[PATCH] knfsd: remove an unused variable from auth_unix_lookup()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / profile.c
blobfb660c7d35baa3aea34abe194d78650070f09f0a
1 /*
2 * linux/kernel/profile.c
3 * Simple profiling. Manages a direct-mapped profile hit count buffer,
4 * with configurable resolution, support for restricting the cpus on
5 * which profiling is done, and switching between cpu time and
6 * schedule() calls via kernel command line parameters passed at boot.
8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9 * Red Hat, July 2004
10 * Consolidation of architecture support code for profiling,
11 * William Irwin, Oracle, July 2004
12 * Amortized hit count accounting via per-cpu open-addressed hashtables
13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/profile.h>
24 #include <linux/highmem.h>
25 #include <linux/mutex.h>
26 #include <asm/sections.h>
27 #include <asm/semaphore.h>
29 struct profile_hit {
30 u32 pc, hits;
32 #define PROFILE_GRPSHIFT 3
33 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
34 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
35 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
37 /* Oprofile timer tick hook */
38 int (*timer_hook)(struct pt_regs *) __read_mostly;
40 static atomic_t *prof_buffer;
41 static unsigned long prof_len, prof_shift;
42 static int prof_on __read_mostly;
43 static cpumask_t prof_cpu_mask = CPU_MASK_ALL;
44 #ifdef CONFIG_SMP
45 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
46 static DEFINE_PER_CPU(int, cpu_profile_flip);
47 static DEFINE_MUTEX(profile_flip_mutex);
48 #endif /* CONFIG_SMP */
50 static int __init profile_setup(char * str)
52 static char __initdata schedstr[] = "schedule";
53 int par;
55 if (!strncmp(str, schedstr, strlen(schedstr))) {
56 prof_on = SCHED_PROFILING;
57 if (str[strlen(schedstr)] == ',')
58 str += strlen(schedstr) + 1;
59 if (get_option(&str, &par))
60 prof_shift = par;
61 printk(KERN_INFO
62 "kernel schedule profiling enabled (shift: %ld)\n",
63 prof_shift);
64 } else if (get_option(&str, &par)) {
65 prof_shift = par;
66 prof_on = CPU_PROFILING;
67 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
68 prof_shift);
70 return 1;
72 __setup("profile=", profile_setup);
75 void __init profile_init(void)
77 if (!prof_on)
78 return;
80 /* only text is profiled */
81 prof_len = (_etext - _stext) >> prof_shift;
82 prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t));
85 /* Profile event notifications */
87 #ifdef CONFIG_PROFILING
89 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
90 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
91 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
93 void profile_task_exit(struct task_struct * task)
95 blocking_notifier_call_chain(&task_exit_notifier, 0, task);
98 int profile_handoff_task(struct task_struct * task)
100 int ret;
101 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
102 return (ret == NOTIFY_OK) ? 1 : 0;
105 void profile_munmap(unsigned long addr)
107 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
110 int task_handoff_register(struct notifier_block * n)
112 return atomic_notifier_chain_register(&task_free_notifier, n);
115 int task_handoff_unregister(struct notifier_block * n)
117 return atomic_notifier_chain_unregister(&task_free_notifier, n);
120 int profile_event_register(enum profile_type type, struct notifier_block * n)
122 int err = -EINVAL;
124 switch (type) {
125 case PROFILE_TASK_EXIT:
126 err = blocking_notifier_chain_register(
127 &task_exit_notifier, n);
128 break;
129 case PROFILE_MUNMAP:
130 err = blocking_notifier_chain_register(
131 &munmap_notifier, n);
132 break;
135 return err;
139 int profile_event_unregister(enum profile_type type, struct notifier_block * n)
141 int err = -EINVAL;
143 switch (type) {
144 case PROFILE_TASK_EXIT:
145 err = blocking_notifier_chain_unregister(
146 &task_exit_notifier, n);
147 break;
148 case PROFILE_MUNMAP:
149 err = blocking_notifier_chain_unregister(
150 &munmap_notifier, n);
151 break;
154 return err;
157 int register_timer_hook(int (*hook)(struct pt_regs *))
159 if (timer_hook)
160 return -EBUSY;
161 timer_hook = hook;
162 return 0;
165 void unregister_timer_hook(int (*hook)(struct pt_regs *))
167 WARN_ON(hook != timer_hook);
168 timer_hook = NULL;
169 /* make sure all CPUs see the NULL hook */
170 synchronize_sched(); /* Allow ongoing interrupts to complete. */
173 EXPORT_SYMBOL_GPL(register_timer_hook);
174 EXPORT_SYMBOL_GPL(unregister_timer_hook);
175 EXPORT_SYMBOL_GPL(task_handoff_register);
176 EXPORT_SYMBOL_GPL(task_handoff_unregister);
178 #endif /* CONFIG_PROFILING */
180 EXPORT_SYMBOL_GPL(profile_event_register);
181 EXPORT_SYMBOL_GPL(profile_event_unregister);
183 #ifdef CONFIG_SMP
185 * Each cpu has a pair of open-addressed hashtables for pending
186 * profile hits. read_profile() IPI's all cpus to request them
187 * to flip buffers and flushes their contents to prof_buffer itself.
188 * Flip requests are serialized by the profile_flip_mutex. The sole
189 * use of having a second hashtable is for avoiding cacheline
190 * contention that would otherwise happen during flushes of pending
191 * profile hits required for the accuracy of reported profile hits
192 * and so resurrect the interrupt livelock issue.
194 * The open-addressed hashtables are indexed by profile buffer slot
195 * and hold the number of pending hits to that profile buffer slot on
196 * a cpu in an entry. When the hashtable overflows, all pending hits
197 * are accounted to their corresponding profile buffer slots with
198 * atomic_add() and the hashtable emptied. As numerous pending hits
199 * may be accounted to a profile buffer slot in a hashtable entry,
200 * this amortizes a number of atomic profile buffer increments likely
201 * to be far larger than the number of entries in the hashtable,
202 * particularly given that the number of distinct profile buffer
203 * positions to which hits are accounted during short intervals (e.g.
204 * several seconds) is usually very small. Exclusion from buffer
205 * flipping is provided by interrupt disablement (note that for
206 * SCHED_PROFILING profile_hit() may be called from process context).
207 * The hash function is meant to be lightweight as opposed to strong,
208 * and was vaguely inspired by ppc64 firmware-supported inverted
209 * pagetable hash functions, but uses a full hashtable full of finite
210 * collision chains, not just pairs of them.
212 * -- wli
214 static void __profile_flip_buffers(void *unused)
216 int cpu = smp_processor_id();
218 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
221 static void profile_flip_buffers(void)
223 int i, j, cpu;
225 mutex_lock(&profile_flip_mutex);
226 j = per_cpu(cpu_profile_flip, get_cpu());
227 put_cpu();
228 on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
229 for_each_online_cpu(cpu) {
230 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
231 for (i = 0; i < NR_PROFILE_HIT; ++i) {
232 if (!hits[i].hits) {
233 if (hits[i].pc)
234 hits[i].pc = 0;
235 continue;
237 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
238 hits[i].hits = hits[i].pc = 0;
241 mutex_unlock(&profile_flip_mutex);
244 static void profile_discard_flip_buffers(void)
246 int i, cpu;
248 mutex_lock(&profile_flip_mutex);
249 i = per_cpu(cpu_profile_flip, get_cpu());
250 put_cpu();
251 on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
252 for_each_online_cpu(cpu) {
253 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
254 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
256 mutex_unlock(&profile_flip_mutex);
259 void profile_hit(int type, void *__pc)
261 unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
262 int i, j, cpu;
263 struct profile_hit *hits;
265 if (prof_on != type || !prof_buffer)
266 return;
267 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
268 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
269 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
270 cpu = get_cpu();
271 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
272 if (!hits) {
273 put_cpu();
274 return;
276 local_irq_save(flags);
277 do {
278 for (j = 0; j < PROFILE_GRPSZ; ++j) {
279 if (hits[i + j].pc == pc) {
280 hits[i + j].hits++;
281 goto out;
282 } else if (!hits[i + j].hits) {
283 hits[i + j].pc = pc;
284 hits[i + j].hits = 1;
285 goto out;
288 i = (i + secondary) & (NR_PROFILE_HIT - 1);
289 } while (i != primary);
290 atomic_inc(&prof_buffer[pc]);
291 for (i = 0; i < NR_PROFILE_HIT; ++i) {
292 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
293 hits[i].pc = hits[i].hits = 0;
295 out:
296 local_irq_restore(flags);
297 put_cpu();
300 #ifdef CONFIG_HOTPLUG_CPU
301 static int __devinit profile_cpu_callback(struct notifier_block *info,
302 unsigned long action, void *__cpu)
304 int node, cpu = (unsigned long)__cpu;
305 struct page *page;
307 switch (action) {
308 case CPU_UP_PREPARE:
309 node = cpu_to_node(cpu);
310 per_cpu(cpu_profile_flip, cpu) = 0;
311 if (!per_cpu(cpu_profile_hits, cpu)[1]) {
312 page = alloc_pages_node(node,
313 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
315 if (!page)
316 return NOTIFY_BAD;
317 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
319 if (!per_cpu(cpu_profile_hits, cpu)[0]) {
320 page = alloc_pages_node(node,
321 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
323 if (!page)
324 goto out_free;
325 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
327 break;
328 out_free:
329 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
330 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
331 __free_page(page);
332 return NOTIFY_BAD;
333 case CPU_ONLINE:
334 cpu_set(cpu, prof_cpu_mask);
335 break;
336 case CPU_UP_CANCELED:
337 case CPU_DEAD:
338 cpu_clear(cpu, prof_cpu_mask);
339 if (per_cpu(cpu_profile_hits, cpu)[0]) {
340 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
341 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
342 __free_page(page);
344 if (per_cpu(cpu_profile_hits, cpu)[1]) {
345 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
346 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
347 __free_page(page);
349 break;
351 return NOTIFY_OK;
353 #endif /* CONFIG_HOTPLUG_CPU */
354 #else /* !CONFIG_SMP */
355 #define profile_flip_buffers() do { } while (0)
356 #define profile_discard_flip_buffers() do { } while (0)
358 void profile_hit(int type, void *__pc)
360 unsigned long pc;
362 if (prof_on != type || !prof_buffer)
363 return;
364 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
365 atomic_inc(&prof_buffer[min(pc, prof_len - 1)]);
367 #endif /* !CONFIG_SMP */
369 void profile_tick(int type, struct pt_regs *regs)
371 if (type == CPU_PROFILING && timer_hook)
372 timer_hook(regs);
373 if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask))
374 profile_hit(type, (void *)profile_pc(regs));
377 #ifdef CONFIG_PROC_FS
378 #include <linux/proc_fs.h>
379 #include <asm/uaccess.h>
380 #include <asm/ptrace.h>
382 static int prof_cpu_mask_read_proc (char *page, char **start, off_t off,
383 int count, int *eof, void *data)
385 int len = cpumask_scnprintf(page, count, *(cpumask_t *)data);
386 if (count - len < 2)
387 return -EINVAL;
388 len += sprintf(page + len, "\n");
389 return len;
392 static int prof_cpu_mask_write_proc (struct file *file, const char __user *buffer,
393 unsigned long count, void *data)
395 cpumask_t *mask = (cpumask_t *)data;
396 unsigned long full_count = count, err;
397 cpumask_t new_value;
399 err = cpumask_parse(buffer, count, new_value);
400 if (err)
401 return err;
403 *mask = new_value;
404 return full_count;
407 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
409 struct proc_dir_entry *entry;
411 /* create /proc/irq/prof_cpu_mask */
412 if (!(entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir)))
413 return;
414 entry->nlink = 1;
415 entry->data = (void *)&prof_cpu_mask;
416 entry->read_proc = prof_cpu_mask_read_proc;
417 entry->write_proc = prof_cpu_mask_write_proc;
421 * This function accesses profiling information. The returned data is
422 * binary: the sampling step and the actual contents of the profile
423 * buffer. Use of the program readprofile is recommended in order to
424 * get meaningful info out of these data.
426 static ssize_t
427 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
429 unsigned long p = *ppos;
430 ssize_t read;
431 char * pnt;
432 unsigned int sample_step = 1 << prof_shift;
434 profile_flip_buffers();
435 if (p >= (prof_len+1)*sizeof(unsigned int))
436 return 0;
437 if (count > (prof_len+1)*sizeof(unsigned int) - p)
438 count = (prof_len+1)*sizeof(unsigned int) - p;
439 read = 0;
441 while (p < sizeof(unsigned int) && count > 0) {
442 put_user(*((char *)(&sample_step)+p),buf);
443 buf++; p++; count--; read++;
445 pnt = (char *)prof_buffer + p - sizeof(atomic_t);
446 if (copy_to_user(buf,(void *)pnt,count))
447 return -EFAULT;
448 read += count;
449 *ppos += read;
450 return read;
454 * Writing to /proc/profile resets the counters
456 * Writing a 'profiling multiplier' value into it also re-sets the profiling
457 * interrupt frequency, on architectures that support this.
459 static ssize_t write_profile(struct file *file, const char __user *buf,
460 size_t count, loff_t *ppos)
462 #ifdef CONFIG_SMP
463 extern int setup_profiling_timer (unsigned int multiplier);
465 if (count == sizeof(int)) {
466 unsigned int multiplier;
468 if (copy_from_user(&multiplier, buf, sizeof(int)))
469 return -EFAULT;
471 if (setup_profiling_timer(multiplier))
472 return -EINVAL;
474 #endif
475 profile_discard_flip_buffers();
476 memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
477 return count;
480 static struct file_operations proc_profile_operations = {
481 .read = read_profile,
482 .write = write_profile,
485 #ifdef CONFIG_SMP
486 static void __init profile_nop(void *unused)
490 static int __init create_hash_tables(void)
492 int cpu;
494 for_each_online_cpu(cpu) {
495 int node = cpu_to_node(cpu);
496 struct page *page;
498 page = alloc_pages_node(node,
499 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
501 if (!page)
502 goto out_cleanup;
503 per_cpu(cpu_profile_hits, cpu)[1]
504 = (struct profile_hit *)page_address(page);
505 page = alloc_pages_node(node,
506 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
508 if (!page)
509 goto out_cleanup;
510 per_cpu(cpu_profile_hits, cpu)[0]
511 = (struct profile_hit *)page_address(page);
513 return 0;
514 out_cleanup:
515 prof_on = 0;
516 smp_mb();
517 on_each_cpu(profile_nop, NULL, 0, 1);
518 for_each_online_cpu(cpu) {
519 struct page *page;
521 if (per_cpu(cpu_profile_hits, cpu)[0]) {
522 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
523 per_cpu(cpu_profile_hits, cpu)[0] = NULL;
524 __free_page(page);
526 if (per_cpu(cpu_profile_hits, cpu)[1]) {
527 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
528 per_cpu(cpu_profile_hits, cpu)[1] = NULL;
529 __free_page(page);
532 return -1;
534 #else
535 #define create_hash_tables() ({ 0; })
536 #endif
538 static int __init create_proc_profile(void)
540 struct proc_dir_entry *entry;
542 if (!prof_on)
543 return 0;
544 if (create_hash_tables())
545 return -1;
546 if (!(entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL)))
547 return 0;
548 entry->proc_fops = &proc_profile_operations;
549 entry->size = (1+prof_len) * sizeof(atomic_t);
550 hotcpu_notifier(profile_cpu_callback, 0);
551 return 0;
553 module_init(create_proc_profile);
554 #endif /* CONFIG_PROC_FS */