2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
21 /* max queue in one round of service */
22 static const int cfq_quantum
= 8;
23 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max
= 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty
= 2;
28 static const int cfq_slice_sync
= HZ
/ 10;
29 static int cfq_slice_async
= HZ
/ 25;
30 static const int cfq_slice_async_rq
= 2;
31 static int cfq_slice_idle
= HZ
/ 125;
32 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
33 static const int cfq_hist_divisor
= 4;
36 * offset from end of service tree
38 #define CFQ_IDLE_DELAY (HZ / 5)
41 * below this threshold, we consider thinktime immediate
43 #define CFQ_MIN_TT (2)
45 #define CFQ_SLICE_SCALE (5)
46 #define CFQ_HW_QUEUE_MIN (5)
47 #define CFQ_SERVICE_SHIFT 12
49 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
50 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
51 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
54 ((struct cfq_io_context *) (rq)->elevator_private)
55 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
57 static struct kmem_cache
*cfq_pool
;
58 static struct kmem_cache
*cfq_ioc_pool
;
60 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
61 static struct completion
*ioc_gone
;
62 static DEFINE_SPINLOCK(ioc_gone_lock
);
64 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
65 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68 #define sample_valid(samples) ((samples) > 80)
69 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
72 * Most of our rbtree usage is for sorting with min extraction, so
73 * if we cache the leftmost node we don't have to walk down the tree
74 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
75 * move this into the elevator for the rq sorting as well.
81 unsigned total_weight
;
83 struct rb_node
*active
;
85 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
86 .count = 0, .min_vdisktime = 0, }
89 * Per process-grouping structure
94 /* various state flags, see below */
97 struct cfq_data
*cfqd
;
98 /* service_tree member */
99 struct rb_node rb_node
;
100 /* service_tree key */
101 unsigned long rb_key
;
102 /* prio tree member */
103 struct rb_node p_node
;
104 /* prio tree root we belong to, if any */
105 struct rb_root
*p_root
;
106 /* sorted list of pending requests */
107 struct rb_root sort_list
;
108 /* if fifo isn't expired, next request to serve */
109 struct request
*next_rq
;
110 /* requests queued in sort_list */
112 /* currently allocated requests */
114 /* fifo list of requests in sort_list */
115 struct list_head fifo
;
117 /* time when queue got scheduled in to dispatch first request. */
118 unsigned long dispatch_start
;
119 unsigned int allocated_slice
;
120 unsigned int slice_dispatch
;
121 /* time when first request from queue completed and slice started. */
122 unsigned long slice_start
;
123 unsigned long slice_end
;
126 /* pending metadata requests */
128 /* number of requests that are on the dispatch list or inside driver */
131 /* io prio of this group */
132 unsigned short ioprio
, org_ioprio
;
133 unsigned short ioprio_class
, org_ioprio_class
;
138 sector_t last_request_pos
;
140 struct cfq_rb_root
*service_tree
;
141 struct cfq_queue
*new_cfqq
;
142 struct cfq_group
*cfqg
;
143 struct cfq_group
*orig_cfqg
;
144 /* Sectors dispatched in current dispatch round */
145 unsigned long nr_sectors
;
149 * First index in the service_trees.
150 * IDLE is handled separately, so it has negative index
159 * Second index in the service_trees.
163 SYNC_NOIDLE_WORKLOAD
= 1,
167 /* This is per cgroup per device grouping structure */
169 /* group service_tree member */
170 struct rb_node rb_node
;
172 /* group service_tree key */
177 /* number of cfqq currently on this group */
180 /* Per group busy queus average. Useful for workload slice calc. */
181 unsigned int busy_queues_avg
[2];
183 * rr lists of queues with requests, onle rr for each priority class.
184 * Counts are embedded in the cfq_rb_root
186 struct cfq_rb_root service_trees
[2][3];
187 struct cfq_rb_root service_tree_idle
;
189 unsigned long saved_workload_slice
;
190 enum wl_type_t saved_workload
;
191 enum wl_prio_t saved_serving_prio
;
192 struct blkio_group blkg
;
193 #ifdef CONFIG_CFQ_GROUP_IOSCHED
194 struct hlist_node cfqd_node
;
200 * Per block device queue structure
203 struct request_queue
*queue
;
204 /* Root service tree for cfq_groups */
205 struct cfq_rb_root grp_service_tree
;
206 struct cfq_group root_group
;
209 * The priority currently being served
211 enum wl_prio_t serving_prio
;
212 enum wl_type_t serving_type
;
213 unsigned long workload_expires
;
214 struct cfq_group
*serving_group
;
215 bool noidle_tree_requires_idle
;
218 * Each priority tree is sorted by next_request position. These
219 * trees are used when determining if two or more queues are
220 * interleaving requests (see cfq_close_cooperator).
222 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
224 unsigned int busy_queues
;
230 * queue-depth detection
236 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
237 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
240 int hw_tag_est_depth
;
241 unsigned int hw_tag_samples
;
244 * idle window management
246 struct timer_list idle_slice_timer
;
247 struct work_struct unplug_work
;
249 struct cfq_queue
*active_queue
;
250 struct cfq_io_context
*active_cic
;
253 * async queue for each priority case
255 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
256 struct cfq_queue
*async_idle_cfqq
;
258 sector_t last_position
;
261 * tunables, see top of file
263 unsigned int cfq_quantum
;
264 unsigned int cfq_fifo_expire
[2];
265 unsigned int cfq_back_penalty
;
266 unsigned int cfq_back_max
;
267 unsigned int cfq_slice
[2];
268 unsigned int cfq_slice_async_rq
;
269 unsigned int cfq_slice_idle
;
270 unsigned int cfq_latency
;
271 unsigned int cfq_group_isolation
;
273 struct list_head cic_list
;
276 * Fallback dummy cfqq for extreme OOM conditions
278 struct cfq_queue oom_cfqq
;
280 unsigned long last_delayed_sync
;
282 /* List of cfq groups being managed on this device*/
283 struct hlist_head cfqg_list
;
287 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
289 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
296 if (prio
== IDLE_WORKLOAD
)
297 return &cfqg
->service_tree_idle
;
299 return &cfqg
->service_trees
[prio
][type
];
302 enum cfqq_state_flags
{
303 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
304 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
305 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
306 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
307 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
308 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
309 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
310 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
311 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
312 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
313 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
314 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
315 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
318 #define CFQ_CFQQ_FNS(name) \
319 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
321 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
323 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
325 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
327 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
329 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
333 CFQ_CFQQ_FNS(wait_request
);
334 CFQ_CFQQ_FNS(must_dispatch
);
335 CFQ_CFQQ_FNS(must_alloc_slice
);
336 CFQ_CFQQ_FNS(fifo_expire
);
337 CFQ_CFQQ_FNS(idle_window
);
338 CFQ_CFQQ_FNS(prio_changed
);
339 CFQ_CFQQ_FNS(slice_new
);
342 CFQ_CFQQ_FNS(split_coop
);
344 CFQ_CFQQ_FNS(wait_busy
);
347 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
348 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
349 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
350 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
351 blkg_path(&(cfqq)->cfqg->blkg), ##args);
353 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
354 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
355 blkg_path(&(cfqg)->blkg), ##args); \
358 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
359 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
360 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
362 #define cfq_log(cfqd, fmt, args...) \
363 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
365 /* Traverses through cfq group service trees */
366 #define for_each_cfqg_st(cfqg, i, j, st) \
367 for (i = 0; i <= IDLE_WORKLOAD; i++) \
368 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
369 : &cfqg->service_tree_idle; \
370 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
371 (i == IDLE_WORKLOAD && j == 0); \
372 j++, st = i < IDLE_WORKLOAD ? \
373 &cfqg->service_trees[i][j]: NULL) \
376 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
378 if (cfq_class_idle(cfqq
))
379 return IDLE_WORKLOAD
;
380 if (cfq_class_rt(cfqq
))
386 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
388 if (!cfq_cfqq_sync(cfqq
))
389 return ASYNC_WORKLOAD
;
390 if (!cfq_cfqq_idle_window(cfqq
))
391 return SYNC_NOIDLE_WORKLOAD
;
392 return SYNC_WORKLOAD
;
395 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
396 struct cfq_data
*cfqd
,
397 struct cfq_group
*cfqg
)
399 if (wl
== IDLE_WORKLOAD
)
400 return cfqg
->service_tree_idle
.count
;
402 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
403 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
404 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
407 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
408 struct cfq_group
*cfqg
)
410 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
411 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
414 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
415 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
416 struct io_context
*, gfp_t
);
417 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
418 struct io_context
*);
420 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
423 return cic
->cfqq
[is_sync
];
426 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
427 struct cfq_queue
*cfqq
, bool is_sync
)
429 cic
->cfqq
[is_sync
] = cfqq
;
433 * We regard a request as SYNC, if it's either a read or has the SYNC bit
434 * set (in which case it could also be direct WRITE).
436 static inline bool cfq_bio_sync(struct bio
*bio
)
438 return bio_data_dir(bio
) == READ
|| bio_rw_flagged(bio
, BIO_RW_SYNCIO
);
442 * scheduler run of queue, if there are requests pending and no one in the
443 * driver that will restart queueing
445 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
447 if (cfqd
->busy_queues
) {
448 cfq_log(cfqd
, "schedule dispatch");
449 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
453 static int cfq_queue_empty(struct request_queue
*q
)
455 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
457 return !cfqd
->rq_queued
;
461 * Scale schedule slice based on io priority. Use the sync time slice only
462 * if a queue is marked sync and has sync io queued. A sync queue with async
463 * io only, should not get full sync slice length.
465 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
468 const int base_slice
= cfqd
->cfq_slice
[sync
];
470 WARN_ON(prio
>= IOPRIO_BE_NR
);
472 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
476 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
478 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
481 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
483 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
485 d
= d
* BLKIO_WEIGHT_DEFAULT
;
486 do_div(d
, cfqg
->weight
);
490 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
492 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
494 min_vdisktime
= vdisktime
;
496 return min_vdisktime
;
499 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
501 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
503 min_vdisktime
= vdisktime
;
505 return min_vdisktime
;
508 static void update_min_vdisktime(struct cfq_rb_root
*st
)
510 u64 vdisktime
= st
->min_vdisktime
;
511 struct cfq_group
*cfqg
;
514 cfqg
= rb_entry_cfqg(st
->active
);
515 vdisktime
= cfqg
->vdisktime
;
519 cfqg
= rb_entry_cfqg(st
->left
);
520 vdisktime
= min_vdisktime(vdisktime
, cfqg
->vdisktime
);
523 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
, vdisktime
);
527 * get averaged number of queues of RT/BE priority.
528 * average is updated, with a formula that gives more weight to higher numbers,
529 * to quickly follows sudden increases and decrease slowly
532 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
533 struct cfq_group
*cfqg
, bool rt
)
535 unsigned min_q
, max_q
;
536 unsigned mult
= cfq_hist_divisor
- 1;
537 unsigned round
= cfq_hist_divisor
/ 2;
538 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
540 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
541 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
542 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
544 return cfqg
->busy_queues_avg
[rt
];
547 static inline unsigned
548 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
550 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
552 return cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
556 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
558 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
559 if (cfqd
->cfq_latency
) {
561 * interested queues (we consider only the ones with the same
562 * priority class in the cfq group)
564 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
566 unsigned sync_slice
= cfqd
->cfq_slice
[1];
567 unsigned expect_latency
= sync_slice
* iq
;
568 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
570 if (expect_latency
> group_slice
) {
571 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
572 /* scale low_slice according to IO priority
573 * and sync vs async */
575 min(slice
, base_low_slice
* slice
/ sync_slice
);
576 /* the adapted slice value is scaled to fit all iqs
577 * into the target latency */
578 slice
= max(slice
* group_slice
/ expect_latency
,
582 cfqq
->slice_start
= jiffies
;
583 cfqq
->slice_end
= jiffies
+ slice
;
584 cfqq
->allocated_slice
= slice
;
585 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
589 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
590 * isn't valid until the first request from the dispatch is activated
591 * and the slice time set.
593 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
595 if (cfq_cfqq_slice_new(cfqq
))
597 if (time_before(jiffies
, cfqq
->slice_end
))
604 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
605 * We choose the request that is closest to the head right now. Distance
606 * behind the head is penalized and only allowed to a certain extent.
608 static struct request
*
609 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
611 sector_t s1
, s2
, d1
= 0, d2
= 0;
612 unsigned long back_max
;
613 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
614 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
615 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
617 if (rq1
== NULL
|| rq1
== rq2
)
622 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
624 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
626 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
628 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
631 s1
= blk_rq_pos(rq1
);
632 s2
= blk_rq_pos(rq2
);
635 * by definition, 1KiB is 2 sectors
637 back_max
= cfqd
->cfq_back_max
* 2;
640 * Strict one way elevator _except_ in the case where we allow
641 * short backward seeks which are biased as twice the cost of a
642 * similar forward seek.
646 else if (s1
+ back_max
>= last
)
647 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
649 wrap
|= CFQ_RQ1_WRAP
;
653 else if (s2
+ back_max
>= last
)
654 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
656 wrap
|= CFQ_RQ2_WRAP
;
658 /* Found required data */
661 * By doing switch() on the bit mask "wrap" we avoid having to
662 * check two variables for all permutations: --> faster!
665 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
681 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
684 * Since both rqs are wrapped,
685 * start with the one that's further behind head
686 * (--> only *one* back seek required),
687 * since back seek takes more time than forward.
697 * The below is leftmost cache rbtree addon
699 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
701 /* Service tree is empty */
706 root
->left
= rb_first(&root
->rb
);
709 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
714 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
717 root
->left
= rb_first(&root
->rb
);
720 return rb_entry_cfqg(root
->left
);
725 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
731 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
735 rb_erase_init(n
, &root
->rb
);
740 * would be nice to take fifo expire time into account as well
742 static struct request
*
743 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
744 struct request
*last
)
746 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
747 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
748 struct request
*next
= NULL
, *prev
= NULL
;
750 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
753 prev
= rb_entry_rq(rbprev
);
756 next
= rb_entry_rq(rbnext
);
758 rbnext
= rb_first(&cfqq
->sort_list
);
759 if (rbnext
&& rbnext
!= &last
->rb_node
)
760 next
= rb_entry_rq(rbnext
);
763 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
766 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
767 struct cfq_queue
*cfqq
)
770 * just an approximation, should be ok.
772 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
773 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
777 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
779 return cfqg
->vdisktime
- st
->min_vdisktime
;
783 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
785 struct rb_node
**node
= &st
->rb
.rb_node
;
786 struct rb_node
*parent
= NULL
;
787 struct cfq_group
*__cfqg
;
788 s64 key
= cfqg_key(st
, cfqg
);
791 while (*node
!= NULL
) {
793 __cfqg
= rb_entry_cfqg(parent
);
795 if (key
< cfqg_key(st
, __cfqg
))
796 node
= &parent
->rb_left
;
798 node
= &parent
->rb_right
;
804 st
->left
= &cfqg
->rb_node
;
806 rb_link_node(&cfqg
->rb_node
, parent
, node
);
807 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
811 cfq_group_service_tree_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
813 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
814 struct cfq_group
*__cfqg
;
822 * Currently put the group at the end. Later implement something
823 * so that groups get lesser vtime based on their weights, so that
824 * if group does not loose all if it was not continously backlogged.
826 n
= rb_last(&st
->rb
);
828 __cfqg
= rb_entry_cfqg(n
);
829 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
831 cfqg
->vdisktime
= st
->min_vdisktime
;
833 __cfq_group_service_tree_add(st
, cfqg
);
835 st
->total_weight
+= cfqg
->weight
;
839 cfq_group_service_tree_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
841 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
843 if (st
->active
== &cfqg
->rb_node
)
846 BUG_ON(cfqg
->nr_cfqq
< 1);
849 /* If there are other cfq queues under this group, don't delete it */
853 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
855 st
->total_weight
-= cfqg
->weight
;
856 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
857 cfq_rb_erase(&cfqg
->rb_node
, st
);
858 cfqg
->saved_workload_slice
= 0;
859 blkiocg_update_blkio_group_dequeue_stats(&cfqg
->blkg
, 1);
862 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
)
864 unsigned int slice_used
;
867 * Queue got expired before even a single request completed or
868 * got expired immediately after first request completion.
870 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
872 * Also charge the seek time incurred to the group, otherwise
873 * if there are mutiple queues in the group, each can dispatch
874 * a single request on seeky media and cause lots of seek time
875 * and group will never know it.
877 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
880 slice_used
= jiffies
- cfqq
->slice_start
;
881 if (slice_used
> cfqq
->allocated_slice
)
882 slice_used
= cfqq
->allocated_slice
;
885 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "sl_used=%u sect=%lu", slice_used
,
890 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
891 struct cfq_queue
*cfqq
)
893 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
894 unsigned int used_sl
, charge_sl
;
895 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
896 - cfqg
->service_tree_idle
.count
;
899 used_sl
= charge_sl
= cfq_cfqq_slice_usage(cfqq
);
901 if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
902 charge_sl
= cfqq
->allocated_slice
;
904 /* Can't update vdisktime while group is on service tree */
905 cfq_rb_erase(&cfqg
->rb_node
, st
);
906 cfqg
->vdisktime
+= cfq_scale_slice(charge_sl
, cfqg
);
907 __cfq_group_service_tree_add(st
, cfqg
);
909 /* This group is being expired. Save the context */
910 if (time_after(cfqd
->workload_expires
, jiffies
)) {
911 cfqg
->saved_workload_slice
= cfqd
->workload_expires
913 cfqg
->saved_workload
= cfqd
->serving_type
;
914 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
916 cfqg
->saved_workload_slice
= 0;
918 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
920 blkiocg_update_blkio_group_stats(&cfqg
->blkg
, used_sl
,
924 #ifdef CONFIG_CFQ_GROUP_IOSCHED
925 static inline struct cfq_group
*cfqg_of_blkg(struct blkio_group
*blkg
)
928 return container_of(blkg
, struct cfq_group
, blkg
);
933 cfq_update_blkio_group_weight(struct blkio_group
*blkg
, unsigned int weight
)
935 cfqg_of_blkg(blkg
)->weight
= weight
;
938 static struct cfq_group
*
939 cfq_find_alloc_cfqg(struct cfq_data
*cfqd
, struct cgroup
*cgroup
, int create
)
941 struct blkio_cgroup
*blkcg
= cgroup_to_blkio_cgroup(cgroup
);
942 struct cfq_group
*cfqg
= NULL
;
945 struct cfq_rb_root
*st
;
946 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
947 unsigned int major
, minor
;
949 cfqg
= cfqg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
953 cfqg
= kzalloc_node(sizeof(*cfqg
), GFP_ATOMIC
, cfqd
->queue
->node
);
957 cfqg
->weight
= blkcg
->weight
;
958 for_each_cfqg_st(cfqg
, i
, j
, st
)
960 RB_CLEAR_NODE(&cfqg
->rb_node
);
963 * Take the initial reference that will be released on destroy
964 * This can be thought of a joint reference by cgroup and
965 * elevator which will be dropped by either elevator exit
966 * or cgroup deletion path depending on who is exiting first.
968 atomic_set(&cfqg
->ref
, 1);
970 /* Add group onto cgroup list */
971 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
972 blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
, (void *)cfqd
,
973 MKDEV(major
, minor
));
975 /* Add group on cfqd list */
976 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
983 * Search for the cfq group current task belongs to. If create = 1, then also
984 * create the cfq group if it does not exist. request_queue lock must be held.
986 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
988 struct cgroup
*cgroup
;
989 struct cfq_group
*cfqg
= NULL
;
992 cgroup
= task_cgroup(current
, blkio_subsys_id
);
993 cfqg
= cfq_find_alloc_cfqg(cfqd
, cgroup
, create
);
995 cfqg
= &cfqd
->root_group
;
1000 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1002 /* Currently, all async queues are mapped to root group */
1003 if (!cfq_cfqq_sync(cfqq
))
1004 cfqg
= &cfqq
->cfqd
->root_group
;
1007 /* cfqq reference on cfqg */
1008 atomic_inc(&cfqq
->cfqg
->ref
);
1011 static void cfq_put_cfqg(struct cfq_group
*cfqg
)
1013 struct cfq_rb_root
*st
;
1016 BUG_ON(atomic_read(&cfqg
->ref
) <= 0);
1017 if (!atomic_dec_and_test(&cfqg
->ref
))
1019 for_each_cfqg_st(cfqg
, i
, j
, st
)
1020 BUG_ON(!RB_EMPTY_ROOT(&st
->rb
) || st
->active
!= NULL
);
1024 static void cfq_destroy_cfqg(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1026 /* Something wrong if we are trying to remove same group twice */
1027 BUG_ON(hlist_unhashed(&cfqg
->cfqd_node
));
1029 hlist_del_init(&cfqg
->cfqd_node
);
1032 * Put the reference taken at the time of creation so that when all
1033 * queues are gone, group can be destroyed.
1038 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
)
1040 struct hlist_node
*pos
, *n
;
1041 struct cfq_group
*cfqg
;
1043 hlist_for_each_entry_safe(cfqg
, pos
, n
, &cfqd
->cfqg_list
, cfqd_node
) {
1045 * If cgroup removal path got to blk_group first and removed
1046 * it from cgroup list, then it will take care of destroying
1049 if (!blkiocg_del_blkio_group(&cfqg
->blkg
))
1050 cfq_destroy_cfqg(cfqd
, cfqg
);
1055 * Blk cgroup controller notification saying that blkio_group object is being
1056 * delinked as associated cgroup object is going away. That also means that
1057 * no new IO will come in this group. So get rid of this group as soon as
1058 * any pending IO in the group is finished.
1060 * This function is called under rcu_read_lock(). key is the rcu protected
1061 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1064 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1065 * it should not be NULL as even if elevator was exiting, cgroup deltion
1066 * path got to it first.
1068 void cfq_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
1070 unsigned long flags
;
1071 struct cfq_data
*cfqd
= key
;
1073 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1074 cfq_destroy_cfqg(cfqd
, cfqg_of_blkg(blkg
));
1075 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1078 #else /* GROUP_IOSCHED */
1079 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1081 return &cfqd
->root_group
;
1084 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1088 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
) {}
1089 static inline void cfq_put_cfqg(struct cfq_group
*cfqg
) {}
1091 #endif /* GROUP_IOSCHED */
1094 * The cfqd->service_trees holds all pending cfq_queue's that have
1095 * requests waiting to be processed. It is sorted in the order that
1096 * we will service the queues.
1098 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1101 struct rb_node
**p
, *parent
;
1102 struct cfq_queue
*__cfqq
;
1103 unsigned long rb_key
;
1104 struct cfq_rb_root
*service_tree
;
1107 int group_changed
= 0;
1109 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1110 if (!cfqd
->cfq_group_isolation
1111 && cfqq_type(cfqq
) == SYNC_NOIDLE_WORKLOAD
1112 && cfqq
->cfqg
&& cfqq
->cfqg
!= &cfqd
->root_group
) {
1113 /* Move this cfq to root group */
1114 cfq_log_cfqq(cfqd
, cfqq
, "moving to root group");
1115 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1116 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1117 cfqq
->orig_cfqg
= cfqq
->cfqg
;
1118 cfqq
->cfqg
= &cfqd
->root_group
;
1119 atomic_inc(&cfqd
->root_group
.ref
);
1121 } else if (!cfqd
->cfq_group_isolation
1122 && cfqq_type(cfqq
) == SYNC_WORKLOAD
&& cfqq
->orig_cfqg
) {
1123 /* cfqq is sequential now needs to go to its original group */
1124 BUG_ON(cfqq
->cfqg
!= &cfqd
->root_group
);
1125 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1126 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1127 cfq_put_cfqg(cfqq
->cfqg
);
1128 cfqq
->cfqg
= cfqq
->orig_cfqg
;
1129 cfqq
->orig_cfqg
= NULL
;
1131 cfq_log_cfqq(cfqd
, cfqq
, "moved to origin group");
1135 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1137 if (cfq_class_idle(cfqq
)) {
1138 rb_key
= CFQ_IDLE_DELAY
;
1139 parent
= rb_last(&service_tree
->rb
);
1140 if (parent
&& parent
!= &cfqq
->rb_node
) {
1141 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1142 rb_key
+= __cfqq
->rb_key
;
1145 } else if (!add_front
) {
1147 * Get our rb key offset. Subtract any residual slice
1148 * value carried from last service. A negative resid
1149 * count indicates slice overrun, and this should position
1150 * the next service time further away in the tree.
1152 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1153 rb_key
-= cfqq
->slice_resid
;
1154 cfqq
->slice_resid
= 0;
1157 __cfqq
= cfq_rb_first(service_tree
);
1158 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1161 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1164 * same position, nothing more to do
1166 if (rb_key
== cfqq
->rb_key
&&
1167 cfqq
->service_tree
== service_tree
)
1170 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1171 cfqq
->service_tree
= NULL
;
1176 cfqq
->service_tree
= service_tree
;
1177 p
= &service_tree
->rb
.rb_node
;
1182 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1185 * sort by key, that represents service time.
1187 if (time_before(rb_key
, __cfqq
->rb_key
))
1190 n
= &(*p
)->rb_right
;
1198 service_tree
->left
= &cfqq
->rb_node
;
1200 cfqq
->rb_key
= rb_key
;
1201 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1202 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1203 service_tree
->count
++;
1204 if ((add_front
|| !new_cfqq
) && !group_changed
)
1206 cfq_group_service_tree_add(cfqd
, cfqq
->cfqg
);
1209 static struct cfq_queue
*
1210 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1211 sector_t sector
, struct rb_node
**ret_parent
,
1212 struct rb_node
***rb_link
)
1214 struct rb_node
**p
, *parent
;
1215 struct cfq_queue
*cfqq
= NULL
;
1223 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1226 * Sort strictly based on sector. Smallest to the left,
1227 * largest to the right.
1229 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1230 n
= &(*p
)->rb_right
;
1231 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1239 *ret_parent
= parent
;
1245 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1247 struct rb_node
**p
, *parent
;
1248 struct cfq_queue
*__cfqq
;
1251 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1252 cfqq
->p_root
= NULL
;
1255 if (cfq_class_idle(cfqq
))
1260 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1261 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1262 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1264 rb_link_node(&cfqq
->p_node
, parent
, p
);
1265 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1267 cfqq
->p_root
= NULL
;
1271 * Update cfqq's position in the service tree.
1273 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1276 * Resorting requires the cfqq to be on the RR list already.
1278 if (cfq_cfqq_on_rr(cfqq
)) {
1279 cfq_service_tree_add(cfqd
, cfqq
, 0);
1280 cfq_prio_tree_add(cfqd
, cfqq
);
1285 * add to busy list of queues for service, trying to be fair in ordering
1286 * the pending list according to last request service
1288 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1290 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1291 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1292 cfq_mark_cfqq_on_rr(cfqq
);
1293 cfqd
->busy_queues
++;
1295 cfq_resort_rr_list(cfqd
, cfqq
);
1299 * Called when the cfqq no longer has requests pending, remove it from
1302 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1304 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1305 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1306 cfq_clear_cfqq_on_rr(cfqq
);
1308 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1309 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1310 cfqq
->service_tree
= NULL
;
1313 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1314 cfqq
->p_root
= NULL
;
1317 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1318 BUG_ON(!cfqd
->busy_queues
);
1319 cfqd
->busy_queues
--;
1323 * rb tree support functions
1325 static void cfq_del_rq_rb(struct request
*rq
)
1327 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1328 const int sync
= rq_is_sync(rq
);
1330 BUG_ON(!cfqq
->queued
[sync
]);
1331 cfqq
->queued
[sync
]--;
1333 elv_rb_del(&cfqq
->sort_list
, rq
);
1335 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1337 * Queue will be deleted from service tree when we actually
1338 * expire it later. Right now just remove it from prio tree
1342 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1343 cfqq
->p_root
= NULL
;
1348 static void cfq_add_rq_rb(struct request
*rq
)
1350 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1351 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1352 struct request
*__alias
, *prev
;
1354 cfqq
->queued
[rq_is_sync(rq
)]++;
1357 * looks a little odd, but the first insert might return an alias.
1358 * if that happens, put the alias on the dispatch list
1360 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
1361 cfq_dispatch_insert(cfqd
->queue
, __alias
);
1363 if (!cfq_cfqq_on_rr(cfqq
))
1364 cfq_add_cfqq_rr(cfqd
, cfqq
);
1367 * check if this request is a better next-serve candidate
1369 prev
= cfqq
->next_rq
;
1370 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1373 * adjust priority tree position, if ->next_rq changes
1375 if (prev
!= cfqq
->next_rq
)
1376 cfq_prio_tree_add(cfqd
, cfqq
);
1378 BUG_ON(!cfqq
->next_rq
);
1381 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1383 elv_rb_del(&cfqq
->sort_list
, rq
);
1384 cfqq
->queued
[rq_is_sync(rq
)]--;
1388 static struct request
*
1389 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1391 struct task_struct
*tsk
= current
;
1392 struct cfq_io_context
*cic
;
1393 struct cfq_queue
*cfqq
;
1395 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1399 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1401 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1403 return elv_rb_find(&cfqq
->sort_list
, sector
);
1409 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1411 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1413 cfqd
->rq_in_driver
++;
1414 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1415 cfqd
->rq_in_driver
);
1417 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1420 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1422 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1424 WARN_ON(!cfqd
->rq_in_driver
);
1425 cfqd
->rq_in_driver
--;
1426 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1427 cfqd
->rq_in_driver
);
1430 static void cfq_remove_request(struct request
*rq
)
1432 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1434 if (cfqq
->next_rq
== rq
)
1435 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1437 list_del_init(&rq
->queuelist
);
1440 cfqq
->cfqd
->rq_queued
--;
1441 if (rq_is_meta(rq
)) {
1442 WARN_ON(!cfqq
->meta_pending
);
1443 cfqq
->meta_pending
--;
1447 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1450 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1451 struct request
*__rq
;
1453 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1454 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1456 return ELEVATOR_FRONT_MERGE
;
1459 return ELEVATOR_NO_MERGE
;
1462 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1465 if (type
== ELEVATOR_FRONT_MERGE
) {
1466 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1468 cfq_reposition_rq_rb(cfqq
, req
);
1473 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1474 struct request
*next
)
1476 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1478 * reposition in fifo if next is older than rq
1480 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1481 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
1482 list_move(&rq
->queuelist
, &next
->queuelist
);
1483 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1486 if (cfqq
->next_rq
== next
)
1488 cfq_remove_request(next
);
1491 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
1494 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1495 struct cfq_io_context
*cic
;
1496 struct cfq_queue
*cfqq
;
1499 * Disallow merge of a sync bio into an async request.
1501 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
1505 * Lookup the cfqq that this bio will be queued with. Allow
1506 * merge only if rq is queued there.
1508 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
1512 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1513 return cfqq
== RQ_CFQQ(rq
);
1516 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
1517 struct cfq_queue
*cfqq
)
1520 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
1521 cfqq
->slice_start
= 0;
1522 cfqq
->dispatch_start
= jiffies
;
1523 cfqq
->allocated_slice
= 0;
1524 cfqq
->slice_end
= 0;
1525 cfqq
->slice_dispatch
= 0;
1526 cfqq
->nr_sectors
= 0;
1528 cfq_clear_cfqq_wait_request(cfqq
);
1529 cfq_clear_cfqq_must_dispatch(cfqq
);
1530 cfq_clear_cfqq_must_alloc_slice(cfqq
);
1531 cfq_clear_cfqq_fifo_expire(cfqq
);
1532 cfq_mark_cfqq_slice_new(cfqq
);
1534 del_timer(&cfqd
->idle_slice_timer
);
1537 cfqd
->active_queue
= cfqq
;
1541 * current cfqq expired its slice (or was too idle), select new one
1544 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1547 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
1549 if (cfq_cfqq_wait_request(cfqq
))
1550 del_timer(&cfqd
->idle_slice_timer
);
1552 cfq_clear_cfqq_wait_request(cfqq
);
1553 cfq_clear_cfqq_wait_busy(cfqq
);
1556 * If this cfqq is shared between multiple processes, check to
1557 * make sure that those processes are still issuing I/Os within
1558 * the mean seek distance. If not, it may be time to break the
1559 * queues apart again.
1561 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
1562 cfq_mark_cfqq_split_coop(cfqq
);
1565 * store what was left of this slice, if the queue idled/timed out
1567 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
1568 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
1569 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
1572 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
1574 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
1575 cfq_del_cfqq_rr(cfqd
, cfqq
);
1577 cfq_resort_rr_list(cfqd
, cfqq
);
1579 if (cfqq
== cfqd
->active_queue
)
1580 cfqd
->active_queue
= NULL
;
1582 if (&cfqq
->cfqg
->rb_node
== cfqd
->grp_service_tree
.active
)
1583 cfqd
->grp_service_tree
.active
= NULL
;
1585 if (cfqd
->active_cic
) {
1586 put_io_context(cfqd
->active_cic
->ioc
);
1587 cfqd
->active_cic
= NULL
;
1591 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
1593 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1596 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
1600 * Get next queue for service. Unless we have a queue preemption,
1601 * we'll simply select the first cfqq in the service tree.
1603 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
1605 struct cfq_rb_root
*service_tree
=
1606 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
1607 cfqd
->serving_type
);
1609 if (!cfqd
->rq_queued
)
1612 /* There is nothing to dispatch */
1615 if (RB_EMPTY_ROOT(&service_tree
->rb
))
1617 return cfq_rb_first(service_tree
);
1620 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
1622 struct cfq_group
*cfqg
;
1623 struct cfq_queue
*cfqq
;
1625 struct cfq_rb_root
*st
;
1627 if (!cfqd
->rq_queued
)
1630 cfqg
= cfq_get_next_cfqg(cfqd
);
1634 for_each_cfqg_st(cfqg
, i
, j
, st
)
1635 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
1641 * Get and set a new active queue for service.
1643 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
1644 struct cfq_queue
*cfqq
)
1647 cfqq
= cfq_get_next_queue(cfqd
);
1649 __cfq_set_active_queue(cfqd
, cfqq
);
1653 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
1656 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
1657 return blk_rq_pos(rq
) - cfqd
->last_position
;
1659 return cfqd
->last_position
- blk_rq_pos(rq
);
1662 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1663 struct request
*rq
, bool for_preempt
)
1665 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_SEEK_THR
;
1668 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
1669 struct cfq_queue
*cur_cfqq
)
1671 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
1672 struct rb_node
*parent
, *node
;
1673 struct cfq_queue
*__cfqq
;
1674 sector_t sector
= cfqd
->last_position
;
1676 if (RB_EMPTY_ROOT(root
))
1680 * First, if we find a request starting at the end of the last
1681 * request, choose it.
1683 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1688 * If the exact sector wasn't found, the parent of the NULL leaf
1689 * will contain the closest sector.
1691 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1692 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
, false))
1695 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1696 node
= rb_next(&__cfqq
->p_node
);
1698 node
= rb_prev(&__cfqq
->p_node
);
1702 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1703 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
, false))
1711 * cur_cfqq - passed in so that we don't decide that the current queue is
1712 * closely cooperating with itself.
1714 * So, basically we're assuming that that cur_cfqq has dispatched at least
1715 * one request, and that cfqd->last_position reflects a position on the disk
1716 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1719 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1720 struct cfq_queue
*cur_cfqq
)
1722 struct cfq_queue
*cfqq
;
1724 if (!cfq_cfqq_sync(cur_cfqq
))
1726 if (CFQQ_SEEKY(cur_cfqq
))
1730 * Don't search priority tree if it's the only queue in the group.
1732 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
1736 * We should notice if some of the queues are cooperating, eg
1737 * working closely on the same area of the disk. In that case,
1738 * we can group them together and don't waste time idling.
1740 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1744 /* If new queue belongs to different cfq_group, don't choose it */
1745 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
1749 * It only makes sense to merge sync queues.
1751 if (!cfq_cfqq_sync(cfqq
))
1753 if (CFQQ_SEEKY(cfqq
))
1757 * Do not merge queues of different priority classes
1759 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
1766 * Determine whether we should enforce idle window for this queue.
1769 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1771 enum wl_prio_t prio
= cfqq_prio(cfqq
);
1772 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
1774 BUG_ON(!service_tree
);
1775 BUG_ON(!service_tree
->count
);
1777 /* We never do for idle class queues. */
1778 if (prio
== IDLE_WORKLOAD
)
1781 /* We do for queues that were marked with idle window flag. */
1782 if (cfq_cfqq_idle_window(cfqq
) &&
1783 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
1787 * Otherwise, we do only if they are the last ones
1788 * in their service tree.
1790 return service_tree
->count
== 1 && cfq_cfqq_sync(cfqq
);
1793 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1795 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1796 struct cfq_io_context
*cic
;
1800 * SSD device without seek penalty, disable idling. But only do so
1801 * for devices that support queuing, otherwise we still have a problem
1802 * with sync vs async workloads.
1804 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1807 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1808 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1811 * idle is disabled, either manually or by past process history
1813 if (!cfqd
->cfq_slice_idle
|| !cfq_should_idle(cfqd
, cfqq
))
1817 * still active requests from this queue, don't idle
1819 if (cfqq
->dispatched
)
1823 * task has exited, don't wait
1825 cic
= cfqd
->active_cic
;
1826 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1830 * If our average think time is larger than the remaining time
1831 * slice, then don't idle. This avoids overrunning the allotted
1834 if (sample_valid(cic
->ttime_samples
) &&
1835 (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
1838 cfq_mark_cfqq_wait_request(cfqq
);
1840 sl
= cfqd
->cfq_slice_idle
;
1842 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1843 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu", sl
);
1847 * Move request from internal lists to the request queue dispatch list.
1849 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1851 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1852 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1854 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1856 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
1857 cfq_remove_request(rq
);
1859 elv_dispatch_sort(q
, rq
);
1861 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
1862 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
1866 * return expired entry, or NULL to just start from scratch in rbtree
1868 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1870 struct request
*rq
= NULL
;
1872 if (cfq_cfqq_fifo_expire(cfqq
))
1875 cfq_mark_cfqq_fifo_expire(cfqq
);
1877 if (list_empty(&cfqq
->fifo
))
1880 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
1881 if (time_before(jiffies
, rq_fifo_time(rq
)))
1884 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
1889 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1891 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1893 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1895 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1899 * Must be called with the queue_lock held.
1901 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
1903 int process_refs
, io_refs
;
1905 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
1906 process_refs
= atomic_read(&cfqq
->ref
) - io_refs
;
1907 BUG_ON(process_refs
< 0);
1908 return process_refs
;
1911 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
1913 int process_refs
, new_process_refs
;
1914 struct cfq_queue
*__cfqq
;
1916 /* Avoid a circular list and skip interim queue merges */
1917 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
1923 process_refs
= cfqq_process_refs(cfqq
);
1925 * If the process for the cfqq has gone away, there is no
1926 * sense in merging the queues.
1928 if (process_refs
== 0)
1932 * Merge in the direction of the lesser amount of work.
1934 new_process_refs
= cfqq_process_refs(new_cfqq
);
1935 if (new_process_refs
>= process_refs
) {
1936 cfqq
->new_cfqq
= new_cfqq
;
1937 atomic_add(process_refs
, &new_cfqq
->ref
);
1939 new_cfqq
->new_cfqq
= cfqq
;
1940 atomic_add(new_process_refs
, &cfqq
->ref
);
1944 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
1945 struct cfq_group
*cfqg
, enum wl_prio_t prio
)
1947 struct cfq_queue
*queue
;
1949 bool key_valid
= false;
1950 unsigned long lowest_key
= 0;
1951 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
1953 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
1954 /* select the one with lowest rb_key */
1955 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
));
1957 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
1958 lowest_key
= queue
->rb_key
;
1967 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1971 struct cfq_rb_root
*st
;
1972 unsigned group_slice
;
1975 cfqd
->serving_prio
= IDLE_WORKLOAD
;
1976 cfqd
->workload_expires
= jiffies
+ 1;
1980 /* Choose next priority. RT > BE > IDLE */
1981 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
1982 cfqd
->serving_prio
= RT_WORKLOAD
;
1983 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
1984 cfqd
->serving_prio
= BE_WORKLOAD
;
1986 cfqd
->serving_prio
= IDLE_WORKLOAD
;
1987 cfqd
->workload_expires
= jiffies
+ 1;
1992 * For RT and BE, we have to choose also the type
1993 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1996 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2000 * check workload expiration, and that we still have other queues ready
2002 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
2005 /* otherwise select new workload type */
2006 cfqd
->serving_type
=
2007 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
);
2008 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2012 * the workload slice is computed as a fraction of target latency
2013 * proportional to the number of queues in that workload, over
2014 * all the queues in the same priority class
2016 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2018 slice
= group_slice
* count
/
2019 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2020 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2022 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2026 * Async queues are currently system wide. Just taking
2027 * proportion of queues with-in same group will lead to higher
2028 * async ratio system wide as generally root group is going
2029 * to have higher weight. A more accurate thing would be to
2030 * calculate system wide asnc/sync ratio.
2032 tmp
= cfq_target_latency
* cfqg_busy_async_queues(cfqd
, cfqg
);
2033 tmp
= tmp
/cfqd
->busy_queues
;
2034 slice
= min_t(unsigned, slice
, tmp
);
2036 /* async workload slice is scaled down according to
2037 * the sync/async slice ratio. */
2038 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2040 /* sync workload slice is at least 2 * cfq_slice_idle */
2041 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2043 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2044 cfqd
->workload_expires
= jiffies
+ slice
;
2045 cfqd
->noidle_tree_requires_idle
= false;
2048 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2050 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2051 struct cfq_group
*cfqg
;
2053 if (RB_EMPTY_ROOT(&st
->rb
))
2055 cfqg
= cfq_rb_first_group(st
);
2056 st
->active
= &cfqg
->rb_node
;
2057 update_min_vdisktime(st
);
2061 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2063 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2065 cfqd
->serving_group
= cfqg
;
2067 /* Restore the workload type data */
2068 if (cfqg
->saved_workload_slice
) {
2069 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2070 cfqd
->serving_type
= cfqg
->saved_workload
;
2071 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2073 cfqd
->workload_expires
= jiffies
- 1;
2075 choose_service_tree(cfqd
, cfqg
);
2079 * Select a queue for service. If we have a current active queue,
2080 * check whether to continue servicing it, or retrieve and set a new one.
2082 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2084 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2086 cfqq
= cfqd
->active_queue
;
2090 if (!cfqd
->rq_queued
)
2094 * We were waiting for group to get backlogged. Expire the queue
2096 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2100 * The active queue has run out of time, expire it and select new.
2102 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2104 * If slice had not expired at the completion of last request
2105 * we might not have turned on wait_busy flag. Don't expire
2106 * the queue yet. Allow the group to get backlogged.
2108 * The very fact that we have used the slice, that means we
2109 * have been idling all along on this queue and it should be
2110 * ok to wait for this request to complete.
2112 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2113 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2121 * The active queue has requests and isn't expired, allow it to
2124 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2128 * If another queue has a request waiting within our mean seek
2129 * distance, let it run. The expire code will check for close
2130 * cooperators and put the close queue at the front of the service
2131 * tree. If possible, merge the expiring queue with the new cfqq.
2133 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2135 if (!cfqq
->new_cfqq
)
2136 cfq_setup_merge(cfqq
, new_cfqq
);
2141 * No requests pending. If the active queue still has requests in
2142 * flight or is idling for a new request, allow either of these
2143 * conditions to happen (or time out) before selecting a new queue.
2145 if (timer_pending(&cfqd
->idle_slice_timer
) ||
2146 (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
))) {
2152 cfq_slice_expired(cfqd
, 0);
2155 * Current queue expired. Check if we have to switch to a new
2159 cfq_choose_cfqg(cfqd
);
2161 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2166 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2170 while (cfqq
->next_rq
) {
2171 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2175 BUG_ON(!list_empty(&cfqq
->fifo
));
2177 /* By default cfqq is not expired if it is empty. Do it explicitly */
2178 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2183 * Drain our current requests. Used for barriers and when switching
2184 * io schedulers on-the-fly.
2186 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2188 struct cfq_queue
*cfqq
;
2191 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
)
2192 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2194 cfq_slice_expired(cfqd
, 0);
2195 BUG_ON(cfqd
->busy_queues
);
2197 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2201 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
2202 struct cfq_queue
*cfqq
)
2204 /* the queue hasn't finished any request, can't estimate */
2205 if (cfq_cfqq_slice_new(cfqq
))
2207 if (time_after(jiffies
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
,
2214 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2216 unsigned int max_dispatch
;
2219 * Drain async requests before we start sync IO
2221 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
2225 * If this is an async queue and we have sync IO in flight, let it wait
2227 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
2230 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
2231 if (cfq_class_idle(cfqq
))
2235 * Does this cfqq already have too much IO in flight?
2237 if (cfqq
->dispatched
>= max_dispatch
) {
2239 * idle queue must always only have a single IO in flight
2241 if (cfq_class_idle(cfqq
))
2245 * We have other queues, don't allow more IO from this one
2247 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
))
2251 * Sole queue user, no limit
2253 if (cfqd
->busy_queues
== 1)
2257 * Normally we start throttling cfqq when cfq_quantum/2
2258 * requests have been dispatched. But we can drive
2259 * deeper queue depths at the beginning of slice
2260 * subjected to upper limit of cfq_quantum.
2262 max_dispatch
= cfqd
->cfq_quantum
;
2266 * Async queues must wait a bit before being allowed dispatch.
2267 * We also ramp up the dispatch depth gradually for async IO,
2268 * based on the last sync IO we serviced
2270 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2271 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2274 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2275 if (!depth
&& !cfqq
->dispatched
)
2277 if (depth
< max_dispatch
)
2278 max_dispatch
= depth
;
2282 * If we're below the current max, allow a dispatch
2284 return cfqq
->dispatched
< max_dispatch
;
2288 * Dispatch a request from cfqq, moving them to the request queue
2291 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2295 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2297 if (!cfq_may_dispatch(cfqd
, cfqq
))
2301 * follow expired path, else get first next available
2303 rq
= cfq_check_fifo(cfqq
);
2308 * insert request into driver dispatch list
2310 cfq_dispatch_insert(cfqd
->queue
, rq
);
2312 if (!cfqd
->active_cic
) {
2313 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2315 atomic_long_inc(&cic
->ioc
->refcount
);
2316 cfqd
->active_cic
= cic
;
2323 * Find the cfqq that we need to service and move a request from that to the
2326 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2328 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2329 struct cfq_queue
*cfqq
;
2331 if (!cfqd
->busy_queues
)
2334 if (unlikely(force
))
2335 return cfq_forced_dispatch(cfqd
);
2337 cfqq
= cfq_select_queue(cfqd
);
2342 * Dispatch a request from this cfqq, if it is allowed
2344 if (!cfq_dispatch_request(cfqd
, cfqq
))
2347 cfqq
->slice_dispatch
++;
2348 cfq_clear_cfqq_must_dispatch(cfqq
);
2351 * expire an async queue immediately if it has used up its slice. idle
2352 * queue always expire after 1 dispatch round.
2354 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2355 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2356 cfq_class_idle(cfqq
))) {
2357 cfqq
->slice_end
= jiffies
+ 1;
2358 cfq_slice_expired(cfqd
, 0);
2361 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2366 * task holds one reference to the queue, dropped when task exits. each rq
2367 * in-flight on this queue also holds a reference, dropped when rq is freed.
2369 * Each cfq queue took a reference on the parent group. Drop it now.
2370 * queue lock must be held here.
2372 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2374 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2375 struct cfq_group
*cfqg
, *orig_cfqg
;
2377 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
2379 if (!atomic_dec_and_test(&cfqq
->ref
))
2382 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2383 BUG_ON(rb_first(&cfqq
->sort_list
));
2384 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2386 orig_cfqg
= cfqq
->orig_cfqg
;
2388 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2389 __cfq_slice_expired(cfqd
, cfqq
, 0);
2390 cfq_schedule_dispatch(cfqd
);
2393 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2394 kmem_cache_free(cfq_pool
, cfqq
);
2397 cfq_put_cfqg(orig_cfqg
);
2401 * Must always be called with the rcu_read_lock() held
2404 __call_for_each_cic(struct io_context
*ioc
,
2405 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2407 struct cfq_io_context
*cic
;
2408 struct hlist_node
*n
;
2410 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
2415 * Call func for each cic attached to this ioc.
2418 call_for_each_cic(struct io_context
*ioc
,
2419 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2422 __call_for_each_cic(ioc
, func
);
2426 static void cfq_cic_free_rcu(struct rcu_head
*head
)
2428 struct cfq_io_context
*cic
;
2430 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
2432 kmem_cache_free(cfq_ioc_pool
, cic
);
2433 elv_ioc_count_dec(cfq_ioc_count
);
2437 * CFQ scheduler is exiting, grab exit lock and check
2438 * the pending io context count. If it hits zero,
2439 * complete ioc_gone and set it back to NULL
2441 spin_lock(&ioc_gone_lock
);
2442 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
2446 spin_unlock(&ioc_gone_lock
);
2450 static void cfq_cic_free(struct cfq_io_context
*cic
)
2452 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
2455 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2457 unsigned long flags
;
2459 BUG_ON(!cic
->dead_key
);
2461 spin_lock_irqsave(&ioc
->lock
, flags
);
2462 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
2463 hlist_del_rcu(&cic
->cic_list
);
2464 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2470 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2471 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2472 * and ->trim() which is called with the task lock held
2474 static void cfq_free_io_context(struct io_context
*ioc
)
2477 * ioc->refcount is zero here, or we are called from elv_unregister(),
2478 * so no more cic's are allowed to be linked into this ioc. So it
2479 * should be ok to iterate over the known list, we will see all cic's
2480 * since no new ones are added.
2482 __call_for_each_cic(ioc
, cic_free_func
);
2485 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2487 struct cfq_queue
*__cfqq
, *next
;
2489 if (unlikely(cfqq
== cfqd
->active_queue
)) {
2490 __cfq_slice_expired(cfqd
, cfqq
, 0);
2491 cfq_schedule_dispatch(cfqd
);
2495 * If this queue was scheduled to merge with another queue, be
2496 * sure to drop the reference taken on that queue (and others in
2497 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2499 __cfqq
= cfqq
->new_cfqq
;
2501 if (__cfqq
== cfqq
) {
2502 WARN(1, "cfqq->new_cfqq loop detected\n");
2505 next
= __cfqq
->new_cfqq
;
2506 cfq_put_queue(__cfqq
);
2510 cfq_put_queue(cfqq
);
2513 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
2514 struct cfq_io_context
*cic
)
2516 struct io_context
*ioc
= cic
->ioc
;
2518 list_del_init(&cic
->queue_list
);
2521 * Make sure key == NULL is seen for dead queues
2524 cic
->dead_key
= (unsigned long) cic
->key
;
2527 if (ioc
->ioc_data
== cic
)
2528 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
2530 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
2531 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
2532 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
2535 if (cic
->cfqq
[BLK_RW_SYNC
]) {
2536 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
2537 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
2541 static void cfq_exit_single_io_context(struct io_context
*ioc
,
2542 struct cfq_io_context
*cic
)
2544 struct cfq_data
*cfqd
= cic
->key
;
2547 struct request_queue
*q
= cfqd
->queue
;
2548 unsigned long flags
;
2550 spin_lock_irqsave(q
->queue_lock
, flags
);
2553 * Ensure we get a fresh copy of the ->key to prevent
2554 * race between exiting task and queue
2556 smp_read_barrier_depends();
2558 __cfq_exit_single_io_context(cfqd
, cic
);
2560 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2565 * The process that ioc belongs to has exited, we need to clean up
2566 * and put the internal structures we have that belongs to that process.
2568 static void cfq_exit_io_context(struct io_context
*ioc
)
2570 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
2573 static struct cfq_io_context
*
2574 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2576 struct cfq_io_context
*cic
;
2578 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
2581 cic
->last_end_request
= jiffies
;
2582 INIT_LIST_HEAD(&cic
->queue_list
);
2583 INIT_HLIST_NODE(&cic
->cic_list
);
2584 cic
->dtor
= cfq_free_io_context
;
2585 cic
->exit
= cfq_exit_io_context
;
2586 elv_ioc_count_inc(cfq_ioc_count
);
2592 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
2594 struct task_struct
*tsk
= current
;
2597 if (!cfq_cfqq_prio_changed(cfqq
))
2600 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
2601 switch (ioprio_class
) {
2603 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
2604 case IOPRIO_CLASS_NONE
:
2606 * no prio set, inherit CPU scheduling settings
2608 cfqq
->ioprio
= task_nice_ioprio(tsk
);
2609 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
2611 case IOPRIO_CLASS_RT
:
2612 cfqq
->ioprio
= task_ioprio(ioc
);
2613 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
2615 case IOPRIO_CLASS_BE
:
2616 cfqq
->ioprio
= task_ioprio(ioc
);
2617 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2619 case IOPRIO_CLASS_IDLE
:
2620 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
2622 cfq_clear_cfqq_idle_window(cfqq
);
2627 * keep track of original prio settings in case we have to temporarily
2628 * elevate the priority of this queue
2630 cfqq
->org_ioprio
= cfqq
->ioprio
;
2631 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
2632 cfq_clear_cfqq_prio_changed(cfqq
);
2635 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2637 struct cfq_data
*cfqd
= cic
->key
;
2638 struct cfq_queue
*cfqq
;
2639 unsigned long flags
;
2641 if (unlikely(!cfqd
))
2644 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2646 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
2648 struct cfq_queue
*new_cfqq
;
2649 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
2652 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
2653 cfq_put_queue(cfqq
);
2657 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
2659 cfq_mark_cfqq_prio_changed(cfqq
);
2661 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2664 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
2666 call_for_each_cic(ioc
, changed_ioprio
);
2667 ioc
->ioprio_changed
= 0;
2670 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2671 pid_t pid
, bool is_sync
)
2673 RB_CLEAR_NODE(&cfqq
->rb_node
);
2674 RB_CLEAR_NODE(&cfqq
->p_node
);
2675 INIT_LIST_HEAD(&cfqq
->fifo
);
2677 atomic_set(&cfqq
->ref
, 0);
2680 cfq_mark_cfqq_prio_changed(cfqq
);
2683 if (!cfq_class_idle(cfqq
))
2684 cfq_mark_cfqq_idle_window(cfqq
);
2685 cfq_mark_cfqq_sync(cfqq
);
2690 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2691 static void changed_cgroup(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2693 struct cfq_queue
*sync_cfqq
= cic_to_cfqq(cic
, 1);
2694 struct cfq_data
*cfqd
= cic
->key
;
2695 unsigned long flags
;
2696 struct request_queue
*q
;
2698 if (unlikely(!cfqd
))
2703 spin_lock_irqsave(q
->queue_lock
, flags
);
2707 * Drop reference to sync queue. A new sync queue will be
2708 * assigned in new group upon arrival of a fresh request.
2710 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
2711 cic_set_cfqq(cic
, NULL
, 1);
2712 cfq_put_queue(sync_cfqq
);
2715 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2718 static void cfq_ioc_set_cgroup(struct io_context
*ioc
)
2720 call_for_each_cic(ioc
, changed_cgroup
);
2721 ioc
->cgroup_changed
= 0;
2723 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2725 static struct cfq_queue
*
2726 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
2727 struct io_context
*ioc
, gfp_t gfp_mask
)
2729 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2730 struct cfq_io_context
*cic
;
2731 struct cfq_group
*cfqg
;
2734 cfqg
= cfq_get_cfqg(cfqd
, 1);
2735 cic
= cfq_cic_lookup(cfqd
, ioc
);
2736 /* cic always exists here */
2737 cfqq
= cic_to_cfqq(cic
, is_sync
);
2740 * Always try a new alloc if we fell back to the OOM cfqq
2741 * originally, since it should just be a temporary situation.
2743 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2748 } else if (gfp_mask
& __GFP_WAIT
) {
2749 spin_unlock_irq(cfqd
->queue
->queue_lock
);
2750 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
2751 gfp_mask
| __GFP_ZERO
,
2753 spin_lock_irq(cfqd
->queue
->queue_lock
);
2757 cfqq
= kmem_cache_alloc_node(cfq_pool
,
2758 gfp_mask
| __GFP_ZERO
,
2763 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
2764 cfq_init_prio_data(cfqq
, ioc
);
2765 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
2766 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
2768 cfqq
= &cfqd
->oom_cfqq
;
2772 kmem_cache_free(cfq_pool
, new_cfqq
);
2777 static struct cfq_queue
**
2778 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
2780 switch (ioprio_class
) {
2781 case IOPRIO_CLASS_RT
:
2782 return &cfqd
->async_cfqq
[0][ioprio
];
2783 case IOPRIO_CLASS_BE
:
2784 return &cfqd
->async_cfqq
[1][ioprio
];
2785 case IOPRIO_CLASS_IDLE
:
2786 return &cfqd
->async_idle_cfqq
;
2792 static struct cfq_queue
*
2793 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
2796 const int ioprio
= task_ioprio(ioc
);
2797 const int ioprio_class
= task_ioprio_class(ioc
);
2798 struct cfq_queue
**async_cfqq
= NULL
;
2799 struct cfq_queue
*cfqq
= NULL
;
2802 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
2807 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
2810 * pin the queue now that it's allocated, scheduler exit will prune it
2812 if (!is_sync
&& !(*async_cfqq
)) {
2813 atomic_inc(&cfqq
->ref
);
2817 atomic_inc(&cfqq
->ref
);
2822 * We drop cfq io contexts lazily, so we may find a dead one.
2825 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2826 struct cfq_io_context
*cic
)
2828 unsigned long flags
;
2830 WARN_ON(!list_empty(&cic
->queue_list
));
2832 spin_lock_irqsave(&ioc
->lock
, flags
);
2834 BUG_ON(ioc
->ioc_data
== cic
);
2836 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
2837 hlist_del_rcu(&cic
->cic_list
);
2838 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2843 static struct cfq_io_context
*
2844 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
2846 struct cfq_io_context
*cic
;
2847 unsigned long flags
;
2856 * we maintain a last-hit cache, to avoid browsing over the tree
2858 cic
= rcu_dereference(ioc
->ioc_data
);
2859 if (cic
&& cic
->key
== cfqd
) {
2865 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
2869 /* ->key must be copied to avoid race with cfq_exit_queue() */
2872 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
2877 spin_lock_irqsave(&ioc
->lock
, flags
);
2878 rcu_assign_pointer(ioc
->ioc_data
, cic
);
2879 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2887 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2888 * the process specific cfq io context when entered from the block layer.
2889 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2891 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2892 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
2894 unsigned long flags
;
2897 ret
= radix_tree_preload(gfp_mask
);
2902 spin_lock_irqsave(&ioc
->lock
, flags
);
2903 ret
= radix_tree_insert(&ioc
->radix_root
,
2904 (unsigned long) cfqd
, cic
);
2906 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
2907 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2909 radix_tree_preload_end();
2912 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2913 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
2914 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2919 printk(KERN_ERR
"cfq: cic link failed!\n");
2925 * Setup general io context and cfq io context. There can be several cfq
2926 * io contexts per general io context, if this process is doing io to more
2927 * than one device managed by cfq.
2929 static struct cfq_io_context
*
2930 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2932 struct io_context
*ioc
= NULL
;
2933 struct cfq_io_context
*cic
;
2935 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2937 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
2941 cic
= cfq_cic_lookup(cfqd
, ioc
);
2945 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
2949 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
2953 smp_read_barrier_depends();
2954 if (unlikely(ioc
->ioprio_changed
))
2955 cfq_ioc_set_ioprio(ioc
);
2957 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2958 if (unlikely(ioc
->cgroup_changed
))
2959 cfq_ioc_set_cgroup(ioc
);
2965 put_io_context(ioc
);
2970 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
2972 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
2973 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
2975 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
2976 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
2977 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
2981 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2985 sector_t n_sec
= blk_rq_sectors(rq
);
2986 if (cfqq
->last_request_pos
) {
2987 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
2988 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
2990 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
2993 cfqq
->seek_history
<<= 1;
2994 if (blk_queue_nonrot(cfqd
->queue
))
2995 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
2997 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3001 * Disable idle window if the process thinks too long or seeks so much that
3005 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3006 struct cfq_io_context
*cic
)
3008 int old_idle
, enable_idle
;
3011 * Don't idle for async or idle io prio class
3013 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3016 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3018 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3019 cfq_mark_cfqq_deep(cfqq
);
3021 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
3022 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3024 else if (sample_valid(cic
->ttime_samples
)) {
3025 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
3031 if (old_idle
!= enable_idle
) {
3032 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3034 cfq_mark_cfqq_idle_window(cfqq
);
3036 cfq_clear_cfqq_idle_window(cfqq
);
3041 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3042 * no or if we aren't sure, a 1 will cause a preempt.
3045 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3048 struct cfq_queue
*cfqq
;
3050 cfqq
= cfqd
->active_queue
;
3054 if (cfq_class_idle(new_cfqq
))
3057 if (cfq_class_idle(cfqq
))
3061 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3063 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3067 * if the new request is sync, but the currently running queue is
3068 * not, let the sync request have priority.
3070 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3073 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3076 if (cfq_slice_used(cfqq
))
3079 /* Allow preemption only if we are idling on sync-noidle tree */
3080 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3081 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3082 new_cfqq
->service_tree
->count
== 2 &&
3083 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3087 * So both queues are sync. Let the new request get disk time if
3088 * it's a metadata request and the current queue is doing regular IO.
3090 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
3094 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3096 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3099 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3103 * if this request is as-good as one we would expect from the
3104 * current cfqq, let it preempt
3106 if (cfq_rq_close(cfqd
, cfqq
, rq
, true))
3113 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3114 * let it have half of its nominal slice.
3116 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3118 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3119 cfq_slice_expired(cfqd
, 1);
3122 * Put the new queue at the front of the of the current list,
3123 * so we know that it will be selected next.
3125 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3127 cfq_service_tree_add(cfqd
, cfqq
, 1);
3129 cfqq
->slice_end
= 0;
3130 cfq_mark_cfqq_slice_new(cfqq
);
3134 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3135 * something we should do about it
3138 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3141 struct cfq_io_context
*cic
= RQ_CIC(rq
);
3145 cfqq
->meta_pending
++;
3147 cfq_update_io_thinktime(cfqd
, cic
);
3148 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3149 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3151 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3153 if (cfqq
== cfqd
->active_queue
) {
3155 * Remember that we saw a request from this process, but
3156 * don't start queuing just yet. Otherwise we risk seeing lots
3157 * of tiny requests, because we disrupt the normal plugging
3158 * and merging. If the request is already larger than a single
3159 * page, let it rip immediately. For that case we assume that
3160 * merging is already done. Ditto for a busy system that
3161 * has other work pending, don't risk delaying until the
3162 * idle timer unplug to continue working.
3164 if (cfq_cfqq_wait_request(cfqq
)) {
3165 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3166 cfqd
->busy_queues
> 1) {
3167 del_timer(&cfqd
->idle_slice_timer
);
3168 cfq_clear_cfqq_wait_request(cfqq
);
3169 __blk_run_queue(cfqd
->queue
);
3171 cfq_mark_cfqq_must_dispatch(cfqq
);
3173 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3175 * not the active queue - expire current slice if it is
3176 * idle and has expired it's mean thinktime or this new queue
3177 * has some old slice time left and is of higher priority or
3178 * this new queue is RT and the current one is BE
3180 cfq_preempt_queue(cfqd
, cfqq
);
3181 __blk_run_queue(cfqd
->queue
);
3185 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3187 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3188 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3190 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3191 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
3193 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3194 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3197 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3201 * Update hw_tag based on peak queue depth over 50 samples under
3204 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3206 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3208 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
3209 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
3211 if (cfqd
->hw_tag
== 1)
3214 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3215 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
3219 * If active queue hasn't enough requests and can idle, cfq might not
3220 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3223 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3224 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3225 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
3228 if (cfqd
->hw_tag_samples
++ < 50)
3231 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3237 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3239 struct cfq_io_context
*cic
= cfqd
->active_cic
;
3241 /* If there are other queues in the group, don't wait */
3242 if (cfqq
->cfqg
->nr_cfqq
> 1)
3245 if (cfq_slice_used(cfqq
))
3248 /* if slice left is less than think time, wait busy */
3249 if (cic
&& sample_valid(cic
->ttime_samples
)
3250 && (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
3254 * If think times is less than a jiffy than ttime_mean=0 and above
3255 * will not be true. It might happen that slice has not expired yet
3256 * but will expire soon (4-5 ns) during select_queue(). To cover the
3257 * case where think time is less than a jiffy, mark the queue wait
3258 * busy if only 1 jiffy is left in the slice.
3260 if (cfqq
->slice_end
- jiffies
== 1)
3266 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3268 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3269 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3270 const int sync
= rq_is_sync(rq
);
3274 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d", !!rq_noidle(rq
));
3276 cfq_update_hw_tag(cfqd
);
3278 WARN_ON(!cfqd
->rq_in_driver
);
3279 WARN_ON(!cfqq
->dispatched
);
3280 cfqd
->rq_in_driver
--;
3283 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
3286 RQ_CIC(rq
)->last_end_request
= now
;
3287 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3288 cfqd
->last_delayed_sync
= now
;
3292 * If this is the active queue, check if it needs to be expired,
3293 * or if we want to idle in case it has no pending requests.
3295 if (cfqd
->active_queue
== cfqq
) {
3296 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3298 if (cfq_cfqq_slice_new(cfqq
)) {
3299 cfq_set_prio_slice(cfqd
, cfqq
);
3300 cfq_clear_cfqq_slice_new(cfqq
);
3304 * Should we wait for next request to come in before we expire
3307 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3308 cfqq
->slice_end
= jiffies
+ cfqd
->cfq_slice_idle
;
3309 cfq_mark_cfqq_wait_busy(cfqq
);
3313 * Idling is not enabled on:
3315 * - idle-priority queues
3317 * - queues with still some requests queued
3318 * - when there is a close cooperator
3320 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3321 cfq_slice_expired(cfqd
, 1);
3322 else if (sync
&& cfqq_empty
&&
3323 !cfq_close_cooperator(cfqd
, cfqq
)) {
3324 cfqd
->noidle_tree_requires_idle
|= !rq_noidle(rq
);
3326 * Idling is enabled for SYNC_WORKLOAD.
3327 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3328 * only if we processed at least one !rq_noidle request
3330 if (cfqd
->serving_type
== SYNC_WORKLOAD
3331 || cfqd
->noidle_tree_requires_idle
3332 || cfqq
->cfqg
->nr_cfqq
== 1)
3333 cfq_arm_slice_timer(cfqd
);
3337 if (!cfqd
->rq_in_driver
)
3338 cfq_schedule_dispatch(cfqd
);
3342 * we temporarily boost lower priority queues if they are holding fs exclusive
3343 * resources. they are boosted to normal prio (CLASS_BE/4)
3345 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
3347 if (has_fs_excl()) {
3349 * boost idle prio on transactions that would lock out other
3350 * users of the filesystem
3352 if (cfq_class_idle(cfqq
))
3353 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3354 if (cfqq
->ioprio
> IOPRIO_NORM
)
3355 cfqq
->ioprio
= IOPRIO_NORM
;
3358 * unboost the queue (if needed)
3360 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
3361 cfqq
->ioprio
= cfqq
->org_ioprio
;
3365 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3367 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3368 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3369 return ELV_MQUEUE_MUST
;
3372 return ELV_MQUEUE_MAY
;
3375 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3377 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3378 struct task_struct
*tsk
= current
;
3379 struct cfq_io_context
*cic
;
3380 struct cfq_queue
*cfqq
;
3383 * don't force setup of a queue from here, as a call to may_queue
3384 * does not necessarily imply that a request actually will be queued.
3385 * so just lookup a possibly existing queue, or return 'may queue'
3388 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3390 return ELV_MQUEUE_MAY
;
3392 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3394 cfq_init_prio_data(cfqq
, cic
->ioc
);
3395 cfq_prio_boost(cfqq
);
3397 return __cfq_may_queue(cfqq
);
3400 return ELV_MQUEUE_MAY
;
3404 * queue lock held here
3406 static void cfq_put_request(struct request
*rq
)
3408 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3411 const int rw
= rq_data_dir(rq
);
3413 BUG_ON(!cfqq
->allocated
[rw
]);
3414 cfqq
->allocated
[rw
]--;
3416 put_io_context(RQ_CIC(rq
)->ioc
);
3418 rq
->elevator_private
= NULL
;
3419 rq
->elevator_private2
= NULL
;
3421 cfq_put_queue(cfqq
);
3425 static struct cfq_queue
*
3426 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
3427 struct cfq_queue
*cfqq
)
3429 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3430 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3431 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3432 cfq_put_queue(cfqq
);
3433 return cic_to_cfqq(cic
, 1);
3437 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3438 * was the last process referring to said cfqq.
3440 static struct cfq_queue
*
3441 split_cfqq(struct cfq_io_context
*cic
, struct cfq_queue
*cfqq
)
3443 if (cfqq_process_refs(cfqq
) == 1) {
3444 cfqq
->pid
= current
->pid
;
3445 cfq_clear_cfqq_coop(cfqq
);
3446 cfq_clear_cfqq_split_coop(cfqq
);
3450 cic_set_cfqq(cic
, NULL
, 1);
3451 cfq_put_queue(cfqq
);
3455 * Allocate cfq data structures associated with this request.
3458 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
3460 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3461 struct cfq_io_context
*cic
;
3462 const int rw
= rq_data_dir(rq
);
3463 const bool is_sync
= rq_is_sync(rq
);
3464 struct cfq_queue
*cfqq
;
3465 unsigned long flags
;
3467 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3469 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
3471 spin_lock_irqsave(q
->queue_lock
, flags
);
3477 cfqq
= cic_to_cfqq(cic
, is_sync
);
3478 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3479 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
3480 cic_set_cfqq(cic
, cfqq
, is_sync
);
3483 * If the queue was seeky for too long, break it apart.
3485 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
3486 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3487 cfqq
= split_cfqq(cic
, cfqq
);
3493 * Check to see if this queue is scheduled to merge with
3494 * another, closely cooperating queue. The merging of
3495 * queues happens here as it must be done in process context.
3496 * The reference on new_cfqq was taken in merge_cfqqs.
3499 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3502 cfqq
->allocated
[rw
]++;
3503 atomic_inc(&cfqq
->ref
);
3505 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3507 rq
->elevator_private
= cic
;
3508 rq
->elevator_private2
= cfqq
;
3513 put_io_context(cic
->ioc
);
3515 cfq_schedule_dispatch(cfqd
);
3516 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3517 cfq_log(cfqd
, "set_request fail");
3521 static void cfq_kick_queue(struct work_struct
*work
)
3523 struct cfq_data
*cfqd
=
3524 container_of(work
, struct cfq_data
, unplug_work
);
3525 struct request_queue
*q
= cfqd
->queue
;
3527 spin_lock_irq(q
->queue_lock
);
3528 __blk_run_queue(cfqd
->queue
);
3529 spin_unlock_irq(q
->queue_lock
);
3533 * Timer running if the active_queue is currently idling inside its time slice
3535 static void cfq_idle_slice_timer(unsigned long data
)
3537 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3538 struct cfq_queue
*cfqq
;
3539 unsigned long flags
;
3542 cfq_log(cfqd
, "idle timer fired");
3544 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3546 cfqq
= cfqd
->active_queue
;
3551 * We saw a request before the queue expired, let it through
3553 if (cfq_cfqq_must_dispatch(cfqq
))
3559 if (cfq_slice_used(cfqq
))
3563 * only expire and reinvoke request handler, if there are
3564 * other queues with pending requests
3566 if (!cfqd
->busy_queues
)
3570 * not expired and it has a request pending, let it dispatch
3572 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3576 * Queue depth flag is reset only when the idle didn't succeed
3578 cfq_clear_cfqq_deep(cfqq
);
3581 cfq_slice_expired(cfqd
, timed_out
);
3583 cfq_schedule_dispatch(cfqd
);
3585 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3588 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3590 del_timer_sync(&cfqd
->idle_slice_timer
);
3591 cancel_work_sync(&cfqd
->unplug_work
);
3594 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3598 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3599 if (cfqd
->async_cfqq
[0][i
])
3600 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3601 if (cfqd
->async_cfqq
[1][i
])
3602 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3605 if (cfqd
->async_idle_cfqq
)
3606 cfq_put_queue(cfqd
->async_idle_cfqq
);
3609 static void cfq_cfqd_free(struct rcu_head
*head
)
3611 kfree(container_of(head
, struct cfq_data
, rcu
));
3614 static void cfq_exit_queue(struct elevator_queue
*e
)
3616 struct cfq_data
*cfqd
= e
->elevator_data
;
3617 struct request_queue
*q
= cfqd
->queue
;
3619 cfq_shutdown_timer_wq(cfqd
);
3621 spin_lock_irq(q
->queue_lock
);
3623 if (cfqd
->active_queue
)
3624 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3626 while (!list_empty(&cfqd
->cic_list
)) {
3627 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
3628 struct cfq_io_context
,
3631 __cfq_exit_single_io_context(cfqd
, cic
);
3634 cfq_put_async_queues(cfqd
);
3635 cfq_release_cfq_groups(cfqd
);
3636 blkiocg_del_blkio_group(&cfqd
->root_group
.blkg
);
3638 spin_unlock_irq(q
->queue_lock
);
3640 cfq_shutdown_timer_wq(cfqd
);
3642 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3643 call_rcu(&cfqd
->rcu
, cfq_cfqd_free
);
3646 static void *cfq_init_queue(struct request_queue
*q
)
3648 struct cfq_data
*cfqd
;
3650 struct cfq_group
*cfqg
;
3651 struct cfq_rb_root
*st
;
3653 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
3657 /* Init root service tree */
3658 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
3660 /* Init root group */
3661 cfqg
= &cfqd
->root_group
;
3662 for_each_cfqg_st(cfqg
, i
, j
, st
)
3664 RB_CLEAR_NODE(&cfqg
->rb_node
);
3666 /* Give preference to root group over other groups */
3667 cfqg
->weight
= 2*BLKIO_WEIGHT_DEFAULT
;
3669 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3671 * Take a reference to root group which we never drop. This is just
3672 * to make sure that cfq_put_cfqg() does not try to kfree root group
3674 atomic_set(&cfqg
->ref
, 1);
3675 blkiocg_add_blkio_group(&blkio_root_cgroup
, &cfqg
->blkg
, (void *)cfqd
,
3679 * Not strictly needed (since RB_ROOT just clears the node and we
3680 * zeroed cfqd on alloc), but better be safe in case someone decides
3681 * to add magic to the rb code
3683 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
3684 cfqd
->prio_trees
[i
] = RB_ROOT
;
3687 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3688 * Grab a permanent reference to it, so that the normal code flow
3689 * will not attempt to free it.
3691 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
3692 atomic_inc(&cfqd
->oom_cfqq
.ref
);
3693 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, &cfqd
->root_group
);
3695 INIT_LIST_HEAD(&cfqd
->cic_list
);
3699 init_timer(&cfqd
->idle_slice_timer
);
3700 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
3701 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
3703 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
3705 cfqd
->cfq_quantum
= cfq_quantum
;
3706 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
3707 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
3708 cfqd
->cfq_back_max
= cfq_back_max
;
3709 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
3710 cfqd
->cfq_slice
[0] = cfq_slice_async
;
3711 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
3712 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
3713 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
3714 cfqd
->cfq_latency
= 1;
3715 cfqd
->cfq_group_isolation
= 0;
3718 * we optimistically start assuming sync ops weren't delayed in last
3719 * second, in order to have larger depth for async operations.
3721 cfqd
->last_delayed_sync
= jiffies
- HZ
;
3722 INIT_RCU_HEAD(&cfqd
->rcu
);
3726 static void cfq_slab_kill(void)
3729 * Caller already ensured that pending RCU callbacks are completed,
3730 * so we should have no busy allocations at this point.
3733 kmem_cache_destroy(cfq_pool
);
3735 kmem_cache_destroy(cfq_ioc_pool
);
3738 static int __init
cfq_slab_setup(void)
3740 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
3744 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
3755 * sysfs parts below -->
3758 cfq_var_show(unsigned int var
, char *page
)
3760 return sprintf(page
, "%d\n", var
);
3764 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
3766 char *p
= (char *) page
;
3768 *var
= simple_strtoul(p
, &p
, 10);
3772 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3773 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3775 struct cfq_data *cfqd = e->elevator_data; \
3776 unsigned int __data = __VAR; \
3778 __data = jiffies_to_msecs(__data); \
3779 return cfq_var_show(__data, (page)); \
3781 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
3782 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
3783 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
3784 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
3785 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
3786 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
3787 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
3788 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
3789 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
3790 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
3791 SHOW_FUNCTION(cfq_group_isolation_show
, cfqd
->cfq_group_isolation
, 0);
3792 #undef SHOW_FUNCTION
3794 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3795 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3797 struct cfq_data *cfqd = e->elevator_data; \
3798 unsigned int __data; \
3799 int ret = cfq_var_store(&__data, (page), count); \
3800 if (__data < (MIN)) \
3802 else if (__data > (MAX)) \
3805 *(__PTR) = msecs_to_jiffies(__data); \
3807 *(__PTR) = __data; \
3810 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
3811 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
3813 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
3815 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
3816 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
3818 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
3819 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
3820 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
3821 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
3823 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
3824 STORE_FUNCTION(cfq_group_isolation_store
, &cfqd
->cfq_group_isolation
, 0, 1, 0);
3825 #undef STORE_FUNCTION
3827 #define CFQ_ATTR(name) \
3828 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3830 static struct elv_fs_entry cfq_attrs
[] = {
3832 CFQ_ATTR(fifo_expire_sync
),
3833 CFQ_ATTR(fifo_expire_async
),
3834 CFQ_ATTR(back_seek_max
),
3835 CFQ_ATTR(back_seek_penalty
),
3836 CFQ_ATTR(slice_sync
),
3837 CFQ_ATTR(slice_async
),
3838 CFQ_ATTR(slice_async_rq
),
3839 CFQ_ATTR(slice_idle
),
3840 CFQ_ATTR(low_latency
),
3841 CFQ_ATTR(group_isolation
),
3845 static struct elevator_type iosched_cfq
= {
3847 .elevator_merge_fn
= cfq_merge
,
3848 .elevator_merged_fn
= cfq_merged_request
,
3849 .elevator_merge_req_fn
= cfq_merged_requests
,
3850 .elevator_allow_merge_fn
= cfq_allow_merge
,
3851 .elevator_dispatch_fn
= cfq_dispatch_requests
,
3852 .elevator_add_req_fn
= cfq_insert_request
,
3853 .elevator_activate_req_fn
= cfq_activate_request
,
3854 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
3855 .elevator_queue_empty_fn
= cfq_queue_empty
,
3856 .elevator_completed_req_fn
= cfq_completed_request
,
3857 .elevator_former_req_fn
= elv_rb_former_request
,
3858 .elevator_latter_req_fn
= elv_rb_latter_request
,
3859 .elevator_set_req_fn
= cfq_set_request
,
3860 .elevator_put_req_fn
= cfq_put_request
,
3861 .elevator_may_queue_fn
= cfq_may_queue
,
3862 .elevator_init_fn
= cfq_init_queue
,
3863 .elevator_exit_fn
= cfq_exit_queue
,
3864 .trim
= cfq_free_io_context
,
3866 .elevator_attrs
= cfq_attrs
,
3867 .elevator_name
= "cfq",
3868 .elevator_owner
= THIS_MODULE
,
3871 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3872 static struct blkio_policy_type blkio_policy_cfq
= {
3874 .blkio_unlink_group_fn
= cfq_unlink_blkio_group
,
3875 .blkio_update_group_weight_fn
= cfq_update_blkio_group_weight
,
3879 static struct blkio_policy_type blkio_policy_cfq
;
3882 static int __init
cfq_init(void)
3885 * could be 0 on HZ < 1000 setups
3887 if (!cfq_slice_async
)
3888 cfq_slice_async
= 1;
3889 if (!cfq_slice_idle
)
3892 if (cfq_slab_setup())
3895 elv_register(&iosched_cfq
);
3896 blkio_policy_register(&blkio_policy_cfq
);
3901 static void __exit
cfq_exit(void)
3903 DECLARE_COMPLETION_ONSTACK(all_gone
);
3904 blkio_policy_unregister(&blkio_policy_cfq
);
3905 elv_unregister(&iosched_cfq
);
3906 ioc_gone
= &all_gone
;
3907 /* ioc_gone's update must be visible before reading ioc_count */
3911 * this also protects us from entering cfq_slab_kill() with
3912 * pending RCU callbacks
3914 if (elv_ioc_count_read(cfq_ioc_count
))
3915 wait_for_completion(&all_gone
);
3919 module_init(cfq_init
);
3920 module_exit(cfq_exit
);
3922 MODULE_AUTHOR("Jens Axboe");
3923 MODULE_LICENSE("GPL");
3924 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");