ARM: 6914/1: sparsemem: fix highmem detection when using SPARSEMEM
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / filemap.c
blob68e782b3d3de0c0f1da75750dd57374cf1a03e89
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
44 #include <asm/mman.h>
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 * Lock ordering:
61 * ->i_mmap_mutex (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
66 * ->i_mutex
67 * ->i_mmap_mutex (truncate->unmap_mapping_range)
69 * ->mmap_sem
70 * ->i_mmap_mutex
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 * ->i_mutex
81 * ->i_alloc_sem (various)
83 * inode_wb_list_lock
84 * sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
87 * ->i_mmap_mutex
88 * ->anon_vma.lock (vma_adjust)
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * inode_wb_list_lock (page_remove_rmap->set_page_dirty)
102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
103 * inode_wb_list_lock (zap_pte_range->set_page_dirty)
104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 * (code doesn't rely on that order, so you could switch it around)
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
109 * ->i_mmap_mutex
113 * Delete a page from the page cache and free it. Caller has to make
114 * sure the page is locked and that nobody else uses it - or that usage
115 * is safe. The caller must hold the mapping's tree_lock.
117 void __delete_from_page_cache(struct page *page)
119 struct address_space *mapping = page->mapping;
121 radix_tree_delete(&mapping->page_tree, page->index);
122 page->mapping = NULL;
123 mapping->nrpages--;
124 __dec_zone_page_state(page, NR_FILE_PAGES);
125 if (PageSwapBacked(page))
126 __dec_zone_page_state(page, NR_SHMEM);
127 BUG_ON(page_mapped(page));
130 * Some filesystems seem to re-dirty the page even after
131 * the VM has canceled the dirty bit (eg ext3 journaling).
133 * Fix it up by doing a final dirty accounting check after
134 * having removed the page entirely.
136 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
137 dec_zone_page_state(page, NR_FILE_DIRTY);
138 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
143 * delete_from_page_cache - delete page from page cache
144 * @page: the page which the kernel is trying to remove from page cache
146 * This must be called only on pages that have been verified to be in the page
147 * cache and locked. It will never put the page into the free list, the caller
148 * has a reference on the page.
150 void delete_from_page_cache(struct page *page)
152 struct address_space *mapping = page->mapping;
153 void (*freepage)(struct page *);
155 BUG_ON(!PageLocked(page));
157 freepage = mapping->a_ops->freepage;
158 spin_lock_irq(&mapping->tree_lock);
159 __delete_from_page_cache(page);
160 spin_unlock_irq(&mapping->tree_lock);
161 mem_cgroup_uncharge_cache_page(page);
163 if (freepage)
164 freepage(page);
165 page_cache_release(page);
167 EXPORT_SYMBOL(delete_from_page_cache);
169 static int sleep_on_page(void *word)
171 io_schedule();
172 return 0;
175 static int sleep_on_page_killable(void *word)
177 sleep_on_page(word);
178 return fatal_signal_pending(current) ? -EINTR : 0;
182 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
183 * @mapping: address space structure to write
184 * @start: offset in bytes where the range starts
185 * @end: offset in bytes where the range ends (inclusive)
186 * @sync_mode: enable synchronous operation
188 * Start writeback against all of a mapping's dirty pages that lie
189 * within the byte offsets <start, end> inclusive.
191 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
192 * opposed to a regular memory cleansing writeback. The difference between
193 * these two operations is that if a dirty page/buffer is encountered, it must
194 * be waited upon, and not just skipped over.
196 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
197 loff_t end, int sync_mode)
199 int ret;
200 struct writeback_control wbc = {
201 .sync_mode = sync_mode,
202 .nr_to_write = LONG_MAX,
203 .range_start = start,
204 .range_end = end,
207 if (!mapping_cap_writeback_dirty(mapping))
208 return 0;
210 ret = do_writepages(mapping, &wbc);
211 return ret;
214 static inline int __filemap_fdatawrite(struct address_space *mapping,
215 int sync_mode)
217 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
220 int filemap_fdatawrite(struct address_space *mapping)
222 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
224 EXPORT_SYMBOL(filemap_fdatawrite);
226 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
227 loff_t end)
229 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
231 EXPORT_SYMBOL(filemap_fdatawrite_range);
234 * filemap_flush - mostly a non-blocking flush
235 * @mapping: target address_space
237 * This is a mostly non-blocking flush. Not suitable for data-integrity
238 * purposes - I/O may not be started against all dirty pages.
240 int filemap_flush(struct address_space *mapping)
242 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
244 EXPORT_SYMBOL(filemap_flush);
247 * filemap_fdatawait_range - wait for writeback to complete
248 * @mapping: address space structure to wait for
249 * @start_byte: offset in bytes where the range starts
250 * @end_byte: offset in bytes where the range ends (inclusive)
252 * Walk the list of under-writeback pages of the given address space
253 * in the given range and wait for all of them.
255 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
256 loff_t end_byte)
258 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
259 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
260 struct pagevec pvec;
261 int nr_pages;
262 int ret = 0;
264 if (end_byte < start_byte)
265 return 0;
267 pagevec_init(&pvec, 0);
268 while ((index <= end) &&
269 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
270 PAGECACHE_TAG_WRITEBACK,
271 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
272 unsigned i;
274 for (i = 0; i < nr_pages; i++) {
275 struct page *page = pvec.pages[i];
277 /* until radix tree lookup accepts end_index */
278 if (page->index > end)
279 continue;
281 wait_on_page_writeback(page);
282 if (TestClearPageError(page))
283 ret = -EIO;
285 pagevec_release(&pvec);
286 cond_resched();
289 /* Check for outstanding write errors */
290 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
291 ret = -ENOSPC;
292 if (test_and_clear_bit(AS_EIO, &mapping->flags))
293 ret = -EIO;
295 return ret;
297 EXPORT_SYMBOL(filemap_fdatawait_range);
300 * filemap_fdatawait - wait for all under-writeback pages to complete
301 * @mapping: address space structure to wait for
303 * Walk the list of under-writeback pages of the given address space
304 * and wait for all of them.
306 int filemap_fdatawait(struct address_space *mapping)
308 loff_t i_size = i_size_read(mapping->host);
310 if (i_size == 0)
311 return 0;
313 return filemap_fdatawait_range(mapping, 0, i_size - 1);
315 EXPORT_SYMBOL(filemap_fdatawait);
317 int filemap_write_and_wait(struct address_space *mapping)
319 int err = 0;
321 if (mapping->nrpages) {
322 err = filemap_fdatawrite(mapping);
324 * Even if the above returned error, the pages may be
325 * written partially (e.g. -ENOSPC), so we wait for it.
326 * But the -EIO is special case, it may indicate the worst
327 * thing (e.g. bug) happened, so we avoid waiting for it.
329 if (err != -EIO) {
330 int err2 = filemap_fdatawait(mapping);
331 if (!err)
332 err = err2;
335 return err;
337 EXPORT_SYMBOL(filemap_write_and_wait);
340 * filemap_write_and_wait_range - write out & wait on a file range
341 * @mapping: the address_space for the pages
342 * @lstart: offset in bytes where the range starts
343 * @lend: offset in bytes where the range ends (inclusive)
345 * Write out and wait upon file offsets lstart->lend, inclusive.
347 * Note that `lend' is inclusive (describes the last byte to be written) so
348 * that this function can be used to write to the very end-of-file (end = -1).
350 int filemap_write_and_wait_range(struct address_space *mapping,
351 loff_t lstart, loff_t lend)
353 int err = 0;
355 if (mapping->nrpages) {
356 err = __filemap_fdatawrite_range(mapping, lstart, lend,
357 WB_SYNC_ALL);
358 /* See comment of filemap_write_and_wait() */
359 if (err != -EIO) {
360 int err2 = filemap_fdatawait_range(mapping,
361 lstart, lend);
362 if (!err)
363 err = err2;
366 return err;
368 EXPORT_SYMBOL(filemap_write_and_wait_range);
371 * replace_page_cache_page - replace a pagecache page with a new one
372 * @old: page to be replaced
373 * @new: page to replace with
374 * @gfp_mask: allocation mode
376 * This function replaces a page in the pagecache with a new one. On
377 * success it acquires the pagecache reference for the new page and
378 * drops it for the old page. Both the old and new pages must be
379 * locked. This function does not add the new page to the LRU, the
380 * caller must do that.
382 * The remove + add is atomic. The only way this function can fail is
383 * memory allocation failure.
385 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
387 int error;
388 struct mem_cgroup *memcg = NULL;
390 VM_BUG_ON(!PageLocked(old));
391 VM_BUG_ON(!PageLocked(new));
392 VM_BUG_ON(new->mapping);
395 * This is not page migration, but prepare_migration and
396 * end_migration does enough work for charge replacement.
398 * In the longer term we probably want a specialized function
399 * for moving the charge from old to new in a more efficient
400 * manner.
402 error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
403 if (error)
404 return error;
406 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
407 if (!error) {
408 struct address_space *mapping = old->mapping;
409 void (*freepage)(struct page *);
411 pgoff_t offset = old->index;
412 freepage = mapping->a_ops->freepage;
414 page_cache_get(new);
415 new->mapping = mapping;
416 new->index = offset;
418 spin_lock_irq(&mapping->tree_lock);
419 __delete_from_page_cache(old);
420 error = radix_tree_insert(&mapping->page_tree, offset, new);
421 BUG_ON(error);
422 mapping->nrpages++;
423 __inc_zone_page_state(new, NR_FILE_PAGES);
424 if (PageSwapBacked(new))
425 __inc_zone_page_state(new, NR_SHMEM);
426 spin_unlock_irq(&mapping->tree_lock);
427 radix_tree_preload_end();
428 if (freepage)
429 freepage(old);
430 page_cache_release(old);
431 mem_cgroup_end_migration(memcg, old, new, true);
432 } else {
433 mem_cgroup_end_migration(memcg, old, new, false);
436 return error;
438 EXPORT_SYMBOL_GPL(replace_page_cache_page);
441 * add_to_page_cache_locked - add a locked page to the pagecache
442 * @page: page to add
443 * @mapping: the page's address_space
444 * @offset: page index
445 * @gfp_mask: page allocation mode
447 * This function is used to add a page to the pagecache. It must be locked.
448 * This function does not add the page to the LRU. The caller must do that.
450 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
451 pgoff_t offset, gfp_t gfp_mask)
453 int error;
455 VM_BUG_ON(!PageLocked(page));
457 error = mem_cgroup_cache_charge(page, current->mm,
458 gfp_mask & GFP_RECLAIM_MASK);
459 if (error)
460 goto out;
462 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
463 if (error == 0) {
464 page_cache_get(page);
465 page->mapping = mapping;
466 page->index = offset;
468 spin_lock_irq(&mapping->tree_lock);
469 error = radix_tree_insert(&mapping->page_tree, offset, page);
470 if (likely(!error)) {
471 mapping->nrpages++;
472 __inc_zone_page_state(page, NR_FILE_PAGES);
473 if (PageSwapBacked(page))
474 __inc_zone_page_state(page, NR_SHMEM);
475 spin_unlock_irq(&mapping->tree_lock);
476 } else {
477 page->mapping = NULL;
478 spin_unlock_irq(&mapping->tree_lock);
479 mem_cgroup_uncharge_cache_page(page);
480 page_cache_release(page);
482 radix_tree_preload_end();
483 } else
484 mem_cgroup_uncharge_cache_page(page);
485 out:
486 return error;
488 EXPORT_SYMBOL(add_to_page_cache_locked);
490 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
491 pgoff_t offset, gfp_t gfp_mask)
493 int ret;
496 * Splice_read and readahead add shmem/tmpfs pages into the page cache
497 * before shmem_readpage has a chance to mark them as SwapBacked: they
498 * need to go on the anon lru below, and mem_cgroup_cache_charge
499 * (called in add_to_page_cache) needs to know where they're going too.
501 if (mapping_cap_swap_backed(mapping))
502 SetPageSwapBacked(page);
504 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
505 if (ret == 0) {
506 if (page_is_file_cache(page))
507 lru_cache_add_file(page);
508 else
509 lru_cache_add_anon(page);
511 return ret;
513 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
515 #ifdef CONFIG_NUMA
516 struct page *__page_cache_alloc(gfp_t gfp)
518 int n;
519 struct page *page;
521 if (cpuset_do_page_mem_spread()) {
522 get_mems_allowed();
523 n = cpuset_mem_spread_node();
524 page = alloc_pages_exact_node(n, gfp, 0);
525 put_mems_allowed();
526 return page;
528 return alloc_pages(gfp, 0);
530 EXPORT_SYMBOL(__page_cache_alloc);
531 #endif
534 * In order to wait for pages to become available there must be
535 * waitqueues associated with pages. By using a hash table of
536 * waitqueues where the bucket discipline is to maintain all
537 * waiters on the same queue and wake all when any of the pages
538 * become available, and for the woken contexts to check to be
539 * sure the appropriate page became available, this saves space
540 * at a cost of "thundering herd" phenomena during rare hash
541 * collisions.
543 static wait_queue_head_t *page_waitqueue(struct page *page)
545 const struct zone *zone = page_zone(page);
547 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
550 static inline void wake_up_page(struct page *page, int bit)
552 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
555 void wait_on_page_bit(struct page *page, int bit_nr)
557 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
559 if (test_bit(bit_nr, &page->flags))
560 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
561 TASK_UNINTERRUPTIBLE);
563 EXPORT_SYMBOL(wait_on_page_bit);
565 int wait_on_page_bit_killable(struct page *page, int bit_nr)
567 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
569 if (!test_bit(bit_nr, &page->flags))
570 return 0;
572 return __wait_on_bit(page_waitqueue(page), &wait,
573 sleep_on_page_killable, TASK_KILLABLE);
577 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
578 * @page: Page defining the wait queue of interest
579 * @waiter: Waiter to add to the queue
581 * Add an arbitrary @waiter to the wait queue for the nominated @page.
583 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
585 wait_queue_head_t *q = page_waitqueue(page);
586 unsigned long flags;
588 spin_lock_irqsave(&q->lock, flags);
589 __add_wait_queue(q, waiter);
590 spin_unlock_irqrestore(&q->lock, flags);
592 EXPORT_SYMBOL_GPL(add_page_wait_queue);
595 * unlock_page - unlock a locked page
596 * @page: the page
598 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
599 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
600 * mechananism between PageLocked pages and PageWriteback pages is shared.
601 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
603 * The mb is necessary to enforce ordering between the clear_bit and the read
604 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
606 void unlock_page(struct page *page)
608 VM_BUG_ON(!PageLocked(page));
609 clear_bit_unlock(PG_locked, &page->flags);
610 smp_mb__after_clear_bit();
611 wake_up_page(page, PG_locked);
613 EXPORT_SYMBOL(unlock_page);
616 * end_page_writeback - end writeback against a page
617 * @page: the page
619 void end_page_writeback(struct page *page)
621 if (TestClearPageReclaim(page))
622 rotate_reclaimable_page(page);
624 if (!test_clear_page_writeback(page))
625 BUG();
627 smp_mb__after_clear_bit();
628 wake_up_page(page, PG_writeback);
630 EXPORT_SYMBOL(end_page_writeback);
633 * __lock_page - get a lock on the page, assuming we need to sleep to get it
634 * @page: the page to lock
636 void __lock_page(struct page *page)
638 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
640 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
641 TASK_UNINTERRUPTIBLE);
643 EXPORT_SYMBOL(__lock_page);
645 int __lock_page_killable(struct page *page)
647 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
649 return __wait_on_bit_lock(page_waitqueue(page), &wait,
650 sleep_on_page_killable, TASK_KILLABLE);
652 EXPORT_SYMBOL_GPL(__lock_page_killable);
654 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
655 unsigned int flags)
657 if (flags & FAULT_FLAG_ALLOW_RETRY) {
659 * CAUTION! In this case, mmap_sem is not released
660 * even though return 0.
662 if (flags & FAULT_FLAG_RETRY_NOWAIT)
663 return 0;
665 up_read(&mm->mmap_sem);
666 if (flags & FAULT_FLAG_KILLABLE)
667 wait_on_page_locked_killable(page);
668 else
669 wait_on_page_locked(page);
670 return 0;
671 } else {
672 if (flags & FAULT_FLAG_KILLABLE) {
673 int ret;
675 ret = __lock_page_killable(page);
676 if (ret) {
677 up_read(&mm->mmap_sem);
678 return 0;
680 } else
681 __lock_page(page);
682 return 1;
687 * find_get_page - find and get a page reference
688 * @mapping: the address_space to search
689 * @offset: the page index
691 * Is there a pagecache struct page at the given (mapping, offset) tuple?
692 * If yes, increment its refcount and return it; if no, return NULL.
694 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
696 void **pagep;
697 struct page *page;
699 rcu_read_lock();
700 repeat:
701 page = NULL;
702 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
703 if (pagep) {
704 page = radix_tree_deref_slot(pagep);
705 if (unlikely(!page))
706 goto out;
707 if (radix_tree_deref_retry(page))
708 goto repeat;
710 if (!page_cache_get_speculative(page))
711 goto repeat;
714 * Has the page moved?
715 * This is part of the lockless pagecache protocol. See
716 * include/linux/pagemap.h for details.
718 if (unlikely(page != *pagep)) {
719 page_cache_release(page);
720 goto repeat;
723 out:
724 rcu_read_unlock();
726 return page;
728 EXPORT_SYMBOL(find_get_page);
731 * find_lock_page - locate, pin and lock a pagecache page
732 * @mapping: the address_space to search
733 * @offset: the page index
735 * Locates the desired pagecache page, locks it, increments its reference
736 * count and returns its address.
738 * Returns zero if the page was not present. find_lock_page() may sleep.
740 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
742 struct page *page;
744 repeat:
745 page = find_get_page(mapping, offset);
746 if (page) {
747 lock_page(page);
748 /* Has the page been truncated? */
749 if (unlikely(page->mapping != mapping)) {
750 unlock_page(page);
751 page_cache_release(page);
752 goto repeat;
754 VM_BUG_ON(page->index != offset);
756 return page;
758 EXPORT_SYMBOL(find_lock_page);
761 * find_or_create_page - locate or add a pagecache page
762 * @mapping: the page's address_space
763 * @index: the page's index into the mapping
764 * @gfp_mask: page allocation mode
766 * Locates a page in the pagecache. If the page is not present, a new page
767 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
768 * LRU list. The returned page is locked and has its reference count
769 * incremented.
771 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
772 * allocation!
774 * find_or_create_page() returns the desired page's address, or zero on
775 * memory exhaustion.
777 struct page *find_or_create_page(struct address_space *mapping,
778 pgoff_t index, gfp_t gfp_mask)
780 struct page *page;
781 int err;
782 repeat:
783 page = find_lock_page(mapping, index);
784 if (!page) {
785 page = __page_cache_alloc(gfp_mask);
786 if (!page)
787 return NULL;
789 * We want a regular kernel memory (not highmem or DMA etc)
790 * allocation for the radix tree nodes, but we need to honour
791 * the context-specific requirements the caller has asked for.
792 * GFP_RECLAIM_MASK collects those requirements.
794 err = add_to_page_cache_lru(page, mapping, index,
795 (gfp_mask & GFP_RECLAIM_MASK));
796 if (unlikely(err)) {
797 page_cache_release(page);
798 page = NULL;
799 if (err == -EEXIST)
800 goto repeat;
803 return page;
805 EXPORT_SYMBOL(find_or_create_page);
808 * find_get_pages - gang pagecache lookup
809 * @mapping: The address_space to search
810 * @start: The starting page index
811 * @nr_pages: The maximum number of pages
812 * @pages: Where the resulting pages are placed
814 * find_get_pages() will search for and return a group of up to
815 * @nr_pages pages in the mapping. The pages are placed at @pages.
816 * find_get_pages() takes a reference against the returned pages.
818 * The search returns a group of mapping-contiguous pages with ascending
819 * indexes. There may be holes in the indices due to not-present pages.
821 * find_get_pages() returns the number of pages which were found.
823 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
824 unsigned int nr_pages, struct page **pages)
826 unsigned int i;
827 unsigned int ret;
828 unsigned int nr_found;
830 rcu_read_lock();
831 restart:
832 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
833 (void ***)pages, start, nr_pages);
834 ret = 0;
835 for (i = 0; i < nr_found; i++) {
836 struct page *page;
837 repeat:
838 page = radix_tree_deref_slot((void **)pages[i]);
839 if (unlikely(!page))
840 continue;
843 * This can only trigger when the entry at index 0 moves out
844 * of or back to the root: none yet gotten, safe to restart.
846 if (radix_tree_deref_retry(page)) {
847 WARN_ON(start | i);
848 goto restart;
851 if (!page_cache_get_speculative(page))
852 goto repeat;
854 /* Has the page moved? */
855 if (unlikely(page != *((void **)pages[i]))) {
856 page_cache_release(page);
857 goto repeat;
860 pages[ret] = page;
861 ret++;
865 * If all entries were removed before we could secure them,
866 * try again, because callers stop trying once 0 is returned.
868 if (unlikely(!ret && nr_found))
869 goto restart;
870 rcu_read_unlock();
871 return ret;
875 * find_get_pages_contig - gang contiguous pagecache lookup
876 * @mapping: The address_space to search
877 * @index: The starting page index
878 * @nr_pages: The maximum number of pages
879 * @pages: Where the resulting pages are placed
881 * find_get_pages_contig() works exactly like find_get_pages(), except
882 * that the returned number of pages are guaranteed to be contiguous.
884 * find_get_pages_contig() returns the number of pages which were found.
886 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
887 unsigned int nr_pages, struct page **pages)
889 unsigned int i;
890 unsigned int ret;
891 unsigned int nr_found;
893 rcu_read_lock();
894 restart:
895 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
896 (void ***)pages, index, nr_pages);
897 ret = 0;
898 for (i = 0; i < nr_found; i++) {
899 struct page *page;
900 repeat:
901 page = radix_tree_deref_slot((void **)pages[i]);
902 if (unlikely(!page))
903 continue;
906 * This can only trigger when the entry at index 0 moves out
907 * of or back to the root: none yet gotten, safe to restart.
909 if (radix_tree_deref_retry(page))
910 goto restart;
912 if (!page_cache_get_speculative(page))
913 goto repeat;
915 /* Has the page moved? */
916 if (unlikely(page != *((void **)pages[i]))) {
917 page_cache_release(page);
918 goto repeat;
922 * must check mapping and index after taking the ref.
923 * otherwise we can get both false positives and false
924 * negatives, which is just confusing to the caller.
926 if (page->mapping == NULL || page->index != index) {
927 page_cache_release(page);
928 break;
931 pages[ret] = page;
932 ret++;
933 index++;
935 rcu_read_unlock();
936 return ret;
938 EXPORT_SYMBOL(find_get_pages_contig);
941 * find_get_pages_tag - find and return pages that match @tag
942 * @mapping: the address_space to search
943 * @index: the starting page index
944 * @tag: the tag index
945 * @nr_pages: the maximum number of pages
946 * @pages: where the resulting pages are placed
948 * Like find_get_pages, except we only return pages which are tagged with
949 * @tag. We update @index to index the next page for the traversal.
951 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
952 int tag, unsigned int nr_pages, struct page **pages)
954 unsigned int i;
955 unsigned int ret;
956 unsigned int nr_found;
958 rcu_read_lock();
959 restart:
960 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
961 (void ***)pages, *index, nr_pages, tag);
962 ret = 0;
963 for (i = 0; i < nr_found; i++) {
964 struct page *page;
965 repeat:
966 page = radix_tree_deref_slot((void **)pages[i]);
967 if (unlikely(!page))
968 continue;
971 * This can only trigger when the entry at index 0 moves out
972 * of or back to the root: none yet gotten, safe to restart.
974 if (radix_tree_deref_retry(page))
975 goto restart;
977 if (!page_cache_get_speculative(page))
978 goto repeat;
980 /* Has the page moved? */
981 if (unlikely(page != *((void **)pages[i]))) {
982 page_cache_release(page);
983 goto repeat;
986 pages[ret] = page;
987 ret++;
991 * If all entries were removed before we could secure them,
992 * try again, because callers stop trying once 0 is returned.
994 if (unlikely(!ret && nr_found))
995 goto restart;
996 rcu_read_unlock();
998 if (ret)
999 *index = pages[ret - 1]->index + 1;
1001 return ret;
1003 EXPORT_SYMBOL(find_get_pages_tag);
1006 * grab_cache_page_nowait - returns locked page at given index in given cache
1007 * @mapping: target address_space
1008 * @index: the page index
1010 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1011 * This is intended for speculative data generators, where the data can
1012 * be regenerated if the page couldn't be grabbed. This routine should
1013 * be safe to call while holding the lock for another page.
1015 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1016 * and deadlock against the caller's locked page.
1018 struct page *
1019 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1021 struct page *page = find_get_page(mapping, index);
1023 if (page) {
1024 if (trylock_page(page))
1025 return page;
1026 page_cache_release(page);
1027 return NULL;
1029 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1030 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1031 page_cache_release(page);
1032 page = NULL;
1034 return page;
1036 EXPORT_SYMBOL(grab_cache_page_nowait);
1039 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1040 * a _large_ part of the i/o request. Imagine the worst scenario:
1042 * ---R__________________________________________B__________
1043 * ^ reading here ^ bad block(assume 4k)
1045 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1046 * => failing the whole request => read(R) => read(R+1) =>
1047 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1048 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1049 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1051 * It is going insane. Fix it by quickly scaling down the readahead size.
1053 static void shrink_readahead_size_eio(struct file *filp,
1054 struct file_ra_state *ra)
1056 ra->ra_pages /= 4;
1060 * do_generic_file_read - generic file read routine
1061 * @filp: the file to read
1062 * @ppos: current file position
1063 * @desc: read_descriptor
1064 * @actor: read method
1066 * This is a generic file read routine, and uses the
1067 * mapping->a_ops->readpage() function for the actual low-level stuff.
1069 * This is really ugly. But the goto's actually try to clarify some
1070 * of the logic when it comes to error handling etc.
1072 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1073 read_descriptor_t *desc, read_actor_t actor)
1075 struct address_space *mapping = filp->f_mapping;
1076 struct inode *inode = mapping->host;
1077 struct file_ra_state *ra = &filp->f_ra;
1078 pgoff_t index;
1079 pgoff_t last_index;
1080 pgoff_t prev_index;
1081 unsigned long offset; /* offset into pagecache page */
1082 unsigned int prev_offset;
1083 int error;
1085 index = *ppos >> PAGE_CACHE_SHIFT;
1086 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1087 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1088 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1089 offset = *ppos & ~PAGE_CACHE_MASK;
1091 for (;;) {
1092 struct page *page;
1093 pgoff_t end_index;
1094 loff_t isize;
1095 unsigned long nr, ret;
1097 cond_resched();
1098 find_page:
1099 page = find_get_page(mapping, index);
1100 if (!page) {
1101 page_cache_sync_readahead(mapping,
1102 ra, filp,
1103 index, last_index - index);
1104 page = find_get_page(mapping, index);
1105 if (unlikely(page == NULL))
1106 goto no_cached_page;
1108 if (PageReadahead(page)) {
1109 page_cache_async_readahead(mapping,
1110 ra, filp, page,
1111 index, last_index - index);
1113 if (!PageUptodate(page)) {
1114 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1115 !mapping->a_ops->is_partially_uptodate)
1116 goto page_not_up_to_date;
1117 if (!trylock_page(page))
1118 goto page_not_up_to_date;
1119 /* Did it get truncated before we got the lock? */
1120 if (!page->mapping)
1121 goto page_not_up_to_date_locked;
1122 if (!mapping->a_ops->is_partially_uptodate(page,
1123 desc, offset))
1124 goto page_not_up_to_date_locked;
1125 unlock_page(page);
1127 page_ok:
1129 * i_size must be checked after we know the page is Uptodate.
1131 * Checking i_size after the check allows us to calculate
1132 * the correct value for "nr", which means the zero-filled
1133 * part of the page is not copied back to userspace (unless
1134 * another truncate extends the file - this is desired though).
1137 isize = i_size_read(inode);
1138 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1139 if (unlikely(!isize || index > end_index)) {
1140 page_cache_release(page);
1141 goto out;
1144 /* nr is the maximum number of bytes to copy from this page */
1145 nr = PAGE_CACHE_SIZE;
1146 if (index == end_index) {
1147 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1148 if (nr <= offset) {
1149 page_cache_release(page);
1150 goto out;
1153 nr = nr - offset;
1155 /* If users can be writing to this page using arbitrary
1156 * virtual addresses, take care about potential aliasing
1157 * before reading the page on the kernel side.
1159 if (mapping_writably_mapped(mapping))
1160 flush_dcache_page(page);
1163 * When a sequential read accesses a page several times,
1164 * only mark it as accessed the first time.
1166 if (prev_index != index || offset != prev_offset)
1167 mark_page_accessed(page);
1168 prev_index = index;
1171 * Ok, we have the page, and it's up-to-date, so
1172 * now we can copy it to user space...
1174 * The actor routine returns how many bytes were actually used..
1175 * NOTE! This may not be the same as how much of a user buffer
1176 * we filled up (we may be padding etc), so we can only update
1177 * "pos" here (the actor routine has to update the user buffer
1178 * pointers and the remaining count).
1180 ret = actor(desc, page, offset, nr);
1181 offset += ret;
1182 index += offset >> PAGE_CACHE_SHIFT;
1183 offset &= ~PAGE_CACHE_MASK;
1184 prev_offset = offset;
1186 page_cache_release(page);
1187 if (ret == nr && desc->count)
1188 continue;
1189 goto out;
1191 page_not_up_to_date:
1192 /* Get exclusive access to the page ... */
1193 error = lock_page_killable(page);
1194 if (unlikely(error))
1195 goto readpage_error;
1197 page_not_up_to_date_locked:
1198 /* Did it get truncated before we got the lock? */
1199 if (!page->mapping) {
1200 unlock_page(page);
1201 page_cache_release(page);
1202 continue;
1205 /* Did somebody else fill it already? */
1206 if (PageUptodate(page)) {
1207 unlock_page(page);
1208 goto page_ok;
1211 readpage:
1213 * A previous I/O error may have been due to temporary
1214 * failures, eg. multipath errors.
1215 * PG_error will be set again if readpage fails.
1217 ClearPageError(page);
1218 /* Start the actual read. The read will unlock the page. */
1219 error = mapping->a_ops->readpage(filp, page);
1221 if (unlikely(error)) {
1222 if (error == AOP_TRUNCATED_PAGE) {
1223 page_cache_release(page);
1224 goto find_page;
1226 goto readpage_error;
1229 if (!PageUptodate(page)) {
1230 error = lock_page_killable(page);
1231 if (unlikely(error))
1232 goto readpage_error;
1233 if (!PageUptodate(page)) {
1234 if (page->mapping == NULL) {
1236 * invalidate_mapping_pages got it
1238 unlock_page(page);
1239 page_cache_release(page);
1240 goto find_page;
1242 unlock_page(page);
1243 shrink_readahead_size_eio(filp, ra);
1244 error = -EIO;
1245 goto readpage_error;
1247 unlock_page(page);
1250 goto page_ok;
1252 readpage_error:
1253 /* UHHUH! A synchronous read error occurred. Report it */
1254 desc->error = error;
1255 page_cache_release(page);
1256 goto out;
1258 no_cached_page:
1260 * Ok, it wasn't cached, so we need to create a new
1261 * page..
1263 page = page_cache_alloc_cold(mapping);
1264 if (!page) {
1265 desc->error = -ENOMEM;
1266 goto out;
1268 error = add_to_page_cache_lru(page, mapping,
1269 index, GFP_KERNEL);
1270 if (error) {
1271 page_cache_release(page);
1272 if (error == -EEXIST)
1273 goto find_page;
1274 desc->error = error;
1275 goto out;
1277 goto readpage;
1280 out:
1281 ra->prev_pos = prev_index;
1282 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1283 ra->prev_pos |= prev_offset;
1285 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1286 file_accessed(filp);
1289 int file_read_actor(read_descriptor_t *desc, struct page *page,
1290 unsigned long offset, unsigned long size)
1292 char *kaddr;
1293 unsigned long left, count = desc->count;
1295 if (size > count)
1296 size = count;
1299 * Faults on the destination of a read are common, so do it before
1300 * taking the kmap.
1302 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1303 kaddr = kmap_atomic(page, KM_USER0);
1304 left = __copy_to_user_inatomic(desc->arg.buf,
1305 kaddr + offset, size);
1306 kunmap_atomic(kaddr, KM_USER0);
1307 if (left == 0)
1308 goto success;
1311 /* Do it the slow way */
1312 kaddr = kmap(page);
1313 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1314 kunmap(page);
1316 if (left) {
1317 size -= left;
1318 desc->error = -EFAULT;
1320 success:
1321 desc->count = count - size;
1322 desc->written += size;
1323 desc->arg.buf += size;
1324 return size;
1328 * Performs necessary checks before doing a write
1329 * @iov: io vector request
1330 * @nr_segs: number of segments in the iovec
1331 * @count: number of bytes to write
1332 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1334 * Adjust number of segments and amount of bytes to write (nr_segs should be
1335 * properly initialized first). Returns appropriate error code that caller
1336 * should return or zero in case that write should be allowed.
1338 int generic_segment_checks(const struct iovec *iov,
1339 unsigned long *nr_segs, size_t *count, int access_flags)
1341 unsigned long seg;
1342 size_t cnt = 0;
1343 for (seg = 0; seg < *nr_segs; seg++) {
1344 const struct iovec *iv = &iov[seg];
1347 * If any segment has a negative length, or the cumulative
1348 * length ever wraps negative then return -EINVAL.
1350 cnt += iv->iov_len;
1351 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1352 return -EINVAL;
1353 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1354 continue;
1355 if (seg == 0)
1356 return -EFAULT;
1357 *nr_segs = seg;
1358 cnt -= iv->iov_len; /* This segment is no good */
1359 break;
1361 *count = cnt;
1362 return 0;
1364 EXPORT_SYMBOL(generic_segment_checks);
1367 * generic_file_aio_read - generic filesystem read routine
1368 * @iocb: kernel I/O control block
1369 * @iov: io vector request
1370 * @nr_segs: number of segments in the iovec
1371 * @pos: current file position
1373 * This is the "read()" routine for all filesystems
1374 * that can use the page cache directly.
1376 ssize_t
1377 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1378 unsigned long nr_segs, loff_t pos)
1380 struct file *filp = iocb->ki_filp;
1381 ssize_t retval;
1382 unsigned long seg = 0;
1383 size_t count;
1384 loff_t *ppos = &iocb->ki_pos;
1385 struct blk_plug plug;
1387 count = 0;
1388 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1389 if (retval)
1390 return retval;
1392 blk_start_plug(&plug);
1394 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1395 if (filp->f_flags & O_DIRECT) {
1396 loff_t size;
1397 struct address_space *mapping;
1398 struct inode *inode;
1400 mapping = filp->f_mapping;
1401 inode = mapping->host;
1402 if (!count)
1403 goto out; /* skip atime */
1404 size = i_size_read(inode);
1405 if (pos < size) {
1406 retval = filemap_write_and_wait_range(mapping, pos,
1407 pos + iov_length(iov, nr_segs) - 1);
1408 if (!retval) {
1409 retval = mapping->a_ops->direct_IO(READ, iocb,
1410 iov, pos, nr_segs);
1412 if (retval > 0) {
1413 *ppos = pos + retval;
1414 count -= retval;
1418 * Btrfs can have a short DIO read if we encounter
1419 * compressed extents, so if there was an error, or if
1420 * we've already read everything we wanted to, or if
1421 * there was a short read because we hit EOF, go ahead
1422 * and return. Otherwise fallthrough to buffered io for
1423 * the rest of the read.
1425 if (retval < 0 || !count || *ppos >= size) {
1426 file_accessed(filp);
1427 goto out;
1432 count = retval;
1433 for (seg = 0; seg < nr_segs; seg++) {
1434 read_descriptor_t desc;
1435 loff_t offset = 0;
1438 * If we did a short DIO read we need to skip the section of the
1439 * iov that we've already read data into.
1441 if (count) {
1442 if (count > iov[seg].iov_len) {
1443 count -= iov[seg].iov_len;
1444 continue;
1446 offset = count;
1447 count = 0;
1450 desc.written = 0;
1451 desc.arg.buf = iov[seg].iov_base + offset;
1452 desc.count = iov[seg].iov_len - offset;
1453 if (desc.count == 0)
1454 continue;
1455 desc.error = 0;
1456 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1457 retval += desc.written;
1458 if (desc.error) {
1459 retval = retval ?: desc.error;
1460 break;
1462 if (desc.count > 0)
1463 break;
1465 out:
1466 blk_finish_plug(&plug);
1467 return retval;
1469 EXPORT_SYMBOL(generic_file_aio_read);
1471 static ssize_t
1472 do_readahead(struct address_space *mapping, struct file *filp,
1473 pgoff_t index, unsigned long nr)
1475 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1476 return -EINVAL;
1478 force_page_cache_readahead(mapping, filp, index, nr);
1479 return 0;
1482 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1484 ssize_t ret;
1485 struct file *file;
1487 ret = -EBADF;
1488 file = fget(fd);
1489 if (file) {
1490 if (file->f_mode & FMODE_READ) {
1491 struct address_space *mapping = file->f_mapping;
1492 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1493 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1494 unsigned long len = end - start + 1;
1495 ret = do_readahead(mapping, file, start, len);
1497 fput(file);
1499 return ret;
1501 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1502 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1504 return SYSC_readahead((int) fd, offset, (size_t) count);
1506 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1507 #endif
1509 #ifdef CONFIG_MMU
1511 * page_cache_read - adds requested page to the page cache if not already there
1512 * @file: file to read
1513 * @offset: page index
1515 * This adds the requested page to the page cache if it isn't already there,
1516 * and schedules an I/O to read in its contents from disk.
1518 static int page_cache_read(struct file *file, pgoff_t offset)
1520 struct address_space *mapping = file->f_mapping;
1521 struct page *page;
1522 int ret;
1524 do {
1525 page = page_cache_alloc_cold(mapping);
1526 if (!page)
1527 return -ENOMEM;
1529 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1530 if (ret == 0)
1531 ret = mapping->a_ops->readpage(file, page);
1532 else if (ret == -EEXIST)
1533 ret = 0; /* losing race to add is OK */
1535 page_cache_release(page);
1537 } while (ret == AOP_TRUNCATED_PAGE);
1539 return ret;
1542 #define MMAP_LOTSAMISS (100)
1545 * Synchronous readahead happens when we don't even find
1546 * a page in the page cache at all.
1548 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1549 struct file_ra_state *ra,
1550 struct file *file,
1551 pgoff_t offset)
1553 unsigned long ra_pages;
1554 struct address_space *mapping = file->f_mapping;
1556 /* If we don't want any read-ahead, don't bother */
1557 if (VM_RandomReadHint(vma))
1558 return;
1559 if (!ra->ra_pages)
1560 return;
1562 if (VM_SequentialReadHint(vma)) {
1563 page_cache_sync_readahead(mapping, ra, file, offset,
1564 ra->ra_pages);
1565 return;
1568 /* Avoid banging the cache line if not needed */
1569 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1570 ra->mmap_miss++;
1573 * Do we miss much more than hit in this file? If so,
1574 * stop bothering with read-ahead. It will only hurt.
1576 if (ra->mmap_miss > MMAP_LOTSAMISS)
1577 return;
1580 * mmap read-around
1582 ra_pages = max_sane_readahead(ra->ra_pages);
1583 ra->start = max_t(long, 0, offset - ra_pages / 2);
1584 ra->size = ra_pages;
1585 ra->async_size = ra_pages / 4;
1586 ra_submit(ra, mapping, file);
1590 * Asynchronous readahead happens when we find the page and PG_readahead,
1591 * so we want to possibly extend the readahead further..
1593 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1594 struct file_ra_state *ra,
1595 struct file *file,
1596 struct page *page,
1597 pgoff_t offset)
1599 struct address_space *mapping = file->f_mapping;
1601 /* If we don't want any read-ahead, don't bother */
1602 if (VM_RandomReadHint(vma))
1603 return;
1604 if (ra->mmap_miss > 0)
1605 ra->mmap_miss--;
1606 if (PageReadahead(page))
1607 page_cache_async_readahead(mapping, ra, file,
1608 page, offset, ra->ra_pages);
1612 * filemap_fault - read in file data for page fault handling
1613 * @vma: vma in which the fault was taken
1614 * @vmf: struct vm_fault containing details of the fault
1616 * filemap_fault() is invoked via the vma operations vector for a
1617 * mapped memory region to read in file data during a page fault.
1619 * The goto's are kind of ugly, but this streamlines the normal case of having
1620 * it in the page cache, and handles the special cases reasonably without
1621 * having a lot of duplicated code.
1623 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1625 int error;
1626 struct file *file = vma->vm_file;
1627 struct address_space *mapping = file->f_mapping;
1628 struct file_ra_state *ra = &file->f_ra;
1629 struct inode *inode = mapping->host;
1630 pgoff_t offset = vmf->pgoff;
1631 struct page *page;
1632 pgoff_t size;
1633 int ret = 0;
1635 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1636 if (offset >= size)
1637 return VM_FAULT_SIGBUS;
1640 * Do we have something in the page cache already?
1642 page = find_get_page(mapping, offset);
1643 if (likely(page)) {
1645 * We found the page, so try async readahead before
1646 * waiting for the lock.
1648 do_async_mmap_readahead(vma, ra, file, page, offset);
1649 } else {
1650 /* No page in the page cache at all */
1651 do_sync_mmap_readahead(vma, ra, file, offset);
1652 count_vm_event(PGMAJFAULT);
1653 ret = VM_FAULT_MAJOR;
1654 retry_find:
1655 page = find_get_page(mapping, offset);
1656 if (!page)
1657 goto no_cached_page;
1660 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1661 page_cache_release(page);
1662 return ret | VM_FAULT_RETRY;
1665 /* Did it get truncated? */
1666 if (unlikely(page->mapping != mapping)) {
1667 unlock_page(page);
1668 put_page(page);
1669 goto retry_find;
1671 VM_BUG_ON(page->index != offset);
1674 * We have a locked page in the page cache, now we need to check
1675 * that it's up-to-date. If not, it is going to be due to an error.
1677 if (unlikely(!PageUptodate(page)))
1678 goto page_not_uptodate;
1681 * Found the page and have a reference on it.
1682 * We must recheck i_size under page lock.
1684 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1685 if (unlikely(offset >= size)) {
1686 unlock_page(page);
1687 page_cache_release(page);
1688 return VM_FAULT_SIGBUS;
1691 vmf->page = page;
1692 return ret | VM_FAULT_LOCKED;
1694 no_cached_page:
1696 * We're only likely to ever get here if MADV_RANDOM is in
1697 * effect.
1699 error = page_cache_read(file, offset);
1702 * The page we want has now been added to the page cache.
1703 * In the unlikely event that someone removed it in the
1704 * meantime, we'll just come back here and read it again.
1706 if (error >= 0)
1707 goto retry_find;
1710 * An error return from page_cache_read can result if the
1711 * system is low on memory, or a problem occurs while trying
1712 * to schedule I/O.
1714 if (error == -ENOMEM)
1715 return VM_FAULT_OOM;
1716 return VM_FAULT_SIGBUS;
1718 page_not_uptodate:
1720 * Umm, take care of errors if the page isn't up-to-date.
1721 * Try to re-read it _once_. We do this synchronously,
1722 * because there really aren't any performance issues here
1723 * and we need to check for errors.
1725 ClearPageError(page);
1726 error = mapping->a_ops->readpage(file, page);
1727 if (!error) {
1728 wait_on_page_locked(page);
1729 if (!PageUptodate(page))
1730 error = -EIO;
1732 page_cache_release(page);
1734 if (!error || error == AOP_TRUNCATED_PAGE)
1735 goto retry_find;
1737 /* Things didn't work out. Return zero to tell the mm layer so. */
1738 shrink_readahead_size_eio(file, ra);
1739 return VM_FAULT_SIGBUS;
1741 EXPORT_SYMBOL(filemap_fault);
1743 const struct vm_operations_struct generic_file_vm_ops = {
1744 .fault = filemap_fault,
1747 /* This is used for a general mmap of a disk file */
1749 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1751 struct address_space *mapping = file->f_mapping;
1753 if (!mapping->a_ops->readpage)
1754 return -ENOEXEC;
1755 file_accessed(file);
1756 vma->vm_ops = &generic_file_vm_ops;
1757 vma->vm_flags |= VM_CAN_NONLINEAR;
1758 return 0;
1762 * This is for filesystems which do not implement ->writepage.
1764 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1766 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1767 return -EINVAL;
1768 return generic_file_mmap(file, vma);
1770 #else
1771 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1773 return -ENOSYS;
1775 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1777 return -ENOSYS;
1779 #endif /* CONFIG_MMU */
1781 EXPORT_SYMBOL(generic_file_mmap);
1782 EXPORT_SYMBOL(generic_file_readonly_mmap);
1784 static struct page *__read_cache_page(struct address_space *mapping,
1785 pgoff_t index,
1786 int (*filler)(void *,struct page*),
1787 void *data,
1788 gfp_t gfp)
1790 struct page *page;
1791 int err;
1792 repeat:
1793 page = find_get_page(mapping, index);
1794 if (!page) {
1795 page = __page_cache_alloc(gfp | __GFP_COLD);
1796 if (!page)
1797 return ERR_PTR(-ENOMEM);
1798 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1799 if (unlikely(err)) {
1800 page_cache_release(page);
1801 if (err == -EEXIST)
1802 goto repeat;
1803 /* Presumably ENOMEM for radix tree node */
1804 return ERR_PTR(err);
1806 err = filler(data, page);
1807 if (err < 0) {
1808 page_cache_release(page);
1809 page = ERR_PTR(err);
1812 return page;
1815 static struct page *do_read_cache_page(struct address_space *mapping,
1816 pgoff_t index,
1817 int (*filler)(void *,struct page*),
1818 void *data,
1819 gfp_t gfp)
1822 struct page *page;
1823 int err;
1825 retry:
1826 page = __read_cache_page(mapping, index, filler, data, gfp);
1827 if (IS_ERR(page))
1828 return page;
1829 if (PageUptodate(page))
1830 goto out;
1832 lock_page(page);
1833 if (!page->mapping) {
1834 unlock_page(page);
1835 page_cache_release(page);
1836 goto retry;
1838 if (PageUptodate(page)) {
1839 unlock_page(page);
1840 goto out;
1842 err = filler(data, page);
1843 if (err < 0) {
1844 page_cache_release(page);
1845 return ERR_PTR(err);
1847 out:
1848 mark_page_accessed(page);
1849 return page;
1853 * read_cache_page_async - read into page cache, fill it if needed
1854 * @mapping: the page's address_space
1855 * @index: the page index
1856 * @filler: function to perform the read
1857 * @data: destination for read data
1859 * Same as read_cache_page, but don't wait for page to become unlocked
1860 * after submitting it to the filler.
1862 * Read into the page cache. If a page already exists, and PageUptodate() is
1863 * not set, try to fill the page but don't wait for it to become unlocked.
1865 * If the page does not get brought uptodate, return -EIO.
1867 struct page *read_cache_page_async(struct address_space *mapping,
1868 pgoff_t index,
1869 int (*filler)(void *,struct page*),
1870 void *data)
1872 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1874 EXPORT_SYMBOL(read_cache_page_async);
1876 static struct page *wait_on_page_read(struct page *page)
1878 if (!IS_ERR(page)) {
1879 wait_on_page_locked(page);
1880 if (!PageUptodate(page)) {
1881 page_cache_release(page);
1882 page = ERR_PTR(-EIO);
1885 return page;
1889 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1890 * @mapping: the page's address_space
1891 * @index: the page index
1892 * @gfp: the page allocator flags to use if allocating
1894 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1895 * any new page allocations done using the specified allocation flags. Note
1896 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1897 * expect to do this atomically or anything like that - but you can pass in
1898 * other page requirements.
1900 * If the page does not get brought uptodate, return -EIO.
1902 struct page *read_cache_page_gfp(struct address_space *mapping,
1903 pgoff_t index,
1904 gfp_t gfp)
1906 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1908 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1910 EXPORT_SYMBOL(read_cache_page_gfp);
1913 * read_cache_page - read into page cache, fill it if needed
1914 * @mapping: the page's address_space
1915 * @index: the page index
1916 * @filler: function to perform the read
1917 * @data: destination for read data
1919 * Read into the page cache. If a page already exists, and PageUptodate() is
1920 * not set, try to fill the page then wait for it to become unlocked.
1922 * If the page does not get brought uptodate, return -EIO.
1924 struct page *read_cache_page(struct address_space *mapping,
1925 pgoff_t index,
1926 int (*filler)(void *,struct page*),
1927 void *data)
1929 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1931 EXPORT_SYMBOL(read_cache_page);
1934 * The logic we want is
1936 * if suid or (sgid and xgrp)
1937 * remove privs
1939 int should_remove_suid(struct dentry *dentry)
1941 mode_t mode = dentry->d_inode->i_mode;
1942 int kill = 0;
1944 /* suid always must be killed */
1945 if (unlikely(mode & S_ISUID))
1946 kill = ATTR_KILL_SUID;
1949 * sgid without any exec bits is just a mandatory locking mark; leave
1950 * it alone. If some exec bits are set, it's a real sgid; kill it.
1952 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1953 kill |= ATTR_KILL_SGID;
1955 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1956 return kill;
1958 return 0;
1960 EXPORT_SYMBOL(should_remove_suid);
1962 static int __remove_suid(struct dentry *dentry, int kill)
1964 struct iattr newattrs;
1966 newattrs.ia_valid = ATTR_FORCE | kill;
1967 return notify_change(dentry, &newattrs);
1970 int file_remove_suid(struct file *file)
1972 struct dentry *dentry = file->f_path.dentry;
1973 int killsuid = should_remove_suid(dentry);
1974 int killpriv = security_inode_need_killpriv(dentry);
1975 int error = 0;
1977 if (killpriv < 0)
1978 return killpriv;
1979 if (killpriv)
1980 error = security_inode_killpriv(dentry);
1981 if (!error && killsuid)
1982 error = __remove_suid(dentry, killsuid);
1984 return error;
1986 EXPORT_SYMBOL(file_remove_suid);
1988 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1989 const struct iovec *iov, size_t base, size_t bytes)
1991 size_t copied = 0, left = 0;
1993 while (bytes) {
1994 char __user *buf = iov->iov_base + base;
1995 int copy = min(bytes, iov->iov_len - base);
1997 base = 0;
1998 left = __copy_from_user_inatomic(vaddr, buf, copy);
1999 copied += copy;
2000 bytes -= copy;
2001 vaddr += copy;
2002 iov++;
2004 if (unlikely(left))
2005 break;
2007 return copied - left;
2011 * Copy as much as we can into the page and return the number of bytes which
2012 * were successfully copied. If a fault is encountered then return the number of
2013 * bytes which were copied.
2015 size_t iov_iter_copy_from_user_atomic(struct page *page,
2016 struct iov_iter *i, unsigned long offset, size_t bytes)
2018 char *kaddr;
2019 size_t copied;
2021 BUG_ON(!in_atomic());
2022 kaddr = kmap_atomic(page, KM_USER0);
2023 if (likely(i->nr_segs == 1)) {
2024 int left;
2025 char __user *buf = i->iov->iov_base + i->iov_offset;
2026 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2027 copied = bytes - left;
2028 } else {
2029 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2030 i->iov, i->iov_offset, bytes);
2032 kunmap_atomic(kaddr, KM_USER0);
2034 return copied;
2036 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2039 * This has the same sideeffects and return value as
2040 * iov_iter_copy_from_user_atomic().
2041 * The difference is that it attempts to resolve faults.
2042 * Page must not be locked.
2044 size_t iov_iter_copy_from_user(struct page *page,
2045 struct iov_iter *i, unsigned long offset, size_t bytes)
2047 char *kaddr;
2048 size_t copied;
2050 kaddr = kmap(page);
2051 if (likely(i->nr_segs == 1)) {
2052 int left;
2053 char __user *buf = i->iov->iov_base + i->iov_offset;
2054 left = __copy_from_user(kaddr + offset, buf, bytes);
2055 copied = bytes - left;
2056 } else {
2057 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2058 i->iov, i->iov_offset, bytes);
2060 kunmap(page);
2061 return copied;
2063 EXPORT_SYMBOL(iov_iter_copy_from_user);
2065 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2067 BUG_ON(i->count < bytes);
2069 if (likely(i->nr_segs == 1)) {
2070 i->iov_offset += bytes;
2071 i->count -= bytes;
2072 } else {
2073 const struct iovec *iov = i->iov;
2074 size_t base = i->iov_offset;
2077 * The !iov->iov_len check ensures we skip over unlikely
2078 * zero-length segments (without overruning the iovec).
2080 while (bytes || unlikely(i->count && !iov->iov_len)) {
2081 int copy;
2083 copy = min(bytes, iov->iov_len - base);
2084 BUG_ON(!i->count || i->count < copy);
2085 i->count -= copy;
2086 bytes -= copy;
2087 base += copy;
2088 if (iov->iov_len == base) {
2089 iov++;
2090 base = 0;
2093 i->iov = iov;
2094 i->iov_offset = base;
2097 EXPORT_SYMBOL(iov_iter_advance);
2100 * Fault in the first iovec of the given iov_iter, to a maximum length
2101 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2102 * accessed (ie. because it is an invalid address).
2104 * writev-intensive code may want this to prefault several iovecs -- that
2105 * would be possible (callers must not rely on the fact that _only_ the
2106 * first iovec will be faulted with the current implementation).
2108 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2110 char __user *buf = i->iov->iov_base + i->iov_offset;
2111 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2112 return fault_in_pages_readable(buf, bytes);
2114 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2117 * Return the count of just the current iov_iter segment.
2119 size_t iov_iter_single_seg_count(struct iov_iter *i)
2121 const struct iovec *iov = i->iov;
2122 if (i->nr_segs == 1)
2123 return i->count;
2124 else
2125 return min(i->count, iov->iov_len - i->iov_offset);
2127 EXPORT_SYMBOL(iov_iter_single_seg_count);
2130 * Performs necessary checks before doing a write
2132 * Can adjust writing position or amount of bytes to write.
2133 * Returns appropriate error code that caller should return or
2134 * zero in case that write should be allowed.
2136 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2138 struct inode *inode = file->f_mapping->host;
2139 unsigned long limit = rlimit(RLIMIT_FSIZE);
2141 if (unlikely(*pos < 0))
2142 return -EINVAL;
2144 if (!isblk) {
2145 /* FIXME: this is for backwards compatibility with 2.4 */
2146 if (file->f_flags & O_APPEND)
2147 *pos = i_size_read(inode);
2149 if (limit != RLIM_INFINITY) {
2150 if (*pos >= limit) {
2151 send_sig(SIGXFSZ, current, 0);
2152 return -EFBIG;
2154 if (*count > limit - (typeof(limit))*pos) {
2155 *count = limit - (typeof(limit))*pos;
2161 * LFS rule
2163 if (unlikely(*pos + *count > MAX_NON_LFS &&
2164 !(file->f_flags & O_LARGEFILE))) {
2165 if (*pos >= MAX_NON_LFS) {
2166 return -EFBIG;
2168 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2169 *count = MAX_NON_LFS - (unsigned long)*pos;
2174 * Are we about to exceed the fs block limit ?
2176 * If we have written data it becomes a short write. If we have
2177 * exceeded without writing data we send a signal and return EFBIG.
2178 * Linus frestrict idea will clean these up nicely..
2180 if (likely(!isblk)) {
2181 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2182 if (*count || *pos > inode->i_sb->s_maxbytes) {
2183 return -EFBIG;
2185 /* zero-length writes at ->s_maxbytes are OK */
2188 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2189 *count = inode->i_sb->s_maxbytes - *pos;
2190 } else {
2191 #ifdef CONFIG_BLOCK
2192 loff_t isize;
2193 if (bdev_read_only(I_BDEV(inode)))
2194 return -EPERM;
2195 isize = i_size_read(inode);
2196 if (*pos >= isize) {
2197 if (*count || *pos > isize)
2198 return -ENOSPC;
2201 if (*pos + *count > isize)
2202 *count = isize - *pos;
2203 #else
2204 return -EPERM;
2205 #endif
2207 return 0;
2209 EXPORT_SYMBOL(generic_write_checks);
2211 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2212 loff_t pos, unsigned len, unsigned flags,
2213 struct page **pagep, void **fsdata)
2215 const struct address_space_operations *aops = mapping->a_ops;
2217 return aops->write_begin(file, mapping, pos, len, flags,
2218 pagep, fsdata);
2220 EXPORT_SYMBOL(pagecache_write_begin);
2222 int pagecache_write_end(struct file *file, struct address_space *mapping,
2223 loff_t pos, unsigned len, unsigned copied,
2224 struct page *page, void *fsdata)
2226 const struct address_space_operations *aops = mapping->a_ops;
2228 mark_page_accessed(page);
2229 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2231 EXPORT_SYMBOL(pagecache_write_end);
2233 ssize_t
2234 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2235 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2236 size_t count, size_t ocount)
2238 struct file *file = iocb->ki_filp;
2239 struct address_space *mapping = file->f_mapping;
2240 struct inode *inode = mapping->host;
2241 ssize_t written;
2242 size_t write_len;
2243 pgoff_t end;
2245 if (count != ocount)
2246 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2248 write_len = iov_length(iov, *nr_segs);
2249 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2251 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2252 if (written)
2253 goto out;
2256 * After a write we want buffered reads to be sure to go to disk to get
2257 * the new data. We invalidate clean cached page from the region we're
2258 * about to write. We do this *before* the write so that we can return
2259 * without clobbering -EIOCBQUEUED from ->direct_IO().
2261 if (mapping->nrpages) {
2262 written = invalidate_inode_pages2_range(mapping,
2263 pos >> PAGE_CACHE_SHIFT, end);
2265 * If a page can not be invalidated, return 0 to fall back
2266 * to buffered write.
2268 if (written) {
2269 if (written == -EBUSY)
2270 return 0;
2271 goto out;
2275 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2278 * Finally, try again to invalidate clean pages which might have been
2279 * cached by non-direct readahead, or faulted in by get_user_pages()
2280 * if the source of the write was an mmap'ed region of the file
2281 * we're writing. Either one is a pretty crazy thing to do,
2282 * so we don't support it 100%. If this invalidation
2283 * fails, tough, the write still worked...
2285 if (mapping->nrpages) {
2286 invalidate_inode_pages2_range(mapping,
2287 pos >> PAGE_CACHE_SHIFT, end);
2290 if (written > 0) {
2291 pos += written;
2292 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2293 i_size_write(inode, pos);
2294 mark_inode_dirty(inode);
2296 *ppos = pos;
2298 out:
2299 return written;
2301 EXPORT_SYMBOL(generic_file_direct_write);
2304 * Find or create a page at the given pagecache position. Return the locked
2305 * page. This function is specifically for buffered writes.
2307 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2308 pgoff_t index, unsigned flags)
2310 int status;
2311 struct page *page;
2312 gfp_t gfp_notmask = 0;
2313 if (flags & AOP_FLAG_NOFS)
2314 gfp_notmask = __GFP_FS;
2315 repeat:
2316 page = find_lock_page(mapping, index);
2317 if (page)
2318 return page;
2320 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2321 if (!page)
2322 return NULL;
2323 status = add_to_page_cache_lru(page, mapping, index,
2324 GFP_KERNEL & ~gfp_notmask);
2325 if (unlikely(status)) {
2326 page_cache_release(page);
2327 if (status == -EEXIST)
2328 goto repeat;
2329 return NULL;
2331 return page;
2333 EXPORT_SYMBOL(grab_cache_page_write_begin);
2335 static ssize_t generic_perform_write(struct file *file,
2336 struct iov_iter *i, loff_t pos)
2338 struct address_space *mapping = file->f_mapping;
2339 const struct address_space_operations *a_ops = mapping->a_ops;
2340 long status = 0;
2341 ssize_t written = 0;
2342 unsigned int flags = 0;
2345 * Copies from kernel address space cannot fail (NFSD is a big user).
2347 if (segment_eq(get_fs(), KERNEL_DS))
2348 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2350 do {
2351 struct page *page;
2352 unsigned long offset; /* Offset into pagecache page */
2353 unsigned long bytes; /* Bytes to write to page */
2354 size_t copied; /* Bytes copied from user */
2355 void *fsdata;
2357 offset = (pos & (PAGE_CACHE_SIZE - 1));
2358 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2359 iov_iter_count(i));
2361 again:
2364 * Bring in the user page that we will copy from _first_.
2365 * Otherwise there's a nasty deadlock on copying from the
2366 * same page as we're writing to, without it being marked
2367 * up-to-date.
2369 * Not only is this an optimisation, but it is also required
2370 * to check that the address is actually valid, when atomic
2371 * usercopies are used, below.
2373 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2374 status = -EFAULT;
2375 break;
2378 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2379 &page, &fsdata);
2380 if (unlikely(status))
2381 break;
2383 if (mapping_writably_mapped(mapping))
2384 flush_dcache_page(page);
2386 pagefault_disable();
2387 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2388 pagefault_enable();
2389 flush_dcache_page(page);
2391 mark_page_accessed(page);
2392 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2393 page, fsdata);
2394 if (unlikely(status < 0))
2395 break;
2396 copied = status;
2398 cond_resched();
2400 iov_iter_advance(i, copied);
2401 if (unlikely(copied == 0)) {
2403 * If we were unable to copy any data at all, we must
2404 * fall back to a single segment length write.
2406 * If we didn't fallback here, we could livelock
2407 * because not all segments in the iov can be copied at
2408 * once without a pagefault.
2410 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2411 iov_iter_single_seg_count(i));
2412 goto again;
2414 pos += copied;
2415 written += copied;
2417 balance_dirty_pages_ratelimited(mapping);
2419 } while (iov_iter_count(i));
2421 return written ? written : status;
2424 ssize_t
2425 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2426 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2427 size_t count, ssize_t written)
2429 struct file *file = iocb->ki_filp;
2430 ssize_t status;
2431 struct iov_iter i;
2433 iov_iter_init(&i, iov, nr_segs, count, written);
2434 status = generic_perform_write(file, &i, pos);
2436 if (likely(status >= 0)) {
2437 written += status;
2438 *ppos = pos + status;
2441 return written ? written : status;
2443 EXPORT_SYMBOL(generic_file_buffered_write);
2446 * __generic_file_aio_write - write data to a file
2447 * @iocb: IO state structure (file, offset, etc.)
2448 * @iov: vector with data to write
2449 * @nr_segs: number of segments in the vector
2450 * @ppos: position where to write
2452 * This function does all the work needed for actually writing data to a
2453 * file. It does all basic checks, removes SUID from the file, updates
2454 * modification times and calls proper subroutines depending on whether we
2455 * do direct IO or a standard buffered write.
2457 * It expects i_mutex to be grabbed unless we work on a block device or similar
2458 * object which does not need locking at all.
2460 * This function does *not* take care of syncing data in case of O_SYNC write.
2461 * A caller has to handle it. This is mainly due to the fact that we want to
2462 * avoid syncing under i_mutex.
2464 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2465 unsigned long nr_segs, loff_t *ppos)
2467 struct file *file = iocb->ki_filp;
2468 struct address_space * mapping = file->f_mapping;
2469 size_t ocount; /* original count */
2470 size_t count; /* after file limit checks */
2471 struct inode *inode = mapping->host;
2472 loff_t pos;
2473 ssize_t written;
2474 ssize_t err;
2476 ocount = 0;
2477 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2478 if (err)
2479 return err;
2481 count = ocount;
2482 pos = *ppos;
2484 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2486 /* We can write back this queue in page reclaim */
2487 current->backing_dev_info = mapping->backing_dev_info;
2488 written = 0;
2490 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2491 if (err)
2492 goto out;
2494 if (count == 0)
2495 goto out;
2497 err = file_remove_suid(file);
2498 if (err)
2499 goto out;
2501 file_update_time(file);
2503 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2504 if (unlikely(file->f_flags & O_DIRECT)) {
2505 loff_t endbyte;
2506 ssize_t written_buffered;
2508 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2509 ppos, count, ocount);
2510 if (written < 0 || written == count)
2511 goto out;
2513 * direct-io write to a hole: fall through to buffered I/O
2514 * for completing the rest of the request.
2516 pos += written;
2517 count -= written;
2518 written_buffered = generic_file_buffered_write(iocb, iov,
2519 nr_segs, pos, ppos, count,
2520 written);
2522 * If generic_file_buffered_write() retuned a synchronous error
2523 * then we want to return the number of bytes which were
2524 * direct-written, or the error code if that was zero. Note
2525 * that this differs from normal direct-io semantics, which
2526 * will return -EFOO even if some bytes were written.
2528 if (written_buffered < 0) {
2529 err = written_buffered;
2530 goto out;
2534 * We need to ensure that the page cache pages are written to
2535 * disk and invalidated to preserve the expected O_DIRECT
2536 * semantics.
2538 endbyte = pos + written_buffered - written - 1;
2539 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2540 if (err == 0) {
2541 written = written_buffered;
2542 invalidate_mapping_pages(mapping,
2543 pos >> PAGE_CACHE_SHIFT,
2544 endbyte >> PAGE_CACHE_SHIFT);
2545 } else {
2547 * We don't know how much we wrote, so just return
2548 * the number of bytes which were direct-written
2551 } else {
2552 written = generic_file_buffered_write(iocb, iov, nr_segs,
2553 pos, ppos, count, written);
2555 out:
2556 current->backing_dev_info = NULL;
2557 return written ? written : err;
2559 EXPORT_SYMBOL(__generic_file_aio_write);
2562 * generic_file_aio_write - write data to a file
2563 * @iocb: IO state structure
2564 * @iov: vector with data to write
2565 * @nr_segs: number of segments in the vector
2566 * @pos: position in file where to write
2568 * This is a wrapper around __generic_file_aio_write() to be used by most
2569 * filesystems. It takes care of syncing the file in case of O_SYNC file
2570 * and acquires i_mutex as needed.
2572 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2573 unsigned long nr_segs, loff_t pos)
2575 struct file *file = iocb->ki_filp;
2576 struct inode *inode = file->f_mapping->host;
2577 struct blk_plug plug;
2578 ssize_t ret;
2580 BUG_ON(iocb->ki_pos != pos);
2582 mutex_lock(&inode->i_mutex);
2583 blk_start_plug(&plug);
2584 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2585 mutex_unlock(&inode->i_mutex);
2587 if (ret > 0 || ret == -EIOCBQUEUED) {
2588 ssize_t err;
2590 err = generic_write_sync(file, pos, ret);
2591 if (err < 0 && ret > 0)
2592 ret = err;
2594 blk_finish_plug(&plug);
2595 return ret;
2597 EXPORT_SYMBOL(generic_file_aio_write);
2600 * try_to_release_page() - release old fs-specific metadata on a page
2602 * @page: the page which the kernel is trying to free
2603 * @gfp_mask: memory allocation flags (and I/O mode)
2605 * The address_space is to try to release any data against the page
2606 * (presumably at page->private). If the release was successful, return `1'.
2607 * Otherwise return zero.
2609 * This may also be called if PG_fscache is set on a page, indicating that the
2610 * page is known to the local caching routines.
2612 * The @gfp_mask argument specifies whether I/O may be performed to release
2613 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2616 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2618 struct address_space * const mapping = page->mapping;
2620 BUG_ON(!PageLocked(page));
2621 if (PageWriteback(page))
2622 return 0;
2624 if (mapping && mapping->a_ops->releasepage)
2625 return mapping->a_ops->releasepage(page, gfp_mask);
2626 return try_to_free_buffers(page);
2629 EXPORT_SYMBOL(try_to_release_page);