[IrDA]: Monitor mode.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / mempolicy.c
blobd76e8eb342d0df2e0468f014076a720866ae2277
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 could replace all the switch()es with a mempolicy_ops structure.
69 #include <linux/mempolicy.h>
70 #include <linux/mm.h>
71 #include <linux/highmem.h>
72 #include <linux/hugetlb.h>
73 #include <linux/kernel.h>
74 #include <linux/sched.h>
75 #include <linux/mm.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/gfp.h>
79 #include <linux/slab.h>
80 #include <linux/string.h>
81 #include <linux/module.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/mempolicy.h>
86 #include <linux/swap.h>
87 #include <linux/seq_file.h>
88 #include <linux/proc_fs.h>
89 #include <linux/migrate.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
93 #include <asm/tlbflush.h>
94 #include <asm/uaccess.h>
96 /* Internal flags */
97 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
98 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
99 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
101 static struct kmem_cache *policy_cache;
102 static struct kmem_cache *sn_cache;
104 #define PDprintk(fmt...)
106 /* Highest zone. An specific allocation for a zone below that is not
107 policied. */
108 enum zone_type policy_zone = 0;
110 struct mempolicy default_policy = {
111 .refcnt = ATOMIC_INIT(1), /* never free it */
112 .policy = MPOL_DEFAULT,
115 /* Do sanity checking on a policy */
116 static int mpol_check_policy(int mode, nodemask_t *nodes)
118 int empty = nodes_empty(*nodes);
120 switch (mode) {
121 case MPOL_DEFAULT:
122 if (!empty)
123 return -EINVAL;
124 break;
125 case MPOL_BIND:
126 case MPOL_INTERLEAVE:
127 /* Preferred will only use the first bit, but allow
128 more for now. */
129 if (empty)
130 return -EINVAL;
131 break;
133 return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL;
136 /* Generate a custom zonelist for the BIND policy. */
137 static struct zonelist *bind_zonelist(nodemask_t *nodes)
139 struct zonelist *zl;
140 int num, max, nd;
141 enum zone_type k;
143 max = 1 + MAX_NR_ZONES * nodes_weight(*nodes);
144 max++; /* space for zlcache_ptr (see mmzone.h) */
145 zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL);
146 if (!zl)
147 return ERR_PTR(-ENOMEM);
148 zl->zlcache_ptr = NULL;
149 num = 0;
150 /* First put in the highest zones from all nodes, then all the next
151 lower zones etc. Avoid empty zones because the memory allocator
152 doesn't like them. If you implement node hot removal you
153 have to fix that. */
154 k = policy_zone;
155 while (1) {
156 for_each_node_mask(nd, *nodes) {
157 struct zone *z = &NODE_DATA(nd)->node_zones[k];
158 if (z->present_pages > 0)
159 zl->zones[num++] = z;
161 if (k == 0)
162 break;
163 k--;
165 if (num == 0) {
166 kfree(zl);
167 return ERR_PTR(-EINVAL);
169 zl->zones[num] = NULL;
170 return zl;
173 /* Create a new policy */
174 static struct mempolicy *mpol_new(int mode, nodemask_t *nodes)
176 struct mempolicy *policy;
178 PDprintk("setting mode %d nodes[0] %lx\n", mode, nodes_addr(*nodes)[0]);
179 if (mode == MPOL_DEFAULT)
180 return NULL;
181 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
182 if (!policy)
183 return ERR_PTR(-ENOMEM);
184 atomic_set(&policy->refcnt, 1);
185 switch (mode) {
186 case MPOL_INTERLEAVE:
187 policy->v.nodes = *nodes;
188 if (nodes_weight(*nodes) == 0) {
189 kmem_cache_free(policy_cache, policy);
190 return ERR_PTR(-EINVAL);
192 break;
193 case MPOL_PREFERRED:
194 policy->v.preferred_node = first_node(*nodes);
195 if (policy->v.preferred_node >= MAX_NUMNODES)
196 policy->v.preferred_node = -1;
197 break;
198 case MPOL_BIND:
199 policy->v.zonelist = bind_zonelist(nodes);
200 if (IS_ERR(policy->v.zonelist)) {
201 void *error_code = policy->v.zonelist;
202 kmem_cache_free(policy_cache, policy);
203 return error_code;
205 break;
207 policy->policy = mode;
208 policy->cpuset_mems_allowed = cpuset_mems_allowed(current);
209 return policy;
212 static void gather_stats(struct page *, void *, int pte_dirty);
213 static void migrate_page_add(struct page *page, struct list_head *pagelist,
214 unsigned long flags);
216 /* Scan through pages checking if pages follow certain conditions. */
217 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
218 unsigned long addr, unsigned long end,
219 const nodemask_t *nodes, unsigned long flags,
220 void *private)
222 pte_t *orig_pte;
223 pte_t *pte;
224 spinlock_t *ptl;
226 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
227 do {
228 struct page *page;
229 int nid;
231 if (!pte_present(*pte))
232 continue;
233 page = vm_normal_page(vma, addr, *pte);
234 if (!page)
235 continue;
237 * The check for PageReserved here is important to avoid
238 * handling zero pages and other pages that may have been
239 * marked special by the system.
241 * If the PageReserved would not be checked here then f.e.
242 * the location of the zero page could have an influence
243 * on MPOL_MF_STRICT, zero pages would be counted for
244 * the per node stats, and there would be useless attempts
245 * to put zero pages on the migration list.
247 if (PageReserved(page))
248 continue;
249 nid = page_to_nid(page);
250 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
251 continue;
253 if (flags & MPOL_MF_STATS)
254 gather_stats(page, private, pte_dirty(*pte));
255 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
256 migrate_page_add(page, private, flags);
257 else
258 break;
259 } while (pte++, addr += PAGE_SIZE, addr != end);
260 pte_unmap_unlock(orig_pte, ptl);
261 return addr != end;
264 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
265 unsigned long addr, unsigned long end,
266 const nodemask_t *nodes, unsigned long flags,
267 void *private)
269 pmd_t *pmd;
270 unsigned long next;
272 pmd = pmd_offset(pud, addr);
273 do {
274 next = pmd_addr_end(addr, end);
275 if (pmd_none_or_clear_bad(pmd))
276 continue;
277 if (check_pte_range(vma, pmd, addr, next, nodes,
278 flags, private))
279 return -EIO;
280 } while (pmd++, addr = next, addr != end);
281 return 0;
284 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
285 unsigned long addr, unsigned long end,
286 const nodemask_t *nodes, unsigned long flags,
287 void *private)
289 pud_t *pud;
290 unsigned long next;
292 pud = pud_offset(pgd, addr);
293 do {
294 next = pud_addr_end(addr, end);
295 if (pud_none_or_clear_bad(pud))
296 continue;
297 if (check_pmd_range(vma, pud, addr, next, nodes,
298 flags, private))
299 return -EIO;
300 } while (pud++, addr = next, addr != end);
301 return 0;
304 static inline int check_pgd_range(struct vm_area_struct *vma,
305 unsigned long addr, unsigned long end,
306 const nodemask_t *nodes, unsigned long flags,
307 void *private)
309 pgd_t *pgd;
310 unsigned long next;
312 pgd = pgd_offset(vma->vm_mm, addr);
313 do {
314 next = pgd_addr_end(addr, end);
315 if (pgd_none_or_clear_bad(pgd))
316 continue;
317 if (check_pud_range(vma, pgd, addr, next, nodes,
318 flags, private))
319 return -EIO;
320 } while (pgd++, addr = next, addr != end);
321 return 0;
325 * Check if all pages in a range are on a set of nodes.
326 * If pagelist != NULL then isolate pages from the LRU and
327 * put them on the pagelist.
329 static struct vm_area_struct *
330 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
331 const nodemask_t *nodes, unsigned long flags, void *private)
333 int err;
334 struct vm_area_struct *first, *vma, *prev;
336 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
338 err = migrate_prep();
339 if (err)
340 return ERR_PTR(err);
343 first = find_vma(mm, start);
344 if (!first)
345 return ERR_PTR(-EFAULT);
346 prev = NULL;
347 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
348 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
349 if (!vma->vm_next && vma->vm_end < end)
350 return ERR_PTR(-EFAULT);
351 if (prev && prev->vm_end < vma->vm_start)
352 return ERR_PTR(-EFAULT);
354 if (!is_vm_hugetlb_page(vma) &&
355 ((flags & MPOL_MF_STRICT) ||
356 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
357 vma_migratable(vma)))) {
358 unsigned long endvma = vma->vm_end;
360 if (endvma > end)
361 endvma = end;
362 if (vma->vm_start > start)
363 start = vma->vm_start;
364 err = check_pgd_range(vma, start, endvma, nodes,
365 flags, private);
366 if (err) {
367 first = ERR_PTR(err);
368 break;
371 prev = vma;
373 return first;
376 /* Apply policy to a single VMA */
377 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
379 int err = 0;
380 struct mempolicy *old = vma->vm_policy;
382 PDprintk("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
383 vma->vm_start, vma->vm_end, vma->vm_pgoff,
384 vma->vm_ops, vma->vm_file,
385 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
387 if (vma->vm_ops && vma->vm_ops->set_policy)
388 err = vma->vm_ops->set_policy(vma, new);
389 if (!err) {
390 mpol_get(new);
391 vma->vm_policy = new;
392 mpol_free(old);
394 return err;
397 /* Step 2: apply policy to a range and do splits. */
398 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
399 unsigned long end, struct mempolicy *new)
401 struct vm_area_struct *next;
402 int err;
404 err = 0;
405 for (; vma && vma->vm_start < end; vma = next) {
406 next = vma->vm_next;
407 if (vma->vm_start < start)
408 err = split_vma(vma->vm_mm, vma, start, 1);
409 if (!err && vma->vm_end > end)
410 err = split_vma(vma->vm_mm, vma, end, 0);
411 if (!err)
412 err = policy_vma(vma, new);
413 if (err)
414 break;
416 return err;
419 static int contextualize_policy(int mode, nodemask_t *nodes)
421 if (!nodes)
422 return 0;
424 cpuset_update_task_memory_state();
425 if (!cpuset_nodes_subset_current_mems_allowed(*nodes))
426 return -EINVAL;
427 return mpol_check_policy(mode, nodes);
432 * Update task->flags PF_MEMPOLICY bit: set iff non-default
433 * mempolicy. Allows more rapid checking of this (combined perhaps
434 * with other PF_* flag bits) on memory allocation hot code paths.
436 * If called from outside this file, the task 'p' should -only- be
437 * a newly forked child not yet visible on the task list, because
438 * manipulating the task flags of a visible task is not safe.
440 * The above limitation is why this routine has the funny name
441 * mpol_fix_fork_child_flag().
443 * It is also safe to call this with a task pointer of current,
444 * which the static wrapper mpol_set_task_struct_flag() does,
445 * for use within this file.
448 void mpol_fix_fork_child_flag(struct task_struct *p)
450 if (p->mempolicy)
451 p->flags |= PF_MEMPOLICY;
452 else
453 p->flags &= ~PF_MEMPOLICY;
456 static void mpol_set_task_struct_flag(void)
458 mpol_fix_fork_child_flag(current);
461 /* Set the process memory policy */
462 long do_set_mempolicy(int mode, nodemask_t *nodes)
464 struct mempolicy *new;
466 if (contextualize_policy(mode, nodes))
467 return -EINVAL;
468 new = mpol_new(mode, nodes);
469 if (IS_ERR(new))
470 return PTR_ERR(new);
471 mpol_free(current->mempolicy);
472 current->mempolicy = new;
473 mpol_set_task_struct_flag();
474 if (new && new->policy == MPOL_INTERLEAVE)
475 current->il_next = first_node(new->v.nodes);
476 return 0;
479 /* Fill a zone bitmap for a policy */
480 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
482 int i;
484 nodes_clear(*nodes);
485 switch (p->policy) {
486 case MPOL_BIND:
487 for (i = 0; p->v.zonelist->zones[i]; i++)
488 node_set(zone_to_nid(p->v.zonelist->zones[i]),
489 *nodes);
490 break;
491 case MPOL_DEFAULT:
492 break;
493 case MPOL_INTERLEAVE:
494 *nodes = p->v.nodes;
495 break;
496 case MPOL_PREFERRED:
497 /* or use current node instead of online map? */
498 if (p->v.preferred_node < 0)
499 *nodes = node_online_map;
500 else
501 node_set(p->v.preferred_node, *nodes);
502 break;
503 default:
504 BUG();
508 static int lookup_node(struct mm_struct *mm, unsigned long addr)
510 struct page *p;
511 int err;
513 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
514 if (err >= 0) {
515 err = page_to_nid(p);
516 put_page(p);
518 return err;
521 /* Retrieve NUMA policy */
522 long do_get_mempolicy(int *policy, nodemask_t *nmask,
523 unsigned long addr, unsigned long flags)
525 int err;
526 struct mm_struct *mm = current->mm;
527 struct vm_area_struct *vma = NULL;
528 struct mempolicy *pol = current->mempolicy;
530 cpuset_update_task_memory_state();
531 if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR))
532 return -EINVAL;
533 if (flags & MPOL_F_ADDR) {
534 down_read(&mm->mmap_sem);
535 vma = find_vma_intersection(mm, addr, addr+1);
536 if (!vma) {
537 up_read(&mm->mmap_sem);
538 return -EFAULT;
540 if (vma->vm_ops && vma->vm_ops->get_policy)
541 pol = vma->vm_ops->get_policy(vma, addr);
542 else
543 pol = vma->vm_policy;
544 } else if (addr)
545 return -EINVAL;
547 if (!pol)
548 pol = &default_policy;
550 if (flags & MPOL_F_NODE) {
551 if (flags & MPOL_F_ADDR) {
552 err = lookup_node(mm, addr);
553 if (err < 0)
554 goto out;
555 *policy = err;
556 } else if (pol == current->mempolicy &&
557 pol->policy == MPOL_INTERLEAVE) {
558 *policy = current->il_next;
559 } else {
560 err = -EINVAL;
561 goto out;
563 } else
564 *policy = pol->policy;
566 if (vma) {
567 up_read(&current->mm->mmap_sem);
568 vma = NULL;
571 err = 0;
572 if (nmask)
573 get_zonemask(pol, nmask);
575 out:
576 if (vma)
577 up_read(&current->mm->mmap_sem);
578 return err;
581 #ifdef CONFIG_MIGRATION
583 * page migration
585 static void migrate_page_add(struct page *page, struct list_head *pagelist,
586 unsigned long flags)
589 * Avoid migrating a page that is shared with others.
591 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
592 isolate_lru_page(page, pagelist);
595 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
597 return alloc_pages_node(node, GFP_HIGHUSER, 0);
601 * Migrate pages from one node to a target node.
602 * Returns error or the number of pages not migrated.
604 int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags)
606 nodemask_t nmask;
607 LIST_HEAD(pagelist);
608 int err = 0;
610 nodes_clear(nmask);
611 node_set(source, nmask);
613 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
614 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
616 if (!list_empty(&pagelist))
617 err = migrate_pages(&pagelist, new_node_page, dest);
619 return err;
623 * Move pages between the two nodesets so as to preserve the physical
624 * layout as much as possible.
626 * Returns the number of page that could not be moved.
628 int do_migrate_pages(struct mm_struct *mm,
629 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
631 LIST_HEAD(pagelist);
632 int busy = 0;
633 int err = 0;
634 nodemask_t tmp;
636 down_read(&mm->mmap_sem);
638 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
639 if (err)
640 goto out;
643 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
644 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
645 * bit in 'tmp', and return that <source, dest> pair for migration.
646 * The pair of nodemasks 'to' and 'from' define the map.
648 * If no pair of bits is found that way, fallback to picking some
649 * pair of 'source' and 'dest' bits that are not the same. If the
650 * 'source' and 'dest' bits are the same, this represents a node
651 * that will be migrating to itself, so no pages need move.
653 * If no bits are left in 'tmp', or if all remaining bits left
654 * in 'tmp' correspond to the same bit in 'to', return false
655 * (nothing left to migrate).
657 * This lets us pick a pair of nodes to migrate between, such that
658 * if possible the dest node is not already occupied by some other
659 * source node, minimizing the risk of overloading the memory on a
660 * node that would happen if we migrated incoming memory to a node
661 * before migrating outgoing memory source that same node.
663 * A single scan of tmp is sufficient. As we go, we remember the
664 * most recent <s, d> pair that moved (s != d). If we find a pair
665 * that not only moved, but what's better, moved to an empty slot
666 * (d is not set in tmp), then we break out then, with that pair.
667 * Otherwise when we finish scannng from_tmp, we at least have the
668 * most recent <s, d> pair that moved. If we get all the way through
669 * the scan of tmp without finding any node that moved, much less
670 * moved to an empty node, then there is nothing left worth migrating.
673 tmp = *from_nodes;
674 while (!nodes_empty(tmp)) {
675 int s,d;
676 int source = -1;
677 int dest = 0;
679 for_each_node_mask(s, tmp) {
680 d = node_remap(s, *from_nodes, *to_nodes);
681 if (s == d)
682 continue;
684 source = s; /* Node moved. Memorize */
685 dest = d;
687 /* dest not in remaining from nodes? */
688 if (!node_isset(dest, tmp))
689 break;
691 if (source == -1)
692 break;
694 node_clear(source, tmp);
695 err = migrate_to_node(mm, source, dest, flags);
696 if (err > 0)
697 busy += err;
698 if (err < 0)
699 break;
701 out:
702 up_read(&mm->mmap_sem);
703 if (err < 0)
704 return err;
705 return busy;
709 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
711 struct vm_area_struct *vma = (struct vm_area_struct *)private;
713 return alloc_page_vma(GFP_HIGHUSER, vma, page_address_in_vma(page, vma));
715 #else
717 static void migrate_page_add(struct page *page, struct list_head *pagelist,
718 unsigned long flags)
722 int do_migrate_pages(struct mm_struct *mm,
723 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
725 return -ENOSYS;
728 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
730 return NULL;
732 #endif
734 long do_mbind(unsigned long start, unsigned long len,
735 unsigned long mode, nodemask_t *nmask, unsigned long flags)
737 struct vm_area_struct *vma;
738 struct mm_struct *mm = current->mm;
739 struct mempolicy *new;
740 unsigned long end;
741 int err;
742 LIST_HEAD(pagelist);
744 if ((flags & ~(unsigned long)(MPOL_MF_STRICT |
745 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
746 || mode > MPOL_MAX)
747 return -EINVAL;
748 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
749 return -EPERM;
751 if (start & ~PAGE_MASK)
752 return -EINVAL;
754 if (mode == MPOL_DEFAULT)
755 flags &= ~MPOL_MF_STRICT;
757 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
758 end = start + len;
760 if (end < start)
761 return -EINVAL;
762 if (end == start)
763 return 0;
765 if (mpol_check_policy(mode, nmask))
766 return -EINVAL;
768 new = mpol_new(mode, nmask);
769 if (IS_ERR(new))
770 return PTR_ERR(new);
773 * If we are using the default policy then operation
774 * on discontinuous address spaces is okay after all
776 if (!new)
777 flags |= MPOL_MF_DISCONTIG_OK;
779 PDprintk("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len,
780 mode,nodes_addr(nodes)[0]);
782 down_write(&mm->mmap_sem);
783 vma = check_range(mm, start, end, nmask,
784 flags | MPOL_MF_INVERT, &pagelist);
786 err = PTR_ERR(vma);
787 if (!IS_ERR(vma)) {
788 int nr_failed = 0;
790 err = mbind_range(vma, start, end, new);
792 if (!list_empty(&pagelist))
793 nr_failed = migrate_pages(&pagelist, new_vma_page,
794 (unsigned long)vma);
796 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
797 err = -EIO;
800 up_write(&mm->mmap_sem);
801 mpol_free(new);
802 return err;
806 * User space interface with variable sized bitmaps for nodelists.
809 /* Copy a node mask from user space. */
810 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
811 unsigned long maxnode)
813 unsigned long k;
814 unsigned long nlongs;
815 unsigned long endmask;
817 --maxnode;
818 nodes_clear(*nodes);
819 if (maxnode == 0 || !nmask)
820 return 0;
821 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
822 return -EINVAL;
824 nlongs = BITS_TO_LONGS(maxnode);
825 if ((maxnode % BITS_PER_LONG) == 0)
826 endmask = ~0UL;
827 else
828 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
830 /* When the user specified more nodes than supported just check
831 if the non supported part is all zero. */
832 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
833 if (nlongs > PAGE_SIZE/sizeof(long))
834 return -EINVAL;
835 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
836 unsigned long t;
837 if (get_user(t, nmask + k))
838 return -EFAULT;
839 if (k == nlongs - 1) {
840 if (t & endmask)
841 return -EINVAL;
842 } else if (t)
843 return -EINVAL;
845 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
846 endmask = ~0UL;
849 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
850 return -EFAULT;
851 nodes_addr(*nodes)[nlongs-1] &= endmask;
852 return 0;
855 /* Copy a kernel node mask to user space */
856 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
857 nodemask_t *nodes)
859 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
860 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
862 if (copy > nbytes) {
863 if (copy > PAGE_SIZE)
864 return -EINVAL;
865 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
866 return -EFAULT;
867 copy = nbytes;
869 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
872 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
873 unsigned long mode,
874 unsigned long __user *nmask, unsigned long maxnode,
875 unsigned flags)
877 nodemask_t nodes;
878 int err;
880 err = get_nodes(&nodes, nmask, maxnode);
881 if (err)
882 return err;
883 #ifdef CONFIG_CPUSETS
884 /* Restrict the nodes to the allowed nodes in the cpuset */
885 nodes_and(nodes, nodes, current->mems_allowed);
886 #endif
887 return do_mbind(start, len, mode, &nodes, flags);
890 /* Set the process memory policy */
891 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
892 unsigned long maxnode)
894 int err;
895 nodemask_t nodes;
897 if (mode < 0 || mode > MPOL_MAX)
898 return -EINVAL;
899 err = get_nodes(&nodes, nmask, maxnode);
900 if (err)
901 return err;
902 return do_set_mempolicy(mode, &nodes);
905 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
906 const unsigned long __user *old_nodes,
907 const unsigned long __user *new_nodes)
909 struct mm_struct *mm;
910 struct task_struct *task;
911 nodemask_t old;
912 nodemask_t new;
913 nodemask_t task_nodes;
914 int err;
916 err = get_nodes(&old, old_nodes, maxnode);
917 if (err)
918 return err;
920 err = get_nodes(&new, new_nodes, maxnode);
921 if (err)
922 return err;
924 /* Find the mm_struct */
925 read_lock(&tasklist_lock);
926 task = pid ? find_task_by_pid(pid) : current;
927 if (!task) {
928 read_unlock(&tasklist_lock);
929 return -ESRCH;
931 mm = get_task_mm(task);
932 read_unlock(&tasklist_lock);
934 if (!mm)
935 return -EINVAL;
938 * Check if this process has the right to modify the specified
939 * process. The right exists if the process has administrative
940 * capabilities, superuser privileges or the same
941 * userid as the target process.
943 if ((current->euid != task->suid) && (current->euid != task->uid) &&
944 (current->uid != task->suid) && (current->uid != task->uid) &&
945 !capable(CAP_SYS_NICE)) {
946 err = -EPERM;
947 goto out;
950 task_nodes = cpuset_mems_allowed(task);
951 /* Is the user allowed to access the target nodes? */
952 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
953 err = -EPERM;
954 goto out;
957 err = security_task_movememory(task);
958 if (err)
959 goto out;
961 err = do_migrate_pages(mm, &old, &new,
962 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
963 out:
964 mmput(mm);
965 return err;
969 /* Retrieve NUMA policy */
970 asmlinkage long sys_get_mempolicy(int __user *policy,
971 unsigned long __user *nmask,
972 unsigned long maxnode,
973 unsigned long addr, unsigned long flags)
975 int err, pval;
976 nodemask_t nodes;
978 if (nmask != NULL && maxnode < MAX_NUMNODES)
979 return -EINVAL;
981 err = do_get_mempolicy(&pval, &nodes, addr, flags);
983 if (err)
984 return err;
986 if (policy && put_user(pval, policy))
987 return -EFAULT;
989 if (nmask)
990 err = copy_nodes_to_user(nmask, maxnode, &nodes);
992 return err;
995 #ifdef CONFIG_COMPAT
997 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
998 compat_ulong_t __user *nmask,
999 compat_ulong_t maxnode,
1000 compat_ulong_t addr, compat_ulong_t flags)
1002 long err;
1003 unsigned long __user *nm = NULL;
1004 unsigned long nr_bits, alloc_size;
1005 DECLARE_BITMAP(bm, MAX_NUMNODES);
1007 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1008 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1010 if (nmask)
1011 nm = compat_alloc_user_space(alloc_size);
1013 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1015 if (!err && nmask) {
1016 err = copy_from_user(bm, nm, alloc_size);
1017 /* ensure entire bitmap is zeroed */
1018 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1019 err |= compat_put_bitmap(nmask, bm, nr_bits);
1022 return err;
1025 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1026 compat_ulong_t maxnode)
1028 long err = 0;
1029 unsigned long __user *nm = NULL;
1030 unsigned long nr_bits, alloc_size;
1031 DECLARE_BITMAP(bm, MAX_NUMNODES);
1033 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1034 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1036 if (nmask) {
1037 err = compat_get_bitmap(bm, nmask, nr_bits);
1038 nm = compat_alloc_user_space(alloc_size);
1039 err |= copy_to_user(nm, bm, alloc_size);
1042 if (err)
1043 return -EFAULT;
1045 return sys_set_mempolicy(mode, nm, nr_bits+1);
1048 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1049 compat_ulong_t mode, compat_ulong_t __user *nmask,
1050 compat_ulong_t maxnode, compat_ulong_t flags)
1052 long err = 0;
1053 unsigned long __user *nm = NULL;
1054 unsigned long nr_bits, alloc_size;
1055 nodemask_t bm;
1057 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1058 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1060 if (nmask) {
1061 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1062 nm = compat_alloc_user_space(alloc_size);
1063 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1066 if (err)
1067 return -EFAULT;
1069 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1072 #endif
1074 /* Return effective policy for a VMA */
1075 static struct mempolicy * get_vma_policy(struct task_struct *task,
1076 struct vm_area_struct *vma, unsigned long addr)
1078 struct mempolicy *pol = task->mempolicy;
1080 if (vma) {
1081 if (vma->vm_ops && vma->vm_ops->get_policy)
1082 pol = vma->vm_ops->get_policy(vma, addr);
1083 else if (vma->vm_policy &&
1084 vma->vm_policy->policy != MPOL_DEFAULT)
1085 pol = vma->vm_policy;
1087 if (!pol)
1088 pol = &default_policy;
1089 return pol;
1092 /* Return a zonelist representing a mempolicy */
1093 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
1095 int nd;
1097 switch (policy->policy) {
1098 case MPOL_PREFERRED:
1099 nd = policy->v.preferred_node;
1100 if (nd < 0)
1101 nd = numa_node_id();
1102 break;
1103 case MPOL_BIND:
1104 /* Lower zones don't get a policy applied */
1105 /* Careful: current->mems_allowed might have moved */
1106 if (gfp_zone(gfp) >= policy_zone)
1107 if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist))
1108 return policy->v.zonelist;
1109 /*FALL THROUGH*/
1110 case MPOL_INTERLEAVE: /* should not happen */
1111 case MPOL_DEFAULT:
1112 nd = numa_node_id();
1113 break;
1114 default:
1115 nd = 0;
1116 BUG();
1118 return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp);
1121 /* Do dynamic interleaving for a process */
1122 static unsigned interleave_nodes(struct mempolicy *policy)
1124 unsigned nid, next;
1125 struct task_struct *me = current;
1127 nid = me->il_next;
1128 next = next_node(nid, policy->v.nodes);
1129 if (next >= MAX_NUMNODES)
1130 next = first_node(policy->v.nodes);
1131 me->il_next = next;
1132 return nid;
1136 * Depending on the memory policy provide a node from which to allocate the
1137 * next slab entry.
1139 unsigned slab_node(struct mempolicy *policy)
1141 int pol = policy ? policy->policy : MPOL_DEFAULT;
1143 switch (pol) {
1144 case MPOL_INTERLEAVE:
1145 return interleave_nodes(policy);
1147 case MPOL_BIND:
1149 * Follow bind policy behavior and start allocation at the
1150 * first node.
1152 return zone_to_nid(policy->v.zonelist->zones[0]);
1154 case MPOL_PREFERRED:
1155 if (policy->v.preferred_node >= 0)
1156 return policy->v.preferred_node;
1157 /* Fall through */
1159 default:
1160 return numa_node_id();
1164 /* Do static interleaving for a VMA with known offset. */
1165 static unsigned offset_il_node(struct mempolicy *pol,
1166 struct vm_area_struct *vma, unsigned long off)
1168 unsigned nnodes = nodes_weight(pol->v.nodes);
1169 unsigned target = (unsigned)off % nnodes;
1170 int c;
1171 int nid = -1;
1173 c = 0;
1174 do {
1175 nid = next_node(nid, pol->v.nodes);
1176 c++;
1177 } while (c <= target);
1178 return nid;
1181 /* Determine a node number for interleave */
1182 static inline unsigned interleave_nid(struct mempolicy *pol,
1183 struct vm_area_struct *vma, unsigned long addr, int shift)
1185 if (vma) {
1186 unsigned long off;
1189 * for small pages, there is no difference between
1190 * shift and PAGE_SHIFT, so the bit-shift is safe.
1191 * for huge pages, since vm_pgoff is in units of small
1192 * pages, we need to shift off the always 0 bits to get
1193 * a useful offset.
1195 BUG_ON(shift < PAGE_SHIFT);
1196 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1197 off += (addr - vma->vm_start) >> shift;
1198 return offset_il_node(pol, vma, off);
1199 } else
1200 return interleave_nodes(pol);
1203 #ifdef CONFIG_HUGETLBFS
1204 /* Return a zonelist suitable for a huge page allocation. */
1205 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr)
1207 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1209 if (pol->policy == MPOL_INTERLEAVE) {
1210 unsigned nid;
1212 nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1213 return NODE_DATA(nid)->node_zonelists + gfp_zone(GFP_HIGHUSER);
1215 return zonelist_policy(GFP_HIGHUSER, pol);
1217 #endif
1219 /* Allocate a page in interleaved policy.
1220 Own path because it needs to do special accounting. */
1221 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1222 unsigned nid)
1224 struct zonelist *zl;
1225 struct page *page;
1227 zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp);
1228 page = __alloc_pages(gfp, order, zl);
1229 if (page && page_zone(page) == zl->zones[0])
1230 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1231 return page;
1235 * alloc_page_vma - Allocate a page for a VMA.
1237 * @gfp:
1238 * %GFP_USER user allocation.
1239 * %GFP_KERNEL kernel allocations,
1240 * %GFP_HIGHMEM highmem/user allocations,
1241 * %GFP_FS allocation should not call back into a file system.
1242 * %GFP_ATOMIC don't sleep.
1244 * @vma: Pointer to VMA or NULL if not available.
1245 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1247 * This function allocates a page from the kernel page pool and applies
1248 * a NUMA policy associated with the VMA or the current process.
1249 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1250 * mm_struct of the VMA to prevent it from going away. Should be used for
1251 * all allocations for pages that will be mapped into
1252 * user space. Returns NULL when no page can be allocated.
1254 * Should be called with the mm_sem of the vma hold.
1256 struct page *
1257 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1259 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1261 cpuset_update_task_memory_state();
1263 if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1264 unsigned nid;
1266 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1267 return alloc_page_interleave(gfp, 0, nid);
1269 return __alloc_pages(gfp, 0, zonelist_policy(gfp, pol));
1273 * alloc_pages_current - Allocate pages.
1275 * @gfp:
1276 * %GFP_USER user allocation,
1277 * %GFP_KERNEL kernel allocation,
1278 * %GFP_HIGHMEM highmem allocation,
1279 * %GFP_FS don't call back into a file system.
1280 * %GFP_ATOMIC don't sleep.
1281 * @order: Power of two of allocation size in pages. 0 is a single page.
1283 * Allocate a page from the kernel page pool. When not in
1284 * interrupt context and apply the current process NUMA policy.
1285 * Returns NULL when no page can be allocated.
1287 * Don't call cpuset_update_task_memory_state() unless
1288 * 1) it's ok to take cpuset_sem (can WAIT), and
1289 * 2) allocating for current task (not interrupt).
1291 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1293 struct mempolicy *pol = current->mempolicy;
1295 if ((gfp & __GFP_WAIT) && !in_interrupt())
1296 cpuset_update_task_memory_state();
1297 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1298 pol = &default_policy;
1299 if (pol->policy == MPOL_INTERLEAVE)
1300 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1301 return __alloc_pages(gfp, order, zonelist_policy(gfp, pol));
1303 EXPORT_SYMBOL(alloc_pages_current);
1306 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1307 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1308 * with the mems_allowed returned by cpuset_mems_allowed(). This
1309 * keeps mempolicies cpuset relative after its cpuset moves. See
1310 * further kernel/cpuset.c update_nodemask().
1312 void *cpuset_being_rebound;
1314 /* Slow path of a mempolicy copy */
1315 struct mempolicy *__mpol_copy(struct mempolicy *old)
1317 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1319 if (!new)
1320 return ERR_PTR(-ENOMEM);
1321 if (current_cpuset_is_being_rebound()) {
1322 nodemask_t mems = cpuset_mems_allowed(current);
1323 mpol_rebind_policy(old, &mems);
1325 *new = *old;
1326 atomic_set(&new->refcnt, 1);
1327 if (new->policy == MPOL_BIND) {
1328 int sz = ksize(old->v.zonelist);
1329 new->v.zonelist = kmemdup(old->v.zonelist, sz, GFP_KERNEL);
1330 if (!new->v.zonelist) {
1331 kmem_cache_free(policy_cache, new);
1332 return ERR_PTR(-ENOMEM);
1335 return new;
1338 /* Slow path of a mempolicy comparison */
1339 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1341 if (!a || !b)
1342 return 0;
1343 if (a->policy != b->policy)
1344 return 0;
1345 switch (a->policy) {
1346 case MPOL_DEFAULT:
1347 return 1;
1348 case MPOL_INTERLEAVE:
1349 return nodes_equal(a->v.nodes, b->v.nodes);
1350 case MPOL_PREFERRED:
1351 return a->v.preferred_node == b->v.preferred_node;
1352 case MPOL_BIND: {
1353 int i;
1354 for (i = 0; a->v.zonelist->zones[i]; i++)
1355 if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i])
1356 return 0;
1357 return b->v.zonelist->zones[i] == NULL;
1359 default:
1360 BUG();
1361 return 0;
1365 /* Slow path of a mpol destructor. */
1366 void __mpol_free(struct mempolicy *p)
1368 if (!atomic_dec_and_test(&p->refcnt))
1369 return;
1370 if (p->policy == MPOL_BIND)
1371 kfree(p->v.zonelist);
1372 p->policy = MPOL_DEFAULT;
1373 kmem_cache_free(policy_cache, p);
1377 * Shared memory backing store policy support.
1379 * Remember policies even when nobody has shared memory mapped.
1380 * The policies are kept in Red-Black tree linked from the inode.
1381 * They are protected by the sp->lock spinlock, which should be held
1382 * for any accesses to the tree.
1385 /* lookup first element intersecting start-end */
1386 /* Caller holds sp->lock */
1387 static struct sp_node *
1388 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1390 struct rb_node *n = sp->root.rb_node;
1392 while (n) {
1393 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1395 if (start >= p->end)
1396 n = n->rb_right;
1397 else if (end <= p->start)
1398 n = n->rb_left;
1399 else
1400 break;
1402 if (!n)
1403 return NULL;
1404 for (;;) {
1405 struct sp_node *w = NULL;
1406 struct rb_node *prev = rb_prev(n);
1407 if (!prev)
1408 break;
1409 w = rb_entry(prev, struct sp_node, nd);
1410 if (w->end <= start)
1411 break;
1412 n = prev;
1414 return rb_entry(n, struct sp_node, nd);
1417 /* Insert a new shared policy into the list. */
1418 /* Caller holds sp->lock */
1419 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1421 struct rb_node **p = &sp->root.rb_node;
1422 struct rb_node *parent = NULL;
1423 struct sp_node *nd;
1425 while (*p) {
1426 parent = *p;
1427 nd = rb_entry(parent, struct sp_node, nd);
1428 if (new->start < nd->start)
1429 p = &(*p)->rb_left;
1430 else if (new->end > nd->end)
1431 p = &(*p)->rb_right;
1432 else
1433 BUG();
1435 rb_link_node(&new->nd, parent, p);
1436 rb_insert_color(&new->nd, &sp->root);
1437 PDprintk("inserting %lx-%lx: %d\n", new->start, new->end,
1438 new->policy ? new->policy->policy : 0);
1441 /* Find shared policy intersecting idx */
1442 struct mempolicy *
1443 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1445 struct mempolicy *pol = NULL;
1446 struct sp_node *sn;
1448 if (!sp->root.rb_node)
1449 return NULL;
1450 spin_lock(&sp->lock);
1451 sn = sp_lookup(sp, idx, idx+1);
1452 if (sn) {
1453 mpol_get(sn->policy);
1454 pol = sn->policy;
1456 spin_unlock(&sp->lock);
1457 return pol;
1460 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1462 PDprintk("deleting %lx-l%x\n", n->start, n->end);
1463 rb_erase(&n->nd, &sp->root);
1464 mpol_free(n->policy);
1465 kmem_cache_free(sn_cache, n);
1468 struct sp_node *
1469 sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol)
1471 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1473 if (!n)
1474 return NULL;
1475 n->start = start;
1476 n->end = end;
1477 mpol_get(pol);
1478 n->policy = pol;
1479 return n;
1482 /* Replace a policy range. */
1483 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1484 unsigned long end, struct sp_node *new)
1486 struct sp_node *n, *new2 = NULL;
1488 restart:
1489 spin_lock(&sp->lock);
1490 n = sp_lookup(sp, start, end);
1491 /* Take care of old policies in the same range. */
1492 while (n && n->start < end) {
1493 struct rb_node *next = rb_next(&n->nd);
1494 if (n->start >= start) {
1495 if (n->end <= end)
1496 sp_delete(sp, n);
1497 else
1498 n->start = end;
1499 } else {
1500 /* Old policy spanning whole new range. */
1501 if (n->end > end) {
1502 if (!new2) {
1503 spin_unlock(&sp->lock);
1504 new2 = sp_alloc(end, n->end, n->policy);
1505 if (!new2)
1506 return -ENOMEM;
1507 goto restart;
1509 n->end = start;
1510 sp_insert(sp, new2);
1511 new2 = NULL;
1512 break;
1513 } else
1514 n->end = start;
1516 if (!next)
1517 break;
1518 n = rb_entry(next, struct sp_node, nd);
1520 if (new)
1521 sp_insert(sp, new);
1522 spin_unlock(&sp->lock);
1523 if (new2) {
1524 mpol_free(new2->policy);
1525 kmem_cache_free(sn_cache, new2);
1527 return 0;
1530 void mpol_shared_policy_init(struct shared_policy *info, int policy,
1531 nodemask_t *policy_nodes)
1533 info->root = RB_ROOT;
1534 spin_lock_init(&info->lock);
1536 if (policy != MPOL_DEFAULT) {
1537 struct mempolicy *newpol;
1539 /* Falls back to MPOL_DEFAULT on any error */
1540 newpol = mpol_new(policy, policy_nodes);
1541 if (!IS_ERR(newpol)) {
1542 /* Create pseudo-vma that contains just the policy */
1543 struct vm_area_struct pvma;
1545 memset(&pvma, 0, sizeof(struct vm_area_struct));
1546 /* Policy covers entire file */
1547 pvma.vm_end = TASK_SIZE;
1548 mpol_set_shared_policy(info, &pvma, newpol);
1549 mpol_free(newpol);
1554 int mpol_set_shared_policy(struct shared_policy *info,
1555 struct vm_area_struct *vma, struct mempolicy *npol)
1557 int err;
1558 struct sp_node *new = NULL;
1559 unsigned long sz = vma_pages(vma);
1561 PDprintk("set_shared_policy %lx sz %lu %d %lx\n",
1562 vma->vm_pgoff,
1563 sz, npol? npol->policy : -1,
1564 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1566 if (npol) {
1567 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1568 if (!new)
1569 return -ENOMEM;
1571 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1572 if (err && new)
1573 kmem_cache_free(sn_cache, new);
1574 return err;
1577 /* Free a backing policy store on inode delete. */
1578 void mpol_free_shared_policy(struct shared_policy *p)
1580 struct sp_node *n;
1581 struct rb_node *next;
1583 if (!p->root.rb_node)
1584 return;
1585 spin_lock(&p->lock);
1586 next = rb_first(&p->root);
1587 while (next) {
1588 n = rb_entry(next, struct sp_node, nd);
1589 next = rb_next(&n->nd);
1590 rb_erase(&n->nd, &p->root);
1591 mpol_free(n->policy);
1592 kmem_cache_free(sn_cache, n);
1594 spin_unlock(&p->lock);
1597 /* assumes fs == KERNEL_DS */
1598 void __init numa_policy_init(void)
1600 policy_cache = kmem_cache_create("numa_policy",
1601 sizeof(struct mempolicy),
1602 0, SLAB_PANIC, NULL, NULL);
1604 sn_cache = kmem_cache_create("shared_policy_node",
1605 sizeof(struct sp_node),
1606 0, SLAB_PANIC, NULL, NULL);
1608 /* Set interleaving policy for system init. This way not all
1609 the data structures allocated at system boot end up in node zero. */
1611 if (do_set_mempolicy(MPOL_INTERLEAVE, &node_online_map))
1612 printk("numa_policy_init: interleaving failed\n");
1615 /* Reset policy of current process to default */
1616 void numa_default_policy(void)
1618 do_set_mempolicy(MPOL_DEFAULT, NULL);
1621 /* Migrate a policy to a different set of nodes */
1622 void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
1624 nodemask_t *mpolmask;
1625 nodemask_t tmp;
1627 if (!pol)
1628 return;
1629 mpolmask = &pol->cpuset_mems_allowed;
1630 if (nodes_equal(*mpolmask, *newmask))
1631 return;
1633 switch (pol->policy) {
1634 case MPOL_DEFAULT:
1635 break;
1636 case MPOL_INTERLEAVE:
1637 nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask);
1638 pol->v.nodes = tmp;
1639 *mpolmask = *newmask;
1640 current->il_next = node_remap(current->il_next,
1641 *mpolmask, *newmask);
1642 break;
1643 case MPOL_PREFERRED:
1644 pol->v.preferred_node = node_remap(pol->v.preferred_node,
1645 *mpolmask, *newmask);
1646 *mpolmask = *newmask;
1647 break;
1648 case MPOL_BIND: {
1649 nodemask_t nodes;
1650 struct zone **z;
1651 struct zonelist *zonelist;
1653 nodes_clear(nodes);
1654 for (z = pol->v.zonelist->zones; *z; z++)
1655 node_set(zone_to_nid(*z), nodes);
1656 nodes_remap(tmp, nodes, *mpolmask, *newmask);
1657 nodes = tmp;
1659 zonelist = bind_zonelist(&nodes);
1661 /* If no mem, then zonelist is NULL and we keep old zonelist.
1662 * If that old zonelist has no remaining mems_allowed nodes,
1663 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT.
1666 if (!IS_ERR(zonelist)) {
1667 /* Good - got mem - substitute new zonelist */
1668 kfree(pol->v.zonelist);
1669 pol->v.zonelist = zonelist;
1671 *mpolmask = *newmask;
1672 break;
1674 default:
1675 BUG();
1676 break;
1681 * Wrapper for mpol_rebind_policy() that just requires task
1682 * pointer, and updates task mempolicy.
1685 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
1687 mpol_rebind_policy(tsk->mempolicy, new);
1691 * Rebind each vma in mm to new nodemask.
1693 * Call holding a reference to mm. Takes mm->mmap_sem during call.
1696 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
1698 struct vm_area_struct *vma;
1700 down_write(&mm->mmap_sem);
1701 for (vma = mm->mmap; vma; vma = vma->vm_next)
1702 mpol_rebind_policy(vma->vm_policy, new);
1703 up_write(&mm->mmap_sem);
1707 * Display pages allocated per node and memory policy via /proc.
1710 static const char * const policy_types[] =
1711 { "default", "prefer", "bind", "interleave" };
1714 * Convert a mempolicy into a string.
1715 * Returns the number of characters in buffer (if positive)
1716 * or an error (negative)
1718 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1720 char *p = buffer;
1721 int l;
1722 nodemask_t nodes;
1723 int mode = pol ? pol->policy : MPOL_DEFAULT;
1725 switch (mode) {
1726 case MPOL_DEFAULT:
1727 nodes_clear(nodes);
1728 break;
1730 case MPOL_PREFERRED:
1731 nodes_clear(nodes);
1732 node_set(pol->v.preferred_node, nodes);
1733 break;
1735 case MPOL_BIND:
1736 get_zonemask(pol, &nodes);
1737 break;
1739 case MPOL_INTERLEAVE:
1740 nodes = pol->v.nodes;
1741 break;
1743 default:
1744 BUG();
1745 return -EFAULT;
1748 l = strlen(policy_types[mode]);
1749 if (buffer + maxlen < p + l + 1)
1750 return -ENOSPC;
1752 strcpy(p, policy_types[mode]);
1753 p += l;
1755 if (!nodes_empty(nodes)) {
1756 if (buffer + maxlen < p + 2)
1757 return -ENOSPC;
1758 *p++ = '=';
1759 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1761 return p - buffer;
1764 struct numa_maps {
1765 unsigned long pages;
1766 unsigned long anon;
1767 unsigned long active;
1768 unsigned long writeback;
1769 unsigned long mapcount_max;
1770 unsigned long dirty;
1771 unsigned long swapcache;
1772 unsigned long node[MAX_NUMNODES];
1775 static void gather_stats(struct page *page, void *private, int pte_dirty)
1777 struct numa_maps *md = private;
1778 int count = page_mapcount(page);
1780 md->pages++;
1781 if (pte_dirty || PageDirty(page))
1782 md->dirty++;
1784 if (PageSwapCache(page))
1785 md->swapcache++;
1787 if (PageActive(page))
1788 md->active++;
1790 if (PageWriteback(page))
1791 md->writeback++;
1793 if (PageAnon(page))
1794 md->anon++;
1796 if (count > md->mapcount_max)
1797 md->mapcount_max = count;
1799 md->node[page_to_nid(page)]++;
1802 #ifdef CONFIG_HUGETLB_PAGE
1803 static void check_huge_range(struct vm_area_struct *vma,
1804 unsigned long start, unsigned long end,
1805 struct numa_maps *md)
1807 unsigned long addr;
1808 struct page *page;
1810 for (addr = start; addr < end; addr += HPAGE_SIZE) {
1811 pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
1812 pte_t pte;
1814 if (!ptep)
1815 continue;
1817 pte = *ptep;
1818 if (pte_none(pte))
1819 continue;
1821 page = pte_page(pte);
1822 if (!page)
1823 continue;
1825 gather_stats(page, md, pte_dirty(*ptep));
1828 #else
1829 static inline void check_huge_range(struct vm_area_struct *vma,
1830 unsigned long start, unsigned long end,
1831 struct numa_maps *md)
1834 #endif
1836 int show_numa_map(struct seq_file *m, void *v)
1838 struct proc_maps_private *priv = m->private;
1839 struct vm_area_struct *vma = v;
1840 struct numa_maps *md;
1841 struct file *file = vma->vm_file;
1842 struct mm_struct *mm = vma->vm_mm;
1843 int n;
1844 char buffer[50];
1846 if (!mm)
1847 return 0;
1849 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
1850 if (!md)
1851 return 0;
1853 mpol_to_str(buffer, sizeof(buffer),
1854 get_vma_policy(priv->task, vma, vma->vm_start));
1856 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1858 if (file) {
1859 seq_printf(m, " file=");
1860 seq_path(m, file->f_path.mnt, file->f_path.dentry, "\n\t= ");
1861 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1862 seq_printf(m, " heap");
1863 } else if (vma->vm_start <= mm->start_stack &&
1864 vma->vm_end >= mm->start_stack) {
1865 seq_printf(m, " stack");
1868 if (is_vm_hugetlb_page(vma)) {
1869 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
1870 seq_printf(m, " huge");
1871 } else {
1872 check_pgd_range(vma, vma->vm_start, vma->vm_end,
1873 &node_online_map, MPOL_MF_STATS, md);
1876 if (!md->pages)
1877 goto out;
1879 if (md->anon)
1880 seq_printf(m," anon=%lu",md->anon);
1882 if (md->dirty)
1883 seq_printf(m," dirty=%lu",md->dirty);
1885 if (md->pages != md->anon && md->pages != md->dirty)
1886 seq_printf(m, " mapped=%lu", md->pages);
1888 if (md->mapcount_max > 1)
1889 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1891 if (md->swapcache)
1892 seq_printf(m," swapcache=%lu", md->swapcache);
1894 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1895 seq_printf(m," active=%lu", md->active);
1897 if (md->writeback)
1898 seq_printf(m," writeback=%lu", md->writeback);
1900 for_each_online_node(n)
1901 if (md->node[n])
1902 seq_printf(m, " N%d=%lu", n, md->node[n]);
1903 out:
1904 seq_putc(m, '\n');
1905 kfree(md);
1907 if (m->count < m->size)
1908 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
1909 return 0;