drm/i915: Fix lock order reversal in GEM relocation entry copying.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blobf135c903305f6ffec6c4b915533c53d507f0f1eb
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33 #include <linux/pci.h>
35 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41 int write);
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43 uint64_t offset,
44 uint64_t size);
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_get_pages(struct drm_gem_object *obj);
47 static void i915_gem_object_put_pages(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
51 static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
52 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
53 static int i915_gem_evict_something(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
58 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
59 unsigned long end)
61 drm_i915_private_t *dev_priv = dev->dev_private;
63 if (start >= end ||
64 (start & (PAGE_SIZE - 1)) != 0 ||
65 (end & (PAGE_SIZE - 1)) != 0) {
66 return -EINVAL;
69 drm_mm_init(&dev_priv->mm.gtt_space, start,
70 end - start);
72 dev->gtt_total = (uint32_t) (end - start);
74 return 0;
77 int
78 i915_gem_init_ioctl(struct drm_device *dev, void *data,
79 struct drm_file *file_priv)
81 struct drm_i915_gem_init *args = data;
82 int ret;
84 mutex_lock(&dev->struct_mutex);
85 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
86 mutex_unlock(&dev->struct_mutex);
88 return ret;
91 int
92 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
93 struct drm_file *file_priv)
95 struct drm_i915_gem_get_aperture *args = data;
97 if (!(dev->driver->driver_features & DRIVER_GEM))
98 return -ENODEV;
100 args->aper_size = dev->gtt_total;
101 args->aper_available_size = (args->aper_size -
102 atomic_read(&dev->pin_memory));
104 return 0;
109 * Creates a new mm object and returns a handle to it.
112 i915_gem_create_ioctl(struct drm_device *dev, void *data,
113 struct drm_file *file_priv)
115 struct drm_i915_gem_create *args = data;
116 struct drm_gem_object *obj;
117 int handle, ret;
119 args->size = roundup(args->size, PAGE_SIZE);
121 /* Allocate the new object */
122 obj = drm_gem_object_alloc(dev, args->size);
123 if (obj == NULL)
124 return -ENOMEM;
126 ret = drm_gem_handle_create(file_priv, obj, &handle);
127 mutex_lock(&dev->struct_mutex);
128 drm_gem_object_handle_unreference(obj);
129 mutex_unlock(&dev->struct_mutex);
131 if (ret)
132 return ret;
134 args->handle = handle;
136 return 0;
139 static inline int
140 fast_shmem_read(struct page **pages,
141 loff_t page_base, int page_offset,
142 char __user *data,
143 int length)
145 char __iomem *vaddr;
146 int ret;
148 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
149 if (vaddr == NULL)
150 return -ENOMEM;
151 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
152 kunmap_atomic(vaddr, KM_USER0);
154 return ret;
157 static inline int
158 slow_shmem_copy(struct page *dst_page,
159 int dst_offset,
160 struct page *src_page,
161 int src_offset,
162 int length)
164 char *dst_vaddr, *src_vaddr;
166 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
167 if (dst_vaddr == NULL)
168 return -ENOMEM;
170 src_vaddr = kmap_atomic(src_page, KM_USER1);
171 if (src_vaddr == NULL) {
172 kunmap_atomic(dst_vaddr, KM_USER0);
173 return -ENOMEM;
176 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
178 kunmap_atomic(src_vaddr, KM_USER1);
179 kunmap_atomic(dst_vaddr, KM_USER0);
181 return 0;
185 * This is the fast shmem pread path, which attempts to copy_from_user directly
186 * from the backing pages of the object to the user's address space. On a
187 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
189 static int
190 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
191 struct drm_i915_gem_pread *args,
192 struct drm_file *file_priv)
194 struct drm_i915_gem_object *obj_priv = obj->driver_private;
195 ssize_t remain;
196 loff_t offset, page_base;
197 char __user *user_data;
198 int page_offset, page_length;
199 int ret;
201 user_data = (char __user *) (uintptr_t) args->data_ptr;
202 remain = args->size;
204 mutex_lock(&dev->struct_mutex);
206 ret = i915_gem_object_get_pages(obj);
207 if (ret != 0)
208 goto fail_unlock;
210 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
211 args->size);
212 if (ret != 0)
213 goto fail_put_pages;
215 obj_priv = obj->driver_private;
216 offset = args->offset;
218 while (remain > 0) {
219 /* Operation in this page
221 * page_base = page offset within aperture
222 * page_offset = offset within page
223 * page_length = bytes to copy for this page
225 page_base = (offset & ~(PAGE_SIZE-1));
226 page_offset = offset & (PAGE_SIZE-1);
227 page_length = remain;
228 if ((page_offset + remain) > PAGE_SIZE)
229 page_length = PAGE_SIZE - page_offset;
231 ret = fast_shmem_read(obj_priv->pages,
232 page_base, page_offset,
233 user_data, page_length);
234 if (ret)
235 goto fail_put_pages;
237 remain -= page_length;
238 user_data += page_length;
239 offset += page_length;
242 fail_put_pages:
243 i915_gem_object_put_pages(obj);
244 fail_unlock:
245 mutex_unlock(&dev->struct_mutex);
247 return ret;
251 * This is the fallback shmem pread path, which allocates temporary storage
252 * in kernel space to copy_to_user into outside of the struct_mutex, so we
253 * can copy out of the object's backing pages while holding the struct mutex
254 * and not take page faults.
256 static int
257 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
258 struct drm_i915_gem_pread *args,
259 struct drm_file *file_priv)
261 struct drm_i915_gem_object *obj_priv = obj->driver_private;
262 struct mm_struct *mm = current->mm;
263 struct page **user_pages;
264 ssize_t remain;
265 loff_t offset, pinned_pages, i;
266 loff_t first_data_page, last_data_page, num_pages;
267 int shmem_page_index, shmem_page_offset;
268 int data_page_index, data_page_offset;
269 int page_length;
270 int ret;
271 uint64_t data_ptr = args->data_ptr;
273 remain = args->size;
275 /* Pin the user pages containing the data. We can't fault while
276 * holding the struct mutex, yet we want to hold it while
277 * dereferencing the user data.
279 first_data_page = data_ptr / PAGE_SIZE;
280 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
281 num_pages = last_data_page - first_data_page + 1;
283 user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
284 if (user_pages == NULL)
285 return -ENOMEM;
287 down_read(&mm->mmap_sem);
288 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
289 num_pages, 0, 0, user_pages, NULL);
290 up_read(&mm->mmap_sem);
291 if (pinned_pages < num_pages) {
292 ret = -EFAULT;
293 goto fail_put_user_pages;
296 mutex_lock(&dev->struct_mutex);
298 ret = i915_gem_object_get_pages(obj);
299 if (ret != 0)
300 goto fail_unlock;
302 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
303 args->size);
304 if (ret != 0)
305 goto fail_put_pages;
307 obj_priv = obj->driver_private;
308 offset = args->offset;
310 while (remain > 0) {
311 /* Operation in this page
313 * shmem_page_index = page number within shmem file
314 * shmem_page_offset = offset within page in shmem file
315 * data_page_index = page number in get_user_pages return
316 * data_page_offset = offset with data_page_index page.
317 * page_length = bytes to copy for this page
319 shmem_page_index = offset / PAGE_SIZE;
320 shmem_page_offset = offset & ~PAGE_MASK;
321 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
322 data_page_offset = data_ptr & ~PAGE_MASK;
324 page_length = remain;
325 if ((shmem_page_offset + page_length) > PAGE_SIZE)
326 page_length = PAGE_SIZE - shmem_page_offset;
327 if ((data_page_offset + page_length) > PAGE_SIZE)
328 page_length = PAGE_SIZE - data_page_offset;
330 ret = slow_shmem_copy(user_pages[data_page_index],
331 data_page_offset,
332 obj_priv->pages[shmem_page_index],
333 shmem_page_offset,
334 page_length);
335 if (ret)
336 goto fail_put_pages;
338 remain -= page_length;
339 data_ptr += page_length;
340 offset += page_length;
343 fail_put_pages:
344 i915_gem_object_put_pages(obj);
345 fail_unlock:
346 mutex_unlock(&dev->struct_mutex);
347 fail_put_user_pages:
348 for (i = 0; i < pinned_pages; i++) {
349 SetPageDirty(user_pages[i]);
350 page_cache_release(user_pages[i]);
352 kfree(user_pages);
354 return ret;
358 * Reads data from the object referenced by handle.
360 * On error, the contents of *data are undefined.
363 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
364 struct drm_file *file_priv)
366 struct drm_i915_gem_pread *args = data;
367 struct drm_gem_object *obj;
368 struct drm_i915_gem_object *obj_priv;
369 int ret;
371 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
372 if (obj == NULL)
373 return -EBADF;
374 obj_priv = obj->driver_private;
376 /* Bounds check source.
378 * XXX: This could use review for overflow issues...
380 if (args->offset > obj->size || args->size > obj->size ||
381 args->offset + args->size > obj->size) {
382 drm_gem_object_unreference(obj);
383 return -EINVAL;
386 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
387 if (ret != 0)
388 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
390 drm_gem_object_unreference(obj);
392 return ret;
395 /* This is the fast write path which cannot handle
396 * page faults in the source data
399 static inline int
400 fast_user_write(struct io_mapping *mapping,
401 loff_t page_base, int page_offset,
402 char __user *user_data,
403 int length)
405 char *vaddr_atomic;
406 unsigned long unwritten;
408 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
409 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
410 user_data, length);
411 io_mapping_unmap_atomic(vaddr_atomic);
412 if (unwritten)
413 return -EFAULT;
414 return 0;
417 /* Here's the write path which can sleep for
418 * page faults
421 static inline int
422 slow_kernel_write(struct io_mapping *mapping,
423 loff_t gtt_base, int gtt_offset,
424 struct page *user_page, int user_offset,
425 int length)
427 char *src_vaddr, *dst_vaddr;
428 unsigned long unwritten;
430 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
431 src_vaddr = kmap_atomic(user_page, KM_USER1);
432 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
433 src_vaddr + user_offset,
434 length);
435 kunmap_atomic(src_vaddr, KM_USER1);
436 io_mapping_unmap_atomic(dst_vaddr);
437 if (unwritten)
438 return -EFAULT;
439 return 0;
442 static inline int
443 fast_shmem_write(struct page **pages,
444 loff_t page_base, int page_offset,
445 char __user *data,
446 int length)
448 char __iomem *vaddr;
450 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
451 if (vaddr == NULL)
452 return -ENOMEM;
453 __copy_from_user_inatomic(vaddr + page_offset, data, length);
454 kunmap_atomic(vaddr, KM_USER0);
456 return 0;
460 * This is the fast pwrite path, where we copy the data directly from the
461 * user into the GTT, uncached.
463 static int
464 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
465 struct drm_i915_gem_pwrite *args,
466 struct drm_file *file_priv)
468 struct drm_i915_gem_object *obj_priv = obj->driver_private;
469 drm_i915_private_t *dev_priv = dev->dev_private;
470 ssize_t remain;
471 loff_t offset, page_base;
472 char __user *user_data;
473 int page_offset, page_length;
474 int ret;
476 user_data = (char __user *) (uintptr_t) args->data_ptr;
477 remain = args->size;
478 if (!access_ok(VERIFY_READ, user_data, remain))
479 return -EFAULT;
482 mutex_lock(&dev->struct_mutex);
483 ret = i915_gem_object_pin(obj, 0);
484 if (ret) {
485 mutex_unlock(&dev->struct_mutex);
486 return ret;
488 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
489 if (ret)
490 goto fail;
492 obj_priv = obj->driver_private;
493 offset = obj_priv->gtt_offset + args->offset;
495 while (remain > 0) {
496 /* Operation in this page
498 * page_base = page offset within aperture
499 * page_offset = offset within page
500 * page_length = bytes to copy for this page
502 page_base = (offset & ~(PAGE_SIZE-1));
503 page_offset = offset & (PAGE_SIZE-1);
504 page_length = remain;
505 if ((page_offset + remain) > PAGE_SIZE)
506 page_length = PAGE_SIZE - page_offset;
508 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
509 page_offset, user_data, page_length);
511 /* If we get a fault while copying data, then (presumably) our
512 * source page isn't available. Return the error and we'll
513 * retry in the slow path.
515 if (ret)
516 goto fail;
518 remain -= page_length;
519 user_data += page_length;
520 offset += page_length;
523 fail:
524 i915_gem_object_unpin(obj);
525 mutex_unlock(&dev->struct_mutex);
527 return ret;
531 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
532 * the memory and maps it using kmap_atomic for copying.
534 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
535 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
537 static int
538 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
539 struct drm_i915_gem_pwrite *args,
540 struct drm_file *file_priv)
542 struct drm_i915_gem_object *obj_priv = obj->driver_private;
543 drm_i915_private_t *dev_priv = dev->dev_private;
544 ssize_t remain;
545 loff_t gtt_page_base, offset;
546 loff_t first_data_page, last_data_page, num_pages;
547 loff_t pinned_pages, i;
548 struct page **user_pages;
549 struct mm_struct *mm = current->mm;
550 int gtt_page_offset, data_page_offset, data_page_index, page_length;
551 int ret;
552 uint64_t data_ptr = args->data_ptr;
554 remain = args->size;
556 /* Pin the user pages containing the data. We can't fault while
557 * holding the struct mutex, and all of the pwrite implementations
558 * want to hold it while dereferencing the user data.
560 first_data_page = data_ptr / PAGE_SIZE;
561 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
562 num_pages = last_data_page - first_data_page + 1;
564 user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
565 if (user_pages == NULL)
566 return -ENOMEM;
568 down_read(&mm->mmap_sem);
569 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
570 num_pages, 0, 0, user_pages, NULL);
571 up_read(&mm->mmap_sem);
572 if (pinned_pages < num_pages) {
573 ret = -EFAULT;
574 goto out_unpin_pages;
577 mutex_lock(&dev->struct_mutex);
578 ret = i915_gem_object_pin(obj, 0);
579 if (ret)
580 goto out_unlock;
582 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
583 if (ret)
584 goto out_unpin_object;
586 obj_priv = obj->driver_private;
587 offset = obj_priv->gtt_offset + args->offset;
589 while (remain > 0) {
590 /* Operation in this page
592 * gtt_page_base = page offset within aperture
593 * gtt_page_offset = offset within page in aperture
594 * data_page_index = page number in get_user_pages return
595 * data_page_offset = offset with data_page_index page.
596 * page_length = bytes to copy for this page
598 gtt_page_base = offset & PAGE_MASK;
599 gtt_page_offset = offset & ~PAGE_MASK;
600 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
601 data_page_offset = data_ptr & ~PAGE_MASK;
603 page_length = remain;
604 if ((gtt_page_offset + page_length) > PAGE_SIZE)
605 page_length = PAGE_SIZE - gtt_page_offset;
606 if ((data_page_offset + page_length) > PAGE_SIZE)
607 page_length = PAGE_SIZE - data_page_offset;
609 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
610 gtt_page_base, gtt_page_offset,
611 user_pages[data_page_index],
612 data_page_offset,
613 page_length);
615 /* If we get a fault while copying data, then (presumably) our
616 * source page isn't available. Return the error and we'll
617 * retry in the slow path.
619 if (ret)
620 goto out_unpin_object;
622 remain -= page_length;
623 offset += page_length;
624 data_ptr += page_length;
627 out_unpin_object:
628 i915_gem_object_unpin(obj);
629 out_unlock:
630 mutex_unlock(&dev->struct_mutex);
631 out_unpin_pages:
632 for (i = 0; i < pinned_pages; i++)
633 page_cache_release(user_pages[i]);
634 kfree(user_pages);
636 return ret;
640 * This is the fast shmem pwrite path, which attempts to directly
641 * copy_from_user into the kmapped pages backing the object.
643 static int
644 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
645 struct drm_i915_gem_pwrite *args,
646 struct drm_file *file_priv)
648 struct drm_i915_gem_object *obj_priv = obj->driver_private;
649 ssize_t remain;
650 loff_t offset, page_base;
651 char __user *user_data;
652 int page_offset, page_length;
653 int ret;
655 user_data = (char __user *) (uintptr_t) args->data_ptr;
656 remain = args->size;
658 mutex_lock(&dev->struct_mutex);
660 ret = i915_gem_object_get_pages(obj);
661 if (ret != 0)
662 goto fail_unlock;
664 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
665 if (ret != 0)
666 goto fail_put_pages;
668 obj_priv = obj->driver_private;
669 offset = args->offset;
670 obj_priv->dirty = 1;
672 while (remain > 0) {
673 /* Operation in this page
675 * page_base = page offset within aperture
676 * page_offset = offset within page
677 * page_length = bytes to copy for this page
679 page_base = (offset & ~(PAGE_SIZE-1));
680 page_offset = offset & (PAGE_SIZE-1);
681 page_length = remain;
682 if ((page_offset + remain) > PAGE_SIZE)
683 page_length = PAGE_SIZE - page_offset;
685 ret = fast_shmem_write(obj_priv->pages,
686 page_base, page_offset,
687 user_data, page_length);
688 if (ret)
689 goto fail_put_pages;
691 remain -= page_length;
692 user_data += page_length;
693 offset += page_length;
696 fail_put_pages:
697 i915_gem_object_put_pages(obj);
698 fail_unlock:
699 mutex_unlock(&dev->struct_mutex);
701 return ret;
705 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
706 * the memory and maps it using kmap_atomic for copying.
708 * This avoids taking mmap_sem for faulting on the user's address while the
709 * struct_mutex is held.
711 static int
712 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
713 struct drm_i915_gem_pwrite *args,
714 struct drm_file *file_priv)
716 struct drm_i915_gem_object *obj_priv = obj->driver_private;
717 struct mm_struct *mm = current->mm;
718 struct page **user_pages;
719 ssize_t remain;
720 loff_t offset, pinned_pages, i;
721 loff_t first_data_page, last_data_page, num_pages;
722 int shmem_page_index, shmem_page_offset;
723 int data_page_index, data_page_offset;
724 int page_length;
725 int ret;
726 uint64_t data_ptr = args->data_ptr;
728 remain = args->size;
730 /* Pin the user pages containing the data. We can't fault while
731 * holding the struct mutex, and all of the pwrite implementations
732 * want to hold it while dereferencing the user data.
734 first_data_page = data_ptr / PAGE_SIZE;
735 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
736 num_pages = last_data_page - first_data_page + 1;
738 user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
739 if (user_pages == NULL)
740 return -ENOMEM;
742 down_read(&mm->mmap_sem);
743 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
744 num_pages, 0, 0, user_pages, NULL);
745 up_read(&mm->mmap_sem);
746 if (pinned_pages < num_pages) {
747 ret = -EFAULT;
748 goto fail_put_user_pages;
751 mutex_lock(&dev->struct_mutex);
753 ret = i915_gem_object_get_pages(obj);
754 if (ret != 0)
755 goto fail_unlock;
757 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
758 if (ret != 0)
759 goto fail_put_pages;
761 obj_priv = obj->driver_private;
762 offset = args->offset;
763 obj_priv->dirty = 1;
765 while (remain > 0) {
766 /* Operation in this page
768 * shmem_page_index = page number within shmem file
769 * shmem_page_offset = offset within page in shmem file
770 * data_page_index = page number in get_user_pages return
771 * data_page_offset = offset with data_page_index page.
772 * page_length = bytes to copy for this page
774 shmem_page_index = offset / PAGE_SIZE;
775 shmem_page_offset = offset & ~PAGE_MASK;
776 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
777 data_page_offset = data_ptr & ~PAGE_MASK;
779 page_length = remain;
780 if ((shmem_page_offset + page_length) > PAGE_SIZE)
781 page_length = PAGE_SIZE - shmem_page_offset;
782 if ((data_page_offset + page_length) > PAGE_SIZE)
783 page_length = PAGE_SIZE - data_page_offset;
785 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
786 shmem_page_offset,
787 user_pages[data_page_index],
788 data_page_offset,
789 page_length);
790 if (ret)
791 goto fail_put_pages;
793 remain -= page_length;
794 data_ptr += page_length;
795 offset += page_length;
798 fail_put_pages:
799 i915_gem_object_put_pages(obj);
800 fail_unlock:
801 mutex_unlock(&dev->struct_mutex);
802 fail_put_user_pages:
803 for (i = 0; i < pinned_pages; i++)
804 page_cache_release(user_pages[i]);
805 kfree(user_pages);
807 return ret;
811 * Writes data to the object referenced by handle.
813 * On error, the contents of the buffer that were to be modified are undefined.
816 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
817 struct drm_file *file_priv)
819 struct drm_i915_gem_pwrite *args = data;
820 struct drm_gem_object *obj;
821 struct drm_i915_gem_object *obj_priv;
822 int ret = 0;
824 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
825 if (obj == NULL)
826 return -EBADF;
827 obj_priv = obj->driver_private;
829 /* Bounds check destination.
831 * XXX: This could use review for overflow issues...
833 if (args->offset > obj->size || args->size > obj->size ||
834 args->offset + args->size > obj->size) {
835 drm_gem_object_unreference(obj);
836 return -EINVAL;
839 /* We can only do the GTT pwrite on untiled buffers, as otherwise
840 * it would end up going through the fenced access, and we'll get
841 * different detiling behavior between reading and writing.
842 * pread/pwrite currently are reading and writing from the CPU
843 * perspective, requiring manual detiling by the client.
845 if (obj_priv->phys_obj)
846 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
847 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
848 dev->gtt_total != 0) {
849 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
850 if (ret == -EFAULT) {
851 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
852 file_priv);
854 } else {
855 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
856 if (ret == -EFAULT) {
857 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
858 file_priv);
862 #if WATCH_PWRITE
863 if (ret)
864 DRM_INFO("pwrite failed %d\n", ret);
865 #endif
867 drm_gem_object_unreference(obj);
869 return ret;
873 * Called when user space prepares to use an object with the CPU, either
874 * through the mmap ioctl's mapping or a GTT mapping.
877 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
878 struct drm_file *file_priv)
880 struct drm_i915_gem_set_domain *args = data;
881 struct drm_gem_object *obj;
882 uint32_t read_domains = args->read_domains;
883 uint32_t write_domain = args->write_domain;
884 int ret;
886 if (!(dev->driver->driver_features & DRIVER_GEM))
887 return -ENODEV;
889 /* Only handle setting domains to types used by the CPU. */
890 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
891 return -EINVAL;
893 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
894 return -EINVAL;
896 /* Having something in the write domain implies it's in the read
897 * domain, and only that read domain. Enforce that in the request.
899 if (write_domain != 0 && read_domains != write_domain)
900 return -EINVAL;
902 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
903 if (obj == NULL)
904 return -EBADF;
906 mutex_lock(&dev->struct_mutex);
907 #if WATCH_BUF
908 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
909 obj, obj->size, read_domains, write_domain);
910 #endif
911 if (read_domains & I915_GEM_DOMAIN_GTT) {
912 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
914 /* Silently promote "you're not bound, there was nothing to do"
915 * to success, since the client was just asking us to
916 * make sure everything was done.
918 if (ret == -EINVAL)
919 ret = 0;
920 } else {
921 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
924 drm_gem_object_unreference(obj);
925 mutex_unlock(&dev->struct_mutex);
926 return ret;
930 * Called when user space has done writes to this buffer
933 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
934 struct drm_file *file_priv)
936 struct drm_i915_gem_sw_finish *args = data;
937 struct drm_gem_object *obj;
938 struct drm_i915_gem_object *obj_priv;
939 int ret = 0;
941 if (!(dev->driver->driver_features & DRIVER_GEM))
942 return -ENODEV;
944 mutex_lock(&dev->struct_mutex);
945 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
946 if (obj == NULL) {
947 mutex_unlock(&dev->struct_mutex);
948 return -EBADF;
951 #if WATCH_BUF
952 DRM_INFO("%s: sw_finish %d (%p %d)\n",
953 __func__, args->handle, obj, obj->size);
954 #endif
955 obj_priv = obj->driver_private;
957 /* Pinned buffers may be scanout, so flush the cache */
958 if (obj_priv->pin_count)
959 i915_gem_object_flush_cpu_write_domain(obj);
961 drm_gem_object_unreference(obj);
962 mutex_unlock(&dev->struct_mutex);
963 return ret;
967 * Maps the contents of an object, returning the address it is mapped
968 * into.
970 * While the mapping holds a reference on the contents of the object, it doesn't
971 * imply a ref on the object itself.
974 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
975 struct drm_file *file_priv)
977 struct drm_i915_gem_mmap *args = data;
978 struct drm_gem_object *obj;
979 loff_t offset;
980 unsigned long addr;
982 if (!(dev->driver->driver_features & DRIVER_GEM))
983 return -ENODEV;
985 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
986 if (obj == NULL)
987 return -EBADF;
989 offset = args->offset;
991 down_write(&current->mm->mmap_sem);
992 addr = do_mmap(obj->filp, 0, args->size,
993 PROT_READ | PROT_WRITE, MAP_SHARED,
994 args->offset);
995 up_write(&current->mm->mmap_sem);
996 mutex_lock(&dev->struct_mutex);
997 drm_gem_object_unreference(obj);
998 mutex_unlock(&dev->struct_mutex);
999 if (IS_ERR((void *)addr))
1000 return addr;
1002 args->addr_ptr = (uint64_t) addr;
1004 return 0;
1008 * i915_gem_fault - fault a page into the GTT
1009 * vma: VMA in question
1010 * vmf: fault info
1012 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1013 * from userspace. The fault handler takes care of binding the object to
1014 * the GTT (if needed), allocating and programming a fence register (again,
1015 * only if needed based on whether the old reg is still valid or the object
1016 * is tiled) and inserting a new PTE into the faulting process.
1018 * Note that the faulting process may involve evicting existing objects
1019 * from the GTT and/or fence registers to make room. So performance may
1020 * suffer if the GTT working set is large or there are few fence registers
1021 * left.
1023 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1025 struct drm_gem_object *obj = vma->vm_private_data;
1026 struct drm_device *dev = obj->dev;
1027 struct drm_i915_private *dev_priv = dev->dev_private;
1028 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1029 pgoff_t page_offset;
1030 unsigned long pfn;
1031 int ret = 0;
1032 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1034 /* We don't use vmf->pgoff since that has the fake offset */
1035 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1036 PAGE_SHIFT;
1038 /* Now bind it into the GTT if needed */
1039 mutex_lock(&dev->struct_mutex);
1040 if (!obj_priv->gtt_space) {
1041 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1042 if (ret) {
1043 mutex_unlock(&dev->struct_mutex);
1044 return VM_FAULT_SIGBUS;
1046 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
1049 /* Need a new fence register? */
1050 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1051 obj_priv->tiling_mode != I915_TILING_NONE) {
1052 ret = i915_gem_object_get_fence_reg(obj, write);
1053 if (ret) {
1054 mutex_unlock(&dev->struct_mutex);
1055 return VM_FAULT_SIGBUS;
1059 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1060 page_offset;
1062 /* Finally, remap it using the new GTT offset */
1063 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1065 mutex_unlock(&dev->struct_mutex);
1067 switch (ret) {
1068 case -ENOMEM:
1069 case -EAGAIN:
1070 return VM_FAULT_OOM;
1071 case -EFAULT:
1072 return VM_FAULT_SIGBUS;
1073 default:
1074 return VM_FAULT_NOPAGE;
1079 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1080 * @obj: obj in question
1082 * GEM memory mapping works by handing back to userspace a fake mmap offset
1083 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1084 * up the object based on the offset and sets up the various memory mapping
1085 * structures.
1087 * This routine allocates and attaches a fake offset for @obj.
1089 static int
1090 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1092 struct drm_device *dev = obj->dev;
1093 struct drm_gem_mm *mm = dev->mm_private;
1094 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1095 struct drm_map_list *list;
1096 struct drm_map *map;
1097 int ret = 0;
1099 /* Set the object up for mmap'ing */
1100 list = &obj->map_list;
1101 list->map = drm_calloc(1, sizeof(struct drm_map_list),
1102 DRM_MEM_DRIVER);
1103 if (!list->map)
1104 return -ENOMEM;
1106 map = list->map;
1107 map->type = _DRM_GEM;
1108 map->size = obj->size;
1109 map->handle = obj;
1111 /* Get a DRM GEM mmap offset allocated... */
1112 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1113 obj->size / PAGE_SIZE, 0, 0);
1114 if (!list->file_offset_node) {
1115 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1116 ret = -ENOMEM;
1117 goto out_free_list;
1120 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1121 obj->size / PAGE_SIZE, 0);
1122 if (!list->file_offset_node) {
1123 ret = -ENOMEM;
1124 goto out_free_list;
1127 list->hash.key = list->file_offset_node->start;
1128 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1129 DRM_ERROR("failed to add to map hash\n");
1130 goto out_free_mm;
1133 /* By now we should be all set, any drm_mmap request on the offset
1134 * below will get to our mmap & fault handler */
1135 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1137 return 0;
1139 out_free_mm:
1140 drm_mm_put_block(list->file_offset_node);
1141 out_free_list:
1142 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
1144 return ret;
1147 static void
1148 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1150 struct drm_device *dev = obj->dev;
1151 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1152 struct drm_gem_mm *mm = dev->mm_private;
1153 struct drm_map_list *list;
1155 list = &obj->map_list;
1156 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1158 if (list->file_offset_node) {
1159 drm_mm_put_block(list->file_offset_node);
1160 list->file_offset_node = NULL;
1163 if (list->map) {
1164 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
1165 list->map = NULL;
1168 obj_priv->mmap_offset = 0;
1172 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1173 * @obj: object to check
1175 * Return the required GTT alignment for an object, taking into account
1176 * potential fence register mapping if needed.
1178 static uint32_t
1179 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1181 struct drm_device *dev = obj->dev;
1182 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1183 int start, i;
1186 * Minimum alignment is 4k (GTT page size), but might be greater
1187 * if a fence register is needed for the object.
1189 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1190 return 4096;
1193 * Previous chips need to be aligned to the size of the smallest
1194 * fence register that can contain the object.
1196 if (IS_I9XX(dev))
1197 start = 1024*1024;
1198 else
1199 start = 512*1024;
1201 for (i = start; i < obj->size; i <<= 1)
1204 return i;
1208 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1209 * @dev: DRM device
1210 * @data: GTT mapping ioctl data
1211 * @file_priv: GEM object info
1213 * Simply returns the fake offset to userspace so it can mmap it.
1214 * The mmap call will end up in drm_gem_mmap(), which will set things
1215 * up so we can get faults in the handler above.
1217 * The fault handler will take care of binding the object into the GTT
1218 * (since it may have been evicted to make room for something), allocating
1219 * a fence register, and mapping the appropriate aperture address into
1220 * userspace.
1223 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1224 struct drm_file *file_priv)
1226 struct drm_i915_gem_mmap_gtt *args = data;
1227 struct drm_i915_private *dev_priv = dev->dev_private;
1228 struct drm_gem_object *obj;
1229 struct drm_i915_gem_object *obj_priv;
1230 int ret;
1232 if (!(dev->driver->driver_features & DRIVER_GEM))
1233 return -ENODEV;
1235 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1236 if (obj == NULL)
1237 return -EBADF;
1239 mutex_lock(&dev->struct_mutex);
1241 obj_priv = obj->driver_private;
1243 if (!obj_priv->mmap_offset) {
1244 ret = i915_gem_create_mmap_offset(obj);
1245 if (ret) {
1246 drm_gem_object_unreference(obj);
1247 mutex_unlock(&dev->struct_mutex);
1248 return ret;
1252 args->offset = obj_priv->mmap_offset;
1254 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1256 /* Make sure the alignment is correct for fence regs etc */
1257 if (obj_priv->agp_mem &&
1258 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1259 drm_gem_object_unreference(obj);
1260 mutex_unlock(&dev->struct_mutex);
1261 return -EINVAL;
1265 * Pull it into the GTT so that we have a page list (makes the
1266 * initial fault faster and any subsequent flushing possible).
1268 if (!obj_priv->agp_mem) {
1269 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1270 if (ret) {
1271 drm_gem_object_unreference(obj);
1272 mutex_unlock(&dev->struct_mutex);
1273 return ret;
1275 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
1278 drm_gem_object_unreference(obj);
1279 mutex_unlock(&dev->struct_mutex);
1281 return 0;
1284 static void
1285 i915_gem_object_put_pages(struct drm_gem_object *obj)
1287 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1288 int page_count = obj->size / PAGE_SIZE;
1289 int i;
1291 BUG_ON(obj_priv->pages_refcount == 0);
1293 if (--obj_priv->pages_refcount != 0)
1294 return;
1296 for (i = 0; i < page_count; i++)
1297 if (obj_priv->pages[i] != NULL) {
1298 if (obj_priv->dirty)
1299 set_page_dirty(obj_priv->pages[i]);
1300 mark_page_accessed(obj_priv->pages[i]);
1301 page_cache_release(obj_priv->pages[i]);
1303 obj_priv->dirty = 0;
1305 drm_free(obj_priv->pages,
1306 page_count * sizeof(struct page *),
1307 DRM_MEM_DRIVER);
1308 obj_priv->pages = NULL;
1311 static void
1312 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1314 struct drm_device *dev = obj->dev;
1315 drm_i915_private_t *dev_priv = dev->dev_private;
1316 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1318 /* Add a reference if we're newly entering the active list. */
1319 if (!obj_priv->active) {
1320 drm_gem_object_reference(obj);
1321 obj_priv->active = 1;
1323 /* Move from whatever list we were on to the tail of execution. */
1324 list_move_tail(&obj_priv->list,
1325 &dev_priv->mm.active_list);
1326 obj_priv->last_rendering_seqno = seqno;
1329 static void
1330 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1332 struct drm_device *dev = obj->dev;
1333 drm_i915_private_t *dev_priv = dev->dev_private;
1334 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1336 BUG_ON(!obj_priv->active);
1337 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1338 obj_priv->last_rendering_seqno = 0;
1341 static void
1342 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1344 struct drm_device *dev = obj->dev;
1345 drm_i915_private_t *dev_priv = dev->dev_private;
1346 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1348 i915_verify_inactive(dev, __FILE__, __LINE__);
1349 if (obj_priv->pin_count != 0)
1350 list_del_init(&obj_priv->list);
1351 else
1352 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1354 obj_priv->last_rendering_seqno = 0;
1355 if (obj_priv->active) {
1356 obj_priv->active = 0;
1357 drm_gem_object_unreference(obj);
1359 i915_verify_inactive(dev, __FILE__, __LINE__);
1363 * Creates a new sequence number, emitting a write of it to the status page
1364 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1366 * Must be called with struct_lock held.
1368 * Returned sequence numbers are nonzero on success.
1370 static uint32_t
1371 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
1373 drm_i915_private_t *dev_priv = dev->dev_private;
1374 struct drm_i915_gem_request *request;
1375 uint32_t seqno;
1376 int was_empty;
1377 RING_LOCALS;
1379 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
1380 if (request == NULL)
1381 return 0;
1383 /* Grab the seqno we're going to make this request be, and bump the
1384 * next (skipping 0 so it can be the reserved no-seqno value).
1386 seqno = dev_priv->mm.next_gem_seqno;
1387 dev_priv->mm.next_gem_seqno++;
1388 if (dev_priv->mm.next_gem_seqno == 0)
1389 dev_priv->mm.next_gem_seqno++;
1391 BEGIN_LP_RING(4);
1392 OUT_RING(MI_STORE_DWORD_INDEX);
1393 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1394 OUT_RING(seqno);
1396 OUT_RING(MI_USER_INTERRUPT);
1397 ADVANCE_LP_RING();
1399 DRM_DEBUG("%d\n", seqno);
1401 request->seqno = seqno;
1402 request->emitted_jiffies = jiffies;
1403 was_empty = list_empty(&dev_priv->mm.request_list);
1404 list_add_tail(&request->list, &dev_priv->mm.request_list);
1406 /* Associate any objects on the flushing list matching the write
1407 * domain we're flushing with our flush.
1409 if (flush_domains != 0) {
1410 struct drm_i915_gem_object *obj_priv, *next;
1412 list_for_each_entry_safe(obj_priv, next,
1413 &dev_priv->mm.flushing_list, list) {
1414 struct drm_gem_object *obj = obj_priv->obj;
1416 if ((obj->write_domain & flush_domains) ==
1417 obj->write_domain) {
1418 obj->write_domain = 0;
1419 i915_gem_object_move_to_active(obj, seqno);
1425 if (was_empty && !dev_priv->mm.suspended)
1426 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1427 return seqno;
1431 * Command execution barrier
1433 * Ensures that all commands in the ring are finished
1434 * before signalling the CPU
1436 static uint32_t
1437 i915_retire_commands(struct drm_device *dev)
1439 drm_i915_private_t *dev_priv = dev->dev_private;
1440 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1441 uint32_t flush_domains = 0;
1442 RING_LOCALS;
1444 /* The sampler always gets flushed on i965 (sigh) */
1445 if (IS_I965G(dev))
1446 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1447 BEGIN_LP_RING(2);
1448 OUT_RING(cmd);
1449 OUT_RING(0); /* noop */
1450 ADVANCE_LP_RING();
1451 return flush_domains;
1455 * Moves buffers associated only with the given active seqno from the active
1456 * to inactive list, potentially freeing them.
1458 static void
1459 i915_gem_retire_request(struct drm_device *dev,
1460 struct drm_i915_gem_request *request)
1462 drm_i915_private_t *dev_priv = dev->dev_private;
1464 /* Move any buffers on the active list that are no longer referenced
1465 * by the ringbuffer to the flushing/inactive lists as appropriate.
1467 while (!list_empty(&dev_priv->mm.active_list)) {
1468 struct drm_gem_object *obj;
1469 struct drm_i915_gem_object *obj_priv;
1471 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1472 struct drm_i915_gem_object,
1473 list);
1474 obj = obj_priv->obj;
1476 /* If the seqno being retired doesn't match the oldest in the
1477 * list, then the oldest in the list must still be newer than
1478 * this seqno.
1480 if (obj_priv->last_rendering_seqno != request->seqno)
1481 return;
1483 #if WATCH_LRU
1484 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1485 __func__, request->seqno, obj);
1486 #endif
1488 if (obj->write_domain != 0)
1489 i915_gem_object_move_to_flushing(obj);
1490 else
1491 i915_gem_object_move_to_inactive(obj);
1496 * Returns true if seq1 is later than seq2.
1498 static int
1499 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1501 return (int32_t)(seq1 - seq2) >= 0;
1504 uint32_t
1505 i915_get_gem_seqno(struct drm_device *dev)
1507 drm_i915_private_t *dev_priv = dev->dev_private;
1509 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1513 * This function clears the request list as sequence numbers are passed.
1515 void
1516 i915_gem_retire_requests(struct drm_device *dev)
1518 drm_i915_private_t *dev_priv = dev->dev_private;
1519 uint32_t seqno;
1521 if (!dev_priv->hw_status_page)
1522 return;
1524 seqno = i915_get_gem_seqno(dev);
1526 while (!list_empty(&dev_priv->mm.request_list)) {
1527 struct drm_i915_gem_request *request;
1528 uint32_t retiring_seqno;
1530 request = list_first_entry(&dev_priv->mm.request_list,
1531 struct drm_i915_gem_request,
1532 list);
1533 retiring_seqno = request->seqno;
1535 if (i915_seqno_passed(seqno, retiring_seqno) ||
1536 dev_priv->mm.wedged) {
1537 i915_gem_retire_request(dev, request);
1539 list_del(&request->list);
1540 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1541 } else
1542 break;
1546 void
1547 i915_gem_retire_work_handler(struct work_struct *work)
1549 drm_i915_private_t *dev_priv;
1550 struct drm_device *dev;
1552 dev_priv = container_of(work, drm_i915_private_t,
1553 mm.retire_work.work);
1554 dev = dev_priv->dev;
1556 mutex_lock(&dev->struct_mutex);
1557 i915_gem_retire_requests(dev);
1558 if (!dev_priv->mm.suspended &&
1559 !list_empty(&dev_priv->mm.request_list))
1560 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1561 mutex_unlock(&dev->struct_mutex);
1565 * Waits for a sequence number to be signaled, and cleans up the
1566 * request and object lists appropriately for that event.
1568 static int
1569 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1571 drm_i915_private_t *dev_priv = dev->dev_private;
1572 int ret = 0;
1574 BUG_ON(seqno == 0);
1576 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1577 dev_priv->mm.waiting_gem_seqno = seqno;
1578 i915_user_irq_get(dev);
1579 ret = wait_event_interruptible(dev_priv->irq_queue,
1580 i915_seqno_passed(i915_get_gem_seqno(dev),
1581 seqno) ||
1582 dev_priv->mm.wedged);
1583 i915_user_irq_put(dev);
1584 dev_priv->mm.waiting_gem_seqno = 0;
1586 if (dev_priv->mm.wedged)
1587 ret = -EIO;
1589 if (ret && ret != -ERESTARTSYS)
1590 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1591 __func__, ret, seqno, i915_get_gem_seqno(dev));
1593 /* Directly dispatch request retiring. While we have the work queue
1594 * to handle this, the waiter on a request often wants an associated
1595 * buffer to have made it to the inactive list, and we would need
1596 * a separate wait queue to handle that.
1598 if (ret == 0)
1599 i915_gem_retire_requests(dev);
1601 return ret;
1604 static void
1605 i915_gem_flush(struct drm_device *dev,
1606 uint32_t invalidate_domains,
1607 uint32_t flush_domains)
1609 drm_i915_private_t *dev_priv = dev->dev_private;
1610 uint32_t cmd;
1611 RING_LOCALS;
1613 #if WATCH_EXEC
1614 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1615 invalidate_domains, flush_domains);
1616 #endif
1618 if (flush_domains & I915_GEM_DOMAIN_CPU)
1619 drm_agp_chipset_flush(dev);
1621 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1622 I915_GEM_DOMAIN_GTT)) {
1624 * read/write caches:
1626 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1627 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1628 * also flushed at 2d versus 3d pipeline switches.
1630 * read-only caches:
1632 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1633 * MI_READ_FLUSH is set, and is always flushed on 965.
1635 * I915_GEM_DOMAIN_COMMAND may not exist?
1637 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1638 * invalidated when MI_EXE_FLUSH is set.
1640 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1641 * invalidated with every MI_FLUSH.
1643 * TLBs:
1645 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1646 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1647 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1648 * are flushed at any MI_FLUSH.
1651 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1652 if ((invalidate_domains|flush_domains) &
1653 I915_GEM_DOMAIN_RENDER)
1654 cmd &= ~MI_NO_WRITE_FLUSH;
1655 if (!IS_I965G(dev)) {
1657 * On the 965, the sampler cache always gets flushed
1658 * and this bit is reserved.
1660 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1661 cmd |= MI_READ_FLUSH;
1663 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1664 cmd |= MI_EXE_FLUSH;
1666 #if WATCH_EXEC
1667 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1668 #endif
1669 BEGIN_LP_RING(2);
1670 OUT_RING(cmd);
1671 OUT_RING(0); /* noop */
1672 ADVANCE_LP_RING();
1677 * Ensures that all rendering to the object has completed and the object is
1678 * safe to unbind from the GTT or access from the CPU.
1680 static int
1681 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1683 struct drm_device *dev = obj->dev;
1684 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1685 int ret;
1687 /* This function only exists to support waiting for existing rendering,
1688 * not for emitting required flushes.
1690 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1692 /* If there is rendering queued on the buffer being evicted, wait for
1693 * it.
1695 if (obj_priv->active) {
1696 #if WATCH_BUF
1697 DRM_INFO("%s: object %p wait for seqno %08x\n",
1698 __func__, obj, obj_priv->last_rendering_seqno);
1699 #endif
1700 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1701 if (ret != 0)
1702 return ret;
1705 return 0;
1709 * Unbinds an object from the GTT aperture.
1712 i915_gem_object_unbind(struct drm_gem_object *obj)
1714 struct drm_device *dev = obj->dev;
1715 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1716 loff_t offset;
1717 int ret = 0;
1719 #if WATCH_BUF
1720 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1721 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1722 #endif
1723 if (obj_priv->gtt_space == NULL)
1724 return 0;
1726 if (obj_priv->pin_count != 0) {
1727 DRM_ERROR("Attempting to unbind pinned buffer\n");
1728 return -EINVAL;
1731 /* Move the object to the CPU domain to ensure that
1732 * any possible CPU writes while it's not in the GTT
1733 * are flushed when we go to remap it. This will
1734 * also ensure that all pending GPU writes are finished
1735 * before we unbind.
1737 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1738 if (ret) {
1739 if (ret != -ERESTARTSYS)
1740 DRM_ERROR("set_domain failed: %d\n", ret);
1741 return ret;
1744 if (obj_priv->agp_mem != NULL) {
1745 drm_unbind_agp(obj_priv->agp_mem);
1746 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1747 obj_priv->agp_mem = NULL;
1750 BUG_ON(obj_priv->active);
1752 /* blow away mappings if mapped through GTT */
1753 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1754 if (dev->dev_mapping)
1755 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1757 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1758 i915_gem_clear_fence_reg(obj);
1760 i915_gem_object_put_pages(obj);
1762 if (obj_priv->gtt_space) {
1763 atomic_dec(&dev->gtt_count);
1764 atomic_sub(obj->size, &dev->gtt_memory);
1766 drm_mm_put_block(obj_priv->gtt_space);
1767 obj_priv->gtt_space = NULL;
1770 /* Remove ourselves from the LRU list if present. */
1771 if (!list_empty(&obj_priv->list))
1772 list_del_init(&obj_priv->list);
1774 return 0;
1777 static int
1778 i915_gem_evict_something(struct drm_device *dev)
1780 drm_i915_private_t *dev_priv = dev->dev_private;
1781 struct drm_gem_object *obj;
1782 struct drm_i915_gem_object *obj_priv;
1783 int ret = 0;
1785 for (;;) {
1786 /* If there's an inactive buffer available now, grab it
1787 * and be done.
1789 if (!list_empty(&dev_priv->mm.inactive_list)) {
1790 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1791 struct drm_i915_gem_object,
1792 list);
1793 obj = obj_priv->obj;
1794 BUG_ON(obj_priv->pin_count != 0);
1795 #if WATCH_LRU
1796 DRM_INFO("%s: evicting %p\n", __func__, obj);
1797 #endif
1798 BUG_ON(obj_priv->active);
1800 /* Wait on the rendering and unbind the buffer. */
1801 ret = i915_gem_object_unbind(obj);
1802 break;
1805 /* If we didn't get anything, but the ring is still processing
1806 * things, wait for one of those things to finish and hopefully
1807 * leave us a buffer to evict.
1809 if (!list_empty(&dev_priv->mm.request_list)) {
1810 struct drm_i915_gem_request *request;
1812 request = list_first_entry(&dev_priv->mm.request_list,
1813 struct drm_i915_gem_request,
1814 list);
1816 ret = i915_wait_request(dev, request->seqno);
1817 if (ret)
1818 break;
1820 /* if waiting caused an object to become inactive,
1821 * then loop around and wait for it. Otherwise, we
1822 * assume that waiting freed and unbound something,
1823 * so there should now be some space in the GTT
1825 if (!list_empty(&dev_priv->mm.inactive_list))
1826 continue;
1827 break;
1830 /* If we didn't have anything on the request list but there
1831 * are buffers awaiting a flush, emit one and try again.
1832 * When we wait on it, those buffers waiting for that flush
1833 * will get moved to inactive.
1835 if (!list_empty(&dev_priv->mm.flushing_list)) {
1836 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1837 struct drm_i915_gem_object,
1838 list);
1839 obj = obj_priv->obj;
1841 i915_gem_flush(dev,
1842 obj->write_domain,
1843 obj->write_domain);
1844 i915_add_request(dev, obj->write_domain);
1846 obj = NULL;
1847 continue;
1850 DRM_ERROR("inactive empty %d request empty %d "
1851 "flushing empty %d\n",
1852 list_empty(&dev_priv->mm.inactive_list),
1853 list_empty(&dev_priv->mm.request_list),
1854 list_empty(&dev_priv->mm.flushing_list));
1855 /* If we didn't do any of the above, there's nothing to be done
1856 * and we just can't fit it in.
1858 return -ENOMEM;
1860 return ret;
1863 static int
1864 i915_gem_evict_everything(struct drm_device *dev)
1866 int ret;
1868 for (;;) {
1869 ret = i915_gem_evict_something(dev);
1870 if (ret != 0)
1871 break;
1873 if (ret == -ENOMEM)
1874 return 0;
1875 return ret;
1878 static int
1879 i915_gem_object_get_pages(struct drm_gem_object *obj)
1881 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1882 int page_count, i;
1883 struct address_space *mapping;
1884 struct inode *inode;
1885 struct page *page;
1886 int ret;
1888 if (obj_priv->pages_refcount++ != 0)
1889 return 0;
1891 /* Get the list of pages out of our struct file. They'll be pinned
1892 * at this point until we release them.
1894 page_count = obj->size / PAGE_SIZE;
1895 BUG_ON(obj_priv->pages != NULL);
1896 obj_priv->pages = drm_calloc(page_count, sizeof(struct page *),
1897 DRM_MEM_DRIVER);
1898 if (obj_priv->pages == NULL) {
1899 DRM_ERROR("Faled to allocate page list\n");
1900 obj_priv->pages_refcount--;
1901 return -ENOMEM;
1904 inode = obj->filp->f_path.dentry->d_inode;
1905 mapping = inode->i_mapping;
1906 for (i = 0; i < page_count; i++) {
1907 page = read_mapping_page(mapping, i, NULL);
1908 if (IS_ERR(page)) {
1909 ret = PTR_ERR(page);
1910 DRM_ERROR("read_mapping_page failed: %d\n", ret);
1911 i915_gem_object_put_pages(obj);
1912 return ret;
1914 obj_priv->pages[i] = page;
1916 return 0;
1919 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
1921 struct drm_gem_object *obj = reg->obj;
1922 struct drm_device *dev = obj->dev;
1923 drm_i915_private_t *dev_priv = dev->dev_private;
1924 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1925 int regnum = obj_priv->fence_reg;
1926 uint64_t val;
1928 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
1929 0xfffff000) << 32;
1930 val |= obj_priv->gtt_offset & 0xfffff000;
1931 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
1932 if (obj_priv->tiling_mode == I915_TILING_Y)
1933 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1934 val |= I965_FENCE_REG_VALID;
1936 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
1939 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
1941 struct drm_gem_object *obj = reg->obj;
1942 struct drm_device *dev = obj->dev;
1943 drm_i915_private_t *dev_priv = dev->dev_private;
1944 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1945 int regnum = obj_priv->fence_reg;
1946 int tile_width;
1947 uint32_t fence_reg, val;
1948 uint32_t pitch_val;
1950 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1951 (obj_priv->gtt_offset & (obj->size - 1))) {
1952 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
1953 __func__, obj_priv->gtt_offset, obj->size);
1954 return;
1957 if (obj_priv->tiling_mode == I915_TILING_Y &&
1958 HAS_128_BYTE_Y_TILING(dev))
1959 tile_width = 128;
1960 else
1961 tile_width = 512;
1963 /* Note: pitch better be a power of two tile widths */
1964 pitch_val = obj_priv->stride / tile_width;
1965 pitch_val = ffs(pitch_val) - 1;
1967 val = obj_priv->gtt_offset;
1968 if (obj_priv->tiling_mode == I915_TILING_Y)
1969 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1970 val |= I915_FENCE_SIZE_BITS(obj->size);
1971 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1972 val |= I830_FENCE_REG_VALID;
1974 if (regnum < 8)
1975 fence_reg = FENCE_REG_830_0 + (regnum * 4);
1976 else
1977 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
1978 I915_WRITE(fence_reg, val);
1981 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
1983 struct drm_gem_object *obj = reg->obj;
1984 struct drm_device *dev = obj->dev;
1985 drm_i915_private_t *dev_priv = dev->dev_private;
1986 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1987 int regnum = obj_priv->fence_reg;
1988 uint32_t val;
1989 uint32_t pitch_val;
1991 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1992 (obj_priv->gtt_offset & (obj->size - 1))) {
1993 WARN(1, "%s: object 0x%08x not 1M or size aligned\n",
1994 __func__, obj_priv->gtt_offset);
1995 return;
1998 pitch_val = (obj_priv->stride / 128) - 1;
2000 val = obj_priv->gtt_offset;
2001 if (obj_priv->tiling_mode == I915_TILING_Y)
2002 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2003 val |= I830_FENCE_SIZE_BITS(obj->size);
2004 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2005 val |= I830_FENCE_REG_VALID;
2007 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2012 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2013 * @obj: object to map through a fence reg
2014 * @write: object is about to be written
2016 * When mapping objects through the GTT, userspace wants to be able to write
2017 * to them without having to worry about swizzling if the object is tiled.
2019 * This function walks the fence regs looking for a free one for @obj,
2020 * stealing one if it can't find any.
2022 * It then sets up the reg based on the object's properties: address, pitch
2023 * and tiling format.
2025 static int
2026 i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
2028 struct drm_device *dev = obj->dev;
2029 struct drm_i915_private *dev_priv = dev->dev_private;
2030 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2031 struct drm_i915_fence_reg *reg = NULL;
2032 struct drm_i915_gem_object *old_obj_priv = NULL;
2033 int i, ret, avail;
2035 switch (obj_priv->tiling_mode) {
2036 case I915_TILING_NONE:
2037 WARN(1, "allocating a fence for non-tiled object?\n");
2038 break;
2039 case I915_TILING_X:
2040 if (!obj_priv->stride)
2041 return -EINVAL;
2042 WARN((obj_priv->stride & (512 - 1)),
2043 "object 0x%08x is X tiled but has non-512B pitch\n",
2044 obj_priv->gtt_offset);
2045 break;
2046 case I915_TILING_Y:
2047 if (!obj_priv->stride)
2048 return -EINVAL;
2049 WARN((obj_priv->stride & (128 - 1)),
2050 "object 0x%08x is Y tiled but has non-128B pitch\n",
2051 obj_priv->gtt_offset);
2052 break;
2055 /* First try to find a free reg */
2056 try_again:
2057 avail = 0;
2058 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2059 reg = &dev_priv->fence_regs[i];
2060 if (!reg->obj)
2061 break;
2063 old_obj_priv = reg->obj->driver_private;
2064 if (!old_obj_priv->pin_count)
2065 avail++;
2068 /* None available, try to steal one or wait for a user to finish */
2069 if (i == dev_priv->num_fence_regs) {
2070 uint32_t seqno = dev_priv->mm.next_gem_seqno;
2071 loff_t offset;
2073 if (avail == 0)
2074 return -ENOMEM;
2076 for (i = dev_priv->fence_reg_start;
2077 i < dev_priv->num_fence_regs; i++) {
2078 uint32_t this_seqno;
2080 reg = &dev_priv->fence_regs[i];
2081 old_obj_priv = reg->obj->driver_private;
2083 if (old_obj_priv->pin_count)
2084 continue;
2086 /* i915 uses fences for GPU access to tiled buffers */
2087 if (IS_I965G(dev) || !old_obj_priv->active)
2088 break;
2090 /* find the seqno of the first available fence */
2091 this_seqno = old_obj_priv->last_rendering_seqno;
2092 if (this_seqno != 0 &&
2093 reg->obj->write_domain == 0 &&
2094 i915_seqno_passed(seqno, this_seqno))
2095 seqno = this_seqno;
2099 * Now things get ugly... we have to wait for one of the
2100 * objects to finish before trying again.
2102 if (i == dev_priv->num_fence_regs) {
2103 if (seqno == dev_priv->mm.next_gem_seqno) {
2104 i915_gem_flush(dev,
2105 I915_GEM_GPU_DOMAINS,
2106 I915_GEM_GPU_DOMAINS);
2107 seqno = i915_add_request(dev,
2108 I915_GEM_GPU_DOMAINS);
2109 if (seqno == 0)
2110 return -ENOMEM;
2113 ret = i915_wait_request(dev, seqno);
2114 if (ret)
2115 return ret;
2116 goto try_again;
2119 BUG_ON(old_obj_priv->active ||
2120 (reg->obj->write_domain & I915_GEM_GPU_DOMAINS));
2123 * Zap this virtual mapping so we can set up a fence again
2124 * for this object next time we need it.
2126 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
2127 if (dev->dev_mapping)
2128 unmap_mapping_range(dev->dev_mapping, offset,
2129 reg->obj->size, 1);
2130 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2133 obj_priv->fence_reg = i;
2134 reg->obj = obj;
2136 if (IS_I965G(dev))
2137 i965_write_fence_reg(reg);
2138 else if (IS_I9XX(dev))
2139 i915_write_fence_reg(reg);
2140 else
2141 i830_write_fence_reg(reg);
2143 return 0;
2147 * i915_gem_clear_fence_reg - clear out fence register info
2148 * @obj: object to clear
2150 * Zeroes out the fence register itself and clears out the associated
2151 * data structures in dev_priv and obj_priv.
2153 static void
2154 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2156 struct drm_device *dev = obj->dev;
2157 drm_i915_private_t *dev_priv = dev->dev_private;
2158 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2160 if (IS_I965G(dev))
2161 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2162 else {
2163 uint32_t fence_reg;
2165 if (obj_priv->fence_reg < 8)
2166 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2167 else
2168 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2169 8) * 4;
2171 I915_WRITE(fence_reg, 0);
2174 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2175 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2179 * Finds free space in the GTT aperture and binds the object there.
2181 static int
2182 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2184 struct drm_device *dev = obj->dev;
2185 drm_i915_private_t *dev_priv = dev->dev_private;
2186 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2187 struct drm_mm_node *free_space;
2188 int page_count, ret;
2190 if (dev_priv->mm.suspended)
2191 return -EBUSY;
2192 if (alignment == 0)
2193 alignment = i915_gem_get_gtt_alignment(obj);
2194 if (alignment & (PAGE_SIZE - 1)) {
2195 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2196 return -EINVAL;
2199 search_free:
2200 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2201 obj->size, alignment, 0);
2202 if (free_space != NULL) {
2203 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2204 alignment);
2205 if (obj_priv->gtt_space != NULL) {
2206 obj_priv->gtt_space->private = obj;
2207 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2210 if (obj_priv->gtt_space == NULL) {
2211 /* If the gtt is empty and we're still having trouble
2212 * fitting our object in, we're out of memory.
2214 #if WATCH_LRU
2215 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2216 #endif
2217 if (list_empty(&dev_priv->mm.inactive_list) &&
2218 list_empty(&dev_priv->mm.flushing_list) &&
2219 list_empty(&dev_priv->mm.active_list)) {
2220 DRM_ERROR("GTT full, but LRU list empty\n");
2221 return -ENOMEM;
2224 ret = i915_gem_evict_something(dev);
2225 if (ret != 0) {
2226 if (ret != -ERESTARTSYS)
2227 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2228 return ret;
2230 goto search_free;
2233 #if WATCH_BUF
2234 DRM_INFO("Binding object of size %d at 0x%08x\n",
2235 obj->size, obj_priv->gtt_offset);
2236 #endif
2237 ret = i915_gem_object_get_pages(obj);
2238 if (ret) {
2239 drm_mm_put_block(obj_priv->gtt_space);
2240 obj_priv->gtt_space = NULL;
2241 return ret;
2244 page_count = obj->size / PAGE_SIZE;
2245 /* Create an AGP memory structure pointing at our pages, and bind it
2246 * into the GTT.
2248 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2249 obj_priv->pages,
2250 page_count,
2251 obj_priv->gtt_offset,
2252 obj_priv->agp_type);
2253 if (obj_priv->agp_mem == NULL) {
2254 i915_gem_object_put_pages(obj);
2255 drm_mm_put_block(obj_priv->gtt_space);
2256 obj_priv->gtt_space = NULL;
2257 return -ENOMEM;
2259 atomic_inc(&dev->gtt_count);
2260 atomic_add(obj->size, &dev->gtt_memory);
2262 /* Assert that the object is not currently in any GPU domain. As it
2263 * wasn't in the GTT, there shouldn't be any way it could have been in
2264 * a GPU cache
2266 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2267 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2269 return 0;
2272 void
2273 i915_gem_clflush_object(struct drm_gem_object *obj)
2275 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2277 /* If we don't have a page list set up, then we're not pinned
2278 * to GPU, and we can ignore the cache flush because it'll happen
2279 * again at bind time.
2281 if (obj_priv->pages == NULL)
2282 return;
2284 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2287 /** Flushes any GPU write domain for the object if it's dirty. */
2288 static void
2289 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2291 struct drm_device *dev = obj->dev;
2292 uint32_t seqno;
2294 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2295 return;
2297 /* Queue the GPU write cache flushing we need. */
2298 i915_gem_flush(dev, 0, obj->write_domain);
2299 seqno = i915_add_request(dev, obj->write_domain);
2300 obj->write_domain = 0;
2301 i915_gem_object_move_to_active(obj, seqno);
2304 /** Flushes the GTT write domain for the object if it's dirty. */
2305 static void
2306 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2308 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2309 return;
2311 /* No actual flushing is required for the GTT write domain. Writes
2312 * to it immediately go to main memory as far as we know, so there's
2313 * no chipset flush. It also doesn't land in render cache.
2315 obj->write_domain = 0;
2318 /** Flushes the CPU write domain for the object if it's dirty. */
2319 static void
2320 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2322 struct drm_device *dev = obj->dev;
2324 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2325 return;
2327 i915_gem_clflush_object(obj);
2328 drm_agp_chipset_flush(dev);
2329 obj->write_domain = 0;
2333 * Moves a single object to the GTT read, and possibly write domain.
2335 * This function returns when the move is complete, including waiting on
2336 * flushes to occur.
2339 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2341 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2342 int ret;
2344 /* Not valid to be called on unbound objects. */
2345 if (obj_priv->gtt_space == NULL)
2346 return -EINVAL;
2348 i915_gem_object_flush_gpu_write_domain(obj);
2349 /* Wait on any GPU rendering and flushing to occur. */
2350 ret = i915_gem_object_wait_rendering(obj);
2351 if (ret != 0)
2352 return ret;
2354 /* If we're writing through the GTT domain, then CPU and GPU caches
2355 * will need to be invalidated at next use.
2357 if (write)
2358 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2360 i915_gem_object_flush_cpu_write_domain(obj);
2362 /* It should now be out of any other write domains, and we can update
2363 * the domain values for our changes.
2365 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2366 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2367 if (write) {
2368 obj->write_domain = I915_GEM_DOMAIN_GTT;
2369 obj_priv->dirty = 1;
2372 return 0;
2376 * Moves a single object to the CPU read, and possibly write domain.
2378 * This function returns when the move is complete, including waiting on
2379 * flushes to occur.
2381 static int
2382 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2384 struct drm_device *dev = obj->dev;
2385 int ret;
2387 i915_gem_object_flush_gpu_write_domain(obj);
2388 /* Wait on any GPU rendering and flushing to occur. */
2389 ret = i915_gem_object_wait_rendering(obj);
2390 if (ret != 0)
2391 return ret;
2393 i915_gem_object_flush_gtt_write_domain(obj);
2395 /* If we have a partially-valid cache of the object in the CPU,
2396 * finish invalidating it and free the per-page flags.
2398 i915_gem_object_set_to_full_cpu_read_domain(obj);
2400 /* Flush the CPU cache if it's still invalid. */
2401 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2402 i915_gem_clflush_object(obj);
2403 drm_agp_chipset_flush(dev);
2405 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2408 /* It should now be out of any other write domains, and we can update
2409 * the domain values for our changes.
2411 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2413 /* If we're writing through the CPU, then the GPU read domains will
2414 * need to be invalidated at next use.
2416 if (write) {
2417 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2418 obj->write_domain = I915_GEM_DOMAIN_CPU;
2421 return 0;
2425 * Set the next domain for the specified object. This
2426 * may not actually perform the necessary flushing/invaliding though,
2427 * as that may want to be batched with other set_domain operations
2429 * This is (we hope) the only really tricky part of gem. The goal
2430 * is fairly simple -- track which caches hold bits of the object
2431 * and make sure they remain coherent. A few concrete examples may
2432 * help to explain how it works. For shorthand, we use the notation
2433 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2434 * a pair of read and write domain masks.
2436 * Case 1: the batch buffer
2438 * 1. Allocated
2439 * 2. Written by CPU
2440 * 3. Mapped to GTT
2441 * 4. Read by GPU
2442 * 5. Unmapped from GTT
2443 * 6. Freed
2445 * Let's take these a step at a time
2447 * 1. Allocated
2448 * Pages allocated from the kernel may still have
2449 * cache contents, so we set them to (CPU, CPU) always.
2450 * 2. Written by CPU (using pwrite)
2451 * The pwrite function calls set_domain (CPU, CPU) and
2452 * this function does nothing (as nothing changes)
2453 * 3. Mapped by GTT
2454 * This function asserts that the object is not
2455 * currently in any GPU-based read or write domains
2456 * 4. Read by GPU
2457 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2458 * As write_domain is zero, this function adds in the
2459 * current read domains (CPU+COMMAND, 0).
2460 * flush_domains is set to CPU.
2461 * invalidate_domains is set to COMMAND
2462 * clflush is run to get data out of the CPU caches
2463 * then i915_dev_set_domain calls i915_gem_flush to
2464 * emit an MI_FLUSH and drm_agp_chipset_flush
2465 * 5. Unmapped from GTT
2466 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2467 * flush_domains and invalidate_domains end up both zero
2468 * so no flushing/invalidating happens
2469 * 6. Freed
2470 * yay, done
2472 * Case 2: The shared render buffer
2474 * 1. Allocated
2475 * 2. Mapped to GTT
2476 * 3. Read/written by GPU
2477 * 4. set_domain to (CPU,CPU)
2478 * 5. Read/written by CPU
2479 * 6. Read/written by GPU
2481 * 1. Allocated
2482 * Same as last example, (CPU, CPU)
2483 * 2. Mapped to GTT
2484 * Nothing changes (assertions find that it is not in the GPU)
2485 * 3. Read/written by GPU
2486 * execbuffer calls set_domain (RENDER, RENDER)
2487 * flush_domains gets CPU
2488 * invalidate_domains gets GPU
2489 * clflush (obj)
2490 * MI_FLUSH and drm_agp_chipset_flush
2491 * 4. set_domain (CPU, CPU)
2492 * flush_domains gets GPU
2493 * invalidate_domains gets CPU
2494 * wait_rendering (obj) to make sure all drawing is complete.
2495 * This will include an MI_FLUSH to get the data from GPU
2496 * to memory
2497 * clflush (obj) to invalidate the CPU cache
2498 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2499 * 5. Read/written by CPU
2500 * cache lines are loaded and dirtied
2501 * 6. Read written by GPU
2502 * Same as last GPU access
2504 * Case 3: The constant buffer
2506 * 1. Allocated
2507 * 2. Written by CPU
2508 * 3. Read by GPU
2509 * 4. Updated (written) by CPU again
2510 * 5. Read by GPU
2512 * 1. Allocated
2513 * (CPU, CPU)
2514 * 2. Written by CPU
2515 * (CPU, CPU)
2516 * 3. Read by GPU
2517 * (CPU+RENDER, 0)
2518 * flush_domains = CPU
2519 * invalidate_domains = RENDER
2520 * clflush (obj)
2521 * MI_FLUSH
2522 * drm_agp_chipset_flush
2523 * 4. Updated (written) by CPU again
2524 * (CPU, CPU)
2525 * flush_domains = 0 (no previous write domain)
2526 * invalidate_domains = 0 (no new read domains)
2527 * 5. Read by GPU
2528 * (CPU+RENDER, 0)
2529 * flush_domains = CPU
2530 * invalidate_domains = RENDER
2531 * clflush (obj)
2532 * MI_FLUSH
2533 * drm_agp_chipset_flush
2535 static void
2536 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2538 struct drm_device *dev = obj->dev;
2539 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2540 uint32_t invalidate_domains = 0;
2541 uint32_t flush_domains = 0;
2543 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2544 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2546 #if WATCH_BUF
2547 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2548 __func__, obj,
2549 obj->read_domains, obj->pending_read_domains,
2550 obj->write_domain, obj->pending_write_domain);
2551 #endif
2553 * If the object isn't moving to a new write domain,
2554 * let the object stay in multiple read domains
2556 if (obj->pending_write_domain == 0)
2557 obj->pending_read_domains |= obj->read_domains;
2558 else
2559 obj_priv->dirty = 1;
2562 * Flush the current write domain if
2563 * the new read domains don't match. Invalidate
2564 * any read domains which differ from the old
2565 * write domain
2567 if (obj->write_domain &&
2568 obj->write_domain != obj->pending_read_domains) {
2569 flush_domains |= obj->write_domain;
2570 invalidate_domains |=
2571 obj->pending_read_domains & ~obj->write_domain;
2574 * Invalidate any read caches which may have
2575 * stale data. That is, any new read domains.
2577 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2578 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2579 #if WATCH_BUF
2580 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2581 __func__, flush_domains, invalidate_domains);
2582 #endif
2583 i915_gem_clflush_object(obj);
2586 /* The actual obj->write_domain will be updated with
2587 * pending_write_domain after we emit the accumulated flush for all
2588 * of our domain changes in execbuffers (which clears objects'
2589 * write_domains). So if we have a current write domain that we
2590 * aren't changing, set pending_write_domain to that.
2592 if (flush_domains == 0 && obj->pending_write_domain == 0)
2593 obj->pending_write_domain = obj->write_domain;
2594 obj->read_domains = obj->pending_read_domains;
2596 dev->invalidate_domains |= invalidate_domains;
2597 dev->flush_domains |= flush_domains;
2598 #if WATCH_BUF
2599 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2600 __func__,
2601 obj->read_domains, obj->write_domain,
2602 dev->invalidate_domains, dev->flush_domains);
2603 #endif
2607 * Moves the object from a partially CPU read to a full one.
2609 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2610 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2612 static void
2613 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2615 struct drm_device *dev = obj->dev;
2616 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2618 if (!obj_priv->page_cpu_valid)
2619 return;
2621 /* If we're partially in the CPU read domain, finish moving it in.
2623 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2624 int i;
2626 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2627 if (obj_priv->page_cpu_valid[i])
2628 continue;
2629 drm_clflush_pages(obj_priv->pages + i, 1);
2631 drm_agp_chipset_flush(dev);
2634 /* Free the page_cpu_valid mappings which are now stale, whether
2635 * or not we've got I915_GEM_DOMAIN_CPU.
2637 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2638 DRM_MEM_DRIVER);
2639 obj_priv->page_cpu_valid = NULL;
2643 * Set the CPU read domain on a range of the object.
2645 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2646 * not entirely valid. The page_cpu_valid member of the object flags which
2647 * pages have been flushed, and will be respected by
2648 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2649 * of the whole object.
2651 * This function returns when the move is complete, including waiting on
2652 * flushes to occur.
2654 static int
2655 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2656 uint64_t offset, uint64_t size)
2658 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2659 int i, ret;
2661 if (offset == 0 && size == obj->size)
2662 return i915_gem_object_set_to_cpu_domain(obj, 0);
2664 i915_gem_object_flush_gpu_write_domain(obj);
2665 /* Wait on any GPU rendering and flushing to occur. */
2666 ret = i915_gem_object_wait_rendering(obj);
2667 if (ret != 0)
2668 return ret;
2669 i915_gem_object_flush_gtt_write_domain(obj);
2671 /* If we're already fully in the CPU read domain, we're done. */
2672 if (obj_priv->page_cpu_valid == NULL &&
2673 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2674 return 0;
2676 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2677 * newly adding I915_GEM_DOMAIN_CPU
2679 if (obj_priv->page_cpu_valid == NULL) {
2680 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2681 DRM_MEM_DRIVER);
2682 if (obj_priv->page_cpu_valid == NULL)
2683 return -ENOMEM;
2684 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2685 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2687 /* Flush the cache on any pages that are still invalid from the CPU's
2688 * perspective.
2690 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2691 i++) {
2692 if (obj_priv->page_cpu_valid[i])
2693 continue;
2695 drm_clflush_pages(obj_priv->pages + i, 1);
2697 obj_priv->page_cpu_valid[i] = 1;
2700 /* It should now be out of any other write domains, and we can update
2701 * the domain values for our changes.
2703 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2705 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2707 return 0;
2711 * Pin an object to the GTT and evaluate the relocations landing in it.
2713 static int
2714 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2715 struct drm_file *file_priv,
2716 struct drm_i915_gem_exec_object *entry,
2717 struct drm_i915_gem_relocation_entry *relocs)
2719 struct drm_device *dev = obj->dev;
2720 drm_i915_private_t *dev_priv = dev->dev_private;
2721 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2722 int i, ret;
2723 void __iomem *reloc_page;
2725 /* Choose the GTT offset for our buffer and put it there. */
2726 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2727 if (ret)
2728 return ret;
2730 entry->offset = obj_priv->gtt_offset;
2732 /* Apply the relocations, using the GTT aperture to avoid cache
2733 * flushing requirements.
2735 for (i = 0; i < entry->relocation_count; i++) {
2736 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2737 struct drm_gem_object *target_obj;
2738 struct drm_i915_gem_object *target_obj_priv;
2739 uint32_t reloc_val, reloc_offset;
2740 uint32_t __iomem *reloc_entry;
2742 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2743 reloc->target_handle);
2744 if (target_obj == NULL) {
2745 i915_gem_object_unpin(obj);
2746 return -EBADF;
2748 target_obj_priv = target_obj->driver_private;
2750 /* The target buffer should have appeared before us in the
2751 * exec_object list, so it should have a GTT space bound by now.
2753 if (target_obj_priv->gtt_space == NULL) {
2754 DRM_ERROR("No GTT space found for object %d\n",
2755 reloc->target_handle);
2756 drm_gem_object_unreference(target_obj);
2757 i915_gem_object_unpin(obj);
2758 return -EINVAL;
2761 if (reloc->offset > obj->size - 4) {
2762 DRM_ERROR("Relocation beyond object bounds: "
2763 "obj %p target %d offset %d size %d.\n",
2764 obj, reloc->target_handle,
2765 (int) reloc->offset, (int) obj->size);
2766 drm_gem_object_unreference(target_obj);
2767 i915_gem_object_unpin(obj);
2768 return -EINVAL;
2770 if (reloc->offset & 3) {
2771 DRM_ERROR("Relocation not 4-byte aligned: "
2772 "obj %p target %d offset %d.\n",
2773 obj, reloc->target_handle,
2774 (int) reloc->offset);
2775 drm_gem_object_unreference(target_obj);
2776 i915_gem_object_unpin(obj);
2777 return -EINVAL;
2780 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
2781 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
2782 DRM_ERROR("reloc with read/write CPU domains: "
2783 "obj %p target %d offset %d "
2784 "read %08x write %08x",
2785 obj, reloc->target_handle,
2786 (int) reloc->offset,
2787 reloc->read_domains,
2788 reloc->write_domain);
2789 drm_gem_object_unreference(target_obj);
2790 i915_gem_object_unpin(obj);
2791 return -EINVAL;
2794 if (reloc->write_domain && target_obj->pending_write_domain &&
2795 reloc->write_domain != target_obj->pending_write_domain) {
2796 DRM_ERROR("Write domain conflict: "
2797 "obj %p target %d offset %d "
2798 "new %08x old %08x\n",
2799 obj, reloc->target_handle,
2800 (int) reloc->offset,
2801 reloc->write_domain,
2802 target_obj->pending_write_domain);
2803 drm_gem_object_unreference(target_obj);
2804 i915_gem_object_unpin(obj);
2805 return -EINVAL;
2808 #if WATCH_RELOC
2809 DRM_INFO("%s: obj %p offset %08x target %d "
2810 "read %08x write %08x gtt %08x "
2811 "presumed %08x delta %08x\n",
2812 __func__,
2813 obj,
2814 (int) reloc->offset,
2815 (int) reloc->target_handle,
2816 (int) reloc->read_domains,
2817 (int) reloc->write_domain,
2818 (int) target_obj_priv->gtt_offset,
2819 (int) reloc->presumed_offset,
2820 reloc->delta);
2821 #endif
2823 target_obj->pending_read_domains |= reloc->read_domains;
2824 target_obj->pending_write_domain |= reloc->write_domain;
2826 /* If the relocation already has the right value in it, no
2827 * more work needs to be done.
2829 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
2830 drm_gem_object_unreference(target_obj);
2831 continue;
2834 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2835 if (ret != 0) {
2836 drm_gem_object_unreference(target_obj);
2837 i915_gem_object_unpin(obj);
2838 return -EINVAL;
2841 /* Map the page containing the relocation we're going to
2842 * perform.
2844 reloc_offset = obj_priv->gtt_offset + reloc->offset;
2845 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2846 (reloc_offset &
2847 ~(PAGE_SIZE - 1)));
2848 reloc_entry = (uint32_t __iomem *)(reloc_page +
2849 (reloc_offset & (PAGE_SIZE - 1)));
2850 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
2852 #if WATCH_BUF
2853 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
2854 obj, (unsigned int) reloc->offset,
2855 readl(reloc_entry), reloc_val);
2856 #endif
2857 writel(reloc_val, reloc_entry);
2858 io_mapping_unmap_atomic(reloc_page);
2860 /* The updated presumed offset for this entry will be
2861 * copied back out to the user.
2863 reloc->presumed_offset = target_obj_priv->gtt_offset;
2865 drm_gem_object_unreference(target_obj);
2868 #if WATCH_BUF
2869 if (0)
2870 i915_gem_dump_object(obj, 128, __func__, ~0);
2871 #endif
2872 return 0;
2875 /** Dispatch a batchbuffer to the ring
2877 static int
2878 i915_dispatch_gem_execbuffer(struct drm_device *dev,
2879 struct drm_i915_gem_execbuffer *exec,
2880 struct drm_clip_rect *cliprects,
2881 uint64_t exec_offset)
2883 drm_i915_private_t *dev_priv = dev->dev_private;
2884 int nbox = exec->num_cliprects;
2885 int i = 0, count;
2886 uint32_t exec_start, exec_len;
2887 RING_LOCALS;
2889 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
2890 exec_len = (uint32_t) exec->batch_len;
2892 if ((exec_start | exec_len) & 0x7) {
2893 DRM_ERROR("alignment\n");
2894 return -EINVAL;
2897 if (!exec_start)
2898 return -EINVAL;
2900 count = nbox ? nbox : 1;
2902 for (i = 0; i < count; i++) {
2903 if (i < nbox) {
2904 int ret = i915_emit_box(dev, cliprects, i,
2905 exec->DR1, exec->DR4);
2906 if (ret)
2907 return ret;
2910 if (IS_I830(dev) || IS_845G(dev)) {
2911 BEGIN_LP_RING(4);
2912 OUT_RING(MI_BATCH_BUFFER);
2913 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2914 OUT_RING(exec_start + exec_len - 4);
2915 OUT_RING(0);
2916 ADVANCE_LP_RING();
2917 } else {
2918 BEGIN_LP_RING(2);
2919 if (IS_I965G(dev)) {
2920 OUT_RING(MI_BATCH_BUFFER_START |
2921 (2 << 6) |
2922 MI_BATCH_NON_SECURE_I965);
2923 OUT_RING(exec_start);
2924 } else {
2925 OUT_RING(MI_BATCH_BUFFER_START |
2926 (2 << 6));
2927 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2929 ADVANCE_LP_RING();
2933 /* XXX breadcrumb */
2934 return 0;
2937 /* Throttle our rendering by waiting until the ring has completed our requests
2938 * emitted over 20 msec ago.
2940 * This should get us reasonable parallelism between CPU and GPU but also
2941 * relatively low latency when blocking on a particular request to finish.
2943 static int
2944 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
2946 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2947 int ret = 0;
2948 uint32_t seqno;
2950 mutex_lock(&dev->struct_mutex);
2951 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
2952 i915_file_priv->mm.last_gem_throttle_seqno =
2953 i915_file_priv->mm.last_gem_seqno;
2954 if (seqno)
2955 ret = i915_wait_request(dev, seqno);
2956 mutex_unlock(&dev->struct_mutex);
2957 return ret;
2960 static int
2961 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
2962 uint32_t buffer_count,
2963 struct drm_i915_gem_relocation_entry **relocs)
2965 uint32_t reloc_count = 0, reloc_index = 0, i;
2966 int ret;
2968 *relocs = NULL;
2969 for (i = 0; i < buffer_count; i++) {
2970 if (reloc_count + exec_list[i].relocation_count < reloc_count)
2971 return -EINVAL;
2972 reloc_count += exec_list[i].relocation_count;
2975 *relocs = drm_calloc(reloc_count, sizeof(**relocs), DRM_MEM_DRIVER);
2976 if (*relocs == NULL)
2977 return -ENOMEM;
2979 for (i = 0; i < buffer_count; i++) {
2980 struct drm_i915_gem_relocation_entry __user *user_relocs;
2982 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
2984 ret = copy_from_user(&(*relocs)[reloc_index],
2985 user_relocs,
2986 exec_list[i].relocation_count *
2987 sizeof(**relocs));
2988 if (ret != 0) {
2989 drm_free(*relocs, reloc_count * sizeof(**relocs),
2990 DRM_MEM_DRIVER);
2991 *relocs = NULL;
2992 return ret;
2995 reloc_index += exec_list[i].relocation_count;
2998 return ret;
3001 static int
3002 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3003 uint32_t buffer_count,
3004 struct drm_i915_gem_relocation_entry *relocs)
3006 uint32_t reloc_count = 0, i;
3007 int ret;
3009 for (i = 0; i < buffer_count; i++) {
3010 struct drm_i915_gem_relocation_entry __user *user_relocs;
3012 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3014 if (ret == 0) {
3015 ret = copy_to_user(user_relocs,
3016 &relocs[reloc_count],
3017 exec_list[i].relocation_count *
3018 sizeof(*relocs));
3021 reloc_count += exec_list[i].relocation_count;
3024 drm_free(relocs, reloc_count * sizeof(*relocs), DRM_MEM_DRIVER);
3026 return ret;
3030 i915_gem_execbuffer(struct drm_device *dev, void *data,
3031 struct drm_file *file_priv)
3033 drm_i915_private_t *dev_priv = dev->dev_private;
3034 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3035 struct drm_i915_gem_execbuffer *args = data;
3036 struct drm_i915_gem_exec_object *exec_list = NULL;
3037 struct drm_gem_object **object_list = NULL;
3038 struct drm_gem_object *batch_obj;
3039 struct drm_i915_gem_object *obj_priv;
3040 struct drm_clip_rect *cliprects = NULL;
3041 struct drm_i915_gem_relocation_entry *relocs;
3042 int ret, ret2, i, pinned = 0;
3043 uint64_t exec_offset;
3044 uint32_t seqno, flush_domains, reloc_index;
3045 int pin_tries;
3047 #if WATCH_EXEC
3048 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3049 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3050 #endif
3052 if (args->buffer_count < 1) {
3053 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3054 return -EINVAL;
3056 /* Copy in the exec list from userland */
3057 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
3058 DRM_MEM_DRIVER);
3059 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
3060 DRM_MEM_DRIVER);
3061 if (exec_list == NULL || object_list == NULL) {
3062 DRM_ERROR("Failed to allocate exec or object list "
3063 "for %d buffers\n",
3064 args->buffer_count);
3065 ret = -ENOMEM;
3066 goto pre_mutex_err;
3068 ret = copy_from_user(exec_list,
3069 (struct drm_i915_relocation_entry __user *)
3070 (uintptr_t) args->buffers_ptr,
3071 sizeof(*exec_list) * args->buffer_count);
3072 if (ret != 0) {
3073 DRM_ERROR("copy %d exec entries failed %d\n",
3074 args->buffer_count, ret);
3075 goto pre_mutex_err;
3078 if (args->num_cliprects != 0) {
3079 cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
3080 DRM_MEM_DRIVER);
3081 if (cliprects == NULL)
3082 goto pre_mutex_err;
3084 ret = copy_from_user(cliprects,
3085 (struct drm_clip_rect __user *)
3086 (uintptr_t) args->cliprects_ptr,
3087 sizeof(*cliprects) * args->num_cliprects);
3088 if (ret != 0) {
3089 DRM_ERROR("copy %d cliprects failed: %d\n",
3090 args->num_cliprects, ret);
3091 goto pre_mutex_err;
3095 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3096 &relocs);
3097 if (ret != 0)
3098 goto pre_mutex_err;
3100 mutex_lock(&dev->struct_mutex);
3102 i915_verify_inactive(dev, __FILE__, __LINE__);
3104 if (dev_priv->mm.wedged) {
3105 DRM_ERROR("Execbuf while wedged\n");
3106 mutex_unlock(&dev->struct_mutex);
3107 ret = -EIO;
3108 goto pre_mutex_err;
3111 if (dev_priv->mm.suspended) {
3112 DRM_ERROR("Execbuf while VT-switched.\n");
3113 mutex_unlock(&dev->struct_mutex);
3114 ret = -EBUSY;
3115 goto pre_mutex_err;
3118 /* Look up object handles */
3119 for (i = 0; i < args->buffer_count; i++) {
3120 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3121 exec_list[i].handle);
3122 if (object_list[i] == NULL) {
3123 DRM_ERROR("Invalid object handle %d at index %d\n",
3124 exec_list[i].handle, i);
3125 ret = -EBADF;
3126 goto err;
3129 obj_priv = object_list[i]->driver_private;
3130 if (obj_priv->in_execbuffer) {
3131 DRM_ERROR("Object %p appears more than once in object list\n",
3132 object_list[i]);
3133 ret = -EBADF;
3134 goto err;
3136 obj_priv->in_execbuffer = true;
3139 /* Pin and relocate */
3140 for (pin_tries = 0; ; pin_tries++) {
3141 ret = 0;
3142 reloc_index = 0;
3144 for (i = 0; i < args->buffer_count; i++) {
3145 object_list[i]->pending_read_domains = 0;
3146 object_list[i]->pending_write_domain = 0;
3147 ret = i915_gem_object_pin_and_relocate(object_list[i],
3148 file_priv,
3149 &exec_list[i],
3150 &relocs[reloc_index]);
3151 if (ret)
3152 break;
3153 pinned = i + 1;
3154 reloc_index += exec_list[i].relocation_count;
3156 /* success */
3157 if (ret == 0)
3158 break;
3160 /* error other than GTT full, or we've already tried again */
3161 if (ret != -ENOMEM || pin_tries >= 1) {
3162 if (ret != -ERESTARTSYS)
3163 DRM_ERROR("Failed to pin buffers %d\n", ret);
3164 goto err;
3167 /* unpin all of our buffers */
3168 for (i = 0; i < pinned; i++)
3169 i915_gem_object_unpin(object_list[i]);
3170 pinned = 0;
3172 /* evict everyone we can from the aperture */
3173 ret = i915_gem_evict_everything(dev);
3174 if (ret)
3175 goto err;
3178 /* Set the pending read domains for the batch buffer to COMMAND */
3179 batch_obj = object_list[args->buffer_count-1];
3180 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
3181 batch_obj->pending_write_domain = 0;
3183 i915_verify_inactive(dev, __FILE__, __LINE__);
3185 /* Zero the global flush/invalidate flags. These
3186 * will be modified as new domains are computed
3187 * for each object
3189 dev->invalidate_domains = 0;
3190 dev->flush_domains = 0;
3192 for (i = 0; i < args->buffer_count; i++) {
3193 struct drm_gem_object *obj = object_list[i];
3195 /* Compute new gpu domains and update invalidate/flush */
3196 i915_gem_object_set_to_gpu_domain(obj);
3199 i915_verify_inactive(dev, __FILE__, __LINE__);
3201 if (dev->invalidate_domains | dev->flush_domains) {
3202 #if WATCH_EXEC
3203 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3204 __func__,
3205 dev->invalidate_domains,
3206 dev->flush_domains);
3207 #endif
3208 i915_gem_flush(dev,
3209 dev->invalidate_domains,
3210 dev->flush_domains);
3211 if (dev->flush_domains)
3212 (void)i915_add_request(dev, dev->flush_domains);
3215 for (i = 0; i < args->buffer_count; i++) {
3216 struct drm_gem_object *obj = object_list[i];
3218 obj->write_domain = obj->pending_write_domain;
3221 i915_verify_inactive(dev, __FILE__, __LINE__);
3223 #if WATCH_COHERENCY
3224 for (i = 0; i < args->buffer_count; i++) {
3225 i915_gem_object_check_coherency(object_list[i],
3226 exec_list[i].handle);
3228 #endif
3230 exec_offset = exec_list[args->buffer_count - 1].offset;
3232 #if WATCH_EXEC
3233 i915_gem_dump_object(object_list[args->buffer_count - 1],
3234 args->batch_len,
3235 __func__,
3236 ~0);
3237 #endif
3239 /* Exec the batchbuffer */
3240 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3241 if (ret) {
3242 DRM_ERROR("dispatch failed %d\n", ret);
3243 goto err;
3247 * Ensure that the commands in the batch buffer are
3248 * finished before the interrupt fires
3250 flush_domains = i915_retire_commands(dev);
3252 i915_verify_inactive(dev, __FILE__, __LINE__);
3255 * Get a seqno representing the execution of the current buffer,
3256 * which we can wait on. We would like to mitigate these interrupts,
3257 * likely by only creating seqnos occasionally (so that we have
3258 * *some* interrupts representing completion of buffers that we can
3259 * wait on when trying to clear up gtt space).
3261 seqno = i915_add_request(dev, flush_domains);
3262 BUG_ON(seqno == 0);
3263 i915_file_priv->mm.last_gem_seqno = seqno;
3264 for (i = 0; i < args->buffer_count; i++) {
3265 struct drm_gem_object *obj = object_list[i];
3267 i915_gem_object_move_to_active(obj, seqno);
3268 #if WATCH_LRU
3269 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3270 #endif
3272 #if WATCH_LRU
3273 i915_dump_lru(dev, __func__);
3274 #endif
3276 i915_verify_inactive(dev, __FILE__, __LINE__);
3278 err:
3279 for (i = 0; i < pinned; i++)
3280 i915_gem_object_unpin(object_list[i]);
3282 for (i = 0; i < args->buffer_count; i++) {
3283 if (object_list[i]) {
3284 obj_priv = object_list[i]->driver_private;
3285 obj_priv->in_execbuffer = false;
3287 drm_gem_object_unreference(object_list[i]);
3290 mutex_unlock(&dev->struct_mutex);
3292 if (!ret) {
3293 /* Copy the new buffer offsets back to the user's exec list. */
3294 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3295 (uintptr_t) args->buffers_ptr,
3296 exec_list,
3297 sizeof(*exec_list) * args->buffer_count);
3298 if (ret)
3299 DRM_ERROR("failed to copy %d exec entries "
3300 "back to user (%d)\n",
3301 args->buffer_count, ret);
3304 /* Copy the updated relocations out regardless of current error
3305 * state. Failure to update the relocs would mean that the next
3306 * time userland calls execbuf, it would do so with presumed offset
3307 * state that didn't match the actual object state.
3309 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3310 relocs);
3311 if (ret2 != 0) {
3312 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3314 if (ret == 0)
3315 ret = ret2;
3318 pre_mutex_err:
3319 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
3320 DRM_MEM_DRIVER);
3321 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
3322 DRM_MEM_DRIVER);
3323 drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
3324 DRM_MEM_DRIVER);
3326 return ret;
3330 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3332 struct drm_device *dev = obj->dev;
3333 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3334 int ret;
3336 i915_verify_inactive(dev, __FILE__, __LINE__);
3337 if (obj_priv->gtt_space == NULL) {
3338 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3339 if (ret != 0) {
3340 if (ret != -EBUSY && ret != -ERESTARTSYS)
3341 DRM_ERROR("Failure to bind: %d\n", ret);
3342 return ret;
3346 * Pre-965 chips need a fence register set up in order to
3347 * properly handle tiled surfaces.
3349 if (!IS_I965G(dev) &&
3350 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3351 obj_priv->tiling_mode != I915_TILING_NONE) {
3352 ret = i915_gem_object_get_fence_reg(obj, true);
3353 if (ret != 0) {
3354 if (ret != -EBUSY && ret != -ERESTARTSYS)
3355 DRM_ERROR("Failure to install fence: %d\n",
3356 ret);
3357 return ret;
3360 obj_priv->pin_count++;
3362 /* If the object is not active and not pending a flush,
3363 * remove it from the inactive list
3365 if (obj_priv->pin_count == 1) {
3366 atomic_inc(&dev->pin_count);
3367 atomic_add(obj->size, &dev->pin_memory);
3368 if (!obj_priv->active &&
3369 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3370 I915_GEM_DOMAIN_GTT)) == 0 &&
3371 !list_empty(&obj_priv->list))
3372 list_del_init(&obj_priv->list);
3374 i915_verify_inactive(dev, __FILE__, __LINE__);
3376 return 0;
3379 void
3380 i915_gem_object_unpin(struct drm_gem_object *obj)
3382 struct drm_device *dev = obj->dev;
3383 drm_i915_private_t *dev_priv = dev->dev_private;
3384 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3386 i915_verify_inactive(dev, __FILE__, __LINE__);
3387 obj_priv->pin_count--;
3388 BUG_ON(obj_priv->pin_count < 0);
3389 BUG_ON(obj_priv->gtt_space == NULL);
3391 /* If the object is no longer pinned, and is
3392 * neither active nor being flushed, then stick it on
3393 * the inactive list
3395 if (obj_priv->pin_count == 0) {
3396 if (!obj_priv->active &&
3397 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3398 I915_GEM_DOMAIN_GTT)) == 0)
3399 list_move_tail(&obj_priv->list,
3400 &dev_priv->mm.inactive_list);
3401 atomic_dec(&dev->pin_count);
3402 atomic_sub(obj->size, &dev->pin_memory);
3404 i915_verify_inactive(dev, __FILE__, __LINE__);
3408 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3409 struct drm_file *file_priv)
3411 struct drm_i915_gem_pin *args = data;
3412 struct drm_gem_object *obj;
3413 struct drm_i915_gem_object *obj_priv;
3414 int ret;
3416 mutex_lock(&dev->struct_mutex);
3418 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3419 if (obj == NULL) {
3420 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3421 args->handle);
3422 mutex_unlock(&dev->struct_mutex);
3423 return -EBADF;
3425 obj_priv = obj->driver_private;
3427 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3428 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3429 args->handle);
3430 drm_gem_object_unreference(obj);
3431 mutex_unlock(&dev->struct_mutex);
3432 return -EINVAL;
3435 obj_priv->user_pin_count++;
3436 obj_priv->pin_filp = file_priv;
3437 if (obj_priv->user_pin_count == 1) {
3438 ret = i915_gem_object_pin(obj, args->alignment);
3439 if (ret != 0) {
3440 drm_gem_object_unreference(obj);
3441 mutex_unlock(&dev->struct_mutex);
3442 return ret;
3446 /* XXX - flush the CPU caches for pinned objects
3447 * as the X server doesn't manage domains yet
3449 i915_gem_object_flush_cpu_write_domain(obj);
3450 args->offset = obj_priv->gtt_offset;
3451 drm_gem_object_unreference(obj);
3452 mutex_unlock(&dev->struct_mutex);
3454 return 0;
3458 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3459 struct drm_file *file_priv)
3461 struct drm_i915_gem_pin *args = data;
3462 struct drm_gem_object *obj;
3463 struct drm_i915_gem_object *obj_priv;
3465 mutex_lock(&dev->struct_mutex);
3467 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3468 if (obj == NULL) {
3469 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3470 args->handle);
3471 mutex_unlock(&dev->struct_mutex);
3472 return -EBADF;
3475 obj_priv = obj->driver_private;
3476 if (obj_priv->pin_filp != file_priv) {
3477 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3478 args->handle);
3479 drm_gem_object_unreference(obj);
3480 mutex_unlock(&dev->struct_mutex);
3481 return -EINVAL;
3483 obj_priv->user_pin_count--;
3484 if (obj_priv->user_pin_count == 0) {
3485 obj_priv->pin_filp = NULL;
3486 i915_gem_object_unpin(obj);
3489 drm_gem_object_unreference(obj);
3490 mutex_unlock(&dev->struct_mutex);
3491 return 0;
3495 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3496 struct drm_file *file_priv)
3498 struct drm_i915_gem_busy *args = data;
3499 struct drm_gem_object *obj;
3500 struct drm_i915_gem_object *obj_priv;
3502 mutex_lock(&dev->struct_mutex);
3503 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3504 if (obj == NULL) {
3505 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3506 args->handle);
3507 mutex_unlock(&dev->struct_mutex);
3508 return -EBADF;
3511 /* Update the active list for the hardware's current position.
3512 * Otherwise this only updates on a delayed timer or when irqs are
3513 * actually unmasked, and our working set ends up being larger than
3514 * required.
3516 i915_gem_retire_requests(dev);
3518 obj_priv = obj->driver_private;
3519 /* Don't count being on the flushing list against the object being
3520 * done. Otherwise, a buffer left on the flushing list but not getting
3521 * flushed (because nobody's flushing that domain) won't ever return
3522 * unbusy and get reused by libdrm's bo cache. The other expected
3523 * consumer of this interface, OpenGL's occlusion queries, also specs
3524 * that the objects get unbusy "eventually" without any interference.
3526 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3528 drm_gem_object_unreference(obj);
3529 mutex_unlock(&dev->struct_mutex);
3530 return 0;
3534 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3535 struct drm_file *file_priv)
3537 return i915_gem_ring_throttle(dev, file_priv);
3540 int i915_gem_init_object(struct drm_gem_object *obj)
3542 struct drm_i915_gem_object *obj_priv;
3544 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
3545 if (obj_priv == NULL)
3546 return -ENOMEM;
3549 * We've just allocated pages from the kernel,
3550 * so they've just been written by the CPU with
3551 * zeros. They'll need to be clflushed before we
3552 * use them with the GPU.
3554 obj->write_domain = I915_GEM_DOMAIN_CPU;
3555 obj->read_domains = I915_GEM_DOMAIN_CPU;
3557 obj_priv->agp_type = AGP_USER_MEMORY;
3559 obj->driver_private = obj_priv;
3560 obj_priv->obj = obj;
3561 obj_priv->fence_reg = I915_FENCE_REG_NONE;
3562 INIT_LIST_HEAD(&obj_priv->list);
3564 return 0;
3567 void i915_gem_free_object(struct drm_gem_object *obj)
3569 struct drm_device *dev = obj->dev;
3570 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3572 while (obj_priv->pin_count > 0)
3573 i915_gem_object_unpin(obj);
3575 if (obj_priv->phys_obj)
3576 i915_gem_detach_phys_object(dev, obj);
3578 i915_gem_object_unbind(obj);
3580 i915_gem_free_mmap_offset(obj);
3582 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
3583 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
3586 /** Unbinds all objects that are on the given buffer list. */
3587 static int
3588 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3590 struct drm_gem_object *obj;
3591 struct drm_i915_gem_object *obj_priv;
3592 int ret;
3594 while (!list_empty(head)) {
3595 obj_priv = list_first_entry(head,
3596 struct drm_i915_gem_object,
3597 list);
3598 obj = obj_priv->obj;
3600 if (obj_priv->pin_count != 0) {
3601 DRM_ERROR("Pinned object in unbind list\n");
3602 mutex_unlock(&dev->struct_mutex);
3603 return -EINVAL;
3606 ret = i915_gem_object_unbind(obj);
3607 if (ret != 0) {
3608 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3609 ret);
3610 mutex_unlock(&dev->struct_mutex);
3611 return ret;
3616 return 0;
3620 i915_gem_idle(struct drm_device *dev)
3622 drm_i915_private_t *dev_priv = dev->dev_private;
3623 uint32_t seqno, cur_seqno, last_seqno;
3624 int stuck, ret;
3626 mutex_lock(&dev->struct_mutex);
3628 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3629 mutex_unlock(&dev->struct_mutex);
3630 return 0;
3633 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3634 * We need to replace this with a semaphore, or something.
3636 dev_priv->mm.suspended = 1;
3638 /* Cancel the retire work handler, wait for it to finish if running
3640 mutex_unlock(&dev->struct_mutex);
3641 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3642 mutex_lock(&dev->struct_mutex);
3644 i915_kernel_lost_context(dev);
3646 /* Flush the GPU along with all non-CPU write domains
3648 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
3649 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
3650 seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
3652 if (seqno == 0) {
3653 mutex_unlock(&dev->struct_mutex);
3654 return -ENOMEM;
3657 dev_priv->mm.waiting_gem_seqno = seqno;
3658 last_seqno = 0;
3659 stuck = 0;
3660 for (;;) {
3661 cur_seqno = i915_get_gem_seqno(dev);
3662 if (i915_seqno_passed(cur_seqno, seqno))
3663 break;
3664 if (last_seqno == cur_seqno) {
3665 if (stuck++ > 100) {
3666 DRM_ERROR("hardware wedged\n");
3667 dev_priv->mm.wedged = 1;
3668 DRM_WAKEUP(&dev_priv->irq_queue);
3669 break;
3672 msleep(10);
3673 last_seqno = cur_seqno;
3675 dev_priv->mm.waiting_gem_seqno = 0;
3677 i915_gem_retire_requests(dev);
3679 if (!dev_priv->mm.wedged) {
3680 /* Active and flushing should now be empty as we've
3681 * waited for a sequence higher than any pending execbuffer
3683 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3684 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3685 /* Request should now be empty as we've also waited
3686 * for the last request in the list
3688 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3691 /* Empty the active and flushing lists to inactive. If there's
3692 * anything left at this point, it means that we're wedged and
3693 * nothing good's going to happen by leaving them there. So strip
3694 * the GPU domains and just stuff them onto inactive.
3696 while (!list_empty(&dev_priv->mm.active_list)) {
3697 struct drm_i915_gem_object *obj_priv;
3699 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3700 struct drm_i915_gem_object,
3701 list);
3702 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3703 i915_gem_object_move_to_inactive(obj_priv->obj);
3706 while (!list_empty(&dev_priv->mm.flushing_list)) {
3707 struct drm_i915_gem_object *obj_priv;
3709 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3710 struct drm_i915_gem_object,
3711 list);
3712 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3713 i915_gem_object_move_to_inactive(obj_priv->obj);
3717 /* Move all inactive buffers out of the GTT. */
3718 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3719 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3720 if (ret) {
3721 mutex_unlock(&dev->struct_mutex);
3722 return ret;
3725 i915_gem_cleanup_ringbuffer(dev);
3726 mutex_unlock(&dev->struct_mutex);
3728 return 0;
3731 static int
3732 i915_gem_init_hws(struct drm_device *dev)
3734 drm_i915_private_t *dev_priv = dev->dev_private;
3735 struct drm_gem_object *obj;
3736 struct drm_i915_gem_object *obj_priv;
3737 int ret;
3739 /* If we need a physical address for the status page, it's already
3740 * initialized at driver load time.
3742 if (!I915_NEED_GFX_HWS(dev))
3743 return 0;
3745 obj = drm_gem_object_alloc(dev, 4096);
3746 if (obj == NULL) {
3747 DRM_ERROR("Failed to allocate status page\n");
3748 return -ENOMEM;
3750 obj_priv = obj->driver_private;
3751 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3753 ret = i915_gem_object_pin(obj, 4096);
3754 if (ret != 0) {
3755 drm_gem_object_unreference(obj);
3756 return ret;
3759 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3761 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
3762 if (dev_priv->hw_status_page == NULL) {
3763 DRM_ERROR("Failed to map status page.\n");
3764 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3765 i915_gem_object_unpin(obj);
3766 drm_gem_object_unreference(obj);
3767 return -EINVAL;
3769 dev_priv->hws_obj = obj;
3770 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3771 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
3772 I915_READ(HWS_PGA); /* posting read */
3773 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3775 return 0;
3778 static void
3779 i915_gem_cleanup_hws(struct drm_device *dev)
3781 drm_i915_private_t *dev_priv = dev->dev_private;
3782 struct drm_gem_object *obj;
3783 struct drm_i915_gem_object *obj_priv;
3785 if (dev_priv->hws_obj == NULL)
3786 return;
3788 obj = dev_priv->hws_obj;
3789 obj_priv = obj->driver_private;
3791 kunmap(obj_priv->pages[0]);
3792 i915_gem_object_unpin(obj);
3793 drm_gem_object_unreference(obj);
3794 dev_priv->hws_obj = NULL;
3796 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3797 dev_priv->hw_status_page = NULL;
3799 /* Write high address into HWS_PGA when disabling. */
3800 I915_WRITE(HWS_PGA, 0x1ffff000);
3804 i915_gem_init_ringbuffer(struct drm_device *dev)
3806 drm_i915_private_t *dev_priv = dev->dev_private;
3807 struct drm_gem_object *obj;
3808 struct drm_i915_gem_object *obj_priv;
3809 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
3810 int ret;
3811 u32 head;
3813 ret = i915_gem_init_hws(dev);
3814 if (ret != 0)
3815 return ret;
3817 obj = drm_gem_object_alloc(dev, 128 * 1024);
3818 if (obj == NULL) {
3819 DRM_ERROR("Failed to allocate ringbuffer\n");
3820 i915_gem_cleanup_hws(dev);
3821 return -ENOMEM;
3823 obj_priv = obj->driver_private;
3825 ret = i915_gem_object_pin(obj, 4096);
3826 if (ret != 0) {
3827 drm_gem_object_unreference(obj);
3828 i915_gem_cleanup_hws(dev);
3829 return ret;
3832 /* Set up the kernel mapping for the ring. */
3833 ring->Size = obj->size;
3834 ring->tail_mask = obj->size - 1;
3836 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3837 ring->map.size = obj->size;
3838 ring->map.type = 0;
3839 ring->map.flags = 0;
3840 ring->map.mtrr = 0;
3842 drm_core_ioremap_wc(&ring->map, dev);
3843 if (ring->map.handle == NULL) {
3844 DRM_ERROR("Failed to map ringbuffer.\n");
3845 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3846 i915_gem_object_unpin(obj);
3847 drm_gem_object_unreference(obj);
3848 i915_gem_cleanup_hws(dev);
3849 return -EINVAL;
3851 ring->ring_obj = obj;
3852 ring->virtual_start = ring->map.handle;
3854 /* Stop the ring if it's running. */
3855 I915_WRITE(PRB0_CTL, 0);
3856 I915_WRITE(PRB0_TAIL, 0);
3857 I915_WRITE(PRB0_HEAD, 0);
3859 /* Initialize the ring. */
3860 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
3861 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3863 /* G45 ring initialization fails to reset head to zero */
3864 if (head != 0) {
3865 DRM_ERROR("Ring head not reset to zero "
3866 "ctl %08x head %08x tail %08x start %08x\n",
3867 I915_READ(PRB0_CTL),
3868 I915_READ(PRB0_HEAD),
3869 I915_READ(PRB0_TAIL),
3870 I915_READ(PRB0_START));
3871 I915_WRITE(PRB0_HEAD, 0);
3873 DRM_ERROR("Ring head forced to zero "
3874 "ctl %08x head %08x tail %08x start %08x\n",
3875 I915_READ(PRB0_CTL),
3876 I915_READ(PRB0_HEAD),
3877 I915_READ(PRB0_TAIL),
3878 I915_READ(PRB0_START));
3881 I915_WRITE(PRB0_CTL,
3882 ((obj->size - 4096) & RING_NR_PAGES) |
3883 RING_NO_REPORT |
3884 RING_VALID);
3886 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3888 /* If the head is still not zero, the ring is dead */
3889 if (head != 0) {
3890 DRM_ERROR("Ring initialization failed "
3891 "ctl %08x head %08x tail %08x start %08x\n",
3892 I915_READ(PRB0_CTL),
3893 I915_READ(PRB0_HEAD),
3894 I915_READ(PRB0_TAIL),
3895 I915_READ(PRB0_START));
3896 return -EIO;
3899 /* Update our cache of the ring state */
3900 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3901 i915_kernel_lost_context(dev);
3902 else {
3903 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3904 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
3905 ring->space = ring->head - (ring->tail + 8);
3906 if (ring->space < 0)
3907 ring->space += ring->Size;
3910 return 0;
3913 void
3914 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3916 drm_i915_private_t *dev_priv = dev->dev_private;
3918 if (dev_priv->ring.ring_obj == NULL)
3919 return;
3921 drm_core_ioremapfree(&dev_priv->ring.map, dev);
3923 i915_gem_object_unpin(dev_priv->ring.ring_obj);
3924 drm_gem_object_unreference(dev_priv->ring.ring_obj);
3925 dev_priv->ring.ring_obj = NULL;
3926 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3928 i915_gem_cleanup_hws(dev);
3932 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3933 struct drm_file *file_priv)
3935 drm_i915_private_t *dev_priv = dev->dev_private;
3936 int ret;
3938 if (drm_core_check_feature(dev, DRIVER_MODESET))
3939 return 0;
3941 if (dev_priv->mm.wedged) {
3942 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3943 dev_priv->mm.wedged = 0;
3946 mutex_lock(&dev->struct_mutex);
3947 dev_priv->mm.suspended = 0;
3949 ret = i915_gem_init_ringbuffer(dev);
3950 if (ret != 0)
3951 return ret;
3953 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3954 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3955 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3956 BUG_ON(!list_empty(&dev_priv->mm.request_list));
3957 mutex_unlock(&dev->struct_mutex);
3959 drm_irq_install(dev);
3961 return 0;
3965 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3966 struct drm_file *file_priv)
3968 int ret;
3970 if (drm_core_check_feature(dev, DRIVER_MODESET))
3971 return 0;
3973 ret = i915_gem_idle(dev);
3974 drm_irq_uninstall(dev);
3976 return ret;
3979 void
3980 i915_gem_lastclose(struct drm_device *dev)
3982 int ret;
3984 if (drm_core_check_feature(dev, DRIVER_MODESET))
3985 return;
3987 ret = i915_gem_idle(dev);
3988 if (ret)
3989 DRM_ERROR("failed to idle hardware: %d\n", ret);
3992 void
3993 i915_gem_load(struct drm_device *dev)
3995 drm_i915_private_t *dev_priv = dev->dev_private;
3997 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3998 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3999 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4000 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4001 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4002 i915_gem_retire_work_handler);
4003 dev_priv->mm.next_gem_seqno = 1;
4005 /* Old X drivers will take 0-2 for front, back, depth buffers */
4006 dev_priv->fence_reg_start = 3;
4008 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4009 dev_priv->num_fence_regs = 16;
4010 else
4011 dev_priv->num_fence_regs = 8;
4013 i915_gem_detect_bit_6_swizzle(dev);
4017 * Create a physically contiguous memory object for this object
4018 * e.g. for cursor + overlay regs
4020 int i915_gem_init_phys_object(struct drm_device *dev,
4021 int id, int size)
4023 drm_i915_private_t *dev_priv = dev->dev_private;
4024 struct drm_i915_gem_phys_object *phys_obj;
4025 int ret;
4027 if (dev_priv->mm.phys_objs[id - 1] || !size)
4028 return 0;
4030 phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4031 if (!phys_obj)
4032 return -ENOMEM;
4034 phys_obj->id = id;
4036 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4037 if (!phys_obj->handle) {
4038 ret = -ENOMEM;
4039 goto kfree_obj;
4041 #ifdef CONFIG_X86
4042 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4043 #endif
4045 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4047 return 0;
4048 kfree_obj:
4049 drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4050 return ret;
4053 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4055 drm_i915_private_t *dev_priv = dev->dev_private;
4056 struct drm_i915_gem_phys_object *phys_obj;
4058 if (!dev_priv->mm.phys_objs[id - 1])
4059 return;
4061 phys_obj = dev_priv->mm.phys_objs[id - 1];
4062 if (phys_obj->cur_obj) {
4063 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4066 #ifdef CONFIG_X86
4067 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4068 #endif
4069 drm_pci_free(dev, phys_obj->handle);
4070 kfree(phys_obj);
4071 dev_priv->mm.phys_objs[id - 1] = NULL;
4074 void i915_gem_free_all_phys_object(struct drm_device *dev)
4076 int i;
4078 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4079 i915_gem_free_phys_object(dev, i);
4082 void i915_gem_detach_phys_object(struct drm_device *dev,
4083 struct drm_gem_object *obj)
4085 struct drm_i915_gem_object *obj_priv;
4086 int i;
4087 int ret;
4088 int page_count;
4090 obj_priv = obj->driver_private;
4091 if (!obj_priv->phys_obj)
4092 return;
4094 ret = i915_gem_object_get_pages(obj);
4095 if (ret)
4096 goto out;
4098 page_count = obj->size / PAGE_SIZE;
4100 for (i = 0; i < page_count; i++) {
4101 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4102 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4104 memcpy(dst, src, PAGE_SIZE);
4105 kunmap_atomic(dst, KM_USER0);
4107 drm_clflush_pages(obj_priv->pages, page_count);
4108 drm_agp_chipset_flush(dev);
4109 out:
4110 obj_priv->phys_obj->cur_obj = NULL;
4111 obj_priv->phys_obj = NULL;
4115 i915_gem_attach_phys_object(struct drm_device *dev,
4116 struct drm_gem_object *obj, int id)
4118 drm_i915_private_t *dev_priv = dev->dev_private;
4119 struct drm_i915_gem_object *obj_priv;
4120 int ret = 0;
4121 int page_count;
4122 int i;
4124 if (id > I915_MAX_PHYS_OBJECT)
4125 return -EINVAL;
4127 obj_priv = obj->driver_private;
4129 if (obj_priv->phys_obj) {
4130 if (obj_priv->phys_obj->id == id)
4131 return 0;
4132 i915_gem_detach_phys_object(dev, obj);
4136 /* create a new object */
4137 if (!dev_priv->mm.phys_objs[id - 1]) {
4138 ret = i915_gem_init_phys_object(dev, id,
4139 obj->size);
4140 if (ret) {
4141 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4142 goto out;
4146 /* bind to the object */
4147 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4148 obj_priv->phys_obj->cur_obj = obj;
4150 ret = i915_gem_object_get_pages(obj);
4151 if (ret) {
4152 DRM_ERROR("failed to get page list\n");
4153 goto out;
4156 page_count = obj->size / PAGE_SIZE;
4158 for (i = 0; i < page_count; i++) {
4159 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4160 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4162 memcpy(dst, src, PAGE_SIZE);
4163 kunmap_atomic(src, KM_USER0);
4166 return 0;
4167 out:
4168 return ret;
4171 static int
4172 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4173 struct drm_i915_gem_pwrite *args,
4174 struct drm_file *file_priv)
4176 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4177 void *obj_addr;
4178 int ret;
4179 char __user *user_data;
4181 user_data = (char __user *) (uintptr_t) args->data_ptr;
4182 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4184 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4185 ret = copy_from_user(obj_addr, user_data, args->size);
4186 if (ret)
4187 return -EFAULT;
4189 drm_agp_chipset_flush(dev);
4190 return 0;