i;
8998 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8999 s64 val = percpu_counter_read(&ca->cpustat[i]);
9000 val = cputime64_to_clock_t(val);
9001 cb->fill(cb, cpuacct_stat_desc[i], val);
9003 return 0;
9006 static struct cftype files[] = {
9008 .name = "usage",
9009 .read_u64 = cpuusage_read,
9010 .write_u64 = cpuusage_write,
9013 .name = "usage_percpu",
9014 .read_seq_string = cpuacct_percpu_seq_read,
9017 .name = "stat",
9018 .read_map = cpuacct_stats_show,
9022 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9024 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9028 * charge this task's execution time to its accounting group.
9030 * called with rq->lock held.
9032 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9034 struct cpuacct *ca;
9035 int cpu;
9037 if (unlikely(!cpuacct_subsys.active))
9038 return;
9040 cpu = task_cpu(tsk);
9042 rcu_read_lock();
9044 ca = task_ca(tsk);
9046 for (; ca; ca = ca->parent) {
9047 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9048 *cpuusage += cputime;
9051 rcu_read_unlock();
9055 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9056 * in cputime_t units. As a result, cpuacct_update_stats calls
9057 * percpu_counter_add with values large enough to always overflow the
9058 * per cpu batch limit causing bad SMP scalability.
9060 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9061 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9062 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9064 #ifdef CONFIG_SMP
9065 #define CPUACCT_BATCH \
9066 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9067 #else
9068 #define CPUACCT_BATCH 0
9069 #endif
9072 * Charge the system/user time to the task's accounting group.
9074 static void cpuacct_update_stats(struct task_struct *tsk,
9075 enum cpuacct_stat_index idx, cputime_t val)
9077 struct cpuacct *ca;
9078 int batch = CPUACCT_BATCH;
9080 if (unlikely(!cpuacct_subsys.active))
9081 return;
9083 rcu_read_lock();
9084 ca = task_ca(tsk);
9086 do {
9087 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9088 ca = ca->parent;
9089 } while (ca);
9090 rcu_read_unlock();
9093 struct cgroup_subsys cpuacct_subsys = {
9094 .name = "cpuacct",
9095 .create = cpuacct_create,
9096 .destroy = cpuacct_destroy,
9097 .populate = cpuacct_populate,
9098 .subsys_id = cpuacct_subsys_id,
9100 #endif /* CONFIG_CGROUP_CPUACCT */
9102 #ifndef CONFIG_SMP
9104 int rcu_expedited_torture_stats(char *page)
9106 return 0;
9108 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9110 void synchronize_sched_expedited(void)
9113 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9115 #else /* #ifndef CONFIG_SMP */
9117 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9118 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9120 #define RCU_EXPEDITED_STATE_POST -2
9121 #define RCU_EXPEDITED_STATE_IDLE -1
9123 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9125 int rcu_expedited_torture_stats(char *page)
9127 int cnt = 0;
9128 int cpu;
9130 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9131 for_each_online_cpu(cpu) {
9132 cnt += sprintf(&page[cnt], " %d:%d",
9133 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9135 cnt += sprintf(&page[cnt], "\n");
9136 return cnt;
9138 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9140 static long synchronize_sched_expedited_count;
9143 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9144 * approach to force grace period to end quickly. This consumes
9145 * significant time on all CPUs, and is thus not recommended for
9146 * any sort of common-case code.
9148 * Note that it is illegal to call this function while holding any
9149 * lock that is acquired by a CPU-hotplug notifier. Failing to
9150 * observe this restriction will result in deadlock.
9152 void synchronize_sched_expedited(void)
9154 int cpu;
9155 unsigned long flags;
9156 bool need_full_sync = 0;
9157 struct rq *rq;
9158 struct migration_req *req;
9159 long snap;
9160 int trycount = 0;
9162 smp_mb(); /* ensure prior mod happens before capturing snap. */
9163 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9164 get_online_cpus();
9165 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9166 put_online_cpus();
9167 if (trycount++ < 10)
9168 udelay(trycount * num_online_cpus());
9169 else {
9170 synchronize_sched();
9171 return;
9173 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9174 smp_mb(); /* ensure test happens before caller kfree */
9175 return;
9177 get_online_cpus();
9179 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9180 for_each_online_cpu(cpu) {
9181 rq = cpu_rq(cpu);
9182 req = &per_cpu(rcu_migration_req, cpu);
9183 init_completion(&req->done);
9184 req->task = NULL;
9185 req->dest_cpu = RCU_MIGRATION_NEED_QS;
9186 raw_spin_lock_irqsave(&rq->lock, flags);
9187 list_add(&req->list, &rq->migration_queue);
9188 raw_spin_unlock_irqrestore(&rq->lock, flags);
9189 wake_up_process(rq->migration_thread);
9191 for_each_online_cpu(cpu) {
9192 rcu_expedited_state = cpu;
9193 req = &per_cpu(rcu_migration_req, cpu);
9194 rq = cpu_rq(cpu);
9195 wait_for_completion(&req->done);
9196 raw_spin_lock_irqsave(&rq->lock, flags);
9197 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9198 need_full_sync = 1;
9199 req->dest_cpu = RCU_MIGRATION_IDLE;
9200 raw_spin_unlock_irqrestore(&rq->lock, flags);
9202 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9203 synchronize_sched_expedited_count++;
9204 mutex_unlock(&rcu_sched_expedited_mutex);
9205 put_online_cpus();
9206 if (need_full_sync)
9207 synchronize_sched();
9209 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9211 #endif /* #else #ifndef CONFIG_SMP */